JP2005076070A - 地下タンク腐食予測方法及び地下タンク腐食予防方法及び地下タンク腐食予測装置及び地下タンク腐食予防装置 - Google Patents

地下タンク腐食予測方法及び地下タンク腐食予防方法及び地下タンク腐食予測装置及び地下タンク腐食予防装置 Download PDF

Info

Publication number
JP2005076070A
JP2005076070A JP2003306608A JP2003306608A JP2005076070A JP 2005076070 A JP2005076070 A JP 2005076070A JP 2003306608 A JP2003306608 A JP 2003306608A JP 2003306608 A JP2003306608 A JP 2003306608A JP 2005076070 A JP2005076070 A JP 2005076070A
Authority
JP
Japan
Prior art keywords
underground tank
concentration
corrosion
water
underground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003306608A
Other languages
English (en)
Inventor
Hiroyuki Amemori
宏之 雨森
Michio Kugue
道雄 久々江
Yasushi Miyata
康司 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokico System Solutions Co Ltd
Original Assignee
Tokico Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokico Technology Ltd filed Critical Tokico Technology Ltd
Priority to JP2003306608A priority Critical patent/JP2005076070A/ja
Publication of JP2005076070A publication Critical patent/JP2005076070A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Loading And Unloading Of Fuel Tanks Or Ships (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

【課題】 本発明は地下タンクで漏洩が発生する前段階で地下タンクの腐食の有無を予測できることを課題とする。
【解決手段】 地下タンク腐食予測装置10は、地下タンク14に挿入された吸込み管16と、吸込み管16を介して地下タンク14の底部に滞留された滞留水Wを吸込む吸込みポンプ18と、吸込みポンプ18により汲み上げられた滞留水Wの塩素イオン濃度、硫化物濃度を分析する分析計20と、分析計20による分析結果に基づいて地下タンク14内面の腐食の有無を予測するための制御装置22と、予測結果を表示する表示器24とから構成されている。地下タンク腐食予測装置10により地下タンク14で漏洩が発生する前段階で地下タンク14内面の腐食の有無を予測することが可能になる。地下タンク腐食予防装置40は、地下タンク14に純水を供給して滞留水Wを希釈する。これにより、滞留水の塩素イオン濃度が減少して孔食の発生を防止する。
【選択図】 図1

Description

本発明は地下に埋設された地下タンクの内面の腐食を予想する地下タンク腐食予測方法及び地下タンク腐食予防方法及び地下タンク腐食予測装置及び地下タンク腐食予防装置に関する。
例えば、ガソリン、灯油、軽油、重油等の燃料油を貯蔵する地下埋設タンクは、給液所、燃料基地、重油・軽油ボイラーを有する工場、事業所、ビル等に設置されている。
これら地下タンクの外側は、土壌により腐食しないように、アスファルト、タールエポキシ、FRP等で覆われている。一方、地下タンクの内側は、燃料油の場合、通常のタンク材質である鉄鋼板を腐食することは無いので、特段に防食措置を施さずに、鉄鋼板が裸の状態となっている。
一方、地下タンクは安全確保の観点からタンク内は大気圧に保つように消防法で規定されており、このために、大気と連通する通気管が設けられている。したがって、地下タンクに貯蔵されている燃料油が増減すると、連通管を介して外気が導入されたり、タンク内の空気が大気中に排出される。
地下の温度は、年間を通じてほぼ15℃前後で一定であるため、夏季の高温多湿の外気が地下タンクに入ると、外気は地下の温度に冷やされ、外気中の湿気が結露して、地下タンク内の底部に水となって溜まることがある。この水により地下タンクの底部に腐食が発生することがある。水による腐食は、タンク底部全面に発生する全面腐食で、進行速度が遅いため、腐食による孔が発生することは、通常は無く、厳しく管理している場合には2〜3年に1回程度に定期的に、タンク底部の滞留水混じりの燃料油をポンプで汲み上げ、フィルター、油水分離槽を通して水を除去して、腐食の進行を防止する対策が行われている。
しかし、まれに腐食の有無速度が速い場合に腐食による孔が発生することがあった。地下タンクはマンホールのある場合と無い場合があり、ある場合は、燃料油を抜いてタンクに入り底部を目視チェックすれば、底部の腐食状態を確認できる。しかしながら、給液所に設置されている多数の軽質油用地下タンクは、マンホールが無いため、内部の腐食状態チェックは難しい。
したがって、腐食状態のチェックが行われない中で、まれに腐食の進行が早い事に気づかず、突然に油漏洩事故が発生するおそれがあった。
このような地下タンクに可燃性燃料油を貯蔵する施設は、消防庁からの危険物関連通達により定期的に地下タンク及び地下配管の漏洩の有無を検査することが義務づけられている。
この種の検査方法としては、主に(1)地下タンクに水圧を掛けて漏洩の有無を検査する水加圧試験、(2)地下タンクに窒素ガスを充填してタンク内を加圧して漏洩の有無を検査するガス加圧試験、(3)タンク内を低圧に加圧して漏洩の有無を検査する微加圧試験、(4)真空ポンプによりタンク内を大気圧以下に減圧して漏洩の有無を検査する微減圧試験等がある。
一般には、微加圧試験が広く用いられているので、以下微加圧試験により地下タンク及び地下配管の漏洩の有無を検査する場合について説明する。尚、(1)〜(4)の各試験方法は、消防庁からの通達等により規定されており、それに沿った方法で地下タンクの圧力検査(漏洩検査)が行われる。
微加圧試験を行う場合、地下タンクを空の状態にしてから圧力検査を行っても良いし、あるいは地下タンク内に燃料が貯蔵された状態のまま圧力検査を行うことも可能である。微加圧試験の検査方法は、窒素ガスを地下タンクに封入して地下タンク内の圧力変動が生ずるか否かを一定時間監視する。そして、地下タンクの漏洩検査を行う際は、地下タンクを密閉させた状態で加圧して圧力変動の有無を確認することになる(例えば、特許文献1参照)。
特開平10−19717号公報
上記のように、地下タンクを加圧して圧力変動の有無を監視する方法では、地下タンクからの漏洩がないことを確認することができるが、地下タンクに腐食による漏洩があった場合には、その漏洩箇所を調べて、その箇所を補修して漏洩を防止する修理作業を行う必要がある。
そのため、地下タンクで漏洩が発生する前段階での定期点検時、あるいはメンテナンス時に地下タンクの腐食の有無を予測できることが要望されている。
そこで、本発明は上記課題を解決した地下タンク腐食予測方法及び地下タンク腐食予防方法及び地下タンク腐食予測装置及び地下タンク腐食予防装置を提供することを目的とする。
請求項1記載の発明は、燃料油を貯留する地下タンク底部に滞留する滞留水を採取し、採取した滞留水の中の塩素イオン濃度と硫化物濃度との少なくともいずれか一方の成分の測定を行い、その濃度測定結果に基づいて、前記地下タンク内面の腐食の有無を予測することを特徴とする。
請求項2記載の発明は、燃料油を貯留する地下タンク底部に滞留する滞留水を採取し、採取された滞留水の塩素イオン濃度と硫化物濃度との少なくともいずれか一方の成分の測定を発色試薬により検出し、該検出結果に基づいて前記地下タンク内面の腐食の有無の予測を行うことを特徴とする。
請求項3記載の発明は、燃料油を貯留する地下タンク底部に滞留する滞留水を採取し、採取した滞留水の中の塩素イオン濃度と硫化物濃度との少なくともいずれか一方の成分の測定を行い、その濃度測定結果が孔食を発生しやすい濃度の場合、前記地下タンクに水を注入し、前記滞留水に含まれる塩素イオン濃度の濃度を希釈することを特徴とする。
請求項4記載の発明は、燃料油を貯留する地下タンク底部に滞留する滞留水を採取し、採取した滞留水の中の塩素イオン濃度と硫化物濃度との少なくともいずれか一方の成分の測定を行い、の成分の測定を行い、その濃度測定結果が孔食を発生しやすい濃度の場合、塩素イオン濃度と硫化物濃度との少なくともいずれか一方の物性を変化させることを特徴とする。
請求項5記載の発明は、燃料油を貯留する地下タンク底部に滞留する滞留水を採取する採取手段と、
該採取手段により採取された滞留水の塩素イオン濃度と硫化物濃度との少なくともいずれか一方の成分を測定する濃度測定器と、
該濃度測定器による測定結果に基づいて前記地下タンク内面の腐食の有無を予測する予測手段と、
を備えたことを特徴とする。
請求項6記載の発明は、燃料油を貯留する地下タンク底部に滞留する滞留水を採取する採取手段と、
該採取手段により採取された滞留水の塩素イオン濃度と硫化物濃度との少なくともいずれか一方の成分を測定する濃度測定器と、
該濃度測定器による測定結果が孔食を発生しやすい濃度の場合、前記地下タンクに水を注入し、前記滞留水に含まれる塩素イオン濃度と硫化物濃度との少なくともいずれか一方を希釈する希釈手段と、
を備えたことを特徴とする。
請求項1記載の発明によれば、地下タンクの滞留水の中の塩素イオン濃度と硫化物濃度との少なくともいずれか一方に基づいて、地下タンク内面の腐食を予測するため、地下タンクで漏洩が発生する前段階で地下タンク内面の腐食の有無を予測することが可能になる。
請求項2記載の発明によれば、地下タンクの滞留水の塩素イオン濃度と硫化物濃度との少なくともいずれか一方を発色試薬により検出するため、比較的簡単な設備で容易に地下タンク内面の腐食の有無を予測することが可能になる。
請求項3記載の発明によれば、滞留水の塩素イオン濃度と硫化物濃度との少なくともいずれか一方が孔食を発生しやすい濃度の場合、滞留水に含まれる塩素イオン濃度の濃度を希釈するため、地下タンク内面の腐食を予防することが可能になる。
請求項4記載の発明によれば、滞留水の塩素イオン濃度と硫化物濃度との少なくともいずれか一方が孔食を発生しやすい濃度の場合、塩素イオン濃度と硫化物濃度との少なくともいずれか一方の物性を変化させるため、地下タンク内面の腐食を予防することが可能になる。
請求項5記載の発明によれば、濃度測定器による測定結果に基づいて前記地下タンクの内面腐食を予測するため、地下タンクで漏洩が発生する前段階で地下タンク内面の腐食を予測することが可能になる。
請求項6記載の発明によれば、濃度測定器による測定結果が孔食を発生しやすい濃度の場合、地下タンクに水を注入し、滞留水に含まれる塩素イオン濃度と硫化物濃度との少なくともいずれか一方の濃度を希釈するため、地下タンクで漏洩が発生する前段階で地下タンク内面の腐食を予防することが可能になる。
以下、図面と共に本発明の一実施例について説明する。
図1は本発明になる地下タンク腐食予測装置及び地下タンク腐食予防装置の実施例1を示す構成図である。
図1に示されるように、地下タンク腐食予測装置10は、マンホール12から地下タンク14の挿入管15に挿入された吸込み管16と、吸込み管16を介して地下タンク14の底部に滞留された滞留水Wを吸込む吸込みポンプ(採取手段)18と、吸込みポンプ18により汲み上げられた滞留水Wの塩素イオン濃度、硫化物濃度を分析する分析計(濃度測定器)20と、分析計20による分析結果に基づいて地下タンク14内面の腐食の有無を予測するための制御装置22と、予測結果を表示する表示器24とから構成されている。
吸込みポンプ18の吐出管26は、採取された滞留水Wを分離器28に連通されている。そして、分離器28において、採取された滞留水Wに含まれる油成分が水から分離され、分離した油成分はドレン管32を介して地下タンク14に戻される。また、分離器28で分離された水は、採取管30を介して分析計20に供給される。
地下タンク腐食予測装置10は、吸込み管16をマンホール12から地下タンク14に挿入することで滞留水Wを採取し、滞留水Wの濃度分析を行うことができるので、比較的短時間で塩素イオン濃度、硫化物濃度を測定することが可能になり、給液所の営業停止時間を短縮することが可能になる。
また、地下タンク14には、液面の上下動に応じて空気の吸気・排気を行う通気管34と、計量機(図示せず)へ燃料油を送液するための送液管36とが連通されている。さらに、挿入管15には、タンクローリ車(図示せず)から荷卸しするための注油管38が連通されている。
地下タンク14の内部には、ガソリン等の燃料油Nが貯蔵されているため、結露または洗浄による残留水が蓄積された滞留水Wは、燃料油Nよりも比重の重いので、地下タンク14の底部に滞留する。図1では、分かりやすくため、多量の滞留水Wが滞留しているように図示してあるが、実際には、滞留水Wは図示できない程度の少量である。
制御装置22は、例えば、パーソナルコンピュータなどからなり、後述するように、燃料油を貯留する地下タンク14の内底部に滞留する滞留水をポンプ18により採取し、採取した滞留水Wの中の塩素イオン濃度と硫化物濃度との少なくともいずれか一方の成分の測定を行い、その濃度測定結果に基づいて、地下タンク14内面の腐食の有無を予測する。
分析計20は、地下タンク14の底部に滞留する滞留水の中の塩素イオン濃度及び硫化物濃度を測定する濃度測定器であり、例えば、イオンクロマトグラフからなる。自然水中によく含まれている陰イオンには、塩化物イオン、硝酸イオン、硫酸イオンなどがある。そして、イオンを含んだ水のサンプルをカラム(クロマト管に樹脂製充填剤を詰めた構成)に通し、イオンと樹脂とのなじみ易さはイオンによって違うため、イオンの種別によってカラムから出てくるタイミングがずれることになる。本実施例では、地下タンク14の底部に滞留する滞留水Wを所定量(例えば、100cc程度)採取し、この滞留水Wに含まれる塩素イオン濃度と硫化物濃度との少なくともいずれか一方の成分濃度を分析する。尚、硫化物には、S2−イオンが含まれており、S2−イオンを検出することにより濃度を測定することが可能になる。
そのため、イオンクロマトグラフを用いた分析計20では、イオンが電気を帯びた粒子であるので、電気伝導率を測定することで、カラムから出たイオンを検出できると共に、イオンの量も測定でき、時間軸上の電気伝導率の変化をグラフで示すことでどのイオンが検出されたのかを表示する。
ところで、燃料油を貯蔵する地下タンク14においては、まれに、進行度の早い腐食(孔食)が発生することがある。そこで、なぜ孔食が発生するのか、その原因を調査し、地下タンク14の内底部に滞留する滞留水Wを分析調査した結果、塩素濃度が数百ppmと異常に高い値を検出した。一方、地下タンク14は、鋼板により形成されており、鉄板表面に樹脂コーティング等して腐食しにくい構造になっている。
一般に数10ppm程度以下の塩素イオン濃度水に接する鋼板は、鋼板全面が赤くなり全面腐食を生じる。しかし、塩素イオン濃度が数百ppmとなると鉄板表面に、局部が集中的に進行する孔食が生じ、孔食部が集中的に腐食が進行する現象が発生する。燃料油を貯蔵する地下タンク14に塩分が侵入する経路を検討した結果、例えば、海岸に近い給液所の場合、風向きにより潮風が給液所まで流れてくることが有り、この塩分を含んだ外気が通気管34から地下タンク14に侵入し、温度差による結露から、塩分を含む滞留水Wが地下タンク14の底部に溜まることが考えられる。あるいは、地下タンク14の内部を洗浄した際の水が底部に滞留した滞留水Wに含まれた塩素が蓄積されて塩素イオン濃度が高まることも考えられる。
制御装置22は、採取された滞留水Wのイオン濃度を分析計20により分析し、分析結果に基づいて地下タンク14内面の腐食の有無、及び腐食の進行具合を予測する制御プログラム(予測手段)がメモリに格納されている。
従って、制御装置22は、予め入力された制御プログラムに応じて分析計20の分析結果から吸込みポンプ18によって採取された地下タンク14の滞留水に含まれる各成分のイオン濃度を分析すると共に、地下タンク14内面の腐食の有無、及び腐食の進行具合を予測し、その予測結果を報知する。
本実施例においては、塩素イオン濃度については、例えば100ppmを閾値として設定する。また、硫化物濃度としては、例えば300ppmを閾値として設定する。
地下タンク腐食予防装置40は、純水が貯留された純水タンク42と、純水タンク42に貯留された水を地下タンク14に供給する供給ポンプ44と、マンホール12から地下タンク14の挿入管15に挿入される水供給管46とから構成されている。すなわち、地下タンク腐食予測装置10による地下タンク14の腐食の進行具合を検査した際に、地下タンク14の底部から採取された滞留水の塩素イオン濃度が閾値(例えば、100ppm)以上であったり、あるいは硫化物濃度が閾値(例えば、300ppm)以上である場合、地下タンク腐食予防装置40は、地下タンク14に純水を供給して滞留水Wを希釈する。これにより、滞留水の塩素イオン濃度が減少して孔食の発生を防止する。
尚、地下タンク腐食予防装置40は、前述した地下タンク腐食予測装置10と共に、点検時あるいはメンテナンス時に地下タンク14のマンホール12の近傍に設置される。
図2は制御装置22が実行する制御処理の手順を説明するためのフローチャートである。
図2に示されるように、制御装置2は、S11でポンプ18を駆動して地下タンク14の底部に滞留する滞留水Wを汲み上げて分析計20に供給する。次のS12では、ポンプ18により採取された滞留水Wの採取量が適量(例えば、100cc程度)かどうかを確認する。
S12において、分析計20に適量の滞留水Wが供給されると、S13に進み、分析計20の分析結果を読み込み、塩素イオン濃度を測定し、測定結果を記憶する。続いて、S14に進み、測定結果である塩素イオン濃度が閾値A(例えば、A=100ppm)以下かどうかを確認する。
S14において、塩素イオン濃度が閾値A以下の場合は、S15に進み、分析計20の分析結果を読み込み、硫化物濃度を測定し、測定結果を記憶する。続いて、S16に進み、測定結果である硫化物濃度が閾値B(例えば、A=300ppm)以下かどうかを確認する。
S16において、塩素イオン濃度が閾値B以下の場合は、S17に進み、孔食の可能性が無いものと予想し、その予測結果を表示器23に表示して報知する。これで、滞留水Wの濃度検査が終了する。
また、上記S14において、塩素イオン濃度が閾値A以上の場合、あるいはS16において、硫化物濃度が閾値B以上の場合は、滞留水Wの濃度が孔食が発生しやすい濃度に達しているものと判断し、S18に進む。S18では、塩素イオン濃度あるいは硫化物濃度が閾値以上であるので、孔食(貫通孔)の可能性が高いものと予想し、その予測結果を表示器23に表示して報知する。従って、地下タンク14で漏洩が発生する前段階で地下タンク14の腐食の有無を予測して報知することができる。
続いて、S19では、供給ポンプ34を起動させて純水タンク32に貯留された水を介して地下タンク14に供給する。これにより、地下タンク14の底部には、純水が少量ずつ供給され、帯留水Wが希釈され、塩素イオン濃度あるいは硫化物濃度が低下する。そのため、帯留水Wの塩素イオン濃度あるいは硫化物濃度による孔食の発生が予防される。
次のS20では、ポンプ18を駆動して地下タンク14の底部に滞留する滞留水Wを所定量だけ汲み上げて分析計20に供給する。そして、上記閾値以上と判定された塩素イオン濃度あるいは硫化物濃度を再度、分析計20により測定する。
すなわち、S21では、分析計20の分析結果を読み込み、塩素イオン濃度あるいは硫化物濃度を測定し、測定結果を記憶する。続いて、S22に進み、測定結果である塩素イオン濃度あるいは硫化物濃度が閾値AあるいはB以下かどうかを確認する。
S22において、測定結果である塩素イオン濃度あるいは硫化物濃度が閾値AあるいはB以下でない場合には、上記S19に戻り、純水の供給が継続され、さらに滞留水Wの濃度が低下される。
また、上記S22において、測定結果である塩素イオン濃度あるいは硫化物濃度が閾値AあるいはB以下である場合には、地下タンク14の内部環境が孔食の発生しにくい状況に変化しているので、S23に進み、供給ポンプ34を停止させて純水の供給を止める。その後、上記S17に進み、孔食の可能性が無いものと予想し、その予測結果を表示器23に表示して報知する。これで、滞留水Wの濃度検査が終了する。
また、吸込みポンプ18を用いても完全に貯留された滞留水Wを汲み上げることは難しいため、純水を地下タンク14に供給して貯留された滞留水Wを希釈する工程と、汲み上げる工程とを繰り返し、地下タンク14の内部環境を孔食が発生しにくい状況に変化させる。
また、塩素イオン濃度または硫化物濃度がかなり高い場合には、地下タンク14内部の燃料油を一部取り出した後、単に純水を供給するのでなく、噴射ノズル(図示せず)を地下タンク14内に挿入して高圧水をタンク底部の所定個所に噴射させて水を希釈化させてくみ上げる方法も有効である。そして、この場合も上記のように濃度測定を行って、塩素イオン濃度または硫化物濃度を閾値以下に低下させる。
また、仮に、地下タンク14の内面で孔食が始まっているとすると、腐食部位に滞留する塩素成分や硫化物成分をジェット噴射効果により、除去することができ腐食の進行を止めることができる。併せて、腐食の残片も取り出すことができ腐食の進行度のデータの参考にもなる。
尚、上記説明では、純水を地下タンク14に供給して滞留水Wの塩素イオン濃度及び硫化物濃度を希釈することで地下タンク14の孔食を予防する方法について説明したが、純水の代わりに、例えば井戸水を使用する場合には、予め使用する水の塩素イオン濃度及び硫化物濃度を測定し、濃度の低い水を使用する。
また、実施例では、純水を供給ポンプ44を使用して地下タンク14に供給しているが、これに限らず、純水を自然落下で地下タンク14内に供給し、負圧吸引治具(例えば、スポイドのような吸引部材)を用いて水を吸い上げるようにしても良い。
実施例2としては、上記分析計20を設置する代わりに、例えば、地下タンク14の滞留水Wの塩素イオン濃度あるいは硫化物濃度を発色試薬(図示せず)により検出する方法を用いる。この場合、上記地下タンク腐食予測装置10を給液所に設置するよりも比較的簡単な設備で容易に地下タンク14内面の腐食の有無を予測することが可能になる。
図3は地下タンク腐食予防装置の実施例2を示す構成図である。
図3に示されるように、地下タンク腐食予防装置50は、地下タンク14の底部に滞留する滞留水Wを汲み上げるポンプ52と、ポンプ52により汲み上げられた帯留水Wの塩素分を不溶性化合物に変え、あるいは硝酸銀を使用して塩化銀に変えて塩素成分を除去する触媒54とを有する。また、触媒54により塩素成分を除去された水は、地下タンク14に戻される。
この地下タンク腐食予防装置50では、上記実施例1のように純水を供給する必要がないので、純水を補給する手間がいらず、作業が容易に行える。
図4は地下タンク腐食予防装置の実施例3を示す構成図である。
図4に示されるように、地下タンク腐食予防装置60は、地下タンク14の底部に滞留する滞留水Wを汲み上げるポンプ62と、ポンプ62により汲み上げられた帯留水Wの塩素イオンを塩素ガスに変換して回収することで、塩素成分を除去する電気分解装置64とを有する。
電気分解装置64では、ポンプ62により汲み上げられた帯留水Wの塩素イオンを除去し、その後、塩素成分が除去された水を地下タンク14に戻す。
この地下タンク腐食予防装置60では、帯留水Wに含まれる塩素成分を電気分解により除去できるため、メンテナンス作業が容易に行える。
図5は地下タンク腐食予防装置の実施例4を示す構成図である。
図5に示されるように、地下タンク腐食予防装置70は、地下タンク14の底部に滞留する滞留水Wを汲み上げるポンプ72と、ポンプ72により汲み上げられた帯留水Wに含まれる塩素成分あるいは硫化物成分をイオン交換により吸着して除去するイオン交換装置74とを有する。
イオン交換装置74では、ポンプ72により汲み上げられた帯留水Wから塩素成分あるいは硫化物成分を除去し、その後、塩素成分あるいは硫化物成分が除去された水を地下タンク14に戻す。
この地下タンク腐食予防装置70では、イオン交換により帯留水Wに含まれる塩素成分あるいは硫化物成分を除去できるため、メンテナンス作業が容易に行える。
上記実施例では、ガソリンを貯蔵する地下タンク内の腐食の進行を予測する場合を例に挙げて説明したが、これに限らず、ガソリン以外の燃料、例えば、灯油、軽油、重油等の燃料油を貯蔵する地下タンクや、給液所以外の施設として、例えば、燃料基地、重油・軽油ボイラーを有する工場、事業所、ビル等の施設に設置された地下タンクの腐食の進行を予測する場合にも適用できるのは、勿論である。
本発明になる地下タンク腐食予測装置及び地下タンク腐食予防装置の実施例1を示す構成図である。 制御装置22が実行する制御処理の手順を説明するためのフローチャートである。 地下タンク腐食予防装置の実施例2を示す構成図である。 地下タンク腐食予防装置の実施例3を示す構成図である。 地下タンク腐食予防装置の実施例4を示す構成図である。
符号の説明
10 地下タンク腐食予測装置
12 マンホール
16 吸込み管
18 吸込みポンプ
20 分析計
22 制御装置
24 表示器
28 分離器
34 連通管
40,50,60,70 地下タンク腐食予防装置
42 純水タンク
44 供給ポンプ
54 触媒
64 電気分解装置
74 イオン交換装置

Claims (6)

  1. 燃料油を貯留する地下タンク底部に滞留する滞留水を採取し、採取した滞留水の中の塩素イオン濃度と硫化物濃度との少なくともいずれか一方の成分の測定を行い、その濃度測定結果に基づいて、前記地下タンク内面の腐食の有無を予測することを特徴とする地下タンク腐食予測方法。
  2. 燃料油を貯留する地下タンク底部に滞留する滞留水を採取し、採取された滞留水の塩素イオン濃度と硫化物濃度との少なくともいずれか一方の成分の測定を発色試薬により検出し、該検出結果に基づいて前記地下タンク内面の腐食の有無の予測を行うことを特徴とする地下タンク腐食予測方法。
  3. 燃料油を貯留する地下タンク底部に滞留する滞留水を採取し、採取した滞留水の中の塩素イオン濃度と硫化物濃度との少なくともいずれか一方の成分の測定を行い、その濃度測定結果が孔食を発生しやすい濃度の場合、前記地下タンクに水を注入し、前記滞留水に含まれる塩素イオン濃度の濃度を希釈することを特徴とする地下タンク腐食予防方法。
  4. 燃料油を貯留する地下タンク底部に滞留する滞留水を採取し、採取した滞留水の中の塩素イオン濃度と硫化物濃度との少なくともいずれか一方の成分の測定を行い、の成分の測定を行い、その濃度測定結果が孔食を発生しやすい濃度の場合、塩素イオン濃度と硫化物濃度との少なくともいずれか一方の物性を変化させることを特徴とする地下タンク腐食予防方法。
  5. 燃料油を貯留する地下タンク底部に滞留する滞留水を採取する採取手段と、
    該採取手段により採取された滞留水の塩素イオン濃度と硫化物濃度との少なくともいずれか一方の成分を測定する濃度測定器と、
    該濃度測定器による測定結果に基づいて前記地下タンク内面の腐食の有無を予測する予測手段と、
    を備えたことを特徴とする地下タンク腐食予測装置。
  6. 燃料油を貯留する地下タンク底部に滞留する滞留水を採取する採取手段と、
    該採取手段により採取された滞留水の塩素イオン濃度と硫化物濃度との少なくともいずれか一方の成分を測定する濃度測定器と、
    該濃度測定器による測定結果が孔食を発生しやすい濃度の場合、前記地下タンクに水を注入し、前記滞留水に含まれる塩素イオン濃度と硫化物濃度との少なくともいずれか一方を希釈する希釈手段と、
    を備えたことを特徴とする地下タンク腐食予防装置。

JP2003306608A 2003-08-29 2003-08-29 地下タンク腐食予測方法及び地下タンク腐食予防方法及び地下タンク腐食予測装置及び地下タンク腐食予防装置 Pending JP2005076070A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003306608A JP2005076070A (ja) 2003-08-29 2003-08-29 地下タンク腐食予測方法及び地下タンク腐食予防方法及び地下タンク腐食予測装置及び地下タンク腐食予防装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003306608A JP2005076070A (ja) 2003-08-29 2003-08-29 地下タンク腐食予測方法及び地下タンク腐食予防方法及び地下タンク腐食予測装置及び地下タンク腐食予防装置

Publications (1)

Publication Number Publication Date
JP2005076070A true JP2005076070A (ja) 2005-03-24

Family

ID=34409647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003306608A Pending JP2005076070A (ja) 2003-08-29 2003-08-29 地下タンク腐食予測方法及び地下タンク腐食予防方法及び地下タンク腐食予測装置及び地下タンク腐食予防装置

Country Status (1)

Country Link
JP (1) JP2005076070A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103868977A (zh) * 2012-12-17 2014-06-18 财团法人工业技术研究院 埋地储罐系统的腐蚀检测方法
WO2018165305A3 (en) * 2017-03-07 2018-11-15 Franklin Fueling Systems, Llc Method and apparatus for limiting acidic corrosion and contamination in fuel delivery systems
USRE48204E1 (en) 2012-08-22 2020-09-15 Franklin Fueling Systems, Inc. Method and apparatus for limiting acidic corrosion in fuel delivery systems
US11365113B2 (en) 2017-03-07 2022-06-21 Franklin Fueling Systems, Llc Method and apparatus for limiting acidic corrosion and contamination in fuel delivery systems

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE48204E1 (en) 2012-08-22 2020-09-15 Franklin Fueling Systems, Inc. Method and apparatus for limiting acidic corrosion in fuel delivery systems
CN103868977A (zh) * 2012-12-17 2014-06-18 财团法人工业技术研究院 埋地储罐系统的腐蚀检测方法
TWI471546B (zh) * 2012-12-17 2015-02-01 Ind Tech Res Inst 地下儲槽系統之腐蝕檢測方法
US9194856B2 (en) 2012-12-17 2015-11-24 Industrial Technology Research Institute Method for diagnosing corrosion of underground storage tank system
WO2018165305A3 (en) * 2017-03-07 2018-11-15 Franklin Fueling Systems, Llc Method and apparatus for limiting acidic corrosion and contamination in fuel delivery systems
CN110740970A (zh) * 2017-03-07 2020-01-31 富兰克林加油系统公司 用于限制燃料输送系统中的酸性腐蚀和污染的方法和设备
US11352248B2 (en) 2017-03-07 2022-06-07 Franklin Fueling Systems, Llc Method and apparatus for limiting acidic corrosion and contamination in fuel delivery systems
US11365113B2 (en) 2017-03-07 2022-06-21 Franklin Fueling Systems, Llc Method and apparatus for limiting acidic corrosion and contamination in fuel delivery systems
US11772956B2 (en) 2017-03-07 2023-10-03 Franklin Fueling Systems, Llc Method and apparatus for limiting acidic corrosion and contamination in fuel delivery systems
US11858803B2 (en) 2017-03-07 2024-01-02 Franklin Fueling Systems, Llc Method and apparatus for limiting acidic corrosion and contamination in fuel delivery systems

Similar Documents

Publication Publication Date Title
US20220074846A1 (en) Method for extending the time between out-of-service, in-tank inspections using ultrasonic sensor
EP2831557B1 (en) Leak location detection system
CA2833558C (en) Energy infrastructure risk analysis and remediation
TWI471546B (zh) 地下儲槽系統之腐蝕檢測方法
KR101221881B1 (ko) 변압기용 절연유 내 용존 가스 측정 시스템
US20210404905A1 (en) System for real-time detecting leakage of underground volatile compound
US20040050144A1 (en) Method to detect and characterize contaminants in pipes and ducts with interactive tracers
EP3032240B1 (en) System and method for testing corrosive effect of a hydrocarbon on a component
JP2005076070A (ja) 地下タンク腐食予測方法及び地下タンク腐食予防方法及び地下タンク腐食予測装置及び地下タンク腐食予防装置
US10416141B2 (en) Method and relative system for the detection and quantification of the H2S in drilling mud
CN107349972A (zh) 腐蚀性阴离子去除装置及阴离子交换树脂的再生方法
Yong et al. Research advances in stray alternating current corrosion of oil and gas pipelines
US20050183969A1 (en) Corrosion Monitor
Smart et al. Internal corrosion direct measurement enhances pipeline integrity
Ehsani Influence of Monoethylene Glycol (MEG) on the corrosion inhibition of wet-gas flow lines
Sokolkin et al. Prospects of applications of acoustic emission methods to testing bottoms of tanks for oil and oil derivatives
Barton et al. Improving CO2 corrosion rate predictions through the use of corrosion assessment and flow modelling-A field case study
RU2297680C1 (ru) Способ контроля герметичности оболочек твэлов и устройство для его осуществления
Husdal et al. Cold venting and fugitive emissions from Norwegian offshore oil and gas facilities
EP3135391A1 (en) A method of cleaning the bottom interstitial space and/or wall interstitial space of a storage tank
Zintel MIC Sampling Strategies
Teevens et al. Two Contrasting Internal Corrosion Scenarios Assessed by Liquid Petroleum–Internal Corrosion Direct Assessment (LP-ICDA) for the Innovative Development of a Dynamic Pitting Factor
NO175333B (no) Framgangsmåte for å påvise lekkasje i rörledninger
Powell Internal Corrosion Monitoring Using Coupons and Er Probes A Practical Focus on the Most Commonly Used, Cost‐Effective Monitoring Techniques
WO2022172399A1 (ja) ガス絶縁機器の診断装置、診断方法、およびこの診断方法を用いるガス絶縁機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090310