JP2005077894A - Laser splice method for optical part - Google Patents

Laser splice method for optical part Download PDF

Info

Publication number
JP2005077894A
JP2005077894A JP2003309806A JP2003309806A JP2005077894A JP 2005077894 A JP2005077894 A JP 2005077894A JP 2003309806 A JP2003309806 A JP 2003309806A JP 2003309806 A JP2003309806 A JP 2003309806A JP 2005077894 A JP2005077894 A JP 2005077894A
Authority
JP
Japan
Prior art keywords
laser
joining
base material
irradiation position
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003309806A
Other languages
Japanese (ja)
Inventor
Yoshiaki Kitamura
嘉朗 北村
Kazumasa Takada
和政 高田
Yohei Takechi
洋平 武智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003309806A priority Critical patent/JP2005077894A/en
Publication of JP2005077894A publication Critical patent/JP2005077894A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mounting And Adjusting Of Optical Elements (AREA)
  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser splice method for an optical part which can reduce deterioration of optical characteristics caused by positional deviation generated when fixing the optical part and environmental change, and failure resulting therefrom. <P>SOLUTION: When fixing a splice member, to which the optical part is fixed, to a splice base material, a resin of small thermal expansion and contraction is melted so as to fill up the clearance between the splice member and the splice base material instead of using an adhesive. Thus, the optical part can be fixed with little positional deviation at splice and in environmental temperature change, and failure resulting from the positional deviation of the optical part can be reduced, and the optical characteristics can be improved. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光ピックアップなどの光学部品のレーザ接合方法に関するものである。   The present invention relates to a laser bonding method for optical components such as an optical pickup.

従来の光学部品のレーザ接合方法としては、紫外線硬化性接着剤を用いるものがあった(例えば、特許文献1参照)。以下に図面を用いて従来の技術を説明する。図5に従来の光学部品の固定方法の模式図を示す。   As a conventional laser joining method for optical components, there has been a method using an ultraviolet curable adhesive (for example, see Patent Document 1). The prior art will be described below with reference to the drawings. FIG. 5 shows a schematic diagram of a conventional method for fixing an optical component.

同図において、101は光学部品の一例であり光軸がBの光を反射するガラス製のミラー,102はミラー101が固定されるアルミニウム合金製のハウジングである。103は可換性を有しない接着剤,104,105及び106は可換性を有する同種の接着剤であり、共にガラス及びアルミニウム合金との接着性に優れ、硬化収縮が少なく変質しにくく、室温に数時間放置することにより硬化する例えばエポキシ系接着剤であり、ディスペンサ等を用いることにより、常に一定量だけ塗布することができる。   In the figure, reference numeral 101 denotes an example of an optical component, which is a glass mirror that reflects light having an optical axis of B, and 102 is an aluminum alloy housing to which the mirror 101 is fixed. 103 is an adhesive having no commutative properties, 104, 105 and 106 are the same type of adhesive having commutative properties, both of which are excellent in adhesiveness with glass and aluminum alloys, have little shrinkage in curing, and hardly change in quality. For example, it is an epoxy adhesive that hardens when left for several hours. By using a dispenser or the like, it can always be applied in a certain amount.

以上の構成を持つ従来の光学部品固定方法の動作を説明する。   The operation of the conventional optical component fixing method having the above configuration will be described.

図5において、ハウジング102上に接着剤103,104,105及び106を塗布し、ミラー101を接着剤が塗布されたハウジング102に接触させ、ミラーで反射される光の光軸Bを調整し、その姿勢(状態)を保持したまま、固化に要する時間放置する。接着剤103,104,105及び106が固化することで、光学部品を固定することができる。ミラー101を固定している4箇所の接着剤のうち、可換性を有しない接着剤103の拘束力は強く、ハウジング102に対するミラー101の位置ズレや倒れを抑える。   In FIG. 5, adhesives 103, 104, 105 and 106 are applied on the housing 102, the mirror 101 is brought into contact with the housing 102 applied with the adhesive, and the optical axis B of the light reflected by the mirror is adjusted. While maintaining the posture (state), it is left for the time required for solidification. When the adhesives 103, 104, 105, and 106 are solidified, the optical component can be fixed. Of the four adhesives fixing the mirror 101, the binding force of the adhesive 103 that is not replaceable is strong, and suppresses the positional deviation and the collapse of the mirror 101 with respect to the housing 102.

また、環境温度の変化に伴い、ミラー101,及びハウジング102の膨張収縮によって生じる応力は可換性を有する接着剤104,105,106がそれぞれ変形することにより吸収される。その結果、ハウジング102上のミラー101には歪みが生じないとされている。
特開昭63−269323号公報
Further, as the environmental temperature changes, the stress generated by the expansion and contraction of the mirror 101 and the housing 102 is absorbed by the deformable adhesives 104, 105, and 106, respectively. As a result, the mirror 101 on the housing 102 is not distorted.
JP-A 63-269323

しかしながら、上述のような構成では、ミラー101とハウジング102の間の隙間が小さい場合には、接着剤103、104、105、106の硬化収縮及び環境変化による膨張・収縮を無視できるが、隙間が大きい場合には無視できず、光学部品の位置ズレが生じるという問題を有することになる。以下にその理由を述べる。   However, in the configuration as described above, when the gap between the mirror 101 and the housing 102 is small, curing shrinkage of the adhesives 103, 104, 105, and 106 and expansion / shrinkage due to environmental changes can be ignored. If it is large, it cannot be ignored, and there is a problem that the optical component is displaced. The reason is described below.

ミラー101とそのハウジング102を固定する際に塗布する接着剤103、104、105、106の量は,固定箇所の隙間の大きさにほぼ比例する。また、接着剤103、104、105、106が硬化する場合の収縮量及び環境の変化により発生する膨張・収縮は接着剤の量に比例するため、部材間の隙間が大きい場合には、硬化時及び環境変化時の光学部品の位置ズレが大きく、光学特性を悪化させるという問題がある。   The amount of the adhesives 103, 104, 105, 106 applied when fixing the mirror 101 and its housing 102 is substantially proportional to the size of the gap between the fixing points. In addition, the amount of shrinkage when the adhesives 103, 104, 105, and 106 are cured and the expansion / contraction caused by environmental changes are proportional to the amount of the adhesive. In addition, there is a problem in that the optical components are greatly misaligned when the environment changes, and the optical characteristics deteriorate.

光ディスクの高密度化、光ピックアップの高速度・高性能化に伴い、光学部品の高精度化、高性能化、微小化が進んでおり、固定位置のずれを低減し光学部品を高精度に固定する必要がある。従来の技術では、エポキシ系接着剤の場合についてのみ開示しているが、紫外線照射により固化する紫外線硬化性接着剤を用いた場合であっても、硬化収縮・環境変化による膨張・収縮が発生し問題となる。   As the density of optical discs increases and the speed and performance of optical pickups increase, the precision, performance, and miniaturization of optical components are advancing, reducing the displacement of the fixed position and fixing the optical components with high precision. There is a need to. In the conventional technology, only the case of an epoxy adhesive is disclosed. However, even when an ultraviolet curable adhesive that is solidified by ultraviolet irradiation is used, expansion / contraction due to curing shrinkage / environmental change occurs. It becomes a problem.

以上説明したように、従来の固定方法では、膨張・収縮が発生するため光学部品の位置ズレが発生し、光学特性が低下するという課題を有することになる。   As described above, in the conventional fixing method, since expansion / contraction occurs, there is a problem that the optical component is displaced and the optical characteristics are deteriorated.

本発明は、上記従来の問題点を鑑み、固定部に生じる膨張・収縮を軽減することにより、光学部品の位置ズレを低減し光学特性の向上が可能なを光学部品のレーザ接合方法を提供することを目的とする。   In view of the above-described conventional problems, the present invention provides a laser joining method for optical components that can reduce the positional deviation of the optical components and improve the optical characteristics by reducing expansion and contraction that occur in the fixed portion. For the purpose.

上記目的を達成するために、本発明の光学部品のレーザ接合方法は、接合母材に対する光学部品を保持した接合部材の状態を調整する工程と、透過材の内部に前記透過材よりも光の吸収率及び融点の高い吸収材が散在された充填材を前記接合母材と前記接合部材の隙間に配置する工程と、前記充填材にレーザ光を照射する工程とを含む光学部品のレーザ接合方法であって、レーザ光によって、透過材及び吸収材はそれぞれ透過材の融点以上かつ吸収材の融点以下に加熱され、熱伝導により透過材を溶融させ、接合母材と接合部材との間の隙間を埋めることで固定することを特徴とする。   In order to achieve the above-described object, a laser joining method for optical components according to the present invention includes a step of adjusting a state of a joining member that holds an optical component with respect to a joining base material, A method for laser joining of optical components, comprising: a step of arranging a filler in which an absorbing material having a high absorption rate and a high melting point is dispersed in a gap between the joining base material and the joining member; and a step of irradiating the filler with laser light. The transmission material and the absorption material are heated by the laser beam to the melting point of the transmission material and below the melting point of the absorption material, respectively, and the transmission material is melted by heat conduction, and the gap between the bonding base material and the bonding member It is characterized by being fixed by filling.

或いは、接合母材に対する光学部品を保持した接合部材の状態を調整する工程と、前記接合母材と前記接合部材との間の隙間を拡大する観察手段により得られた隙間近傍の画像を基に算出された隙間の大きさより、前記接合母材と前記接合部材を接合可能な位置にレーザ光照射位置を決める工程と、前記接合部材に照射位置指示用レーザ光を照射し、前記観察手段により前記照射位置を観察した上で、照射位置指示用レーザ光の焦点を前記照射位置に移動させる工程と、照射位置指示用レーザ光と光軸が一致している前記溶接用レーザ光を光軸方向に移動させ前記照射位置に焦点を合わせる工程と、前記溶接用レーザ光を前記接合部材の前記レーザ照射位置近傍に照射し前記接合部材を一部溶融させ、熱膨張及び熱収縮により曲げ前記隙間を小さくする工程と、前記隙間を測定し前記照射位置指示用レーザ光照射による位置合わせ後、前記溶接用レーザ光を照射する工程を繰り返し、前記溶接用レーザ照射により前記接合部材の前記レーザ照射位置は溶融温度まで達しているため、前記接合部材の先端も十分に加熱され、前記接合部材の先端が前記接合母材に接触することで、前記接合母材が溶融され前記接合部材が前記接合母材中に埋まり、冷却されることで前記接合母材と前記接合部材が固定される工程を有することを特徴とする光学部品のレーザ接合方法である。   Alternatively, based on the image of the vicinity of the gap obtained by the step of adjusting the state of the joining member holding the optical component with respect to the joining base material and the observation means for enlarging the gap between the joining base material and the joining member. A step of determining a laser beam irradiation position at a position where the bonding base material and the bonding member can be bonded based on the calculated gap size, irradiating the bonding member with an irradiation position indicating laser beam, and the observation means After observing the irradiation position, the step of moving the focus of the irradiation position indicating laser beam to the irradiation position, and the welding laser beam whose optical axis coincides with the irradiation position indicating laser beam in the optical axis direction Moving and focusing on the irradiation position, irradiating the welding laser beam in the vicinity of the laser irradiation position of the joining member to partially melt the joining member, and bending the gap by thermal expansion and contraction. And the step of irradiating the laser beam for welding after measuring the gap and positioning by irradiation with the irradiation position indicating laser beam, and the laser irradiation position of the joining member by the laser irradiation for welding is Since the melting temperature is reached, the front end of the joining member is also sufficiently heated, and the front end of the joining member contacts the joining base material, so that the joining base material is melted and the joining member becomes the joining base material. An optical component laser joining method comprising a step of fixing the joining base material and the joining member by being buried and cooled.

以上のように、本発明の光学部品のレーザ接合方法によれば、接合時及び環境変化時の光学部品位置ズレの小さい固定が可能となり、光学部品の光学特性を向上させ、光学部品の位置ズレに関わる不良を低減することが可能となる。   As described above, according to the laser joining method of the optical component of the present invention, it is possible to fix the optical component with a small positional deviation at the time of joining and environmental change, improve the optical characteristics of the optical component, and the positional deviation of the optical component. It is possible to reduce the defects related to.

以下本発明の実施の形態について、図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1における光学部品のレーザ接合方法の模式図である。
(Embodiment 1)
FIG. 1 is a schematic diagram of a laser joining method for optical components according to Embodiment 1 of the present invention.

図1において、1は角部に半径Rmmの円柱状の凹みを有し、板厚がRより大きく材料として例えば亜鉛鋳造材を用い光学ユニットのベースである接合母材、2は接合母材1の凹みと相対する位置に同様の半径Rmmの凹みを有し、板厚がRより大きく接合母材1と隙間G離れ、材料として例えばSPCCを用い光学部品を保持した接合部材、3は接合部材2に固定されX,Y,Z,θx,θy,θz方向に移動することが可能である移動装置、4は融点T1で波長λ1=808nmに対して吸収率10%以下のポリカーボネート製の透過樹脂材、5は融点T1よりも高い融点T2を有し波長λ1=808nmに対して透過率がほぼ0である亜鉛合金粉末製の吸収材、6は楕円球形状で長径が(2Rmm+隙間G)よりも小さく(Rmm+隙間G)よりも大きく、透過樹脂材4の中に吸収材5が散在している充填材、7は最大300Wの出力が得られ発振波長λ1=808nmの平行光が出射され、平行光の光軸が接合母材1と接合部材2の隙間Gの中間点を通るように固定された半導体レーザ発振装置である。   In FIG. 1, reference numeral 1 denotes a cylindrical recess having a radius Rmm at a corner, a plate thickness larger than R, for example, a zinc base material used as a material, a base material for an optical unit, and 2 a base material 1. A joint member having a similar dent of radius Rmm at a position opposite to the dent, a plate thickness larger than R and separated from the joint base material 1 by a gap G, and holding an optical component using SPCC as a material, for example, 3 is a joint member A moving device fixed to 2 and capable of moving in the X, Y, Z, θx, θy, and θz directions, 4 is a transparent resin made of polycarbonate having a melting point T1 and an absorption rate of 10% or less for a wavelength λ1 = 808 nm. Material 5 is an absorber made of zinc alloy powder having a melting point T2 higher than the melting point T1 and having a transmittance of almost 0 with respect to the wavelength λ1 = 808 nm, and 6 is an elliptical spherical shape with a major axis of (2Rmm + gap G). Is also small (Rmm + gap G ), A filler in which the absorbing material 5 is scattered in the transmissive resin material 4, and an output of a maximum of 300 W is obtained for the filler 7, and parallel light having an oscillation wavelength λ1 = 808 nm is emitted, and the optical axis of the parallel light is The semiconductor laser oscillation device is fixed so as to pass through an intermediate point of the gap G between the bonding base material 1 and the bonding member 2.

以上の要素により本発明の光学部品のレーザ接合方法を実現するための装置が構成されている。   An apparatus for realizing the laser joining method of the optical component of the present invention is constituted by the above elements.

かかる構成によれば,接合母材1の凹み部及び接合部材2の凹み部に充填材6が載るように手動により設置し、移動装置3により接合部材2を移動させ接合部材2に固定された光学部品に適した姿勢(状態)に調整した後、半導体レーザ発振装置7を発振させる。このとき、半導体レーザ発振装置7より出射した平行レーザ光は、光軸が接合母材1と接合部材2の隙間Gの中間点に位置決めされているため必ず充填材6に照射される。充填材6に照射されたレーザ光は、充填材6内の透過樹脂材4を透過し、吸収材5に吸収され、吸収材5の温度が上昇し透過樹脂材4の融点T1以上、吸収材5の融点T2以下の状態に加熱することで吸収材5は溶融せず、吸収材5からの熱伝導により透過樹脂材4のみが溶融する。透過樹脂材4の溶融により、図2に示すように形状の崩れた充填材6が自重により隙間Gを充填し、レーザ照射停止後に冷却され固化することで接合母材1と接合部材2が固定される。   According to such a configuration, the filler 6 is manually installed so that the filler 6 is placed in the recess of the bonding base material 1 and the recess of the bonding member 2, and the bonding member 2 is moved and fixed to the bonding member 2 by the moving device 3. After adjusting the posture (state) suitable for the optical component, the semiconductor laser oscillation device 7 is oscillated. At this time, the parallel laser light emitted from the semiconductor laser oscillation device 7 is always irradiated to the filler 6 because the optical axis is positioned at the intermediate point of the gap G between the bonding base material 1 and the bonding member 2. The laser light applied to the filler 6 passes through the transmissive resin material 4 in the filler 6 and is absorbed by the absorber 5, the temperature of the absorber 5 rises, and the absorbent material 4 has a melting point T 1 or higher. The absorbent 5 is not melted by heating to a temperature equal to or lower than the melting point T2 of 5, and only the permeable resin material 4 is melted by heat conduction from the absorbent 5. As the transparent resin material 4 is melted, the deformed filler 6 fills the gap G by its own weight as shown in FIG. 2, and is cooled and solidified after the laser irradiation is stopped, thereby fixing the bonding base material 1 and the bonding member 2. Is done.

本発明によると、紫外線硬化性接着剤に比べ、透過樹脂材4として熱膨張・熱収縮量の小さい樹脂、例えば線膨張係数が5.3×10-5/Kの紫外線硬化性接着剤に対し約1/2の2.7×10-5/Kであるポリカーボネートを選択することにより、接合時の温度差による位置ズレ及び信頼性試験時の位置ズレを低減できる。 According to the present invention, the transparent resin material 4 has a smaller thermal expansion / shrinkage amount than the ultraviolet curable adhesive, for example, an ultraviolet curable adhesive having a linear expansion coefficient of 5.3 × 10 −5 / K. By selecting a polycarbonate that is approximately 2.7 × 10 −5 / K, which is about ½, it is possible to reduce a positional shift due to a temperature difference during bonding and a positional shift during a reliability test.

なお、本実施形態において、接合母材として亜鉛合金を使用したが、代わりにアルミニウム合金,マグネシウム合金,鉄系合金,ステンレス,ポリマー樹脂を用いてもよいし、接合部材としてSPCCを使用したが、代わりに他の亜鉛合金,アルミニウム合金,マグネシウム合金,他の鉄系合金,ステンレス,ポリマー樹脂を用いてもよい。   In this embodiment, a zinc alloy is used as a bonding base material. Instead, an aluminum alloy, a magnesium alloy, an iron-based alloy, stainless steel, a polymer resin may be used, and SPCC is used as a bonding member. Instead, other zinc alloys, aluminum alloys, magnesium alloys, other iron alloys, stainless steel, and polymer resins may be used.

また、充填材6の材料の透過樹脂材としてポリカーボネートを用いたが、代わりにアクリル,液晶ポリマー,ポリフェニスサルファイド,ポリプロピレン,ポリエチレン等のエンジニアリングプラスチックを用いても良いし、吸収材として亜鉛合金粉末を用いたが、代わりに、鉄系合金,アルミニウム合金,マグネシウム合金,ステンレス,黒色ポリマーの粉末或いは粉砕材を用いても良い。充填材6を手動で設置したが、手動の代わりにパーツフィーダ、或いはロボットハンドを用いてもよいし、熱源として半導体レーザ発振装置7を設けたが、YAGレーザ,或いは炭酸ガスレーザ,アルゴンレーザを用いてもよい。   Moreover, although polycarbonate was used as the permeable resin material of the material for the filler 6, engineering plastics such as acrylic, liquid crystal polymer, polyphenic sulfide, polypropylene, and polyethylene may be used instead, and zinc alloy powder is used as the absorbent. Although used, instead, iron-based alloy, aluminum alloy, magnesium alloy, stainless steel, black polymer powder or pulverized material may be used. Although the filler 6 was manually installed, a parts feeder or a robot hand may be used instead of manual operation, and a semiconductor laser oscillation device 7 is provided as a heat source, but a YAG laser, a carbon dioxide laser, or an argon laser is used. May be.

(実施の形態2)
図3は、本発明の実施の形態2の光学部品のレーザ接合方法の模式図である。図3において、図1及び図2と同じ構成要素については同じ符号を用い、説明を省略する。
(Embodiment 2)
FIG. 3 is a schematic diagram of a laser joining method for optical components according to Embodiment 2 of the present invention. 3, the same components as those in FIGS. 1 and 2 are denoted by the same reference numerals, and the description thereof is omitted.

図3において、31は材料として例えば融点T3のポリフェニルサルファイド(PPS)材を用い光学ユニットのベースである接合母材、32は接合母材1と隙間G離れ材料として接合部材31の融点T3より大きい融点T4を有するSPCCを用い光学部品を保持した接合部材、33は波長λ2=1064nm,最大出力300Wでパルス発振が可能で平行光を出射するYAGレーザ発振装置、34は波長λ3=632nm,最大出力12mWで平行光を出射するHe−Neレーザ発振装置、35はYAGレーザ発振装置34より出射される平行YAGレーザ光及びHe−Neレーザ発振装置35より出射される平行He−Neレーザ光の光軸が一致するように設置されたハーフミラー、36は波長λ2=1064nmに対する焦点距離がf2,波長λ3=632nmに対する焦点距離がf3(<f2)の凸レンズで,レンズの光軸がYAGレーザ発振装置34の出射光の光軸に一致するように固定された集光レンズ、37はYAGレーザ発振装置33より発振された平行光がハーフミラー35を透過し、集光レンズ36により収束され集光レンズ36よりf2離れた位置に焦点を有するYAGレーザ光、38はYAGレーザ発振装置34,He−Neレーザ発振装置35,ハーフミラー36,集光レンズ40を含むレーザ光学系、39はレーザ光学系41に固定されX,Y,Z,θx,θy方向に移動可能な移動装置、40はCCD素子面の法線方向がレーザ照射位置Aの方向を向くように固定されたCCDカメラ、41は光軸がCCDカメラ40のCCD素子面の法線方向に一致し、レーザ照射位置A及び接合母材31及び接合部材32の隙間Gを視野に捉えCCDカメラ40の撮像素子に拡大し結像するような拡大光学系を構成する結像レンズ、42は結像レンズ41をレンズの光軸方向に移動させるための移動装置、43はCCDカメラ40及び結像レンズ41により得られたレーザ照射位置A及び隙間Gの画像を基に画像処理によりレーザ照射位置Aと接合部材32の端部との水平方向の距離L及び隙間Gを測定するための計算機、44はCCDカメラ40及び結像レンズ41により得られたレーザ照射位置A及び隙間Gの映像を表示するためのモニタである。以上の要素で本発明を実現するための装置を構成している。   In FIG. 3, reference numeral 31 denotes a bonding base material which is a base of an optical unit using, for example, a polyphenyl sulfide (PPS) material having a melting point T3. Reference numeral 32 denotes a bonding base material 1 and a gap G away from the melting point T3 of the bonding member 31. A joining member holding an optical component using SPCC having a large melting point T4, 33 is a YAG laser oscillating device capable of pulsing at a maximum output of 300 W and emitting a parallel light with a wavelength λ2 = 1064 nm, 34 is a wavelength λ3 = 632 nm, maximum A He—Ne laser oscillation device that emits parallel light at an output of 12 mW, 35 is a parallel YAG laser beam emitted from the YAG laser oscillation device 34 and a parallel He—Ne laser beam emitted from the He—Ne laser oscillation device 35. The half mirror 36 that is installed so that the axes coincide with each other has a focal length f of wavelength λ2 = 1064 nm. , A convex lens having a focal length f3 (<f2) with respect to the wavelength λ3 = 632 nm, a condenser lens fixed so that the optical axis of the lens coincides with the optical axis of the emitted light of the YAG laser oscillation device 34, and 37 is a YAG laser. The parallel light oscillated from the oscillating device 33 passes through the half mirror 35, is converged by the condensing lens 36, and has a focal point at a position f2 away from the condensing lens 36, 38 is the YAG laser oscillating device 34, He. A laser optical system including a Ne laser oscillation device 35, a half mirror 36, and a condenser lens 40; a moving device 39 fixed to the laser optical system 41 and movable in X, Y, Z, θx, θy directions; 40, a CCD The CCD camera 41 is fixed so that the normal direction of the element surface faces the direction of the laser irradiation position A, and the optical axis 41 coincides with the normal direction of the CCD element surface of the CCD camera 40. An imaging lens constituting a magnifying optical system that captures the laser irradiation position A and the gap G between the bonding base material 31 and the bonding member 32 in the field of view and forms an enlarged image on the image pickup device of the CCD camera 40; 41 is a moving device for moving the lens 41 in the optical axis direction of the lens, and 43 is joined to the laser irradiation position A by image processing based on the images of the laser irradiation position A and the gap G obtained by the CCD camera 40 and the imaging lens 41. A computer 44 for measuring the horizontal distance L and the gap G from the end of the member 32, and 44 for displaying the image of the laser irradiation position A and the gap G obtained by the CCD camera 40 and the imaging lens 41. It is a monitor. The above elements constitute an apparatus for realizing the present invention.

かかる構成によれば、移動装置3により接合部材32を移動させ接合部材32に保持された光学部品に適した姿勢(状態)に調整した後、移動装置42により結像レンズ41を隙間G近傍の像がCCDカメラ40の撮像素子に結像される位置に移動させ、CCDカメラ40により得られた隙間Gの画像を計算機43により、例えばエッジ検出等の画像処理により計算させ隙間Gの大きさを求める。   According to this configuration, the moving device 3 moves the bonding member 32 to adjust the posture (state) suitable for the optical component held by the bonding member 32, and then moves the imaging lens 41 near the gap G by the moving device 42. The image is moved to a position where the image is formed on the imaging device of the CCD camera 40, and the image of the gap G obtained by the CCD camera 40 is calculated by the computer 43 by image processing such as edge detection, and the size of the gap G is calculated. Ask.

次に、図4に示すように、接合部材32の先端からレーザ照射位置Aまでの距離Lを決める。部材の設計寸法及び移動装置3のθx、θy、θzより求めた接合部材32の水平からの角度をθ1,レーザ照射により接合部材32を曲げ得る最大角度θ2を予め調べておき,G<L×(sin(θ1+θ2)−sinθ1)となる位置をレーザ照射位置Aとする。   Next, as shown in FIG. 4, a distance L from the tip of the joining member 32 to the laser irradiation position A is determined. The angle from the horizontal of the joining member 32 obtained from the design dimensions of the member and θx, θy, and θz of the moving device 3 is examined in advance, and the maximum angle θ2 at which the joining member 32 can be bent by laser irradiation is checked in advance, and G <L × A position where (sin (θ1 + θ2) −sinθ1) is set as a laser irradiation position A.

移動装置42により結像レンズ41をレーザ照射位置A近傍がCCDカメラ40に拡大して結像される位置に移動させ、レーザ照射位置A近傍の画像をモニタ44で観察しながらHe−Neレーザ発振装置35を発振させ、焦点をレーザ照射位置Aに合わせた後、レーザ光学系39をZ方向にf3−f2移動させ、YAGレーザの焦点をレーザ照射位置Aに合わせる。   The moving device 42 moves the imaging lens 41 to a position where the vicinity of the laser irradiation position A is enlarged and imaged on the CCD camera 40 and observes an image near the laser irradiation position A on the monitor 44 while oscillating the He-Ne laser. After the apparatus 35 is oscillated and focused on the laser irradiation position A, the laser optical system 39 is moved in the Z direction by f3-f2, and the YAG laser is focused on the laser irradiation position A.

YAGレーザ発振装置34を接合部材32が溶融する強さで発振させレーザ照射位置A近傍を溶融させ、レーザ照射位置Aを中心として接合部材32を曲げることで、接合部材32と接合母材31の隙間Gを小さくする。   The YAG laser oscillation device 34 is oscillated with the strength at which the bonding member 32 melts, the laser irradiation position A is melted, and the bonding member 32 is bent around the laser irradiation position A, so that the bonding member 32 and the bonding base material 31 can be bent. The gap G is reduced.

ここで、YAGレーザ照射により接合部材32が曲がる原理を図5に示す。   Here, the principle of bending of the bonding member 32 by YAG laser irradiation is shown in FIG.

図5において、図5(a−1)は接合部材32にYAGレーザ光37照射直後の状態を示し、レーザ照射位置A近傍の領域をMとする。また、図5(a−2)にYAGレーザ光37照射中に領域Mが最高温度を示した時の温度分布を示し、YAGレーザが照射される表面側が最も高温のTHとなり、接合部材32裏面の温度がTHより低いTLとなる。接合部材32の領域Mが溶融するに従い、表面の温度THが裏面の温度TLより大きいため、YAGレーザ光37が照射される側が矢印に示すように膨張する量が大きく、図5(b)に示すような形状となる。   In FIG. 5, FIG. 5A-1 shows a state immediately after the YAG laser beam 37 is irradiated on the bonding member 32, and an area near the laser irradiation position A is denoted by M. FIG. 5A-2 shows the temperature distribution when the region M shows the maximum temperature during irradiation with the YAG laser beam 37. The surface side irradiated with the YAG laser becomes the highest temperature TH, and the back surface of the bonding member 32 The temperature of TL is lower than TH. As the region M of the joining member 32 is melted, the surface temperature TH is higher than the back surface temperature TL, and therefore the amount of expansion on the side irradiated with the YAG laser light 37 as shown by the arrow increases, as shown in FIG. The shape is as shown.

YAGレーザ光37の照射を停止した後には、TH,TLともに周囲温度T0にまで温度が低下する。この時の熱収縮量は温度差に比例し、TH−T0>TL−T0であるため、図5(c)に示すように領域MのYAGレーザ光37が照射された側の収縮量が矢印に示すように大きく、接合部材32は結果的にYAGレーザ光37が照射された側に曲がる。その後,CCDカメラ40により得られた隙間Gの画像を基に計算機43により、YAGレーザ光37照射前後での隙間Gの変化量ΔGを測定し、隙間G<ΔGとなるまでYAGレーザ光37の照射を繰り返す。   After the irradiation of the YAG laser beam 37 is stopped, the temperature of both TH and TL decreases to the ambient temperature T0. The amount of thermal contraction at this time is proportional to the temperature difference, and TH-T0> TL-T0. Therefore, as shown in FIG. 5C, the amount of contraction on the side irradiated with the YAG laser light 37 in the region M is an arrow. As shown in FIG. 2, the joining member 32 is bent to the side irradiated with the YAG laser beam 37 as a result. Thereafter, based on the image of the gap G obtained by the CCD camera 40, the calculator 43 measures the change amount ΔG of the gap G before and after the irradiation of the YAG laser light 37, and the YAG laser light 37 is measured until the gap G <ΔG. Repeat irradiation.

G<ΔGとなった場合、次のYAGレーザ光37照射により接合母材31に接合部材32の先端が接触する。YAGレーザ光37照射時には、接合部材32の領域Mは融点T3以上、例えばSPCCの場合には融点1000℃以上まで加熱され、溶融部からの熱伝導により、接合部材32の先端も樹脂製の接合母材31の融点T3以上に熱せられる。従って、YAGレーザ光37照射により接合部材32を曲げることにより、樹脂製接合母材31は接合部材32が触れた箇所から溶融し始め、接合部材32が接合母材31に埋まる。そして、YAGレーザ光37照射を停止した後、接合母材31及び接合部材32は徐冷されて固化し、接合母材31と接合部材32は固定される。   When G <ΔG, the tip of the joining member 32 comes into contact with the joining base material 31 by the next YAG laser light 37 irradiation. When the YAG laser beam 37 is irradiated, the region M of the bonding member 32 is heated to a melting point T3 or higher, for example, in the case of SPCC, to a melting point of 1000 ° C. or higher. Heated to a melting point T3 or higher of the base material 31. Therefore, by bending the bonding member 32 by irradiation with the YAG laser light 37, the resin-made bonding base material 31 starts to melt from the place where the bonding member 32 touches, and the bonding member 32 is buried in the bonding base material 31. Then, after the irradiation of the YAG laser beam 37 is stopped, the joining base material 31 and the joining member 32 are gradually cooled and solidified, and the joining base material 31 and the joining member 32 are fixed.

以上、説明した方法により接着剤を用いずに部材同士固定するため、接合時の位置ズレ及び環境の変化による位置ズレも生じにくい。   As described above, since the members are fixed to each other without using an adhesive by the method described above, positional deviation at the time of joining and positional deviation due to environmental changes are less likely to occur.

なお,本実施形態において、接合強度が不足している場合には、一度接合した状態から再度YAGレーザ光37照射を繰り返しても良いし、YAGレーザを繰り返し照射する際に、レーザ照射位置Aだけではなく、レーザ照射位置A近傍、例えばLが同じであるが板幅方向に異なる箇所を照射してもよい。   In the present embodiment, when the bonding strength is insufficient, the YAG laser light 37 irradiation may be repeated again from the once bonded state, or only at the laser irradiation position A when the YAG laser is repeatedly irradiated. Instead, the laser irradiation position A vicinity, for example, L may be the same, but you may irradiate a different location in the plate width direction.

また、L±ΔLの範囲で領域を決めその範囲内で照射位置を変更してもよい。更に、熱源としてYAGレーザ発振装置を設けたが、代わりに炭酸ガスレーザ,アルゴンレーザ,或いは半導体レーザを用いてもよいし,照射位置支持手段として,He−Neレーザを用いたが,代わりに半導体レーザを用いてもよい。   Alternatively, the region may be determined within a range of L ± ΔL and the irradiation position may be changed within the range. Furthermore, although a YAG laser oscillation device is provided as a heat source, a carbon dioxide laser, an argon laser, or a semiconductor laser may be used instead, and a He-Ne laser is used as an irradiation position support means, but a semiconductor laser is used instead. May be used.

また、接合母材としてポリフェニルサルファイドを使用したが、代わりにポリカーボネート,アクリル,液晶ポリマー,ポリプロピレン,ポリエチレン等のエンジニアリングプラスチックを用いてもよいし、接合部材としてSPCCを使用したが、代わりに亜鉛合金,アルミニウム合金,マグネシウム合金,他の鉄系合金,ステンレス,真鍮を用いてもよい。加えて,YAGレーザ光を集光するために集光レンズを設けたが、代わりに球面反射鏡を用いてもよい。   In addition, polyphenyl sulfide was used as the bonding base material, but instead, engineering plastics such as polycarbonate, acrylic, liquid crystal polymer, polypropylene, and polyethylene may be used, and SPCC was used as the bonding member, but zinc alloy was used instead. Aluminum alloy, magnesium alloy, other iron alloys, stainless steel, and brass may be used. In addition, although a condensing lens is provided to condense the YAG laser light, a spherical reflecting mirror may be used instead.

本発明の光学部品のレーザ接合方法は、接着剤を用いずにレーザにより光学部品を固定するため、光学部品固定時及び環境変化時の位置ズレが小さいという特徴を有し、光ピックアップ、ビデオカメラ、デジタルカメラ等の光学部品の固定の用途にも適用できる。   The optical component laser joining method of the present invention is characterized in that since the optical component is fixed by a laser without using an adhesive, the positional deviation when the optical component is fixed and when the environment changes is small. It can also be used for fixing optical parts such as digital cameras.

本発明の実施の形態1における光学部品のレーザ接合方法の模式図Schematic diagram of laser joining method for optical components in Embodiment 1 of the present invention 本発明の実施の形態1におけるレーザ接合部の拡大図The enlarged view of the laser junction part in Embodiment 1 of this invention 本発明の実施の形態2における光学部品のレーザ接合方法の模式図Schematic diagram of laser joining method for optical components in Embodiment 2 of the present invention 本発明の実施の形態2におけるレーザ照射位置の拡大図The enlarged view of the laser irradiation position in Embodiment 2 of this invention 本発明の実施の形態2におけるレーザ照射による変形の模式図Schematic diagram of deformation by laser irradiation in Embodiment 2 of the present invention 従来の光学部品の固定方法の模式図Schematic diagram of conventional optical component fixing method

符号の説明Explanation of symbols

1 接合母材
2 接合部材
4 透過樹脂材
5 吸収材
7 半導体レーザ発振装置
DESCRIPTION OF SYMBOLS 1 Joining base material 2 Joining member 4 Transparent resin material 5 Absorbing material 7 Semiconductor laser oscillation device

Claims (9)

接合母材に対する光学部品を保持した接合部材の状態を調整する工程と、透過材の内部に前記透過材よりも光の吸収率及び融点の高い吸収材が散在された充填材を前記接合母材と前記接合部材の隙間に配置する工程と、前記充填材にレーザ光を照射する工程とを含む光学部品のレーザ接合方法であって、レーザ光によって、透過材及び吸収材はそれぞれ透過材の融点以上かつ吸収材の融点以下に加熱され、熱伝導により透過材を溶融させ、接合母材と接合部材との間の隙間を埋めることで固定すること
を特徴とする光学部品のレーザ接合方法。
A step of adjusting the state of the bonding member holding the optical component with respect to the bonding base material, and a filler in which an absorbing material having a light absorption rate and a melting point higher than that of the transmission material is dispersed inside the transmission material. And a step of irradiating the filler with laser light, and a step of irradiating the filler with laser light. A laser joining method for optical parts, which is fixed by filling the gap between the joining base material and the joining member by heating to the melting point of the absorbing material or less, melting the transmission material by heat conduction, and filling the gap between the joining base material and the joining member.
接合母材は、亜鉛合金,アルミニウム合金,マグネシウム合金,鉄系合金,ステンレス,ポリマー樹脂の少なくとも何れか一つを用いることを特徴とする請求項1記載の光学部品のレーザ接合方法。 2. The laser joining method for optical components according to claim 1, wherein the joining base material is at least one of zinc alloy, aluminum alloy, magnesium alloy, iron-based alloy, stainless steel, and polymer resin. 透過材は、ポリカーボネート,アクリル,液晶ポリマー,ポリフェニスサルファイド,ポリプロピレン,ポリエチレンの少なくとも何れか一つを用いることを特徴とする請求項1または2記載の光学部品のレーザ接合方法。 3. The laser joining method for an optical component according to claim 1, wherein the transmitting material is at least one of polycarbonate, acrylic, liquid crystal polymer, polyphenic sulfide, polypropylene, and polyethylene. 吸収材は、亜鉛合金粉末,鉄系合金,アルミニウム合金,マグネシウム合金,ステンレス,黒色ポリマーの粉末或いは粉砕材の少なくとも何れか一つを用いることを特徴とする請求項1〜3の何れか一項に記載の光学部品のレーザ接合方法。 The absorbent material is at least one of zinc alloy powder, iron-based alloy, aluminum alloy, magnesium alloy, stainless steel, black polymer powder, and pulverized material. A method for laser joining optical components as described in 1 above. 接合母材に対する光学部品を保持した接合部材の状態を調整する工程と、前記接合母材と前記接合部材との間の隙間を拡大する観察手段により得られた隙間近傍の画像を基に算出された隙間の大きさより、前記接合母材と前記接合部材を接合可能な位置にレーザ光照射位置を決める工程と、前記接合部材に照射位置指示用レーザ光を照射し、前記観察手段により前記照射位置を観察した上で、照射位置指示用レーザ光の焦点を前記照射位置に移動させる工程と、照射位置指示用レーザ光と光軸が一致している前記溶接用レーザ光を光軸方向に移動させ前記照射位置に焦点を合わせる工程と、前記溶接用レーザ光を前記接合部材の前記レーザ照射位置近傍に照射し前記接合部材を一部溶融させ、熱膨張及び熱収縮により曲げ前記隙間を小さくする工程と、前記隙間を測定し前記照射位置指示用レーザ光照射による位置合わせ後、前記溶接用レーザ光を照射する工程を繰り返し、前記溶接用レーザ照射により前記接合部材の前記レーザ照射位置は溶融温度まで達しているため、前記接合部材の先端も十分に加熱され、前記接合部材の先端が前記接合母材に接触することで、前記接合母材が溶融され前記接合部材が前記接合母材中に埋まり、冷却されることで前記接合母材と前記接合部材が固定される工程を有すること
を特徴とする光学部品のレーザ接合方法。
It is calculated based on the image of the vicinity of the gap obtained by the step of adjusting the state of the joining member holding the optical component with respect to the joining base material and the observation means for enlarging the gap between the joining base material and the joining member. Determining a laser beam irradiation position at a position where the bonding base material and the bonding member can be bonded based on the size of the gap, and irradiating the bonding member with an irradiation position indicating laser beam, And moving the focal point of the irradiation position indicating laser beam to the irradiation position, and moving the welding laser beam whose optical axis coincides with the irradiation position indicating laser beam in the optical axis direction. Focusing on the irradiation position and irradiating the welding laser beam in the vicinity of the laser irradiation position of the joining member to partially melt the joining member, and bending and reducing the gap by thermal expansion and contraction And the step of measuring the gap and aligning with the irradiation position indicating laser beam irradiation and then irradiating the welding laser beam is repeated, and the laser irradiation position of the joining member is melted by the welding laser irradiation. Therefore, the tip of the joining member is also sufficiently heated, and the tip of the joining member comes into contact with the joining base material, so that the joining base material is melted and the joining member is in the joining base material. A method for laser joining optical components, comprising: a step of fixing the joining base material and the joining member by being buried and cooled.
接合母材は、ポリカーボネート,アクリル,液晶ポリマー,ポリフェニスサルファイド,ポリプロピレン,ポリエチレンの少なくともいずれか一つを用いることを特徴とする請求項5記載の光学部品のレーザ接合方法。 6. The laser joining method for optical parts according to claim 5, wherein the joining base material is at least one of polycarbonate, acrylic, liquid crystal polymer, polyphenic sulfide, polypropylene, and polyethylene. 照射位置指示用レーザ光として、半導体レーザ発振装置、He−Neレーザの少なくとも何れか一つを用いることを特徴とする請求項5記載の光学部品のレーザ接合方法。 6. The laser joining method for an optical component according to claim 5, wherein at least one of a semiconductor laser oscillation device and a He-Ne laser is used as the irradiation position indicating laser beam. 接合部材は、亜鉛合金,アルミニウム合金,マグネシウム合金,鉄系合金,ステンレス,ポリマー樹脂の少なくとも何れか一つを用いることを特徴とする請求項1または5記載の光学部品のレーザ接合方法。 6. The laser joining method for optical components according to claim 1, wherein the joining member is at least one of zinc alloy, aluminum alloy, magnesium alloy, iron-based alloy, stainless steel, and polymer resin. レーザ光として、半導体レーザ発振装置、YAGレーザ,炭酸ガスレーザ,アルゴンレーザの少なくとも何れか一つを用いることを特徴とする請求項1または5記載の光学部品のレーザ接合方法。 6. The laser joining method for optical components according to claim 1, wherein at least one of a semiconductor laser oscillator, a YAG laser, a carbon dioxide laser, and an argon laser is used as the laser light.
JP2003309806A 2003-09-02 2003-09-02 Laser splice method for optical part Pending JP2005077894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003309806A JP2005077894A (en) 2003-09-02 2003-09-02 Laser splice method for optical part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003309806A JP2005077894A (en) 2003-09-02 2003-09-02 Laser splice method for optical part

Publications (1)

Publication Number Publication Date
JP2005077894A true JP2005077894A (en) 2005-03-24

Family

ID=34411856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003309806A Pending JP2005077894A (en) 2003-09-02 2003-09-02 Laser splice method for optical part

Country Status (1)

Country Link
JP (1) JP2005077894A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1754763A3 (en) * 2005-08-15 2007-07-11 Rohm and Haas Electronic Materials, L.L.C. Bonding methods and optical assemblies
CN102615426A (en) * 2012-04-18 2012-08-01 机械工业第三设计研究院 Novel welding method for laser welding of magnesium alloy
CN104379299A (en) * 2012-03-08 2015-02-25 丰田自动车株式会社 Laser welding method and engine cooling structure
KR20180126757A (en) * 2017-05-18 2018-11-28 이종식 Laser welding method for press die products

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1754763A3 (en) * 2005-08-15 2007-07-11 Rohm and Haas Electronic Materials, L.L.C. Bonding methods and optical assemblies
CN104379299A (en) * 2012-03-08 2015-02-25 丰田自动车株式会社 Laser welding method and engine cooling structure
CN102615426A (en) * 2012-04-18 2012-08-01 机械工业第三设计研究院 Novel welding method for laser welding of magnesium alloy
KR20180126757A (en) * 2017-05-18 2018-11-28 이종식 Laser welding method for press die products
KR102069838B1 (en) * 2017-05-18 2020-02-11 이종식 Laser welding method for press die products

Similar Documents

Publication Publication Date Title
US20100206854A1 (en) Laser soldering apparatus
TWI249343B (en) Imaging device, method of production of same, and holding mechanism of same
JP5127171B2 (en) OPTICAL DEVICE AND OPTICAL DEVICE MANUFACTURING METHOD
US20110134416A1 (en) Focal position detecting apparatus and method
JP2010139627A (en) Member connecting mechanism and imaging apparatus
JPWO2019049914A1 (en) Laser device
JPWO2019159427A1 (en) Camera module adjustment device and camera module adjustment method
JP2005077894A (en) Laser splice method for optical part
JP4744631B2 (en) Lens fixing device and optical pickup device
JP5128412B2 (en) Optical pickup device and optical module
JP2007289980A (en) Laser soldering equipment and laser soldering method
JP4381719B2 (en) Optical component fixing method, optical component fixing device and optical module by laser bonding
US8087038B2 (en) Optical pickup having thermal expansion compensation
JP2006325100A (en) Method for adjusting digital camera and adjusting device thereof
JP4681821B2 (en) Laser focusing optical system and laser processing apparatus
JP2010175674A (en) Imaging module and method for manufacturing the same
US6928649B2 (en) Method of attaching a sensor to a pickup head and pickup head
JP2005214776A (en) Optical axis deviation detection method, optical axis adjusting method, manufacturing method of optical module, and optical axis adjusting device
JP2006162947A (en) Optical device and optical member fixing method
JP5147553B2 (en) Optical unit
JP2008097771A (en) Optical pickup device
JP5547883B2 (en) Method of welding resin material
JP4413059B2 (en) Laser joining apparatus for optical component unit and laser joining method for optical component unit
JP2010286563A (en) Lens device, image capturing apparatus, and method of assembling the lens device
JP2009003191A (en) Imaging apparatus