JP2005077665A - Anisotropic light-scattering membrane, its manufacturing method, and optical element - Google Patents

Anisotropic light-scattering membrane, its manufacturing method, and optical element Download PDF

Info

Publication number
JP2005077665A
JP2005077665A JP2003307139A JP2003307139A JP2005077665A JP 2005077665 A JP2005077665 A JP 2005077665A JP 2003307139 A JP2003307139 A JP 2003307139A JP 2003307139 A JP2003307139 A JP 2003307139A JP 2005077665 A JP2005077665 A JP 2005077665A
Authority
JP
Japan
Prior art keywords
anisotropic
light
scattering film
anisotropic light
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003307139A
Other languages
Japanese (ja)
Other versions
JP4311131B2 (en
Inventor
Yasuhiro Haseba
康宏 長谷場
Hideji Satake
秀司 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP2003307139A priority Critical patent/JP4311131B2/en
Publication of JP2005077665A publication Critical patent/JP2005077665A/en
Application granted granted Critical
Publication of JP4311131B2 publication Critical patent/JP4311131B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Polarising Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To attain an improvement in brightness of a device using polarization of a liquid crystal display, by providing an anisotropic light-scattering membrane having a large light-scattering anisotropy. <P>SOLUTION: The anisotropic light-scattering membrane comprises an optical anisotropic substance and an optical isotropic substance; and either of them is divided into minute regions, and the optical anisotropic substance contains a crystal phase. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、偏光方向による光散乱の異方性を有する異方性光散乱膜、およびこれを用いた光学素子に関する。   The present invention relates to an anisotropic light scattering film having anisotropy of light scattering depending on a polarization direction, and an optical element using the same.

液晶ディスプレイやELディスプレイでは吸収型偏光板により光源からの光(ほぼ無偏光)から直線偏光を取り出している。このため、光源の光の利用効率は吸収型偏光板を通すことによって50%以下となる。そこで吸収型偏光板と光源の間に異方性光散乱板を挿入し、光の利用効率を向上させる方法が提案されている。(特許文献1参照)   In a liquid crystal display or an EL display, linearly polarized light is extracted from light (substantially non-polarized light) from a light source by an absorption polarizing plate. For this reason, the utilization efficiency of the light of a light source will be 50% or less by letting it pass an absorption type polarizing plate. Therefore, a method has been proposed in which an anisotropic light scattering plate is inserted between the absorption polarizing plate and the light source to improve the light utilization efficiency. (See Patent Document 1)

異方性光散乱とは一方の直線偏光を透過し、これと直交する直線偏光を散乱する性質をいう。
異方性光散乱板が光の利用効率を改善する機構について以下に説明する(特許文献2参照)。
Anisotropic light scattering refers to the property of transmitting one linearly polarized light and scattering linearly polarized light orthogonal thereto.
The mechanism by which the anisotropic light scattering plate improves the light utilization efficiency will be described below (see Patent Document 2).

吸収型偏光板の透過軸と異方性光散乱板の透過軸を一致させ、光源上に配置する(この順序で配列する)ことにより、異方性光散乱板がなければ吸収されるはずの直線偏光成分を異方性光散乱板によって散乱させる。散乱光には吸収型偏光板方向に向かう光と光源側に戻る光がある。吸収型偏光板方向に向かう散乱光のうち偏光解消された成分の一部は吸収型偏光板を透過するようになる。また光源側に向かう散乱光は光源に附設した反射板によって反射され、再度異方性光散乱板に入射することとなる。(この場合、散乱光の偏光解消の度合いが低い場合は反射板上に1/4λ板を設けて位相を180°反転させた方が効率的である。)再度、異方性光散乱板に入射した光は、原理に従い透過光と散乱光に分離される。透過光成分は輝度向上に寄与する。   By aligning the transmission axis of the absorption-type polarizing plate with the transmission axis of the anisotropic light scattering plate and placing it on the light source (arranged in this order), the linearly polarized light component that should be absorbed without the anisotropic light scattering plate can be obtained. Scattered by an anisotropic light scattering plate. The scattered light includes light traveling toward the absorption type polarizing plate and light returning to the light source side. A part of the depolarized component of the scattered light traveling toward the absorption type polarizing plate is transmitted through the absorption type polarizing plate. Further, the scattered light traveling toward the light source is reflected by a reflecting plate attached to the light source, and enters the anisotropic light scattering plate again. (In this case, if the degree of depolarization of the scattered light is low, it is more efficient to provide a 1 / 4λ plate on the reflector and reverse the phase by 180 °.) Light is separated into transmitted light and scattered light according to the principle. The transmitted light component contributes to improvement in luminance.

異方性光散乱の発現には、光学的異方性物質のドメインサイズ、ドメインの密度、光学的異方性値、および膜厚をコントロールする必要があり、種々の技術が提案されているが、未だ実際に利用されるには至っていない。   In order to develop anisotropic light scattering, it is necessary to control the domain size, domain density, optical anisotropy value, and film thickness of an optically anisotropic material, and various techniques have been proposed. It has not actually been used.

従来の異方性光散乱板は、高分子マトリックス内の液晶を延伸して配向させたもの(非特許文献1、特許文献3及び4参照)、高分子マトリックス内の液晶を高温下で延伸して配向させ、急冷して配向状態を固定したもの(特許文献5及び6参照)などがある。しかし延伸で液晶を配向させる方法ではフィルム面内で延伸むらが生じやすく、また延伸が必須であることから、例えばガラス基板のような延伸には高温を要するような基板上に異方性光散乱板を形成することが困難である。
また、光照射により、光学的異方性物質を配向させる方法が開示されている(特許文献7及び8参照)が、層法線方向において配向の均一性を実現することが困難である。
Conventional anisotropic light scattering plates are obtained by stretching and aligning liquid crystals in a polymer matrix (see Non-Patent Document 1, Patent Documents 3 and 4), and stretching and aligning liquid crystals in a polymer matrix at high temperatures. The alignment state is fixed by rapid cooling (see Patent Documents 5 and 6). However, in the method of aligning the liquid crystal by stretching, stretching unevenness is likely to occur in the film plane, and stretching is essential. For this reason, an anisotropic light scattering plate is formed on a substrate that requires a high temperature for stretching, such as a glass substrate. It is difficult to form.
Further, although a method of aligning an optically anisotropic substance by light irradiation is disclosed (see Patent Documents 7 and 8), it is difficult to achieve alignment uniformity in the layer normal direction.

特開平8−76114号公報JP-A-8-76114 特開2001−281446号公報JP 2001-281446 A 特開平8−76114号公報JP-A-8-76114 特開平9−274108号公報JP-A-9-274108 特開2000−321438号公報JP 2000-32438 A 特開2002−207118号公報JP 2002-207118 A 特開2001−242319号公報JP 2001-242319 A 特開2001−281446号公報JP 2001-281446 A Liquid Crystal,1993,Vol.15,No.3,395−407Liquid Crystal, 1993, Vol. 15, no. 3,395-407

本発明の目的は、必ずしも延伸工程を必要とせず、また比較的厚い膜厚でも光学的異方性物質を配向させることが可能であり、ドメインサイズや密度、光学的異方性値のコントロールが容易であり、大きな光散乱異方性を有する異方性光散乱膜を提供し、液晶ディスプレイ等の偏光を用いた装置の輝度向上を実現することである。   The object of the present invention does not necessarily require a stretching process, and it is possible to orient an optically anisotropic material even with a relatively thick film thickness, and control of domain size, density, and optical anisotropy value is possible. It is easy to provide an anisotropic light scattering film having a large light scattering anisotropy, and to realize an improvement in luminance of a device using polarized light such as a liquid crystal display.

本発明は次の各項より構成される。
(1) 光学的異方性物質と光学的等方性物質とからなり、いずれか一方が微小領域に分断され、光学的異方性物質が結晶相を含有していることを特徴とする異方性光散乱膜。
(2) 光学的異方性物質が光学的等方性物質により微小領域に分断されている項(1)に記載の異方性光散乱膜。
(3) 光学的異方性物質が結晶相と液晶相を含有していることを特徴とする項(1)に記載の異方性光散乱膜。
The present invention comprises the following items.
(1) It is composed of an optically anisotropic substance and an optically isotropic substance, one of which is divided into minute regions, and the optically anisotropic substance contains a crystalline phase. Isotropic light scattering film.
(2) The anisotropic light-scattering film according to item (1), wherein the optically anisotropic substance is divided into minute regions by the optically isotropic substance.
(3) The anisotropic light scattering film according to item (1), wherein the optically anisotropic substance contains a crystal phase and a liquid crystal phase.

(4) 光学的異方性物質中の結晶相が一方向に配向していることを特徴とする項(1)に記載の異方性光散乱膜。
(5) 結晶相が結晶成長により配向したものである項(1)〜(4)のいずれかに記載の異方性光散乱膜。
(4) The anisotropic light-scattering film according to item (1), wherein the crystal phase in the optically anisotropic material is oriented in one direction.
(5) The anisotropic light scattering film according to any one of Items (1) to (4), wherein the crystal phase is oriented by crystal growth.

(6) 光学的異方性物質が結晶化温度より高温側において液晶相を呈することを特徴とする項(1)に記載の異方性光散乱膜。
(7) 光学的等方性物質が高分子化合物を含有していることを特徴とする項(1)に記載の異方性光散乱膜。
(6) The anisotropic light-scattering film according to item (1), wherein the optically anisotropic substance exhibits a liquid crystal phase at a temperature higher than the crystallization temperature.
(7) The anisotropic light-scattering film according to item (1), wherein the optically isotropic substance contains a polymer compound.

(8) 結晶成長により結晶を一方向に配向させることを特徴とする異方性光散乱膜の製造方法。
(9) 項(1)に記載の異方性光散乱膜を輝度向上素子として用いたディスプレイ。
(8) A method for producing an anisotropic light scattering film, wherein the crystal is oriented in one direction by crystal growth.
(9) A display using the anisotropic light-scattering film described in item (1) as a brightness enhancement element.

本発明の結晶成長を用いた異方性光散乱膜の製法によれば、光学的異方性物質のドメインサイズや濃度は光学的等方性物質の濃度によってコントロールが可能であり、光学的異方性値は、分子構造の選択によりコントロール可能であり、また結晶成長を利用しているため、配向度の膜厚依存性も少ないという特徴を有する。
本発明の異方性光散乱膜は液晶ディスプレイ等の偏光を利用する輝度向上素子に用いることができるほか、二色性色素を含有させることにより吸収型偏光板としても用いることが可能である。
According to the method for producing an anisotropic light scattering film using crystal growth of the present invention, the domain size and concentration of an optically anisotropic substance can be controlled by the concentration of the optically isotropic substance, and the optical anisotropy substance can be controlled. The value can be controlled by selecting the molecular structure, and since crystal growth is used, the degree of orientation is less dependent on the film thickness.
The anisotropic light scattering film of the present invention can be used for a brightness enhancement element utilizing polarized light such as a liquid crystal display, and can also be used as an absorption polarizing plate by containing a dichroic dye.

以下本発明を、発明の実施の形態に即して詳細に説明する。
本発明において異方性光散乱膜とは、入射する偏光によって散乱強度が異なる膜をいう。具体的にはある直線偏光とこれとほぼ直交する直線偏光に対する散乱強度または透過率が異なる膜をいう。
Hereinafter, the present invention will be described in detail in line with embodiments of the invention.
In the present invention, the anisotropic light scattering film refers to a film having a scattering intensity that varies depending on incident polarized light. Specifically, it refers to films having different scattering intensities or transmittances for certain linearly polarized light and linearly polarized light substantially orthogonal thereto.

本発明において、光学的異方性物質とは、0.05以上の光学的異方性値を有する化合物を含有する物質であり、かつ少なくとも一部が結晶化している物質である。少なくとも一部が結晶化している状態とは、結晶相と、液晶相または等方相とが共存している状態をも含む意である。すべて結晶化させる場合は、その結晶化する物質が0.05以上の光学的異方性値を有し、結晶相と液晶相を共存させる場合はいずれか一方の相を発現している物質が0.05以上の屈折率を有し、結晶相と等方相を共存させる場合は結晶相を発現している物質が0.05以上の光学的異方性を有する。   In the present invention, the optically anisotropic substance is a substance containing a compound having an optical anisotropy value of 0.05 or more, and a substance that is at least partially crystallized. The state in which at least a part is crystallized includes a state in which a crystal phase and a liquid crystal phase or an isotropic phase coexist. When crystallizing all, the crystallized substance has an optical anisotropy value of 0.05 or more, and when the crystal phase and the liquid crystal phase coexist, the substance that expresses one of the phases In the case where the refractive index is 0.05 or more and the crystal phase and the isotropic phase coexist, the substance expressing the crystal phase has an optical anisotropy of 0.05 or more.

光学的異方性物質の構成は単体でも混合物でもよく、また低分子化合物、高分子化合物または低分子化合物と高分子化合物の混合物でもよい。しかし、結晶化前は液晶相を有していることが異方性光散乱を増大させるために好ましい。これは液晶相の方が微小領域に分断するにあたって好適であるからである。
光学的異方性物質の成分のうち結晶化する物質は、特に限定されないが、例えば棒状分子、円盤状分子を挙げることができる。
The configuration of the optically anisotropic substance may be a single substance or a mixture, and may be a low molecular compound, a high molecular compound, or a mixture of a low molecular compound and a high molecular compound. However, it is preferable to have a liquid crystal phase before crystallization in order to increase anisotropic light scattering. This is because the liquid crystal phase is more suitable for dividing into fine regions.
The substance that crystallizes among the components of the optically anisotropic substance is not particularly limited, and examples thereof include a rod-like molecule and a disk-like molecule.

また結晶相と結晶相以外の相の共存状態における、結晶相以外の相は液晶相が好ましい。液晶相としては螺旋構造を有しない相が好ましく、ネマチック相、スメクチックA相、スメクチックB相、ディスコチックネマチック相、デイスコチックヘキサゴナルカラムナー相などを挙げることができる。
また光学的異方性物質は第三成分として二色性色素、光重合開始剤などが添加されていてもよい。
In the coexistence state of the crystal phase and the phase other than the crystal phase, the phase other than the crystal phase is preferably a liquid crystal phase. The liquid crystal phase is preferably a phase having no helical structure, and examples thereof include a nematic phase, a smectic A phase, a smectic B phase, a discotic nematic phase, and a discotic hexagonal columnar phase.
Further, the optically anisotropic substance may contain a dichroic dye, a photopolymerization initiator, etc. as a third component.

結晶化法としては、温度、濃度および分子量などを制御した既存の結晶化法を用いることができる。例えば、融点以下に冷却する方法や、溶媒を蒸発させる方法や、光反応性物質の重合により結晶化させる方法などを挙げることができるが、これらに限定されない。
また必要な場合には結晶軸が一方向に揃うように結晶化させる方法も使用可能である。例えば温度勾配下で結晶化させる方法などがあるが、これらに限定されない。
As the crystallization method, an existing crystallization method in which the temperature, concentration, molecular weight and the like are controlled can be used. Examples thereof include a method of cooling to a melting point or lower, a method of evaporating the solvent, and a method of crystallizing by polymerization of a photoreactive substance, but are not limited thereto.
If necessary, a method of crystallizing so that the crystal axes are aligned in one direction can be used. For example, there is a method of crystallization under a temperature gradient, but the method is not limited thereto.

光学的異方性物質が微小領域に分断された状態とは、光学的異方性物質が完全に独立した状態で分断されている必要はなく、三次元ネットワークを形成する物質によって100μm以下の間隔で概ね分断されていればよい。本発明では、結晶を一方向に配列させる必要があるため、後者の方が製造上好ましい。分断する間隔としては10〜10nm(100μm)が好ましく、さらには10〜10nm(10μm)が好ましく、特に好ましくは10〜3×10nm(3μm)である。。 The state in which the optically anisotropic material is divided into minute regions does not require the optically anisotropic material to be separated in a completely independent state, and an interval of 100 μm or less depending on the material forming the three-dimensional network. It is only necessary to be divided at. In the present invention, since the crystals need to be arranged in one direction, the latter is preferable in terms of production. The separation interval is preferably 10 to 10 5 nm (100 μm), more preferably 10 2 to 10 4 nm (10 μm), and particularly preferably 10 2 to 3 × 10 3 nm (3 μm). .

本明細書において光学的等方性物質とは0.05未満の光学的異方性値を有する物質を意味する。
光学的等方性物質としては、光学的異方性物質内に界面を形成し、この両物質からなる複合材料系内でネットワークを形成する物質であれば特に限定されないが、例えば高分子化合物、低分子オイルゲル化剤を挙げることができる。ただし本明細書中、界面とは完全な分離状態のみを意味せず、濃度の傾斜構造を有するものをも含む。
In this specification, the optically isotropic substance means a substance having an optical anisotropy value of less than 0.05.
The optically isotropic substance is not particularly limited as long as it is a substance that forms an interface in an optically anisotropic substance and forms a network in a composite material system composed of both substances. A low molecular oil gelling agent can be mentioned. However, in this specification, the interface does not mean only a completely separated state, but also includes those having a gradient structure of concentration.

高分子化合物としてはアクリル系高分子、酢酸ビニル系高分子、スチレン系高分子などを挙げることができ、また一般に高分子分散型液晶に用いられる高分子をも使用することができる。好ましくはアクリル系高分子であり、より好ましくはアクリル系共重合体である。例えばエチレンなどの不飽和炭化水素とアクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、メタクリル酸メチル、グリシジルメタクリレート、酢酸ビニルなどとの共重合体を挙げることができる。   Examples of the polymer compound include acrylic polymers, vinyl acetate polymers, styrene polymers, and polymers generally used for polymer dispersed liquid crystals can also be used. An acrylic polymer is preferable, and an acrylic copolymer is more preferable. For example, a copolymer of an unsaturated hydrocarbon such as ethylene and methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, glycidyl methacrylate, vinyl acetate, or the like can be given.

また、光学的等方性物質によるネットワークは、熱や光によって反応するモノマーが光学的異方性物質との混合状態において反応し、形成されてもよい。この場合は、熱または光反応性の官能基を有するモノマーを用いる。具体例としては、アクリル基、メタクリル基やグリシジル基などを有する化合物を用いる。またあらかじめ透明な高分子多孔質膜であってもよい。   In addition, a network formed of an optically isotropic material may be formed by reacting a monomer that reacts with heat or light in a mixed state with an optically anisotropic material. In this case, a monomer having a thermal or photoreactive functional group is used. As a specific example, a compound having an acrylic group, a methacryl group, a glycidyl group, or the like is used. Further, it may be a transparent polymer porous membrane.

異方性光散乱膜中の光学的等方性物質の含有率は、膜全体に渡ってネットワークを形成する必要性から1%以上が好ましく、光学的異方性物質のドメインの密度の観点から99%以下が好ましい。より好ましくは3〜70%である。   The content of the optically isotropic substance in the anisotropic light scattering film is preferably 1% or more from the necessity of forming a network over the entire film, and 99% from the viewpoint of the density of domains of the optically anisotropic substance. The following is preferred. More preferably, it is 3 to 70%.

異方性光散乱膜の構成成分の一部または全部を光または熱により反応する化合物とし、結晶化後、異方性光散乱を示した状態で光または熱により重合させ、配向を固定してもよい。
本発明の異方性光散乱膜は結晶化させることで、著しく光散乱異方性が増大するが、さらに延伸処理を施されていてもよい。
以下実施例を挙げて本発明を詳しく説明するが、本発明はこれらに限定されるものではない。
A part or all of the constituent components of the anisotropic light scattering film may be a compound that reacts with light or heat, and after crystallization, polymerization may be performed with light or heat in a state showing anisotropic light scattering to fix the orientation.
By crystallizing the anisotropic light scattering film of the present invention, the light scattering anisotropy is remarkably increased, but may be further subjected to a stretching treatment.
Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto.

(光学的異方性物質)
光学的異方性物質として下記の液晶組成物Aと化合物Bの1/1(重量比)混合物Cを用いた。この混合物は常温において結晶相と液晶相が共存状態を呈するものであった。
(Optically anisotropic material)
As an optically anisotropic substance, a 1/1 (weight ratio) mixture C of the following liquid crystal composition A and compound B was used. In this mixture, the crystal phase and the liquid crystal phase coexisted at room temperature.


Figure 2005077665

Figure 2005077665


Figure 2005077665

Figure 2005077665

(光学的等方性物質)
ポリ(エチレン−co−メチルアクリレート−co−グリシジルメタクリレート)(アルドリッチ社製)を用いた。
(異方性光散乱膜)
ポリ(エチレン−co−メチルアクリレート−co−グリシジルメタクリレート)(アルドリッチ社製)0.16gと混合物C1.47gを加熱溶解し、これを150℃のホットプレート上でガラスセル(層厚7μm)に注入し、このセルをセル面内に温度勾配が生ずるようにして室温まで冷却し、結晶化させ、異方性光散乱膜Dを得た。結晶化前は異方性光散乱はほとんど確認できなかったのに対し、結晶化させることにより大きな光散乱異方性を発現した。図1は本異方性光散乱膜Dの光散乱異方性を表す顕微鏡写真(サンプルの光源側に吸収型偏光板1枚を挿入、直線偏光Aと直線偏光Bはほぼ直交)である。
(Optically isotropic material)
Poly (ethylene-co-methyl acrylate-co-glycidyl methacrylate) (manufactured by Aldrich) was used.
(Anisotropic light scattering film)
0.16 g of poly (ethylene-co-methyl acrylate-co-glycidyl methacrylate) (Aldrich) and 1.47 g of mixture C were dissolved by heating and poured into a glass cell (layer thickness: 7 μm) on a 150 ° C. hot plate. Then, the cell was cooled to room temperature so that a temperature gradient was generated in the cell surface, and crystallized to obtain an anisotropic light scattering film D. Almost no anisotropic light scattering could be confirmed before crystallization, but large anisotropy of light scattering was expressed by crystallization. FIG. 1 is a photomicrograph showing the light scattering anisotropy of the anisotropic light scattering film D (one absorption polarizing plate is inserted on the light source side of the sample, and linearly polarized light A and linearly polarized light B are substantially orthogonal).

(異方性光散乱膜)
混合物Cを150℃のホットプレート上で、ポリイミドからなる配向膜をアンチパラレルでラビングしたセル(層厚5μm)に注入し、このセルをセル面内に温度勾配が生ずるようにして室温まで冷却し、結晶化させ、異方性光散乱膜Eを得た。このものは光散乱異方性を示した。
(Anisotropic light scattering film)
Mixture C was poured on a 150 ° C. hot plate into a cell (layer thickness 5 μm) rubbed with an alignment film made of polyimide in antiparallel, and the cell was cooled to room temperature so that a temperature gradient was generated in the cell surface. Crystallization gave an anisotropic light scattering film E. This showed light scattering anisotropy.

(光学的異方性物質)
光学的異方性物質として下図に示す液晶組成物Fと前記化合物Bの1/1(重量比)混合物Gを用いた。このものは常温において結晶相と液晶相の共存状態であった。等方相から冷却し、ネマチック相を呈しかつ結晶化していない状態から昇温して測定したネマチック相−等方相転移点は43℃であった。
(Optically anisotropic material)
As an optically anisotropic substance, a 1/1 (weight ratio) mixture G of the liquid crystal composition F and the compound B shown in the figure below was used. This was a coexistence state of a crystal phase and a liquid crystal phase at room temperature. The nematic phase-isotropic phase transition point was 43 ° C. measured by cooling from the isotropic phase, raising the temperature from a state in which the nematic phase was present and not crystallized.


Figure 2005077665

Figure 2005077665

(異方性光散乱膜)
前記ポリ(エチレン−co−メチルアクリレート−co−グリシジルメタクリレート)(アルドリッチ社製)0.13gと前記混合物C1.18gを加熱下で溶解し、これを150℃のホットプレート上で、ポリイミドからなる配向膜をアンチパラレルでラビングしたセル(層厚5μm)に注入し、このセルをセル面内に温度勾配が生ずるようにして室温まで冷却し、結晶化させ、異方性光散乱膜Hを得た。このものは光散乱異方性を示した。
(Anisotropic light scattering film)
0.13 g of the poly (ethylene-co-methyl acrylate-co-glycidyl methacrylate) (manufactured by Aldrich) and 1.18 g of the mixture C are dissolved under heating, and this is made of polyimide on a 150 ° C. hot plate. The film was injected into a cell (layer thickness: 5 μm) rubbed with anti-parallel, and the cell was cooled to room temperature so as to generate a temperature gradient in the cell surface and crystallized to obtain an anisotropic light scattering film H. This showed light scattering anisotropy.

液晶ディスプレーやELディスプレー用の異方性光散乱膜として適用することができる。   It can be applied as an anisotropic light scattering film for liquid crystal displays and EL displays.

実施例1に示した本発明の異方性光散乱膜Dの光散乱異方性を表す顕微鏡写真である。2 is a photomicrograph showing the light scattering anisotropy of the anisotropic light scattering film D of the present invention shown in Example 1.

Claims (9)

光学的異方性物質と光学的等方性物質とからなり、いずれか一方が微小領域に分断され、光学的異方性物質が結晶相を含有していることを特徴とする異方性光散乱膜。 An anisotropic light-scattering film comprising an optically anisotropic material and an optically isotropic material, one of which is divided into minute regions, and the optically anisotropic material contains a crystalline phase . 光学的異方性物質が光学的等方性物質により微小領域に分断されている請求項1に記載の異方性光散乱膜。 The anisotropic light-scattering film according to claim 1, wherein the optically anisotropic material is divided into minute regions by an optically isotropic material. 光学的異方性物質が結晶相と液晶相を含有していることを特徴とする請求項1に記載の異方性光散乱膜。 The anisotropic light-scattering film according to claim 1, wherein the optically anisotropic substance contains a crystal phase and a liquid crystal phase. 光学的異方性物質中の結晶相が一方向に配向していることを特徴とする請求項1に記載の異方性光散乱膜。 The anisotropic light-scattering film according to claim 1, wherein the crystal phase in the optically anisotropic material is oriented in one direction. 結晶相が結晶成長により配向したものである請求項1〜4のいずれかに記載の異方性光散乱膜。 The anisotropic light-scattering film according to claim 1, wherein the crystal phase is oriented by crystal growth. 光学的異方性物質が結晶化温度より高温側において液晶相を呈することを特徴とする請求項1に記載の異方性光散乱膜。 2. An anisotropic light scattering film according to claim 1, wherein the optically anisotropic substance exhibits a liquid crystal phase at a temperature higher than the crystallization temperature. 光学的等方性物質が高分子化合物を含有していことを特徴とする請求項1に記載の異方性光散乱膜。 The anisotropic light scattering film according to claim 1, wherein the optically isotropic substance contains a polymer compound. 結晶成長により結晶を一方向に配向させることを特徴とする異方性光散乱膜の製造方法。 A method for producing an anisotropic light scattering film, characterized in that crystals are oriented in one direction by crystal growth. 請求項1に記載の異方性光散乱膜を輝度向上素子として用いたディスプレイ。 A display using the anisotropic light-scattering film according to claim 1 as a brightness enhancement element.
JP2003307139A 2003-08-29 2003-08-29 Anisotropic light scattering film, process for producing the same, and optical element Expired - Fee Related JP4311131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003307139A JP4311131B2 (en) 2003-08-29 2003-08-29 Anisotropic light scattering film, process for producing the same, and optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003307139A JP4311131B2 (en) 2003-08-29 2003-08-29 Anisotropic light scattering film, process for producing the same, and optical element

Publications (2)

Publication Number Publication Date
JP2005077665A true JP2005077665A (en) 2005-03-24
JP4311131B2 JP4311131B2 (en) 2009-08-12

Family

ID=34410022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003307139A Expired - Fee Related JP4311131B2 (en) 2003-08-29 2003-08-29 Anisotropic light scattering film, process for producing the same, and optical element

Country Status (1)

Country Link
JP (1) JP4311131B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018199096A1 (en) * 2017-04-25 2018-11-01 富士フイルム株式会社 Liquid crystal composition, light-absorbing anisotropic film, laminate, and image display device
JPWO2019035468A1 (en) * 2017-08-15 2020-09-17 富士フイルム株式会社 Liquid crystal composition, light absorption anisotropic film, laminate and image display device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018199096A1 (en) * 2017-04-25 2018-11-01 富士フイルム株式会社 Liquid crystal composition, light-absorbing anisotropic film, laminate, and image display device
CN110537123A (en) * 2017-04-25 2019-12-03 富士胶片株式会社 Liquid-crystal composition, light absorption anisotropic membrane, laminated body and image display device
JPWO2018199096A1 (en) * 2017-04-25 2020-02-27 富士フイルム株式会社 Liquid crystal composition, light absorption anisotropic film, laminate, and image display device
CN110537123B (en) * 2017-04-25 2021-12-24 富士胶片株式会社 Liquid crystal composition, light-absorbing anisotropic film, laminate, and image display device
US11789302B2 (en) 2017-04-25 2023-10-17 Fujifilm Corporation Liquid crystal composition, light absorption anisotropic film, laminate, and image display device
JPWO2019035468A1 (en) * 2017-08-15 2020-09-17 富士フイルム株式会社 Liquid crystal composition, light absorption anisotropic film, laminate and image display device
US11732192B2 (en) 2017-08-15 2023-08-22 Fujifilm Corporation Liquid crystal composition, light absorption anisotropic film, laminate, and image display device

Also Published As

Publication number Publication date
JP4311131B2 (en) 2009-08-12

Similar Documents

Publication Publication Date Title
JP6225357B2 (en) Polymerizable composition (POLYMERIZABLECOMPOSITION)
JP4801056B2 (en) Method for producing multilayer cholesteric liquid crystal optical body
JP4847673B2 (en) Liquid crystal display using compensation plates containing positive and negative birefringence retardation films
TW200807024A (en) A circular polarizer composite and an optical system comprising the same
TW200819871A (en) Liquid-crystal display device
JP4345312B2 (en) Broadband quarter-wave plate original, broadband circular polarizer original, optical element original, and display device
JP2002214433A (en) Light diffusing plate, optical element and liquid crystal display device
JPH10321025A (en) Circularly polarized light-separating layer, optical element, polarized light source device, and liquid crystal display device
JP6507072B2 (en) Method of manufacturing optically anisotropic layer and method of manufacturing polarizing plate
JP3163539B2 (en) Liquid crystalline alignment film, method for producing liquid crystalline alignment film, and optical element using the same
JP2002207118A (en) Polarizing film and liquid crystal display device
JP2022541609A (en) Photo-orientable positive c-plate retarder
JP2007114739A (en) Optical anisotropic polymer film, polarizing film, manufacturing method thereof and application use thereof
JP2001049008A (en) Forward scattering polymer film having haze anisotropy
JP2005062673A (en) Optically anisotropic layer, method for manufacturing the same, retardation plate using the same, elliptically polarizing plate and liquid crystal display
JP4311131B2 (en) Anisotropic light scattering film, process for producing the same, and optical element
WO2020196550A1 (en) Optical member, illumination device, and screen
JPH10339867A (en) Liquid crystal polymer layer, circularly polarized light separation layer, optical element, and light source device and liquid crystal display device
JP3514660B2 (en) Polarized light guide plate and polarized plane light source
JP2004012929A (en) Polarizer and its manufacturing method, and liquid crystal display device
JP2006208603A (en) Layered retardation plate, optical film, and image display apparatus
JP4947532B2 (en) Method for producing retardation film
JP4195166B2 (en) Manufacturing method of optical film
JP2007047218A (en) Circularly polarized separating sheet and its manufacturing method
JP3710554B2 (en) Optical film, method for producing the same, and optical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090504

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4311131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees