JP2005074496A - Surface conditioning method for continuously cast slab - Google Patents

Surface conditioning method for continuously cast slab Download PDF

Info

Publication number
JP2005074496A
JP2005074496A JP2003309774A JP2003309774A JP2005074496A JP 2005074496 A JP2005074496 A JP 2005074496A JP 2003309774 A JP2003309774 A JP 2003309774A JP 2003309774 A JP2003309774 A JP 2003309774A JP 2005074496 A JP2005074496 A JP 2005074496A
Authority
JP
Japan
Prior art keywords
slab
heating furnace
shape
cast slab
predicted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003309774A
Other languages
Japanese (ja)
Inventor
Masahiko Kokita
雅彦 小北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003309774A priority Critical patent/JP2005074496A/en
Publication of JP2005074496A publication Critical patent/JP2005074496A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface conditioning method for a continuously cast slab which completes the work efficiently by distinguishing the necessity and area to be conditioned in advance when the surface conditioning is performed on the cast slab prior to charging it into a heating furnace. <P>SOLUTION: The continuously cast slab is hot-scarfed on its surface, then charged into the heating furnace, and sent to the rolling process after removal of oxide scale generated in the heating furnace. Based on a detection result of the cast slab surface irregularity after hot scarfing and the heating furnace conditions to affect the oxide scale thickness formed during heating, the cast piece surface irregularity after the removal of oxide scale is estimated. If the estimated irregularity exceeds a predetermined threshold value, the irregularity on the cast slab surface is removed before the cast slab is sent to the heating furnace. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、連続鋳造鋳片を加熱炉に装入する前に行う表面手入れ方法に関し、特に加熱炉から取り出した鋳片を最終圧延したときに表面欠陥の原因となる凹凸形状を加熱炉に装入する前に予測し、予め除去するための表面手入れ方法に関するものである。   The present invention relates to a surface care method performed before charging a continuous cast slab into a heating furnace, and more particularly, to provide the heating furnace with an uneven shape that causes a surface defect when the slab taken out from the heating furnace is finally rolled. The present invention relates to a surface care method for predicting before removal and removing in advance.

連続鋳造法によって得られた鋳片(スラブ、ブルーム、ビレット等)は、その表面品質を良好にするためにまずホットスカーフ処理して表面を溶削した後、加熱炉に装入して所定の温度に加熱してから圧延する場合がある。上記ホットスカーフ処理では、鋳片幅方向に複数配置されたトーチから燃料および酸素を鋳片表面に吹付けることによって、鋳片表層部を溶削するものであるが、こうした処理によっても鋳片表面の凹凸が全面に亘って完全に除去されるとは限らず、部分的に残る鋳片表面の凹凸が圧延時に倒れこむことにより製品表面の筋状欠陥の原因になることがあり、製品の表面性状に悪影響を及ぼすことになる。   Slabs (slabs, blooms, billets, etc.) obtained by the continuous casting method are first subjected to hot scarfing and surface-cutting in order to improve the surface quality. It may be rolled after heating to temperature. In the above hot scarf treatment, the surface of the slab is melted by spraying fuel and oxygen on the slab surface from a plurality of torches arranged in the slab width direction. The unevenness on the surface of the product may not be completely removed, and the unevenness on the surface of the partially left slab may fall down during rolling, causing streak defects on the product surface. It will adversely affect the properties.

こうした問題を解決するために、これまでにも様々な技術が提案されている。例えば、特許文献1には、表面をホットスカーフによって溶削し、溶削後の表面の疵を検出し、溶削後の表面の山または山の近傍に疵が存在するとき、砥粒と液体の混合物であるアブレイシブウオータジェットを噴射しつつ疵を除去する金属片の手入れ方法が提案されている。   In order to solve such problems, various techniques have been proposed so far. For example, in Patent Document 1, when the surface is subjected to hot cutting with a hot scarf, the surface wrinkles after the cutting are detected, and when the wrinkles are present on the surface crest or in the vicinity of the crest, the abrasive grains and the liquid There has been proposed a metal piece care method for removing wrinkles while spraying an abrasive water jet, which is a mixture of the above.

また、特許文献2には、連鋳鋳片を全面溶削した後テスト溶削し、テスト溶削時に観察される花火発生状況に応じて最終手入れを行う方法が提案されている。   Further, Patent Document 2 proposes a method in which a continuous cast slab is entirely welded and then subjected to test welding, and final care is performed according to the state of occurrence of fireworks observed at the time of test welding.

更に、特許文献3には、人為的に検査して発見された表面欠陥部に正方形又は長方形の研削範囲表示枠を配置するとともに、該研削範囲表示枠の直近に欠陥種類、研削深さを表示した欠陥表示板を配置し、次いで、テレビカメラで前記研削範囲表示枠及び欠陥表示板を撮影してその信号をもとに研削範囲、欠陥種類、研削深さをマーク読み取り機で読み取ったうえ手入れ制御器を介して手入れ装置へ指示して表面欠陥部の研削除去を行う方法が提案されている。   Further, in Patent Document 3, a square or rectangular grinding range display frame is arranged at a surface defect portion discovered by artificial inspection, and the defect type and the grinding depth are displayed in the immediate vicinity of the grinding range display frame. The defect display plate is placed, and then the grinding range display frame and the defect display plate are photographed with a television camera, and the grinding range, defect type, and grinding depth are read with a mark reader based on the signals, and then maintained. There has been proposed a method of grinding and removing a surface defect portion by instructing a care device via a controller.

これらの方法では、表面欠陥部の手入れを確実に行うことができ、それだけ表面品質の良好な製品が得られるのであるが、凹凸の有無だけを判断するものであり、最終製品の表面欠陥の原因となるの凹凸と欠陥とならない凹凸とを区別するものではなく、無駄な手入れが必要になってそれだけ非効率的になる。   In these methods, the surface defects can be reliably treated and a product with good surface quality can be obtained, but only the presence or absence of irregularities is judged, and the cause of surface defects in the final product However, it does not distinguish between unevenness that does not become a defect and unevenness that does not become a defect, and wasteful care is required, which is inefficient.

一方、表面欠陥の発生には加熱炉装入時に形成されるスケールの厚さも影響を与えるとの観点から、特許文献4、5などでは、(1)過去の加熱炉内スラブの加熱実績データと加熱炉抽出までの加熱予定や(2)在炉時間等から、スラブ表面スケール厚さを演算し、この演算されたスケール厚さが一定値以上となってから、デスケーリングすることによって鋳片表面の欠陥を効果的に除去する方法が提案されている。   On the other hand, from the viewpoint that the thickness of the scale formed at the time of charging in the heating furnace also affects the generation of surface defects, in Patent Documents 4 and 5, etc., (1) past heating slab heating data and The slab surface scale thickness is calculated from the heating schedule until the furnace extraction and (2) the in-furnace time, and the slab surface is obtained by descaling after the calculated scale thickness exceeds a certain value. A method for effectively removing the defects is proposed.

しかしながら、これらの方法では、スケール厚さが所定の値になるまで炉内に保持する必要があり、スケールオフ量の増加によって歩留まりが低下して却って効率的でないという問題がある。
特許第2771461号公報 特許請求の範囲等 特開2003−71551号公報 特許請求の範囲等 特開平7−290353号公報 特許請求の範囲等 特開平7−54036号公報 特許請求の範囲等 特開平11−131144号公報 、特許請求の範囲等
However, in these methods, it is necessary to hold the scale in the furnace until the scale thickness reaches a predetermined value, and there is a problem that the yield decreases due to an increase in the scale-off amount, which is not efficient.
Japanese Patent No. 2771461 Patent Claims etc. JP, 2003-71551, A Claims etc. JP, 7-290353, A Claims etc. JP, 7-54036, A Claims etc. Japanese Patent Laid-Open No. 11-131144, claims, etc.

本発明は、こうした状況の下でなされたものであって、その目的は、加熱炉に装入するに先立って鋳片の表面を手入れするに際して、予め手入れの要否およびその領域を判別して効率良くその作業を完了することのできる鋳片表面手入れ方法を提供することにある。   The present invention has been made under such circumstances. The purpose of the present invention is to determine the necessity of maintenance and its area in advance when cleaning the surface of the slab prior to charging into the heating furnace. An object of the present invention is to provide a slab surface care method capable of efficiently completing the work.

上記目的を達成し得た本発明方法とは、連続鋳造鋳片の表面をホットスカーフ処理によって溶削した後加熱炉に送り、加熱炉内で形成される酸化スケールを除去した後に圧延工程に送るに際して、ホットスカーフ処理後における鋳片表面の凹凸形状の検出結果と、加熱時に形成される酸化スケール厚さを変化させる加熱炉における条件に基づいて、酸化スケール除去後の鋳片表面の凹凸形状を予測し、この予測された凹凸形状が予め定めたしきい値を超えたときに、加熱炉に送る前に鋳片表面の凹凸を除去する点に要旨を有するものである。   The method of the present invention that can achieve the above object is that the surface of a continuous cast slab is scraped by hot scarf processing and then sent to the heating furnace, and after removing the oxide scale formed in the heating furnace, it is sent to the rolling process At the time, the uneven shape of the slab surface after removing the oxide scale is determined based on the detection result of the uneven shape of the slab surface after the hot scarf treatment and the conditions in the heating furnace that changes the thickness of the oxidized scale formed during heating. The gist of the present invention is that when the predicted uneven shape exceeds a predetermined threshold value, the unevenness on the surface of the slab is removed before being sent to the heating furnace.

上記しきい値としては、「予測された凹凸形状における傾斜角度」、「傾斜面の上下方向長さ」および「傾斜面の頂部までの高さまたは底部までの深さ」等が挙げられ、これらが下記(1)または(2)の関係を有するときに鋳片表面の欠陥を除去するようにすればよい。   Examples of the threshold value include “inclination angle in the predicted uneven shape”, “vertical length of the inclined surface”, “height to the top of the inclined surface or depth to the bottom”, etc. When the above has the following relationship (1) or (2), defects on the surface of the slab may be removed.

(1)前記予測された凹凸形状における傾斜角度が60°以上となる傾斜面の上下方向長さが0.5mm以上となったとき
(2)前記予測された凹凸形状における傾斜角度が60°以上となる傾斜面の頂部までの高さまたは底部までの深さが0.5mm以上となったとき
(1) When the vertical length of the inclined surface where the inclination angle in the predicted uneven shape is 60 ° or more is 0.5 mm or more (2) The inclination angle in the predicted uneven shape is 60 ° or more When the height to the top or the depth to the bottom of the inclined surface becomes 0.5 mm or more

本発明は以上のように構成されており、鋳片の表面を手入れするに際して、予め手入れの要否およびその領域を判別して効率良くその作業を完了することのでき、圧延時に表面欠陥となる凹凸を加熱炉装入段階で効果的に除去できる鋳片表面手入れ方法が実現できた。   The present invention is configured as described above, and when cleaning the surface of the slab, it is possible to determine the necessity of the maintenance and the region in advance and efficiently complete the operation, resulting in surface defects during rolling. A slab surface cleaning method that can effectively remove irregularities at the stage of charging the furnace was realized.

スリバー欠陥などの圧延製品または圧延半製品の表面欠陥の原因は、圧延前の鋳片の凹凸がデスケーリング後になお残ったときにそれが倒れこむことによるものであることが分かっている。本発明者らは、鋳片の加熱炉装入前の鋳片表面凹凸形状、加熱炉での操業条件、スリバー欠陥等の関係について調査した。   It has been found that the cause of surface defects in rolled or semi-finished products, such as sliver defects, is due to the collapse of slab irregularities that remain after descaling before rolling. The present inventors investigated the relationship between the slab surface irregularities before charging the slab into the furnace, operating conditions in the furnace, sliver defects, and the like.

まず加熱炉での操業条件(鋳片表面温度時間履歴、雰囲気)からスケールロス量(スケール厚さ)を求めることができる。このとき、前記特許文献4、5に示されるようなスケール厚み予測式を使用することもできるが、同条件で事前加熱された鋳片のスケール厚みを実測してスケールロス量に換算してこの値を用いることもできる。また加熱炉での酸化は、鋳片表面に凹凸があっても極めて均一に生成することも分かっている(スケール中の酸素拡散律速)。更に、鋳片の凹凸形状は酸化スケール除去後(加熱処理後)に鈍角の角は丸くなる傾向を示すことや、加熱することにより凸形状は幅狭に、凹部形状型キズは幅広に変化することも判明した。   First, the amount of scale loss (scale thickness) can be determined from the operating conditions in the heating furnace (slab surface temperature time history, atmosphere). At this time, a scale thickness prediction formula as shown in Patent Documents 4 and 5 can be used, but the scale thickness of the slab preheated under the same conditions is measured and converted into a scale loss amount. A value can also be used. It has also been found that the oxidation in the heating furnace is generated evenly even if the slab surface has irregularities (oxygen diffusion rate control in the scale). Furthermore, the concavo-convex shape of the slab shows a tendency that the corner of the obtuse angle becomes round after removal of the oxide scale (after heat treatment), or the convex shape becomes narrow and the concave shape type scratch changes wide by heating. It was also found out.

そして、事前の鋳片表面凹凸の測定結果、スケールオフ量、スケール生成の性質等から加熱炉出側での鋳片表面凹凸形状を予測できる。また上記で予測された加熱炉出側での鋳片表面の凹凸形状と、製品表面欠陥の関係を比較すると以下の特徴を持った凹凸欠陥が一定以上の確率で有害欠陥になることがわかった。   And the slab surface unevenness | corrugation shape by the side of a heating furnace can be estimated from the measurement result of a prior slab surface unevenness | corrugation, the amount of scale off, the property of scale production | generation, etc. FIG. In addition, when comparing the relationship between the concavo-convex shape of the slab surface on the exit side of the heating furnace predicted above and the product surface defect, it was found that the concavo-convex defect having the following characteristics becomes a harmful defect with a certain probability or more. .

即ち、前記予測された凹凸形状における傾斜角度が60°以上となる傾斜面の上下方向長さが0.5mm以上となったときや、(2)前記予測された凹凸形状における傾斜角度が60°以上となる傾斜面の頂部までの高さまたは底部までの深さが0.5mm以上となったときに製品表面欠陥となることから、こうした大きさの凹凸形状が存在するときにその領域の表面手入れを行って表面凹凸を除去すれば上記欠陥の発生を回避できることになる。   That is, when the vertical length of the inclined surface in which the inclination angle in the predicted uneven shape is 60 ° or more is 0.5 mm or more, or (2) the inclination angle in the predicted uneven shape is 60 °. Since the product surface defect occurs when the height to the top of the inclined surface or the depth to the bottom becomes 0.5 mm or more, the surface of the region when such a concavo-convex shape exists. If the surface irregularities are removed by carrying out care, the occurrence of the defects can be avoided.

加熱炉を出て圧延するときの疵の形状(凹凸形状)が表面欠陥の発生に直接影響するので、加熱条件(加熱炉内での加熱温度・時間・雰囲気)により除去すべき加熱前の欠陥除去条件は変えるべきであると考えられた。即ち、加熱条件によって、欠陥の原因となる鋳片表面凹凸形状が変化することになるので、加熱処理前にその後の加熱条件等に応じてデスケーリング後の凹凸形状を予測して、その形状に応じて加熱処理前の表面手入れ条件を変えるべきである。   Since the shape of the ridge (uneven shape) when rolling out of the heating furnace directly affects the generation of surface defects, defects before heating that should be removed depending on the heating conditions (heating temperature, time, and atmosphere in the heating furnace) It was thought that the removal conditions should be changed. That is, because the slab surface uneven shape that causes defects changes depending on the heating conditions, the uneven shape after descaling is predicted according to the subsequent heating conditions before the heat treatment, and the shape is changed to that shape. The surface care conditions before heat treatment should be changed accordingly.

尚、鋳片の表面を検査する段階で該当鋳片の熱延加熱炉での品質や操業安定のために必要な最小加熱温度、最短在炉時間が決まっている。また、これらの情報と加熱炉内での鋳片表面温度履歴、代表的な加熱炉内雰囲気(O2,H2O)組成等から鋳片表面の最小スケールロス厚みを求めることができる。 At the stage of inspecting the surface of the slab, the minimum heating temperature and the shortest in-furnace time required for the quality and operation stability of the slab in the hot rolling furnace are determined. Further, the minimum scale loss thickness on the surface of the slab can be obtained from such information, the slab surface temperature history in the heating furnace, the typical atmosphere in the heating furnace (O 2 , H 2 O), and the like.

また鋳片の表面を検査したとき、見つかった表面凹凸形状と上記で求められるスケールオフ量から加熱炉後の凹凸形状が、欠陥の原因となる凹凸形状に該当すれば、こうした形状に該当しなくなる程度以上にグラインダーやハンドスカーフにより凹凸欠陥を除去する。このとき、スカーフオフ量ごとに除去すべき加熱炉装入前の凹凸の高さ(深さ)、斜面の傾斜角度の範囲が明示されたデータを準備しておき、具体的な除去作業の要否を判断できる。   In addition, when the surface of the slab is inspected, if the uneven shape after the heating furnace corresponds to the uneven shape causing the defect from the found surface uneven shape and the scale-off amount obtained above, it will not correspond to such a shape. Remove irregularities with a grinder or hand scarf to an extent. At this time, prepare data that clearly shows the height (depth) of the unevenness before loading in the heating furnace and the range of the inclination angle of the slope to be removed for each scarf-off amount. Judgment can be made.

即ち、本発明によれば、加熱炉装入前にデスケーリング後の凹凸形状を予測し、その形状に応じて、加熱炉装入前の鋳片表面手入れの要否およびその領域を判別して効率良くその作業を完了することのでき、圧延時に表面欠陥となる凹凸を加熱炉装入段階で効果的に除去できることになる。   That is, according to the present invention, the unevenness shape after descaling is estimated before charging the heating furnace, and according to the shape, the necessity and area of slab surface maintenance before charging the heating furnace are determined. The operation can be completed efficiently, and irregularities that become surface defects during rolling can be effectively removed in the heating furnace charging stage.

次に、本発明で予測された凹凸形状における「しきい値」について図面を用いてより具体的に説明する。図1は、表面の凹凸形状の代表例を模式的示した説明図であり、図1(a)は凸部形状の場合を示し、図1(b)は凹部形状の場合を示している。尚、図中太線(ラインA)で示した部分は加熱炉装入前の表面形状の輪郭を示したものであり、細線(ラインB)で示した部分は加熱炉装入後(即ち、酸化スケールの除去後)の表面形状の輪郭を示したものである(後記図2〜5についても同じ)。また図中、Wは加熱炉装入前の凸形状の頂部平坦面または凹形状の底部平坦面の長さ、Lは加熱炉装入前の傾斜面長さ、dはス酸化ケース厚さ、αは傾斜角度、Iは加熱炉装入後(予測された凹凸形状)の傾斜面長さ、hは傾斜面の高さ、Dは傾斜面の深さ、を夫々示している。   Next, the “threshold value” in the uneven shape predicted in the present invention will be described more specifically with reference to the drawings. FIG. 1 is an explanatory view schematically showing a representative example of the uneven shape on the surface. FIG. 1 (a) shows the case of the convex shape, and FIG. 1 (b) shows the case of the concave shape. In the figure, the portion indicated by the thick line (line A) shows the outline of the surface shape before charging the furnace, and the portion indicated by the thin line (line B) is after charging the furnace (that is, oxidation). The outline of the surface shape after removal of the scale is shown (the same applies to FIGS. 2 to 5 described later). In the figure, W is the length of the convex top flat surface or concave bottom flat surface before charging the heating furnace, L is the length of the inclined surface before charging the heating furnace, d is the oxidation case thickness, α indicates the inclination angle, I indicates the length of the inclined surface after charging the furnace (predicted uneven shape), h indicates the height of the inclined surface, and D indicates the depth of the inclined surface.

予測された凸形状におけるに傾斜面(傾斜角度が一定値となる面)の上下方向の長さI[前記図1(a)]を、加熱炉装入前の凸形状に基づいて測定するときの式を、下記(1)式および(2)式に示す。このうち(1)式は、[(cos(α)−1)/sin(α)]×d+W/2>0の要件を満足する場合(即ち、スケールオフ後に平坦部が存在することが予想される場合)の計算式、(2)式は、[(cos(α)−1)/sin(α))×d+W/2<0の場合(即ち、スケールオフ後に平坦部が存在しないことが予想される場合)の計算式、を夫々示している。
I=sqrt[(L×cos(α)−d×tan(α))2+L×sin(α)−d]2] ‥(1)
I=sqrt[[(W/2)×tan(α)+L×sin(α)−d/cos(α)]2
+[(W/2)+L×cos(α)−d/cos(α)]2] ‥(2)
When measuring the vertical length I [FIG. 1 (a)] of the inclined surface (surface having a constant inclination angle) in the predicted convex shape based on the convex shape before charging the heating furnace. The following formulas (1) and (2) are shown. Of these, the formula (1) is expected to satisfy the requirement of [(cos (α) −1) / sin (α)] × d + W / 2> 0 (that is, a flat portion is expected to exist after the scale-off). Equation (2) is calculated from [(cos (α) −1) / sin (α)) × d + W / 2 <0 (that is, no flat portion exists after the scale-off). The calculation formulas are shown respectively.
I = sqrt [(L × cos (α) −d × tan (α)) 2 + L × sin (α) −d] 2 ] (1)
I = sqrt [[(W / 2) × tan (α) + L × sin (α) −d / cos (α)] 2
+ [(W / 2) + L × cos (α) −d / cos (α)] 2 ] (2)

また凹形状における傾斜面の上下方向の長さI[前記図1(b)]を測定するときの式を下記(3)式に示す。尚、凹形状の場合には、底部平坦部は広がるので必ず存在することになり、傾斜面の上下方向の長さIを測定するときの式は下記(3)式に集約されることになる。
I=L−d×(1−cos(α))/sin(α)‥(3)
Further, the following equation (3) shows an equation for measuring the length I [the above FIG. 1 (b)] of the inclined surface in the concave shape. In the case of a concave shape, the bottom flat portion is always present because it spreads, and the equations for measuring the vertical length I of the inclined surface are summarized in the following equation (3). .
I = L−d × (1−cos (α)) / sin (α) (3)

そして、これら(1)〜(3)式によって計算される値(I値)が、0.5mm以上となり、且つ前記傾斜角度αが60°以上となったときに表面の凹凸を除去する手入れを行うと判断することになる。また、予測される凹凸形状が複雑な形状となることが予想される場合には(例えば、後記図5参照)、傾斜角度αが60°以上となる傾斜面の高さh[図1(a)]や傾斜面深さ[図1(b)]を測定し、これらが0.5mm以上となったときに、手入れが必要と判断するようにしても良い。   Then, when the value (I value) calculated by the equations (1) to (3) is 0.5 mm or more and the inclination angle α is 60 ° or more, care is taken to remove surface irregularities. You will decide to do it. When the predicted uneven shape is expected to be a complicated shape (see, for example, FIG. 5 below), the height h of the inclined surface at which the inclination angle α is 60 ° or more [FIG. ]] Or the depth of the inclined surface [FIG. 1 (b)] may be measured, and when these become 0.5 mm or more, it may be determined that care is required.

本発明で対象とする鋳片における化学成分組成については、特に限定するものではなく、様々な種類のものに適用できるものであるが、代表的なものとして、表面品質の厳格な外板用鋼板や冷間圧造用鋼等を挙げることができる。   The chemical component composition in the slab targeted by the present invention is not particularly limited and can be applied to various types, but as a representative one, steel plate for outer plate with strict surface quality And steel for cold heading.

以下本発明を実施例によって本発明の作用効果をより具体的に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に適合し得る範囲で変更実施することはいずれも本発明に含まれるものである。   Hereinafter, the present invention will be described in more detail with reference to examples, but the following examples are not intended to limit the present invention, but are modified within a range that can meet the purpose described above and below. All of these are included in the present invention.

連続鋳造によって断面形状が230×1200(mm)となる鋳片(化学成分組成、Al:0.03質量%,Si<0.01質量、C:34ppm、Mn:0.5質量%)を製造し、この鋳片表面をホットスカーフ処理した後、その表面性状を目視によって観察し、その後の加熱条件などのよって酸化スケール厚みを計算して、これらに基づいて、酸化スケール除去後に形成されるの表面凹凸形状を予測した。そして、予測された各種凹凸形状において、前記(1)〜(3)式のいずれかからI値を計算し、この計算値と圧延後の疵(欠陥)発生状況の関係について調査した。尚、表面疵が発生しているか否かは、製品の目視によって判断した。   Produces a slab (chemical composition, Al: 0.03 mass%, Si <0.01 mass, C: 34 ppm, Mn: 0.5 mass%) having a cross-sectional shape of 230 × 1200 (mm) by continuous casting. Then, after the surface of the slab is subjected to hot scarf treatment, the surface properties are visually observed, and the oxide scale thickness is calculated according to the subsequent heating conditions and the like. Predicted surface irregularities. And in various uneven | corrugated shapes estimated, I value was calculated from either of said (1)-(3) formula, and the relationship between this calculated value and the flaw (defect) generation | occurrence | production situation after rolling was investigated. Whether or not surface flaws occurred was determined by visual inspection of the product.

その結果の一例を下記表1および表2に示す。表1は凸部の傾斜角度:75°、酸化層厚さ:0.5mmのときの結果を示したものであり、表2は傾斜角度:75°、酸化層厚さ:1.5mmのときの結果を示したものである。尚、表1、2のいずれにおいても、表面疵が発生した領域を二重線(‖)で囲んで示してある。   An example of the results is shown in Table 1 and Table 2 below. Table 1 shows the results when the inclination angle of the convex portion is 75 ° and the oxide layer thickness is 0.5 mm, and Table 2 shows the result when the inclination angle is 75 ° and the oxide layer thickness is 1.5 mm. This shows the results. In both Tables 1 and 2, the region where the surface flaws are generated is surrounded by a double line (‖).

これらの結果から明らかなように、前記I値が0.5以上となると、表面欠陥の原因となる表面凹凸が残存し易いことがわかる。これに対して、前記I値が0.5未満では表面疵となる欠陥が全く発生していないことがわかる。尚、I値が0.5以上と判断される場合であっても、表面疵とならない場合もあるが、こうしたものも含めて前記I値が0.5以上となったものについて削除の対象とすれば良い。これによって、少なくとも表面疵の原因となる欠陥除去の実効性を図れることになる。   As is apparent from these results, it is understood that surface irregularities that cause surface defects are likely to remain when the I value is 0.5 or more. On the other hand, it can be seen that when the I value is less than 0.5, no defects that cause surface defects occur. Even if it is determined that the I value is 0.5 or more, it may not be a surface flaw. Just do it. As a result, at least the effectiveness of removing defects that cause surface defects can be achieved.

上記のように、欠陥形状をより厳密に評価するためには、傾斜角度αと傾斜面長さI(前記I値)を測定することが有用であるが、傾斜長さIが計算しにくい形状である場合や、比較的簡単に評価したい場合には、前記I値の代わりに高さh(前記図1参照)や深さDを評価基準として採用すれば良い。   As described above, in order to more accurately evaluate the defect shape, it is useful to measure the inclination angle α and the inclined surface length I (the I value), but the shape in which the inclined length I is difficult to calculate. If it is or if it is desired to evaluate relatively easily, the height h (see FIG. 1) and the depth D may be used as evaluation criteria instead of the I value.

Figure 2005074496
Figure 2005074496

Figure 2005074496
Figure 2005074496

本発明者らが、これまでの実験に基づき、疵として残らない凹凸形状と、疵として残る欠陥形状を整理して図面によって説明する。   Based on the experiments so far, the present inventors will arrange the uneven shape that does not remain as wrinkles and the defect shape that remains as wrinkles and explain them with drawings.

図2は基本的に、疵として残らない代表的な凹凸形状を模式的示した説明図である。このうち、図2(a)は、凸部の傾斜角度が60°未満である表面形状を示したものであり、図2(b)は凹部の傾斜角度αが60°以下である表面形状を示したものであり、こうした形状では、たとえその高さh1若しくは深さD(或は、前記I値)が0.5以上となっていても表面疵として残ることはない。 FIG. 2 is an explanatory view schematically showing a typical concavo-convex shape that does not remain as wrinkles basically. Among these, FIG. 2A shows a surface shape in which the inclination angle of the convex portion is less than 60 °, and FIG. 2B shows a surface shape in which the inclination angle α of the concave portion is 60 ° or less. In such a shape, even if the height h 1 or the depth D (or the I value) is 0.5 or more, it does not remain as a surface flaw.

また図2(c)は、傾斜角度αが60°以上なるものであるが、スケールオフ後の高さh(予想高さ)が0.5mm未満であるので圧延後に表面疵として残ることはない。   In FIG. 2C, the inclination angle α is 60 ° or more, but since the height h (expected height) after the scale-off is less than 0.5 mm, it does not remain as surface defects after rolling. .

一方、図3は疵として残る代表的な凹凸形状を模式的示した説明図である。このうち図3(a)は、段差を有する傾斜面を一部に有するが、いずれの傾斜面もその傾斜角度α1,α2が60°以上で且つ傾斜面長さ(前記I値)が0.5mm以上となるものであり、図3(b)はスケールオフ後の凸部の傾斜角度αが60°以上であり、且つ傾斜面長さが0.5mm以上のものを示したものである。これらの形状の場合には、表面の手入れが必要な欠陥の対象となるものである。 On the other hand, FIG. 3 is an explanatory view schematically showing a typical uneven shape remaining as a ridge. Among these, FIG. 3 (a) has an inclined surface having a step in part, and the inclined angles α 1 and α 2 of each inclined surface are 60 ° or more and the inclined surface length (I value) is the same. FIG. 3 (b) shows an example in which the inclination angle α of the convex portion after the scale-off is 60 ° or more and the inclined surface length is 0.5 mm or more. is there. In the case of these shapes, it is a target for defects that require surface care.

図4は削除の対象とならないと判断される形状を凹凸の一部に含むものであるが、他の部分で削除の対象となるものを含んでいるので、全体として疵として残る凹凸形状として判断されるものである。このうち図4(a)に示した凸部形状では、段差を有する傾斜面を一部に有し、いずれの傾斜角度α1,α2も60°以上であり、その一部(α1側)にI値が0.5mm未満であると判断される部分を含むものであるが、他方側(α2側)でI値が0.5mm以上となる部分を含んでいるので、削除の対象となる凹凸形状と判断されることになる。また、図4(b)は、その一部(α2側)に傾斜角度が60°未満の部分を含む凸部形状を有するものであるが、他方部分で傾斜角度α1が60°以上でI値が0.5mm以上となる部分が存在するので、削除の対象となる表面欠陥として判断されるものである。更に、図4(c)は、その一部(α2側)に傾斜角度が60°未満の部分を含む凹形状を有するものであるが、他方部分で傾斜角度α1が60°以上でI値が0.5mm以上となる部分が存在するので、削除の対象となる表面欠陥として判断されるものである。 Although FIG. 4 includes a shape that is determined not to be deleted as a part of the unevenness, since it includes a part that is to be deleted in other parts, it is determined as an uneven shape that remains as wrinkles as a whole. Is. Among these, the convex shape shown in FIG. 4 (a) has an inclined surface with a step in part, and both of the inclination angles α 1 and α 2 are 60 ° or more, and a part thereof (α 1 side) ) Includes a portion where the I value is determined to be less than 0.5 mm, but includes a portion where the I value is 0.5 mm or more on the other side (α 2 side), and is therefore a target of deletion. It will be judged as an uneven shape. 4B has a convex shape including a portion with an inclination angle of less than 60 ° on a part (α 2 side), and the other portion has an inclination angle α 1 of 60 ° or more. Since there is a portion having an I value of 0.5 mm or more, it is determined as a surface defect to be deleted. Further, FIG. 4 (c) has a concave shape including a part with an inclination angle of less than 60 ° on a part (α 2 side), but the other part has an inclination angle α 1 of 60 ° or more and I. Since there is a portion having a value of 0.5 mm or more, it is determined as a surface defect to be deleted.

即ち、表面欠陥と判断される形状がその一部に含んでいても、圧延後に疵として残る可能性があるので、手入れの際に削除する表面欠陥として判断されることになる。但し、図3、4に示した凹凸形状では、そのI値が0.5mm未満であればいずれも除去の対象とはならないものである。   That is, even if a shape that is determined to be a surface defect is included in a part of the shape, it may remain as a wrinkle after rolling, so that it is determined as a surface defect that is deleted during maintenance. However, in the concavo-convex shape shown in FIGS. 3 and 4, none of them is a removal target if its I value is less than 0.5 mm.

図5は、凸形状の一例を模式的に示したものであるが、表面に形成された凸部が図示したように半球状の場合にはスケールオフ後のおける傾斜面は曲面となって、前記I値を測定することは煩雑になる。こうした場合には、その傾斜角度は概ね60°以上となるが、その高さhを測定し、その高さhが0.5mm以上となったときに削除の対象とする表面欠陥として判断すればよい。   FIG. 5 schematically shows an example of the convex shape, but when the convex portion formed on the surface is hemispherical as shown in the figure, the inclined surface after the scale-off is a curved surface, Measuring the I value is complicated. In such a case, the inclination angle is approximately 60 ° or more. However, if the height h is measured and the height h is 0.5 mm or more, it is determined as a surface defect to be deleted. Good.

表面の凹凸形状の代表例を模式的示した説明図である。It is explanatory drawing which showed typically the representative example of the uneven | corrugated shape of the surface. 疵として残らない代表的な凹凸形状を模式的示した説明図である。It is explanatory drawing which showed typically the typical uneven | corrugated shape which does not remain as a ridge. 図3は疵として残る代表的な凹凸形状を模式的示した説明図である。FIG. 3 is an explanatory view schematically showing a typical uneven shape remaining as a ridge. 全体として疵として残る凹凸形状として判断されるものを模式的示した説明図である。It is explanatory drawing which showed typically what was judged as the uneven | corrugated shape which remains as wrinkles as a whole. 凸形状の一例を模式的示した説明図である。It is explanatory drawing which showed typically an example of the convex shape.

Claims (3)

連続鋳造鋳片の表面をホットスカーフ処理によって溶削した後加熱炉に送り、加熱炉内で形成される酸化スケールを除去した後に圧延工程に送るに際して、ホットスカーフ処理後における鋳片表面の凹凸形状の検出結果と、加熱時に形成される酸化スケール厚さを変化させる加熱炉における条件に基づいて、酸化スケール除去後の鋳片表面の凹凸形状を予測し、この予測された凹凸形状が予め定めたしきい値を超えたときに、加熱炉に送る前に鋳片表面の凹凸を除去することを特徴とする連続鋳造鋳片の表面手入れ方法。   When the surface of a continuous cast slab is scraped by hot scarf processing and then sent to a heating furnace, the oxide scale formed in the heating furnace is removed and then sent to the rolling process. Based on the detection results and the conditions in the heating furnace that changes the oxide scale thickness formed during heating, the concavo-convex shape of the slab surface after removal of the oxide scale is predicted, and the predicted concavo-convex shape is predetermined. A surface care method for a continuous cast slab characterized by removing irregularities on the slab surface before being sent to a heating furnace when a threshold value is exceeded. 前記予測された凹凸形状における傾斜角度が60°以上となる傾斜面の上下方向長さが0.5mm以上となったときに、鋳片表面の欠陥を除去する請求項1に記載の表面手入れ方法。   The surface care method according to claim 1, wherein a defect on the surface of the slab is removed when the vertical length of the inclined surface at which the inclination angle in the predicted uneven shape is 60 ° or more is 0.5 mm or more. . 前記予測された凹凸形状における傾斜角度が60°以上となる傾斜面の頂部までの高さまたは底部までの深さが0.5mm以上となったときに、鋳片表面の欠陥を除去する請求項1に記載の表面手入れ方法。   The defect on the slab surface is removed when the height to the top of the inclined surface or the depth to the bottom of the inclined surface at which the inclination angle in the predicted concavo-convex shape is 60 ° or more is 0.5 mm or more. The surface care method according to 1.
JP2003309774A 2003-09-02 2003-09-02 Surface conditioning method for continuously cast slab Withdrawn JP2005074496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003309774A JP2005074496A (en) 2003-09-02 2003-09-02 Surface conditioning method for continuously cast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003309774A JP2005074496A (en) 2003-09-02 2003-09-02 Surface conditioning method for continuously cast slab

Publications (1)

Publication Number Publication Date
JP2005074496A true JP2005074496A (en) 2005-03-24

Family

ID=34411831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003309774A Withdrawn JP2005074496A (en) 2003-09-02 2003-09-02 Surface conditioning method for continuously cast slab

Country Status (1)

Country Link
JP (1) JP2005074496A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010029912A (en) * 2008-07-29 2010-02-12 Jfe Steel Corp Cast slab maintaining method, and cast slab
KR101778405B1 (en) * 2015-12-23 2017-09-27 주식회사 포스코 Apparatus and Method for removing scale on material and Rolling system using the same
CN109396632A (en) * 2018-10-29 2019-03-01 甘肃酒钢集团科力耐火材料股份有限公司 A kind of soft band maintenance process of aluminium electrolytic cell cathode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010029912A (en) * 2008-07-29 2010-02-12 Jfe Steel Corp Cast slab maintaining method, and cast slab
KR101778405B1 (en) * 2015-12-23 2017-09-27 주식회사 포스코 Apparatus and Method for removing scale on material and Rolling system using the same
CN109396632A (en) * 2018-10-29 2019-03-01 甘肃酒钢集团科力耐火材料股份有限公司 A kind of soft band maintenance process of aluminium electrolytic cell cathode

Similar Documents

Publication Publication Date Title
KR102396804B1 (en) Method for laser stripping of moving metal products and plant for its implementation
JP5220115B2 (en) Titanium slab for hot rolling, its melting method and rolling method
JP5682205B2 (en) Defect detection method and defect detection system for continuous cast slab
JP2008238259A (en) Method for repairing surface of hot-state slab
JP2005074496A (en) Surface conditioning method for continuously cast slab
KR101913413B1 (en) Method of detecting flaw of hot-rolled steel causing hot rolling roll flaw
JP2003080357A (en) Method for detecting surface flaw in continuous casting
JP5611177B2 (en) Ablation abnormality detection device and anomaly detection method
JP4397825B2 (en) HCR availability determination method
JP4462440B2 (en) Method for producing hot-rolled bearing steel
JPS60500489A (en) Improvements in metal product conditioning methods
JP5712572B2 (en) Defect detection method and defect detection device for continuous cast slab for thin steel sheet
CN110000212B (en) Method for determining treatment of stainless cold-rolled steel sheet and method for treatment
JP4277923B2 (en) Hot rolling method for hat-shaped steel sheet piles
JP4545130B2 (en) Steel plate manufacturing method
JPH08174034A (en) Manufacture of cr stainless steel sheet
JP6790850B2 (en) Surface defect treatment method for continuously cast slabs
JP4790284B2 (en) Steel continuous casting method
JP2004160511A (en) Method for removing surface flaw of steel plate
JP2008291289A (en) Method for preventing crack flaw at rolling time of 18-8 based stainless steel containing calcium
JP2007118028A (en) Method for mechanically descaling steel material
JP3310179B2 (en) Rolling scratch prevention method for steel sheet
JP2008188637A (en) Method of manufacturing steel bar excellent in forgeability
JP2005153089A (en) Method for removing surface flaw of billet
KR101676203B1 (en) Heat treatment method of stainless steel slab

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061107