JP2005075699A - Manufacturing method for high performance lightweight aggregate - Google Patents

Manufacturing method for high performance lightweight aggregate Download PDF

Info

Publication number
JP2005075699A
JP2005075699A JP2003310572A JP2003310572A JP2005075699A JP 2005075699 A JP2005075699 A JP 2005075699A JP 2003310572 A JP2003310572 A JP 2003310572A JP 2003310572 A JP2003310572 A JP 2003310572A JP 2005075699 A JP2005075699 A JP 2005075699A
Authority
JP
Japan
Prior art keywords
coal ash
lightweight aggregate
carbon
industrial waste
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003310572A
Other languages
Japanese (ja)
Inventor
Kaoru Kimura
薫 木村
Satoshi Kimura
諭史 木村
Yoshikazu Kimura
吉一 木村
Mitsuaki Kurita
光章 栗田
Sho Takeuchi
詔 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEO MATERIAL KK
Original Assignee
NEO MATERIAL KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEO MATERIAL KK filed Critical NEO MATERIAL KK
Priority to JP2003310572A priority Critical patent/JP2005075699A/en
Publication of JP2005075699A publication Critical patent/JP2005075699A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/027Lightweight materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high performance lightweight aggregate by using coal ash and industrial waste glass, or the like. <P>SOLUTION: In the manufacturing method for the high performance lightweight aggregate, the industrial waste glass or further volcanic glass powder are added to coal ash fine powder having ≤ 10 μm diameter, then SiC powder is added to the mixture in the range of 0.05-1.0%, the mixture is retained at 600-800°C for 0.5-5 h when it is heated, and the mixture is burned at 1,150-1,250°C. The coal ash after previously removing carbon by using a fluidized bed kiln can also be used as a raw material. Alternatively, the carbon also can be removed from the coal ash by a centrifugal separator, or the like. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、コンクリート用の軽量骨材に関する。特には、独立気泡で構成された低吸水、超軽量、高強度の高性能軽量骨材に関するものである。   The present invention relates to a lightweight aggregate for concrete. In particular, the present invention relates to a low-water-absorbing, ultra-light, high-strength, high-performance lightweight aggregate composed of closed cells.

石油資源の減少によって、石炭火力発電への依存は世界的に強まる傾向にある。一方、原子力発電は相次ぐ安全対策上の管理ミスにより、社会的に不安感が持たれ、原子力発電所の新規建設が難しくなっている。そして、石炭エネルギーの需要が高まる中石炭燃焼に伴って排出される石炭灰の処理・再利用が大きな問題になっている。その利用方法としてはセメント及びコンクリートに混入する方法が最も有効であるが、消費量に限界があり、新たな用途が研究されている。しかし、新しい用途による使用量は未だ十分ではない。その中で軽量骨材の原料としての利用が種々検討されてきている。
すなわち、高性能軽量コンクリートは、建築、土木構造物に有効であるが、阪神大震災の教訓から上部構造の軽量化についての必要性を体験させられた。いくら構造物全体が頑強であろうと、上部構造の軽量化は避けてとおれない。特に都市部に一極集中化した日本の社会や多くの発展途上国では、都市への人口集中による災害の大規模化が恐れられている。ビルは上へ上へと階層を重ね、高架橋も二層、三層と複雑になるばかりである。それらの構築物に安全面で必要なのは、上部構造の高強度かつ軽量化である。そこで、このようなことを目指して、特許文献1〜10等においては石炭灰を人工軽量骨材として有効利用する提案が種々なされている。
Due to the decrease in petroleum resources, dependence on coal-fired power generation tends to increase globally. On the other hand, nuclear power generation has a social anxiety due to a series of management mistakes in safety measures, making it difficult to construct a new nuclear power plant. And the processing and reuse of the coal ash discharged | emitted with coal combustion in the midst of the demand for coal energy has become a big problem. As its utilization method, the method of mixing in cement and concrete is the most effective, but the consumption is limited and a new application is being studied. However, the amount used by new applications is still not sufficient. Among them, various uses as a raw material for lightweight aggregates have been studied.
In other words, high-performance lightweight concrete is effective for construction and civil engineering structures, but from the lessons learned from the Great Hanshin Earthquake, we were able to experience the need for lighter superstructure. No matter how strong the whole structure is, it is inevitable to reduce the weight of the superstructure. In particular, in Japanese society and many developing countries, which are extremely concentrated in urban areas, there is a fear that disasters will become larger due to population concentration in cities. Buildings are layered up and up, and the viaduct is only complex with two or three layers. What is necessary for the safety of these structures is high strength and light weight of the superstructure. Then, aiming at such a thing, in patent documents 1-10 etc., various proposals which use coal ash effectively as artificial lightweight aggregate are made.

また、産業廃棄ガラスは着色の多様性からくる選別時のコスト高により再利用が制限されているものがあり、そのリサイクル使用は不完全である。そして、産業廃棄ガラスを石炭灰と共に組み合わせて人工軽量骨材として十分に成功した例はない。
特開2000−313679号公報 特開2000−26142号公報 特開平11−314977号公報 特開平11−180753号公報 特開平11−180752号公報 特開平10ー87357号公報 特開平9−309752号公報 特開平9−278502号公報 特開平9−25146号公報 特開平7−41343号公報
In addition, some industrial waste glass is restricted in reuse due to the high cost of sorting due to the variety of coloring, and its recycling is incomplete. And there is no example which was successful enough as an artificial lightweight aggregate by combining industrial waste glass with coal ash.
JP 2000-313679 A JP 2000-26142 A JP 11-314977 A Japanese Patent Laid-Open No. 11-180753 Japanese Patent Laid-Open No. 11-180752 JP-A-10-87357 Japanese Patent Laid-Open No. 9-309752 JP-A-9-278502 Japanese Patent Laid-Open No. 9-25146 Japanese Patent Laid-Open No. 7-41343

1)従来の石炭灰を利用した軽量骨材は、原料中に含まれるカーボンを発泡源として利用しようとするところに問題がある。またカーボンによる還元雰囲気を考慮せず酸化雰囲気を必要とするSiCでの発泡を行おうとしたところにも問題がある。
具体的には従来の方法では石炭灰の溶融時までカーボンを残存させ、溶融後閉ざされた構造の中で、空隙に残る空気からの酸素や、ガラス層に含む溶存酸素とカーボンが反応してCO2ガスとなり発泡する方法をとっていたが、石炭灰に含有されるカーボンの量は発泡に利用するよりはるかに多い。そのため溶融によって閉ざされた組織内で過剰なカーボンが還元剤として働き、ガラス相中のFe23をFeOに還元してしまう。FeOはガラス相においてはその粘性を急激に下げてしまい、温度コントロールの出来ないうちに、必要以上に柔らかくなり気泡膜が破れ、それらが酸素供給の最も離れた、粒の中芯部に集中し、そしてさらに発達して中心部に粗大気泡をもたらす。
1) A conventional lightweight aggregate using coal ash has a problem in that carbon contained in the raw material is used as a foaming source. There is also a problem in trying to foam with SiC that requires an oxidizing atmosphere without considering the reducing atmosphere with carbon.
Specifically, in the conventional method, carbon remains until the coal ash melts, and in the structure closed after melting, oxygen from the air remaining in the voids, or dissolved oxygen contained in the glass layer reacts with the carbon. Although CO 2 gas is used for foaming, the amount of carbon contained in coal ash is much larger than that used for foaming. Therefore, excessive carbon works as a reducing agent in the structure closed by melting, and Fe 2 O 3 in the glass phase is reduced to FeO. FeO drastically lowers its viscosity in the glass phase, and before it can be temperature controlled, it becomes softer than necessary and the bubble film breaks, concentrating on the core of the grain where the oxygen supply is farthest away. , And further develops coarse bubbles in the center.

さらにこれらのカーボンや頁岩等に含まれる発泡源の粘土鉱物等の分解ガスは発泡ガスとして、加熱時においてガラス相生成の前からガスが発生しており、また、ガスの通路は総てが閉じられているわけではないため、溶融ガラスがその通路を塞がない限り、連続気孔として残る。そして耐火度の高い鉱物部分はガラス化せず、一部素焼きあるいは燒結の段階にとどまる。したがって、そのようなガラス相の発生と熱分解によるガス発生の終結とが同時に起こるようなバランスのとれた原料を見つけることは難しい。   Furthermore, the cracked gas such as clay minerals of foaming sources contained in these carbon and shale is generated as foaming gas before the glass phase is formed during heating, and all gas passages are closed. As long as the molten glass does not block the passage, it remains as continuous pores. And the mineral part with high fire resistance is not vitrified, but remains only in the stage of unglazed or sintered. Therefore, it is difficult to find a balanced raw material in which the generation of such a glass phase and the end of gas generation due to thermal decomposition occur simultaneously.

2)石炭灰に発泡剤としてSiC粉末を添加し、残存カーボンは溶融温度までに酸化燃焼させて溶融相の中に残らないようにする方法があることは特許文献や当方の実験でも確認されている。しかし、それは緩やかな昇温曲線においてであり、実際のロータリーキルンでは黒芯現象を排除できないのが現実である。被熱物はバーナー付近ではバーナーの直火や急激輻射熱によって急激な温度上昇が起きており表面と内部に大きな温度差をもっている。それが原因で本発泡をより困難なものにしている。   2) Patent literature and our experiments confirm that there is a method in which SiC powder is added to coal ash as a blowing agent, and the remaining carbon is oxidized and burned up to the melting temperature so that it does not remain in the molten phase. Yes. However, this is a gentle temperature rise curve, and the actual rotary kiln cannot actually eliminate the black core phenomenon. In the vicinity of the burner, the temperature of the material to be heated has risen suddenly due to the direct fire of the burner or sudden radiant heat, and there is a large temperature difference between the surface and the inside. This makes the foaming more difficult.

3)また、石炭灰は融点が高く、高融点のものは1400℃にも達することもある。そのためSiC発泡に必要なガラス相の生成には非常に高温が必要であり、石炭灰単味で従来の方法をそのまま適用することは熱効率上不利である。
本発明では、産業廃棄ガラス等を有効活用して石炭灰のガラス化を促進させ、微粉砕した原料が均一なガラス相を形成し、SiCを用いて発泡させ、その問題点を解決し、特に高性能の軽量骨材を提供せんとするものである。
3) Also, coal ash has a high melting point, and high melting point may reach 1400 ° C. For this reason, a very high temperature is required for the production of the glass phase necessary for SiC foaming, and it is disadvantageous in terms of thermal efficiency to apply the conventional method as it is with coal ash.
In the present invention, industrial waste glass or the like is effectively utilized to promote the vitrification of coal ash, and the finely pulverized raw material forms a uniform glass phase, which is foamed using SiC. It is intended to provide high-performance lightweight aggregate.

本発明は、上記課題を解決するために下記の構成よりなる。
(1)本発明に係る高性能軽量骨材の製造方法は、予め内在するカーボン分を除去する石炭灰を10μm以下の微粉末とし、これに産業廃棄ガラス粉末および火山ガラス粉末の両方又はいずれかと増粘剤を加え、これにSiC粉末を0.05〜1.0重量%の範囲で添加して造粒し、ついで1150〜1320℃で焼成することを特徴とする。
(2)本発明に係る高性能軽量骨材の製造方法は、石炭灰に内在するカーボン分を除去するに際し、石炭灰を600〜800℃で0.5〜5時間滞留させてから焼成することを特徴とする上記(1)記載のものである。
(3)本発明に係る高性能軽量骨材の製造方法は、石炭灰より流動層キルンを用いて未燃カーボンを除去したものを原料として使用することを特徴とする上記(1)記載のものである。
(4)本発明に係る高性能軽量骨材の製造方法は、石炭灰中の未燃カーボンを遠心分離機にて除去したものを原料として使用することを特徴とする上記(1)記載のものである。
(5)本発明に係る高性能軽量骨材の製造方法は、石炭灰に産業廃棄ガラス粉末およびSiCを加え直径が50μmから1000μmの微粒に造粒し、それを流動層キルンを用いて焼成発泡することを特徴とする上記(1)記載のものである。
この製造方法によって製造される高性能軽量骨材は微粒である為、空気中の酸素が被熱物の内部まで十分供給され黒芯現象を起こすことなく微粒発泡体を得ることができる。石炭灰に産業廃棄ガラス粉末およびSiCを加え直径が50μm未満では、過焼成になる場合があり、1000μmを超える場合は黒芯現象を十分に抑制することができない。なお微粒の造粒の観点からは、特に500μmから1000μmが好ましい。
The present invention has the following configuration in order to solve the above-described problems.
(1) The manufacturing method of the high-performance lightweight aggregate which concerns on this invention makes the coal ash which removes the carbon content which is contained beforehand into a fine powder of 10 micrometers or less, and this is both industrial waste glass powder and volcanic glass powder. A thickener is added, SiC powder is added in the range of 0.05 to 1.0% by weight, granulated, and then fired at 1150 to 1320 ° C.
(2) In the method for producing a high-performance lightweight aggregate according to the present invention, when removing carbon contained in coal ash, coal ash is retained at 600 to 800 ° C. for 0.5 to 5 hours and then fired. (1), characterized by the above.
(3) The method for producing a high-performance lightweight aggregate according to the present invention uses a material obtained by removing unburned carbon from coal ash using a fluidized bed kiln as a raw material. It is.
(4) The method for producing a high-performance lightweight aggregate according to the present invention uses a raw material obtained by removing unburned carbon in coal ash with a centrifuge. It is.
(5) The method for producing a high-performance lightweight aggregate according to the present invention comprises adding industrial waste glass powder and SiC to coal ash, granulating them into fine particles having a diameter of 50 μm to 1000 μm, and firing them using a fluidized bed kiln. It is what is described in the above item (1).
Since the high-performance lightweight aggregate produced by this production method is fine, oxygen in the air is sufficiently supplied to the inside of the object to be heated, and a fine foam can be obtained without causing a black core phenomenon. When industrial waste glass powder and SiC are added to coal ash and the diameter is less than 50 μm, overfire may occur, and when it exceeds 1000 μm, the black core phenomenon cannot be sufficiently suppressed. From the viewpoint of granulation of fine particles, 500 μm to 1000 μm is particularly preferable.

すなわち、本発明では原料としての石炭灰を10μm以下の微粉末に粉砕し、カーボン分を除去した後、これに産業廃棄ガラス粉末および火山ガラス粉末の両方又はいずれかと増粘剤を加え、これを造粒して焼成することを基本とする。産業廃棄ガラス粉末は集荷にムラがあり安定供給に問題があるので、適宜、シラス、抗火石、黒曜石、真珠岩、流紋岩等の火山ガラス粉末を加えて調整する。又、ベントナイト等の増粘剤を適宜添加することによって焼成時の保形性を保つ。またSiCの使用量は0.05〜1.0%の範囲が良い。0.05%より少ないと発泡が十分でなく、1.0%を超えると連通気泡が生じ易く好ましくない。
SiCは高温耐火物として良く知られており、単体では1400℃まで分解しないが、本発明では焼成時にガラス相が生じた時に濡れが発生するとこれと反応し、分解ガスを出して発泡現象を起こす。SiC耐火物からみれば、溶融ガラスに侵食される。
That is, in the present invention, the coal ash as a raw material is pulverized into a fine powder of 10 μm or less, and after removing the carbon content, a thickener is added to the industrial waste glass powder and / or volcanic glass powder. It is basically granulated and fired. Since industrial waste glass powder has uneven collection and has a problem in stable supply, volcanic glass powder such as shirasu, anti-fluorite, obsidian, nacre, rhyolite, etc. is appropriately added and adjusted. Moreover, the shape retention property at the time of baking is maintained by adding suitably thickeners, such as bentonite. The amount of SiC used is preferably in the range of 0.05 to 1.0%. If it is less than 0.05%, foaming is not sufficient, and if it exceeds 1.0%, open bubbles are likely to occur, which is not preferable.
SiC is well known as a high-temperature refractory and does not decompose up to 1400 ° C. alone. However, in the present invention, when a glass phase is generated during firing, it reacts with wetting to generate a decomposition gas and cause a foaming phenomenon. . If it sees from a SiC refractory, it will be eroded by molten glass.

また焼成の際、加熱昇温時に600〜800℃で0.5〜5.0時間炉内で滞留させることにより、石炭灰中の炭素分を完全に除去し、ガラス質が溶融して発泡を開始するときには残存炭素はなくなり粗大気泡の発生がなくなる。焼成が0.5時間未満であると石炭灰内にカーボン分が残留する場合があり、5時間を超える場合には黒芯現象等が生じるおそれがあり好ましくない。
焼成時にはSiCの使用量による発泡作用が主となり発泡の調整が容易となる。SiCの使用量は0.05〜1.0%の範囲が良い。0.05%より少ないと発泡が十分でなく、1.0%を超えると連通気泡が生じ易く好ましくない。
石炭灰はすでに高温にさらされていて、未燃カーボン以外に自己発泡性の鉱物等は持たないため、残存カーボンが酸化によって除去されていれば、発泡は添加したSiCのみで起こるため、容易に制御が可能となる。そこで原料を微粉砕する前に流動層キルンで600℃〜800℃で焼成しカーボンを除去する。流動層キルンにおいて石炭灰微粉末は燃焼ガスとの接触機会が多く、また滞留時間を調整することにより確実にカーボンを除去することができる。その後冷却して10μm以下に微粉砕し産業廃棄ガラスあるいは、さらに火山ガラス粉末及び増粘剤を加え、これにSiC粉末を0.05〜1.0%の範囲で添加して造粒し、その造粒物を通常のロータリーキルンで焼成する。
Also, during firing, the carbon content in the coal ash is completely removed by allowing it to stay in the furnace at 600 to 800 ° C. for 0.5 to 5.0 hours at the time of heating and heating, and the vitreous material melts and foams. When starting, there is no residual carbon and no coarse bubbles are generated. If the calcination is less than 0.5 hour, carbon may remain in the coal ash, and if it exceeds 5 hours, a black core phenomenon may occur, which is not preferable.
At the time of firing, the foaming effect is mainly due to the amount of SiC used, and the foaming can be easily adjusted. The amount of SiC used is preferably in the range of 0.05 to 1.0%. If it is less than 0.05%, foaming is not sufficient, and if it exceeds 1.0%, open bubbles are likely to occur, which is not preferable.
Since coal ash is already exposed to high temperatures and has no self-foaming minerals other than unburned carbon, if residual carbon is removed by oxidation, foaming occurs only with the added SiC, so it is easy to Control becomes possible. Therefore, before the raw material is finely pulverized, the carbon is removed by firing at 600 ° C. to 800 ° C. in a fluidized bed kiln. In the fluidized bed kiln, the fine coal ash powder has many contact opportunities with the combustion gas, and the carbon can be reliably removed by adjusting the residence time. Thereafter, it is cooled and pulverized to 10 μm or less, industrial waste glass or further volcanic glass powder and a thickener are added, and SiC powder is added in the range of 0.05 to 1.0%, and granulated. The granulated product is fired in a normal rotary kiln.

得られる粗骨材は原料の微粉砕とSiCの均一な分散が製品の性能を左右する。そのため、微粉砕性と均一混合にすぐれた湿式ボールミルやチューブミルを用いることがある。その場合、石炭灰は含水率約50%のスラリーとなる。そのスラリーを遠心分離機にかけることによりカーボンと灰とを分離しカーボンを燃焼処理し、SiC発泡に適した石炭灰を得ることが出来る。カーボンを除去した石炭灰を微粉砕し上記と同様な配合で焼成発泡させる。
他に流動層キルンを用いて石炭灰より未燃カーボンを除去する方法もある。
In the resulting coarse aggregate, the performance of the product depends on the fine pulverization of raw materials and the uniform dispersion of SiC. For this reason, a wet ball mill or tube mill having excellent fine grindability and uniform mixing may be used. In that case, the coal ash becomes a slurry having a water content of about 50%. By applying the slurry to a centrifugal separator, carbon and ash are separated and the carbon is burned to obtain coal ash suitable for SiC foaming. The coal ash from which carbon has been removed is finely pulverized and fired and foamed with the same composition as above.
Another method is to remove unburned carbon from coal ash using a fluidized bed kiln.

本発明で使用する各原料の化学成分の代表例を表1に示す。

Figure 2005075699
Table 1 shows typical examples of chemical components of each raw material used in the present invention.
Figure 2005075699

又、骨材粒子原料の配合比は以下のとおりである。火山ガラスの量は産業廃棄ガラスのとの合計量の範囲内である。すなわち、産業廃棄ガラスの5部から30部の一部を火山ガラスで置きかえるか、場合によっては、全部置きかえるか、あるいは火山ガラスを全く添加しない。すなわち、産業廃棄ガラスと火山ガラスは各々ガラス質として単独で使用できるが、石炭灰の量は本発明の目的がその有効活用にあるため比較的多く用いる。例えば60部から90部が好ましい。また増粘剤を5〜10部加えると良い。   The blending ratio of the aggregate particle raw materials is as follows. The amount of volcanic glass is within the total amount of industrial waste glass. That is, a part of 5 to 30 parts of the industrial waste glass is replaced with volcanic glass, or in some cases, is replaced entirely or no volcanic glass is added. That is, industrial waste glass and volcanic glass can each be used alone as vitreous, but the amount of coal ash is relatively large because the purpose of the present invention is its effective utilization. For example, 60 to 90 parts are preferable. Moreover, it is good to add 5-10 parts of thickeners.

本発明によれば、石炭灰と産業廃棄ガラスのような廃材を用いて、高強度でしかも軽量な高性能骨材を有効に提供することができる。得られる製品は独立気泡を有し、低吸水性率のものである。したがって、資源の有効活用と、これを用いて構築した構造物の軽量化に役立つ。本発明は、粗骨材の製造にも、微細骨材の製造にも適している。   According to the present invention, it is possible to effectively provide a high-performance aggregate that is high in strength and lightweight by using waste materials such as coal ash and industrial waste glass. The resulting product has closed cells and low water absorption. Therefore, it is useful for effective use of resources and weight reduction of a structure constructed using the resources. The present invention is suitable for both the production of coarse aggregates and the production of fine aggregates.

表1に示す平均粒径が10μm以下の石炭灰及び産業廃棄ガラスを9:1〜3:7の配合比で混合し、これに5重量%のベントナイトと0.2重量%のSiC粉末とを加え、全量の110%の水を加えて、ポットミルに入れ、アルミナボールを充填して、6時間湿式粉砕、混合を行った。なお、産業廃棄ガラス粉は飲料用の褐色ビンを使用し、スチールボールによりボールミル乾式粉砕したものを用いた。
粉砕、混合した原料スラリーを石膏型に流し入れて適度に水分吸収させ、半分を粘土状になった状態で取り出して造粒し、粒径15mm程度の球とした後、自然乾燥させた。さらに残りの半分は石膏型より脱型し120℃で完全に乾燥させた。これを先の粒径15mm程度の大きさに破砕成形した。
Coal ash having an average particle diameter of 10 μm or less and industrial waste glass shown in Table 1 are mixed at a blending ratio of 9: 1 to 3: 7, and 5 wt% bentonite and 0.2 wt% SiC powder are mixed therein. In addition, 110% of the total amount of water was added, placed in a pot mill, filled with alumina balls, and wet-ground and mixed for 6 hours. In addition, the industrial waste glass powder used the brown bottle for drinks, and the thing which carried out the ball mill dry grinding | pulverization with the steel ball was used.
The pulverized and mixed raw material slurry was poured into a gypsum mold to absorb water appropriately, and half was taken out in a clay state, granulated, made into a sphere having a particle size of about 15 mm, and then naturally dried. The other half was removed from the plaster mold and completely dried at 120 ° C. This was crushed and formed into a particle size of about 15 mm.

焼成は図1に例示する焼成装置を用いて行った。1は仮焼回転炉で、2より上記原料を装入し、上部バーナー3で仮焼する。温度は600〜800℃の範囲で、回転を調節し3時間から5時間の滞留時間をとり保持した。その後下段の本焼成回転炉4で下部バーナー5によって、1150〜1320℃で焼成し発泡させる。焼成後は冷却炉6に移して冷却し製品とする。   Firing was performed using the firing apparatus illustrated in FIG. Reference numeral 1 denotes a calcining rotary furnace, and the raw materials are charged from 2 and calcined with an upper burner 3. The temperature was in the range of 600 to 800 ° C., and the rotation was adjusted to maintain a residence time of 3 to 5 hours. Thereafter, it is fired and foamed at 1150 to 1320 ° C. by the lower burner 5 in the lower main firing rotary furnace 4. After firing, the product is transferred to a cooling furnace 6 and cooled to obtain a product.

石炭灰中のカーボンを除去する方法として図2に示す方法もある。7は流動層で、予め流動層部を600〜800℃に保ち、上部より石炭灰を投入し、層高を約300mmに保ち、約500秒バブリングし、石炭灰中のカーボンを燃焼除去し、その後、300℃まで冷却し、過剰ガスを送り、サイクロン分離機8で捕集した。このサイクルを繰り返して所定量を確保した。
そして、これを原料として上記の配合に準じて配合した原料を、乾式ポットミルにて7μmまで微粉砕し、それをパン型ペレタイザーにて約1.5〜3mmまでの粗骨材サイズに造粒した。乾燥機で水分3%になるまで保持し、昇温から焼成まで45分の通常のロータリーキルンの温度曲線で焼成した。石炭灰は予めカーボンが取り除かれているため、黒芯現象を起こすことなく焼成することができた。
上記の方法で粉砕処理した原料を高速攪拌造粒機によって1000μmから50μmに造粒し,流動層キルンで焼成し発泡させ高性能な軽量微粒発泡体をうることができた。この方法によれば残存カーボンを事前に除去することなく石炭灰の有効利用をはかることができる。
There is also a method shown in FIG. 2 as a method for removing carbon in coal ash. 7 is a fluidized bed, the fluidized bed portion is previously maintained at 600 to 800 ° C., coal ash is charged from above, the bed height is kept at about 300 mm, bubbling is carried out for about 500 seconds, and carbon in the coal ash is burned and removed. Then, it cooled to 300 degreeC, the excess gas was sent, and it collected with the cyclone separator 8. FIG. This cycle was repeated to ensure a predetermined amount.
And the raw material which mix | blended according to said mixing | blending with this as a raw material was finely pulverized to 7 micrometers in the dry-type pot mill, and it granulated to the coarse aggregate size to about 1.5-3 mm with the bread-type pelletizer. . It was held until the moisture content reached 3% with a drier, and baked with a temperature curve of a normal rotary kiln for 45 minutes from the temperature rise to firing. Since the coal ash was previously removed, the coal ash could be fired without causing a black core phenomenon.
The raw material pulverized by the above method was granulated from 1000 μm to 50 μm with a high-speed agitation granulator, fired in a fluidized bed kiln and foamed to obtain a high-performance lightweight fine-grained foam. According to this method, it is possible to effectively use coal ash without removing residual carbon in advance.

更に遠心分離機を利用したカーボンの除去方法もある。図3は、遠心分離機を利用した場合における遠心分離後の石炭灰スラリーの分離状態を示す図である。石炭灰を湿式ミルにて30μm程度まで簡単に微粉砕し、石炭灰に付着したカーボンを切り離した。そのスラリーを直径450mmの遠心分離機にかけた。直径30mm、長さ100mmのプラスチックの円筒にて回転数3000rpmにて30分回転させた。円筒内は下部に石炭灰の薄いグレーの部分10がたまり、その上層部に濃いグレーの層11が数mmあり、さらにその上は澄んだ水12があり、その上には黒いカーボン13が少し浮いていた。焼成には下部にたまっている明るいグレーの部分10を使用した。   There is also a carbon removal method using a centrifuge. FIG. 3 is a diagram illustrating a separation state of the coal ash slurry after the centrifugal separation when the centrifugal separator is used. The coal ash was easily pulverized to about 30 μm with a wet mill, and the carbon adhering to the coal ash was separated. The slurry was centrifuged in a 450 mm diameter centrifuge. It was rotated for 30 minutes at a rotational speed of 3000 rpm in a plastic cylinder having a diameter of 30 mm and a length of 100 mm. Inside the cylinder, a light gray portion 10 of coal ash accumulates at the bottom, a dark gray layer 11 is several millimeters above it, clear water 12 is above it, and black carbon 13 is slightly above it. It was floating. The light gray portion 10 accumulated in the lower part was used for firing.

<実施例1〜8>
石炭灰、産業廃棄ガラス、火山ガラス、SiCを下記表2に示す配合とし、バインダーとして増粘剤(ベントナイト)を加えて、それぞれの温度で焼成した。製品の比重、真空吸水率、圧壊強度も併せて示した。さらに他の市販品(比較例1及び比較例2)についても同様の試験をした。なお比較例1として超軽量頁岩系の骨材を用い、比較例2として中国膨張粘土系骨材を用いた。

Figure 2005075699
<Examples 1-8>
Coal ash, industrial waste glass, volcanic glass, and SiC were blended as shown in Table 2 below, and a thickener (bentonite) was added as a binder, followed by firing at each temperature. The specific gravity, vacuum water absorption rate, and crushing strength of the product are also shown. Furthermore, the same test was conducted on other commercially available products (Comparative Example 1 and Comparative Example 2). In addition, an ultralight shale aggregate was used as Comparative Example 1, and a Chinese expanded clay aggregate was used as Comparative Example 2.
Figure 2005075699

なお、物性の測定は下記のように行った。
◎24時間吸水率試験
焼成粒子の絶乾重量を測定した後、重しと共に布袋に入れ、深さ4〜5cmに張った水中に沈め、24時間吸水させた。取り出した粒子は表面を布で拭い、表面乾燥状態として重量を測定し、吸水率を求めた。測定は焼成後そのままの状態と、粒子を中央部で破断して発泡面を露出させた状態およびボールミルを用いて表面層を剥離させた状態の3つについて行った。
The physical properties were measured as follows.
◎ 24-hour water absorption test After measuring the absolute dry weight of the fired particles, they were placed in a cloth bag with a weight, submerged in water stretched to a depth of 4 to 5 cm, and allowed to absorb water for 24 hours. The surface of the particles taken out was wiped with a cloth, the weight was measured as a dry surface, and the water absorption was determined. The measurement was carried out in three states: the state as it was after firing, the state where the particles were broken at the center to expose the foamed surface, and the state where the surface layer was peeled off using a ball mill.

◎真空吸水率測定
焼成粒子の絶乾重量を測定した後、重しと共に布袋に入れ、真空容器の底に置いた。真空ポンプ(最大50Torr)を用いて内部を真空状態とし、30分間保持してから上部より水を加え水深約20cmとし、内部圧力を真空状態に保ったまま2時間吸水させた。装置内を大気圧に戻してから粒子を取り出し、粒子表面を濡れた布で拭って表面乾燥状態としてから、重量を測定し吸水率を求めた。
◎ Measurement of vacuum water absorption rate After measuring the absolute dry weight of the fired particles, they were placed in a cloth bag with a weight and placed on the bottom of the vacuum vessel. The interior was evacuated using a vacuum pump (maximum 50 Torr), held for 30 minutes, water was added from the top to a depth of about 20 cm, and water was absorbed for 2 hours while maintaining the internal pressure in a vacuum. After returning the inside of the apparatus to atmospheric pressure, the particles were taken out, and the surface of the particles was wiped with a wet cloth to make the surface dry, and then the weight was measured to determine the water absorption rate.

◎比重
焼成粒子の絶乾重量を測定した後、比重ビンを用いて比重を測定した。測定は各焼成条件での粒子全体について行うと共に球状粒子(非破壊)については1個粒子での比重測定を行った。
◎圧壊荷重測定
絶乾状態とした焼成粒子1個に上部より圧力を加え粒子を破壊した。粒子が破断した時点で圧壊を停止し、粒子にかかった圧力のピーク値を圧壊荷重(kg)とした。粒子は破壊前に粒子径を測定した。又、破断後に断面の観測を行い、抱き込み気泡等の有無を確認した。
Specific gravity After measuring the absolute dry weight of the fired particles, the specific gravity was measured using a specific gravity bottle. The measurement was performed for the entire particles under each firing condition, and for the spherical particles (non-destructive), the specific gravity of one particle was measured.
◎ Measurement of crushing load Pressure was applied from the top to one calcined particle that had been completely dried to destroy the particle. Crushing was stopped when the particles broke and the peak value of the pressure applied to the particles was taken as the crushing load (kg). The particle size of the particles was measured before breaking. Moreover, the cross-section was observed after the fracture to confirm the presence of embraced bubbles and the like.

図4及び5には真空吸水率と比重との関係をグラフ化した。本発明の実施例の骨材は、真空吸水率でも大きくなることがなく、独立気泡であることが分かる。図6及び7には圧縮強度と比重との関係をグラフ化した。産業廃棄ガラスを10%加えたものより、20%、30%と増やした方が圧縮強度は上がるが、火山ガラスも同様の効果がある。したがって、産業廃棄ガラスの調達が困難な場合でも、シラス等の火山ガラスで補うことができるので、原料の調達には安定性がある。   4 and 5 are graphs showing the relationship between vacuum water absorption and specific gravity. It can be seen that the aggregates of the examples of the present invention do not become large even with the vacuum water absorption rate and are closed cells. 6 and 7 are graphs showing the relationship between compressive strength and specific gravity. Although the compressive strength increases when increasing to 20% or 30% rather than adding 10% industrial waste glass, volcanic glass has the same effect. Therefore, even if it is difficult to procure industrial waste glass, it can be supplemented with volcanic glass such as shirasu, so the procurement of raw materials is stable.

<実施例9〜13>
次に石炭灰、産業廃棄ガラス、火山ガラス(抗火石)、SiCを下記表3に示す配合(SiCは外掛)とし、バインダーとして増粘剤(ベントナイト)を加えて、それぞれの温度で焼成した。製品の比重、真空吸水率、圧壊強度も併せて示した。

Figure 2005075699
<Examples 9 to 13>
Next, coal ash, industrial waste glass, volcanic glass (anti-fluorite), and SiC were blended as shown in Table 3 below (SiC is an outer shell), a thickener (bentonite) was added as a binder, and fired at each temperature. The specific gravity, vacuum water absorption rate, and crushing strength of the product are also shown.
Figure 2005075699

なお、物性の測定を上記実施例1〜8と同様に行った。
その結果として、図8及び9には実施例9〜14における軽量骨材の真空吸水率と比重との関係をグラフ化した。本発明の実施例9〜14の骨材は、真空吸水率でも大きくなることがなく、独立気泡であることが分かる。更に図10には実施例9〜11の骨材について圧縮強度と比重との関係をグラフ化した。産業廃棄ガラスを10%加えたものより、20%、30%と増やした方が圧縮強度は上がるが、火山ガラスも同様の効果がある。したがって、産業廃棄ガラスの調達が困難な場合でも、シラス等の火山ガラスで補うことができるので、原料の調達には安定性がある。
In addition, the measurement of the physical property was performed similarly to the said Examples 1-8.
As a result, the relationship between the vacuum water absorption rate and the specific gravity of the lightweight aggregates in Examples 9 to 14 is graphed in FIGS. It can be seen that the aggregates of Examples 9 to 14 of the present invention are closed cells without increasing the vacuum water absorption rate. Further, FIG. 10 is a graph showing the relationship between the compressive strength and the specific gravity of the aggregates of Examples 9-11. Although the compression strength increases when 20% and 30% are increased compared to 10% of industrial waste glass, volcanic glass has the same effect. Therefore, even when it is difficult to procure industrial waste glass, it can be supplemented with volcanic glass such as shirasu, so the procurement of raw materials is stable.

◎発泡断面観察
本発明に係る骨材の破断面を走査型電子顕微鏡によって撮影した写真を図11に示す。併せて市販品についての写真も示す。それぞれ図11(a)は実施例5、(b)は実施例10、(c)は中国製膨張粘土系骨材及び(d)は頁岩系軽量骨材の破断面である。
図11(a)より明らかなように実施例5の破断面では均一なマトリックス部と独立した真球な気泡形状が視認でき、(b)より実施例10の破断面では気泡の壁に独立気泡が視認できる。他方、(c)及び(d)の破断面は、粘土鉱物等の加熱分解によるガスを発泡起源としているため、人工的に気泡の形状や数量をコントロールできないため、連通気泡や異形な気孔をなしているのが分かる。
Observation of Foamed Cross Section FIG. 11 shows a photograph of the fracture surface of the aggregate according to the present invention taken with a scanning electron microscope. A photograph of a commercial product is also shown. FIG. 11 (a) is a fracture surface of Example 5, (b) is Example 10, (c) is an expanded clay aggregate made in China, and (d) is a shale lightweight aggregate.
As is clear from FIG. 11A, a true bubble shape independent of the uniform matrix portion can be visually recognized on the fracture surface of Example 5, and from FIG. Is visible. On the other hand, the fracture surfaces of (c) and (d) are made of gas generated by thermal decomposition of clay minerals and the like, and the shape and quantity of bubbles cannot be artificially controlled, so there are no open bubbles or irregular pores. I understand that.

本発明を実施するに適した装置の一例の説明図である。It is explanatory drawing of an example of the apparatus suitable for implementing this invention. 石炭灰中のカーボンをサイクロン分離機を用いて除去する説明図である。It is explanatory drawing which removes the carbon in coal ash using a cyclone separator. 遠心分離機を利用した場合における遠心分離後の石炭灰スラリーの分離状態を示す図である。It is a figure which shows the isolation | separation state of the coal ash slurry after the centrifugation in the case of utilizing a centrifuge. 実施例1〜5における軽量骨材の比重と真空吸水率の変化を示すグラフである。It is a graph which shows the specific gravity of the lightweight aggregate in Examples 1-5, and the change of a vacuum water absorption. 実施例6〜8における軽量骨材の比重と真空吸水率の変化を示すグラフである。It is a graph which shows the change of the specific gravity and vacuum water absorption of the lightweight aggregate in Examples 6-8. 実施例1〜5における軽量骨材の比重と圧壊荷重の変化を示すグラフである。It is a graph which shows the specific gravity of the lightweight aggregate in Examples 1-5, and the change of a crushing load. 実施例6〜8における軽量骨材の比重と圧壊荷重の変化を示すグラフである。It is a graph which shows the specific gravity of the lightweight aggregate in Examples 6-8, and the change of a crushing load. 実施例9〜11における軽量骨材の比重と真空吸水率の変化を示すグラフである。It is a graph which shows the change of the specific gravity and vacuum water absorption of the lightweight aggregate in Examples 9-11. 実施例12〜14における軽量骨材の比重と真空吸水率の変化を示すグラフである。It is a graph which shows the change of the specific gravity and vacuum water absorption of the lightweight aggregate in Examples 12-14. 実施例9〜11における軽量骨材の比重と圧壊荷重の変化を示すグラフである。It is a graph which shows the specific gravity of the lightweight aggregate in Examples 9-11, and the change of a crushing load. 骨材の破断面を走査型電子顕微鏡によって撮影した写真である。(a)は実施例5、(b)は実施例10、(c)は中国製膨張粘土系骨材及び(d)は頁岩系軽量骨材の破断面の写真である。It is the photograph which image | photographed the fracture surface of the aggregate with the scanning electron microscope. (A) is a photograph of Example 5, (b) is Example 10, (c) is a photograph of a fracture surface of an expanded clay aggregate made in China, and (d) is a fracture surface of a shale lightweight aggregate.

符号の説明Explanation of symbols

1 仮焼回転炉
2 材料投入口
3 バーナー
4 本焼成炉
5 バーナー
6 冷却帯
7 流動層
8 サイクロン分離器
DESCRIPTION OF SYMBOLS 1 Calcining rotary furnace 2 Material inlet 3 Burner 4 Main baking furnace 5 Burner 6 Cooling zone 7 Fluidized bed 8 Cyclone separator

Claims (5)

予め内在するカーボン分を除去する石炭灰を10μm以下の微粉末とし、これに産業廃棄ガラス粉末および火山ガラス粉末の両方又はいずれかを加え、これにSiC粉末を0.05〜1.0重量%の範囲で添加して造粒し、ついで1150〜1320℃で焼成することを特徴とする高性能軽量骨材の製造方法。 Coal ash that removes carbon in advance is made into a fine powder of 10 μm or less, and industrial waste glass powder and / or volcanic glass powder are added thereto, and SiC powder is added to 0.05 to 1.0% by weight to this. A method for producing a high-performance lightweight aggregate, characterized by adding and granulating in the range of 1 to 1320 ° C. 石炭灰に内在するカーボン分を除去するに際し、石炭灰を600〜800℃で0.5〜5時間滞留させてから焼成することを特徴とする請求項1記載の高性能軽量骨材の製造方法。 2. The method for producing a high-performance lightweight aggregate according to claim 1, wherein when removing carbon contained in the coal ash, the coal ash is retained at 600 to 800 ° C. for 0.5 to 5 hours and then fired. . 石炭灰より流動層キルンを用いて未燃カーボンを除去したものを原料として使用することを特徴とする請求項1記載の高性能軽量骨材の製造方法。 2. The method for producing a high-performance lightweight aggregate according to claim 1, wherein a material obtained by removing unburned carbon from coal ash using a fluidized bed kiln is used as a raw material. 石炭灰中の未燃カーボンを遠心分離機にて除去したものを原料として使用することを特徴とする請求項1記載の高性能軽量骨材の製造方法。 2. The method for producing a high-performance lightweight aggregate according to claim 1, wherein unburned carbon in coal ash is removed by a centrifugal separator as a raw material. 石炭灰に産業廃棄ガラス粉末およびSiCを加え直径が50μmから1000μmの微粒に造粒し、それを流動層キルンを用いて焼成発泡することを特徴とする請求項1記載の高性能軽量骨材の製造方法。 The high-performance lightweight aggregate according to claim 1, characterized in that industrial waste glass powder and SiC are added to coal ash, granulated into fine particles having a diameter of 50 µm to 1000 µm, and fired and foamed using a fluidized bed kiln. Production method.
JP2003310572A 2003-09-02 2003-09-02 Manufacturing method for high performance lightweight aggregate Pending JP2005075699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003310572A JP2005075699A (en) 2003-09-02 2003-09-02 Manufacturing method for high performance lightweight aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003310572A JP2005075699A (en) 2003-09-02 2003-09-02 Manufacturing method for high performance lightweight aggregate

Publications (1)

Publication Number Publication Date
JP2005075699A true JP2005075699A (en) 2005-03-24

Family

ID=34412410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003310572A Pending JP2005075699A (en) 2003-09-02 2003-09-02 Manufacturing method for high performance lightweight aggregate

Country Status (1)

Country Link
JP (1) JP2005075699A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100777143B1 (en) 2007-05-16 2007-11-28 한국지질자원연구원 The method of environmentally friendly echo brick containing briquette ashes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100777143B1 (en) 2007-05-16 2007-11-28 한국지질자원연구원 The method of environmentally friendly echo brick containing briquette ashes

Similar Documents

Publication Publication Date Title
Liu et al. The utilization of electrical insulators waste and red mud for fabrication of partially vitrified ceramic materials with high porosity and high strength
Lau et al. Characteristics of lightweight aggregate produced from lime-treated sewage sludge and palm oil fuel ash
Liao et al. Glass foam from the mixture of reservoir sediment and Na2CO3
KR20130009000A (en) Coal gangue ceramsite and its preparation approach
EP2794506A2 (en) Aggregates
CN104072193A (en) Foamed ceramic material based on silicon-aluminum-containing solid waste and method for preparing fireproof thermal insulation board
RU2291126C1 (en) Method of production of the granulated foam-silicate - the foam-silicate gravel
Gencel et al. The effect of limestone and bottom ash sand with recycled fine aggregate in foam concrete
CN109516772A (en) A kind of high-strength light cullet haydite and preparation method thereof
Lin et al. Characterizations of temperature effects on sintered ceramics manufactured with waste foundry sand and clay
CN107434429B (en) Method and equipment for preparing foamed ceramic by utilizing sludge pyrolysis residues
Kockal Optimizing production parameters of ceramic tiles incorporating fly ash using response surface methodology
Jiang et al. Preparation and properties of high-strength lightweight aggregate ceramsite from nepheline tailings
Dong et al. Waste‐bearing foamed ceramic from granite scrap and red mud
KR100591060B1 (en) composition of lightweight aggregate and menufacturing method of lightweight aggregate thereby
US6913643B2 (en) Lightweight foamed glass aggregate
JP2005075699A (en) Manufacturing method for high performance lightweight aggregate
US9340456B2 (en) Process using multiple waste streams to manufacture synthetic lightweight aggregate
CN103467017A (en) Method for preparing low-density oil well cementing cement briquette by using glass microsphere
CN106146024A (en) A kind of preparation method of basalt porous insulation material
JP2006298730A (en) Method of firing incineration ash and sintered compact obtained by the same method
KR100186278B1 (en) Light weight agregate using stone dust sludge and paper sluge and method for preparing the same
CN103408263A (en) Preparation method for preparing low-density bond cement check block for oil well by microcrystal glass beads
CN107082646A (en) A kind of porous material and its low energy consumption preparation method and application
JP2000226242A (en) Production of lightweight aggregate for highly strong concrete