JP2005074277A - Heat exchanger of garbage treatment apparatus - Google Patents

Heat exchanger of garbage treatment apparatus Download PDF

Info

Publication number
JP2005074277A
JP2005074277A JP2003306238A JP2003306238A JP2005074277A JP 2005074277 A JP2005074277 A JP 2005074277A JP 2003306238 A JP2003306238 A JP 2003306238A JP 2003306238 A JP2003306238 A JP 2003306238A JP 2005074277 A JP2005074277 A JP 2005074277A
Authority
JP
Japan
Prior art keywords
heat exchanger
garbage
treatment tank
partition plate
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003306238A
Other languages
Japanese (ja)
Inventor
Keisuke Yoshikawa
啓介 吉川
Jun Saito
潤 斎藤
Yasushi Nihata
康 二畠
Shinichiro Yano
紳一郎 矢野
Hironori Katayama
弘典 片山
Kenji Toyoda
憲冶 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003306238A priority Critical patent/JP2005074277A/en
Publication of JP2005074277A publication Critical patent/JP2005074277A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Solid Materials (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger of a garbage treatment apparatus that is capable of reducing the pressure loss at the back and forth of the folded part and that is capable of further enhancing the efficiency of the heat exchange. <P>SOLUTION: The heat exchanger 9 which heats the garbage by performing the heat exchange of the garbage within the garbage treatment tank 2 is provided with a hollow heat exchanger body 10 fitted to the garbage treatment tank 2 in a state of being face-contacted with the outer peripheral surface of the garbage treatment tank 2. The inside of the heat exchanger body 10 is divided by a diaphragm 10e to form a passage 10f. Further, a turning-back part 10g to approximately reverse the flowing direction is formed at the proximity of the end of the diaphragm 10e, and a flow-straightening mechanism 16 to straighten the flow is arranged at the turning-back part 10g. The flow-straightening mechanism 16 is arranged at the turning-back part 16 so that each of both the ends is located at the two spaces divided by the extended line 10i of the diaphragm 10e to form the line symmetrical shape to the extended line 10i of the diaphragm 10e. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、微生物の力を利用して生ごみを分解処理する生ごみ処理装置の熱交換器に関するものである。   The present invention relates to a heat exchanger of a garbage processing apparatus that decomposes garbage using the power of microorganisms.

近年、微生物の力を利用して有機物及び水分を有する生ごみを環境に影響を与えない程度に分解処理(発酵)する生ごみ処理装置が提供されている(例えば特許文献1参照)。   2. Description of the Related Art In recent years, there has been provided a garbage processing apparatus that uses microorganisms to decompose (ferment) garbage having organic matter and moisture so as not to affect the environment (see, for example, Patent Document 1).

この種の生ごみ処理装置では、生ごみ処理槽の内部にバイオチップと称される木質細片などの担体を生ごみ処理材として充填してあり、生ごみ処理層に投入された生ごみを、生ごみ処理材に生息する微生物の働きで発酵させて分解処理するようになっている。生ごみ処理槽からの排気には、生ごみを分解する際に発生するガス成分が含まれるため、この排気をヒータで高温に加熱した後、触媒と接触させて脱臭する脱臭装置が設けられている。また図10に示すように、生ごみ処理槽2の下部には熱交換器20が設置されており、熱交換器20の内部に蛇行するように配設されたダクトホース21に脱臭後の高温の排気を通して、生ごみ処理槽2内に投入された生ごみ処理材との間で熱交換を行わせ、生ごみ処理材に生息する微生物の活動に好適なように生ごみ処理材を加熱していた。   In this kind of garbage processing equipment, the garbage processing tank is filled with a carrier such as a wood chip called biochip as a garbage processing material, and the garbage input to the garbage processing layer is collected. In addition, it is fermented and decomposed by the action of microorganisms that inhabit the garbage treatment material. Since the exhaust from the garbage treatment tank contains gas components that are generated when the garbage is decomposed, a deodorizing device is provided that deodorizes the exhaust by heating it to a high temperature with a heater and then contacting it with the catalyst. Yes. Further, as shown in FIG. 10, a heat exchanger 20 is installed in the lower part of the garbage treatment tank 2, and a high temperature after deodorization is provided in a duct hose 21 arranged to meander inside the heat exchanger 20. Heat is exchanged with the garbage processing material put into the garbage processing tank 2 through the exhaust air, and the garbage processing material is heated so as to be suitable for the activities of microorganisms living in the garbage processing material. It was.

特開2000−70905号公報(段落番号[0046]−[0050]、及び、第3図)JP 2000-70905 A (paragraph numbers [0046]-[0050] and FIG. 3)

上述した生ごみ処理装置の熱交換器20では、熱交換器20の内部にダクトホース21を引き回していたため、組立作業の作業性が悪いという問題があった。また、排気を通すためにダクトホース21を用いているため、ダクトホース21と生ごみ処理槽2との接触面積を大きくとることができず、熱交換の効率が悪いという問題もあった。   In the heat exchanger 20 of the garbage disposal apparatus described above, the duct hose 21 is routed inside the heat exchanger 20, so that there is a problem that the workability of the assembly work is poor. Further, since the duct hose 21 is used for passing the exhaust gas, there is a problem that the contact area between the duct hose 21 and the garbage disposal tank 2 cannot be increased, and the efficiency of heat exchange is poor.

そこで、本出願人は、上記問題を解決するために、組立作業が容易で熱交換の効率を高めた生ごみ処理装置の熱交換器について既に出願している。この生ごみ処理装置の熱交換器は、図11に示すように、生ごみ処理槽の外側面との接触面の形状が生ごみ処理槽の外側面に沿うような形状に形成され、生ごみ処理槽の外側面と接触面とを面接触させた状態で生ごみ処理槽に取り付けられる中空の熱交換器本体10を備え、熱交換器本体10の内部を仕切板10eで仕切ることによって空気の流路10fを形成し、この流路10fの一方の端にヒータで暖められた空気が流入する吸気口10cを設けるとともに、他方の端に空気を排出する排気口10dを設けているものである。   Therefore, in order to solve the above-mentioned problem, the present applicant has already filed an application for a heat exchanger of a garbage disposal apparatus that is easy to assemble and has improved heat exchange efficiency. As shown in FIG. 11, the heat exchanger of this garbage disposal apparatus is formed so that the shape of the contact surface with the outer surface of the garbage treatment tank is along the outer surface of the garbage treatment tank. A hollow heat exchanger body 10 is provided that is attached to the garbage treatment tank in a state where the outer surface and the contact surface of the treatment tank are in surface contact with each other, and the interior of the heat exchanger body 10 is partitioned by a partition plate 10e so that the air A flow path 10f is formed, and an intake port 10c through which air heated by a heater flows is provided at one end of the flow path 10f, and an exhaust port 10d through which air is discharged is provided at the other end. .

しかし、図12に示すように、熱交換器本体10の折り返し部10gの前後では空気の流れる方向が略逆向きに反転することになり、空気の流れる方向が急激に変化するため、空気が仕切板10eの先端を通過した辺りで流れの剥離が発生して、剥離域(図12中のA部)が形成され、折り返し部10gの前後では大きな圧損が発生する。そして、生ごみ処理槽の幅が広がると、熱交換器本体10の幅も広がり、流路10fの折り返し回数が増えるため、全体の圧損が大きくなって、ブロアの吸引能力が不足する可能性がある。   However, as shown in FIG. 12, the air flow direction is reversed in the substantially reverse direction before and after the folded portion 10g of the heat exchanger body 10, and the air flow direction changes abruptly. Flow separation occurs near the end of the plate 10e, forming a separation region (A portion in FIG. 12), and large pressure loss occurs before and after the folded portion 10g. When the width of the garbage treatment tank is increased, the width of the heat exchanger body 10 is also increased, and the number of times the flow path 10f is folded back increases, so that the overall pressure loss increases and the blower suction capability may be insufficient. is there.

本発明は上記問題点に鑑みて為されたものであり、その目的とするところは、折り返し部の前後における圧損を低減することができ、熱交換の効率を更に向上させることができる生ごみ処理装置の熱交換器を提供することにある。   The present invention has been made in view of the above problems, and the object of the present invention is to reduce the pressure loss before and after the folded portion and to reduce the heat exchange efficiency. The object is to provide a heat exchanger for the apparatus.

上記課題を解決するために、本願発明は、生ごみ処理槽の内部に投入された生ごみを減量処理する生ごみ処理装置に用いられ、生ごみ処理槽内部の生ごみと熱交換を行うことで生ごみを加熱する熱交換器であって、生ごみ処理槽の外側面との接触面の形状が生ごみ処理槽の外側面に沿うような形状に形成され、生ごみ処理槽の外側面と接触面とを面接触させた状態で生ごみ処理槽に取り付けられる中空の熱交換器本体を備え、熱交換器本体の内部を仕切板で仕切ることによって流路を形成し、前記流路の一方の端に流入口を設けるとともに、前記流路の他方の端に流出口を設け、前記仕切板は熱交換器本体の内壁から反対側の内壁に向かって突出し、該仕切板の先端付近には流れる方向が略逆向きに反転する折り返し部が形成されており、該折り返し部に流れを整流する整流機構を配置し、前記整流機構は、両端部が前記仕切板の延長線で区切られた2つの空間にそれぞれ位置するようにし、該延長線に対して線対称な形状としたものである。   In order to solve the above-mentioned problems, the present invention is used in a garbage treatment device for reducing the amount of garbage thrown into the garbage treatment tank, and performs heat exchange with the garbage inside the garbage treatment tank. A heat exchanger that heats the garbage in the outer surface of the garbage treatment tank, wherein the shape of the contact surface with the outer surface of the garbage treatment tank is formed along the outer surface of the garbage treatment tank. And a hollow heat exchanger main body attached to the garbage treatment tank in a state where the contact surface is in surface contact, and forming a flow path by partitioning the inside of the heat exchanger main body with a partition plate, An inlet is provided at one end, and an outlet is provided at the other end of the flow path, and the partition plate projects from the inner wall of the heat exchanger body toward the inner wall on the opposite side, near the tip of the partition plate. Is formed with a folded portion where the flow direction is reversed in a substantially opposite direction, A rectifying mechanism for rectifying the flow is disposed in the return portion, and the rectifying mechanism is arranged symmetrically with respect to the extension line so that both ends are located in two spaces separated by the extension line of the partition plate, respectively. It is a simple shape.

本願発明の生ごみ処理装置の熱交換器においては、整流機構により流体を整流することで、折り返し部で流れの剥離が起こりにくくなって、乱流の発生が抑制され、折り返し部の前後における圧損を低減でき、熱交換の効率を更に向上させることができる。   In the heat exchanger of the garbage processing apparatus according to the present invention, flow rectification is rectified by a rectifying mechanism, so that flow separation is less likely to occur at the folded portion, turbulent flow is suppressed, and pressure loss before and after the folded portion. The heat exchange efficiency can be further improved.

(実施形態1)
本発明の実施形態1を図1〜図4に基づいて説明する。
(Embodiment 1)
A first embodiment of the present invention will be described with reference to FIGS.

生ごみ処理装置のハウジング1には、上面が開口した箱状の金属製の生ごみ処理槽2が内装されており、生ごみ処理槽2の内部には、微生物が生息するおが屑状の木質細片のような担体からなる生ごみ処理材(所謂バイオチップ)が充填してある。ハウジング1の上面には生ごみ投入口(図示せず)が開口し、この生ごみ投入口に開閉自在な蓋を設けてあり、蓋を開けて生ごみ投入口から生ごみ処理槽2内に生ごみを投入できるようになっている。   The housing 1 of the garbage disposal apparatus includes a box-shaped metal garbage disposal tank 2 having an open top surface, and inside the garbage disposal tank 2, sawdust-like woody fine wood inhabited by microorganisms. A garbage disposal material (so-called biochip) made of a carrier such as a piece is filled. A garbage input port (not shown) is opened on the upper surface of the housing 1, and an openable / closable lid is provided on the garbage input port. The lid is opened to enter the garbage processing tank 2 from the garbage input port. Garbage can be thrown in.

ハウジング1内には生ごみ処理槽2に隣接してオーバーフロー槽5を設けてある。生ごみ処理槽2およびオーバーフロー槽5の内部には撹拌羽根3aを有する撹拌軸3が架設してあり、モータ4によって撹拌軸3が回転し、生ごみ処理槽2内に充填した生ごみ処理材を撹拌することで、生ごみ処理槽2に投入された生ごみが分解処理される。また、生ごみ処理槽2とオーバーフロー槽5とを仕切る仕切板6の上部には開口部6aが貫設してあり、撹拌羽根3aを通常時と逆回転させたときに生ごみ処理槽2内に充填された生ごみ処理材が開口部6aを通ってオーバーフロー槽5の方へオーバーフローするようになっている。ここで、生ごみ処理槽2およびオーバーフロー槽5の底部の断面形状は、撹拌羽根3aよりも若干大径の半円形状となっており、生ごみ処理槽2およびオーバーフロー槽5の底部に溜まった生ごみ処理材を撹拌羽根3aにより隅々まで撹拌できるようになっている。尚、図3及び図4では生ごみ処理槽2およびオーバーフロー槽5の側方の壁を省略して図示してあるが、図示しない側壁によって閉塞されている。   An overflow tank 5 is provided in the housing 1 adjacent to the garbage treatment tank 2. The garbage processing tank 2 and the overflow tank 5 have a stirring shaft 3 having stirring blades 3 a installed therein, and the stirring shaft 3 is rotated by a motor 4 to fill the garbage processing tank 2 with the garbage processing material. , The garbage thrown into the garbage treatment tank 2 is decomposed. In addition, an opening 6a is provided in the upper part of the partition plate 6 that separates the garbage treatment tank 2 and the overflow tank 5, and the inside of the garbage treatment tank 2 when the stirring blade 3a is rotated in the reverse direction to the normal time. The garbage processing material filled in the tank overflows toward the overflow tank 5 through the opening 6a. Here, the cross-sectional shapes of the bottoms of the garbage treatment tank 2 and the overflow tank 5 are semicircular shapes slightly larger in diameter than the stirring blades 3a, and are collected at the bottoms of the garbage treatment tank 2 and the overflow tank 5. The garbage treatment material can be stirred to every corner by the stirring blade 3a. In FIGS. 3 and 4, the side walls of the garbage treatment tank 2 and the overflow tank 5 are omitted, but they are closed by side walls (not shown).

ところで、微生物が生ごみを分解処理する過程でガスや湿気が発生するので、生ごみ処理槽2内部の臭気を含んだ湿った空気を外部に排気するための排気口(図示せず)が生ごみ処理槽2の上部に設けられており、この排気口にはフィルタ7が設けてある。そして、排気口からフィルタ7を通して排気された空気の排気経路には、酸化触媒型の脱臭器8と熱交換器9とが設けられ、熱交換器9よりも下流側にはブロア11が設けられている。   By the way, since microorganisms generate gas and moisture during the process of decomposing garbage, an exhaust port (not shown) for exhausting moist air containing odor inside the garbage treatment tank 2 to the outside is produced. It is provided in the upper part of the waste treatment tank 2, and a filter 7 is provided in this exhaust port. An oxidation catalyst type deodorizer 8 and a heat exchanger 9 are provided in the exhaust path of the air exhausted from the exhaust port through the filter 7, and a blower 11 is provided downstream of the heat exchanger 9. ing.

脱臭器8はヒータと白金触媒のような酸化触媒とを内部に備え、送り込まれた排気をヒータによって200〜400℃程度の高温に加熱し、この高温に加熱された排気を酸化触媒と接触させることで、臭気成分の酸化分解を促進して脱臭している。   The deodorizer 8 includes a heater and an oxidation catalyst such as a platinum catalyst. The deodorizer 8 is heated to a high temperature of about 200 to 400 ° C. by the heater, and the exhaust heated to the high temperature is brought into contact with the oxidation catalyst. Thus, oxidative decomposition of the odor component is promoted and deodorized.

熱交換器9の熱交換器本体10は、図1(a)(b)に示すように、断面J字状の主板10a,10aを所定の間隔を開けて対向配置し、その周縁部を側板10bで覆うことにより、中空の箱形に形成される。熱交換器9の上部には吸気口10cおよび排気口10dが左右両側に設けられ、また熱交換器9の内部は主板10aから立設された仕切板10eによって仕切られて、吸気口10cから排気口10dへと蛇行するような流路10fが形成されている。さらに、流路10fの折り返し部10gには、空気の流れを整流するガイド板16(ガイド部材)が配置されている。ここで、熱交換器本体10の生ごみ処理槽2との接触面(すなわち内側の主板10a)の形状は、生ごみ処理槽2の底部の形状に沿うような形状に形成されているので、熱交換器本体10の接触面(主板10a)と生ごみ処理槽2の裏面とを面接触させることができ、熱交換の効率を高めることができる。   As shown in FIGS. 1 (a) and 1 (b), the heat exchanger body 10 of the heat exchanger 9 has main plates 10a and 10a having a J-shaped cross section arranged to face each other at a predetermined interval, and the peripheral portion thereof is a side plate. By covering with 10b, a hollow box shape is formed. An intake port 10c and an exhaust port 10d are provided on the left and right sides of the upper portion of the heat exchanger 9, and the interior of the heat exchanger 9 is partitioned by a partition plate 10e erected from the main plate 10a and exhausted from the intake port 10c. A flow path 10f that snakes to the mouth 10d is formed. Further, a guide plate 16 (guide member) that rectifies the air flow is disposed in the folded portion 10g of the flow path 10f. Here, since the shape of the contact surface of the heat exchanger body 10 with the garbage treatment tank 2 (that is, the inner main plate 10a) is formed in a shape along the shape of the bottom of the garbage treatment tank 2, The contact surface (main plate 10a) of the heat exchanger body 10 and the back surface of the garbage disposal tank 2 can be brought into surface contact, and the efficiency of heat exchange can be increased.

上述のように生ごみ処理槽2からの排気経路の途中にはフィルタ7、脱臭器8および熱交換器9が設けられており、ブロア11を作動させて生ごみ処理槽2内部の空気を吸引すると、生ごみ処理槽2内部の空気が排気口を介してフィルタ7に送り込まれ、フィルタ7により塵埃が除去された後、脱臭器8に送り込まれる。脱臭器8は送られた排気をヒータにより加熱して、酸化触媒と接触させることで臭気成分の酸化分解を促進して脱臭しており、脱臭後の高温の排気は熱交換器9の吸気口10cに送り込まれる。吸気口10cから熱交換器本体10内に流入した高温の排気は、熱交換器本体10の内部に設けた流路10fを通り、生ごみ処理槽2内に投入された生ごみ処理材との間で熱交換を行うことで、生ごみ処理材を微生物の活動に好適な温度まで暖めた後、排気口10dを通してブロア11に送り込まれ、ブロア11から消音器15を介して外部に排気される。尚、図3及び図4では、フィルタ7と脱臭器8との間、脱臭器8と熱交換器9の間、熱交換器9とブロア11との間をそれぞれ接続するダクトを省略して図示してある。   As described above, the filter 7, the deodorizer 8 and the heat exchanger 9 are provided in the middle of the exhaust path from the garbage processing tank 2, and the blower 11 is operated to suck the air inside the garbage processing tank 2. Then, the air inside the garbage treatment tank 2 is sent to the filter 7 through the exhaust port, and after dust is removed by the filter 7, it is sent to the deodorizer 8. The deodorizer 8 is heated by a heater and brought into contact with an oxidation catalyst to promote oxidative decomposition of odor components and deodorize, and the high-temperature exhaust gas after deodorization is the intake port of the heat exchanger 9 10c. The high-temperature exhaust gas flowing into the heat exchanger main body 10 from the intake port 10c passes through the flow path 10f provided in the heat exchanger main body 10, and is connected to the garbage treatment material introduced into the garbage treatment tank 2. The waste treatment material is heated to a temperature suitable for the activity of microorganisms by performing heat exchange between them, and then sent to the blower 11 through the exhaust port 10d and exhausted to the outside through the silencer 15 from the blower 11. . 3 and 4, the ducts connecting the filter 7 and the deodorizer 8, the deodorizer 8 and the heat exchanger 9, and the heat exchanger 9 and the blower 11 are omitted. It is shown.

また、生ごみ処理槽2の上部には吸気口12aが開口しており、この吸気口12aに連通して吸気ダクト12が設けられている。而して、ブロア11を作動させて排気を行うと、ハウジング1の下部に設けた外気取入口(図示せず)から吸気ダクト12および吸気口12aを通して生ごみ処理槽2の内部に外気が送り込まれ、生ごみ処理材に生息する微生物に新鮮な酸素を供給することで、その活動を活性化させることができる。   In addition, an intake port 12a is opened in the upper part of the garbage treatment tank 2, and an intake duct 12 is provided in communication with the intake port 12a. Thus, when exhaust is performed by operating the blower 11, outside air is sent from the outside air intake (not shown) provided in the lower portion of the housing 1 into the garbage treatment tank 2 through the intake duct 12 and the intake port 12 a. The activity can be activated by supplying fresh oxygen to the microorganisms that inhabit the garbage treatment material.

さらに、図1(a)に示すように吸気口12aに連通する吸気ダクト12は熱交換器9に隣接して設けられており、外部から生ごみ処理槽2内に流入する空気が熱交換器本体10の表面と接触するように、空気の流入経路を形成しているので、熱交換器9の上側の側板10bが熱交換面となって、吸気ダクト12を通って生ごみ処理槽2に流入する空気と、熱交換器9内の流路10fを流れる熱風との間で熱交換を行うことで、外部より吸引される空気を暖めているから、冷たい外気が流入することで生ごみ処理槽2に充填された生ごみ処理材の温度が下がるのを防止し、生ごみ処理材の保温性を高めることができる。   Further, as shown in FIG. 1 (a), the intake duct 12 communicating with the intake port 12a is provided adjacent to the heat exchanger 9, and air flowing into the garbage treatment tank 2 from the outside is heat exchanger. Since the air inflow path is formed so as to come into contact with the surface of the main body 10, the upper side plate 10 b of the heat exchanger 9 serves as a heat exchange surface and passes through the intake duct 12 to the garbage treatment tank 2. Heat exchange is performed between the inflowing air and the hot air flowing through the flow path 10f in the heat exchanger 9 to warm the air sucked from the outside. It can prevent that the temperature of the garbage processing material with which the tank 2 was filled falls, and can improve the heat retention of a garbage processing material.

また、撹拌軸3は通常一方向(図1(b)中の反時計回り)に回転しているため、撹拌羽根3aの回転によって生ごみ処理槽2の内部に充填された生ごみ処理材14(図中の斜線部)の上面は図中右上がりに傾斜する。したがって、図1(b)に示すように撹拌羽根3aの回転によって生ごみ処理材14が片側に片寄っている状態で、生ごみ処理槽2の裏面における生ごみ処理材14の存在する部分の略全体を覆うことができるような形状に熱交換器本体10を形成しても良い。このように生ごみを分解処理する際に加熱対象の生ごみ処理材が実際に存在する部分を暖めることにより、熱交換器9内の流路10fを流れる熱風と、生ごみ処理槽2内に充填された生ごみ処理材との熱交換の効率をさらに高めることができる。   Further, since the stirring shaft 3 normally rotates in one direction (counterclockwise in FIG. 1B), the garbage processing material 14 filled in the garbage processing tank 2 by the rotation of the stirring blade 3a. The upper surface of (the hatched portion in the figure) is inclined upward in the figure. Therefore, as shown in FIG. 1 (b), the portion where the garbage treatment material 14 is present on the back surface of the garbage treatment tank 2 in a state where the garbage treatment material 14 is shifted to one side by the rotation of the stirring blade 3a. You may form the heat exchanger main body 10 in the shape which can cover the whole. In this way, when the garbage is decomposed, the portion where the garbage treatment material to be heated actually exists is heated, so that the hot air flowing through the flow path 10f in the heat exchanger 9 and the garbage treatment tank 2 are The efficiency of heat exchange with the filled garbage disposal material can be further increased.

なお、本実施形態では熱交換器9に隣接して吸気ダクト12を設けているが、図5に示すようにフィルタ7と脱臭器8との間をつなぐダクト13を熱交換器9に隣接して設け、ヒータに流入する空気が熱交換器本体10の表面と接触するように、ヒータに流入する空気の流入経路を形成しても良く、熱交換器9の上側の側板10bを熱交換面として、ダクト13を通って脱臭器8に流入する空気と、熱交換器9内の流路10fを流れる熱風との間で熱交換を行うことで、熱交換器9からの排熱の一部を利用して、脱臭器8内部のヒータに入る前の排気を予め暖めておくことができ、その結果、ヒータのランニングコストを下げることができる。   In this embodiment, the intake duct 12 is provided adjacent to the heat exchanger 9, but a duct 13 connecting the filter 7 and the deodorizer 8 is adjacent to the heat exchanger 9 as shown in FIG. An inflow path of air flowing into the heater may be formed so that the air flowing into the heater comes into contact with the surface of the heat exchanger main body 10, and the upper side plate 10b of the heat exchanger 9 is formed as a heat exchange surface. As a part of the exhaust heat from the heat exchanger 9 by performing heat exchange between the air flowing into the deodorizer 8 through the duct 13 and the hot air flowing through the flow path 10f in the heat exchanger 9 The exhaust before entering the heater inside the deodorizer 8 can be warmed in advance, and as a result, the running cost of the heater can be reduced.

以下、本実施形態の熱交換器9を、図6及び図7に基づいてより詳細に説明する。図6及び図7は、折り返し部10gの前後における圧損を解析するために作成した熱交換器本体10の解析モデルを示し、図中の矢印は空気の流れを示している。熱交換器本体10の内部を3枚の仕切板10eで仕切って空気の流れを3回折り返しているが、これらの解析モデルでは解析を容易にするために、熱交換器本体10の内部を1枚の仕切板10eで区切って空気の流れを1回だけ折り返している。尚、図中の22は空気が流入する吸気口、23は空気が排出する排気口である。   Hereinafter, the heat exchanger 9 of this embodiment is demonstrated in detail based on FIG.6 and FIG.7. 6 and 7 show an analysis model of the heat exchanger body 10 created in order to analyze the pressure loss before and after the folded portion 10g, and arrows in the drawings show the flow of air. The inside of the heat exchanger body 10 is partitioned by three partition plates 10e, and the air flow is turned back three times. However, in these analysis models, the inside of the heat exchanger body 10 is 1 to facilitate the analysis. The flow of the air is folded only once by dividing it with a single partition plate 10e. In the figure, 22 is an intake port through which air flows in, and 23 is an exhaust port through which air is discharged.

熱交換器本体10の両端部の内壁から複数の仕切板10eが反対側の内壁に向かって交互に突出しており、これらの仕切板10eで熱交換器本体10の内部を仕切ることによって熱交換器本体10の内部を蛇行するような流路10fを形成している。すなわち、図1に示す熱交換器本体10では、上下方向に沿う方向の両端に位置する内壁(側板10b)のうちの一方から他方に向かって3つの仕切板10eが交互に突出しており、左右両側の2つの仕切板10eは、熱交換器本体10の奥側の上端部の側板10bから手前側の上端部の側板10bの手前まで上下方向に沿って突出し、中央の仕切板10eは熱交換器本体10の手前側の上端部の側板10bから奥側の上端部の側板10bの手前まで上下方向に沿って突出している。このように3つの仕切板10eで熱交換器本体10の内部を仕切ることで、熱交換器本体10の内部を蛇行するような空気の流路10fを形成しており、図6に示すように仕切板10eの先端付近には空気の流れが略逆向きに反転する折り返し部10gが形成されている。   A plurality of partition plates 10e protrude alternately from the inner walls at both ends of the heat exchanger body 10 toward the inner walls on the opposite side, and the interior of the heat exchanger body 10 is partitioned by these partition plates 10e. A flow path 10f that meanders inside the main body 10 is formed. That is, in the heat exchanger body 10 shown in FIG. 1, the three partition plates 10e protrude alternately from one of the inner walls (side plates 10b) located at both ends in the vertical direction to the other, The two partition plates 10e on both sides protrude along the vertical direction from the side plate 10b at the upper end on the back side of the heat exchanger body 10 to the side of the side plate 10b at the upper end on the near side, and the center partition plate 10e is heat exchanged. It protrudes along the up-down direction from the side plate 10b at the upper end on the near side of the main body 10 to the side at the side plate 10b at the upper end on the far side. Thus, by partitioning the inside of the heat exchanger body 10 with the three partition plates 10e, an air flow path 10f that meanders the inside of the heat exchanger body 10 is formed, as shown in FIG. Around the front end of the partition plate 10e, there is formed a folded portion 10g where the air flow is reversed in a substantially reverse direction.

また、本実施形態では図6に示すように、流路10fの折り返し部10gに空気の流れを整流するガイド板16(ガイド部材)を配置している。このガイド板16は、中央片16aと中央片16aの両端から一方向に突出する両側片16b,16cとで略コ字形に形成され、両側片16b,16cの先端が仕切板10eで仕切られた2つの空間に突出するように折り返し部10gに配置されている。このガイド板16は、ガイド板16の中間部16eが仕切板10eの先端部からの延長線10i上に位置するように配置され、仕切板10eの先端部からの延長線10iに対して線対称な形状となっており、ガイド板16の内側の流路の断面積を均一にすることができ、折り返し部の前後における圧損を低減することができる。   In the present embodiment, as shown in FIG. 6, a guide plate 16 (guide member) that rectifies the air flow is disposed in the folded portion 10g of the flow path 10f. The guide plate 16 is formed in a substantially U shape by a center piece 16a and both side pieces 16b and 16c protruding in one direction from both ends of the center piece 16a, and the ends of the side pieces 16b and 16c are partitioned by a partition plate 10e. It arrange | positions at the return part 10g so that it may protrude in two spaces. The guide plate 16 is disposed such that the intermediate portion 16e of the guide plate 16 is positioned on the extension line 10i from the tip end portion of the partition plate 10e, and is line symmetric with respect to the extension line 10i from the tip end portion of the partition plate 10e. The cross-sectional area of the flow path inside the guide plate 16 can be made uniform, and the pressure loss before and after the folded portion can be reduced.

さらに、ガイド板16は、ガイド板16の両端部16d、16dの相互間隔の半分長(両端部間直線距離の半分の長さ)が仕切板10eで仕切られた流路10fの幅の1/2として形成されており、吸気口22から仕切板10eと側片16bとの間、或いは側片16bと側板10bとの間に送り込まれた空気は、中央片16a或いは進行方向前方の側板10bに当たって進行方向が略90度変化した後、側片16c或いは進行方向前方の側板10bに当たって進行方向がさらに90度変化する。このように、ガイド板16を折り返し部10gに配置することで、空気の流れる方向を略90度ずつ2回に分けて曲げることができ、空気の流れる方向の曲げ角が略180度から略90度に小さくなるから流れの剥離が起こりにくくなって、乱流の発生が抑制され、折り返し部10gの前後での圧損が低減されるのである。ここで、図6に示す解析モデルについて空気の流れを解析した結果、図12に示すような熱交換器本体10の折り返し部10gにおける圧損を100とすると、図6に示すように折り返し部10gに両端部の相互間隔の半分長が流路10fの幅の1/2とした略コ字形のガイド板16を配置した場合の圧損は65となり、ガイド板16を配置することで圧損が約35%低減される。なお、両端部の相互間隔の半分長が流路10fの幅の1/2とした略コ字形のガイド板を配置した場合の圧損は52となる。   Further, the guide plate 16 is 1/2 of the width of the flow path 10f in which the half length of the mutual distance between the both end portions 16d and 16d of the guide plate 16 (half length of the linear distance between both end portions) is partitioned by the partition plate 10e. The air sent from the air inlet 22 between the partition plate 10e and the side piece 16b or between the side piece 16b and the side plate 10b hits the center piece 16a or the side plate 10b in the forward direction of travel. After the traveling direction has changed by approximately 90 degrees, the traveling direction changes by another 90 degrees by hitting the side piece 16c or the side plate 10b in front of the traveling direction. In this way, by arranging the guide plate 16 in the folded portion 10g, the air flow direction can be bent in two portions of approximately 90 degrees, and the bending angle in the air flow direction is approximately 180 degrees to approximately 90 degrees. Since it becomes smaller each time, separation of the flow hardly occurs, the generation of turbulent flow is suppressed, and the pressure loss before and after the folded portion 10g is reduced. Here, as a result of analyzing the air flow for the analysis model shown in FIG. 6, when the pressure loss in the folded portion 10g of the heat exchanger main body 10 as shown in FIG. 12 is 100, the folded portion 10g as shown in FIG. When the substantially U-shaped guide plate 16 in which the half length of the mutual distance between both ends is ½ of the width of the flow path 10f is arranged, the pressure loss becomes 65, and the pressure loss is about 35% by arranging the guide plate 16. Reduced. Note that the pressure loss is 52 when a substantially U-shaped guide plate in which the half length of the mutual distance between both ends is ½ of the width of the flow path 10f is arranged.

このように、ガイド板16を折り返し部10gに配置することで折り返し部10gの前後での圧損を低減できるのであるが、仕切板10eの先端付近では空気の流れる方向の曲げ角が180度になるため、この付近で流れの剥離が発生して圧損が生じることになる。そこで、図7に示すように、略コ字形のガイド板16の内側に、ガイド板16よりも小型の略コ字形のガイド板16’を配置しても良い。つまり、ガイド板の両端部16d、16dの相互間隔の半分長を流路10fの幅の1/4としたガイド板16’をガイド板16よりも内側(仕切板先端方向)に配置し、ガイド板16とガイド板16’をともに、仕切板10eの先端部10hからの延長線10iに対して線対称な形状となるように配置している。ガイド板16’を設けることによって曲げ角が180度となる領域が小さくなって、圧損がさらに低減される。ここで、図7の解析モデルについて空気の流れを解析した結果、図12に示すような熱交換器本体10の折り返し部10gにおける圧損を100とした場合、図7に示すように折り返し部10gに2個のガイド板16,16’を配置した場合の圧損は46となり、ガイド板16を1つだけ配置した場合に比べて圧損がさらに低減されることになる。尚、本実施形態では1枚又は2枚のガイド板16,16’で整流機構を構成しているが、コ字形のガイド板を3枚以上配置して整流機構を形成しても良いことは言うまでもない。   Thus, the pressure loss before and after the folded portion 10g can be reduced by arranging the guide plate 16 in the folded portion 10g, but the bending angle in the direction of air flow is 180 degrees near the tip of the partition plate 10e. Therefore, flow separation occurs in this vicinity, and pressure loss occurs. Therefore, as shown in FIG. 7, a substantially U-shaped guide plate 16 ′ smaller than the guide plate 16 may be arranged inside the substantially U-shaped guide plate 16. In other words, the guide plate 16 ′ in which the half length of the mutual distance between the both end portions 16d and 16d of the guide plate is ¼ of the width of the flow path 10f is arranged on the inner side of the guide plate 16 (in the direction of the partition plate front end). Both the plate 16 and the guide plate 16 ′ are arranged so as to have a line-symmetric shape with respect to the extended line 10 i from the front end portion 10 h of the partition plate 10 e. By providing the guide plate 16 ', the region where the bending angle is 180 degrees is reduced, and the pressure loss is further reduced. Here, as a result of analyzing the air flow for the analysis model of FIG. 7, when the pressure loss in the folded portion 10g of the heat exchanger main body 10 as shown in FIG. 12 is 100, the folded portion 10g as shown in FIG. The pressure loss when the two guide plates 16 and 16 'are arranged is 46, and the pressure loss is further reduced as compared with the case where only one guide plate 16 is arranged. In this embodiment, one or two guide plates 16 and 16 'constitute the rectifying mechanism. However, the rectifying mechanism may be formed by arranging three or more U-shaped guide plates. Needless to say.

(実施形態2)
次に、本発明の実施形態2について説明する。本実施形態では、図8に示すように、流路10fの折り返し部10gに空気の流れを整流するガイド板17(ガイド部材)を配置している。このガイド板17は、略半円形に形成され、両端部17a、17aが仕切板10eで仕切られた2つの空間にそれぞれ突出するとともに、ガイド板17の中間部17bは仕切板10eの先端部10hからの延長線10i上に位置する。つまり、ガイド板17は仕切板10eの先端部10hからの延長線10iに対して線対称な形状となっており、ガイド板17の内側の流路の断面積を均一にすることができ、折り返し部の前後における圧損を低減することができる。また、本実施形態では、吸気口22から流入した空気がガイド板17と仕切板10eとの間の空間に流れ込むと、流入した空気がガイド板17の表面に当たり、ガイド板17の表面のカーブに沿って、空気の流れる方向が徐々に変えられることになって、流れの剥離がさらに抑えられ乱流の発生が抑制されるから、折り返し部10gの前後での圧損がさらに低減される。
(Embodiment 2)
Next, Embodiment 2 of the present invention will be described. In the present embodiment, as shown in FIG. 8, a guide plate 17 (guide member) that rectifies the air flow is disposed in the folded portion 10 g of the flow path 10 f. The guide plate 17 is formed in a substantially semicircular shape, and both end portions 17a and 17a protrude into two spaces partitioned by the partition plate 10e, respectively, and an intermediate portion 17b of the guide plate 17 is a tip portion 10h of the partition plate 10e. It is located on the extension line 10i. That is, the guide plate 17 has a shape symmetrical with respect to the extended line 10i from the tip 10h of the partition plate 10e, and the cross-sectional area of the channel inside the guide plate 17 can be made uniform. The pressure loss before and after the part can be reduced. Further, in the present embodiment, when the air flowing in from the air inlet 22 flows into the space between the guide plate 17 and the partition plate 10e, the air that has flowed in hits the surface of the guide plate 17, and the surface of the guide plate 17 is curved. Accordingly, the air flow direction is gradually changed, and the flow separation is further suppressed and the generation of turbulent flow is suppressed. Therefore, the pressure loss before and after the folded portion 10g is further reduced.

さらに、本実施形態では、ガイド板17の両端部17a、17aの相互間隔の半分長(ガイド板17を半円とみなした場合には半径に相当)が仕切板10eで仕切られた流路10fの幅の1/4としている。ここで、図8の解析モデルについて空気の流れを解析した結果、図12に示すような熱交換器本体10の折り返し部10gにおける圧損を100とした場合、図8に示すように折り返し部10gに略半円形のガイド板17を配置した場合の圧損は24となり、折り返し部10gの圧損を低減することができる。なお、ガイド板17の両端部の相互間隔の半分長を流路10fの幅の1/2とした場合の圧損は43となる。   Furthermore, in the present embodiment, the flow path 10f in which the half length of the mutual distance between the both end portions 17a and 17a of the guide plate 17 (corresponding to a radius when the guide plate 17 is regarded as a semicircle) is partitioned by the partition plate 10e. 1/4 of the width. Here, as a result of analyzing the air flow for the analysis model of FIG. 8, when the pressure loss in the folded portion 10g of the heat exchanger main body 10 as shown in FIG. 12 is 100, the folded portion 10g as shown in FIG. When the substantially semicircular guide plate 17 is arranged, the pressure loss is 24, and the pressure loss of the folded portion 10g can be reduced. It should be noted that the pressure loss is 43 when the half length of the mutual interval between the both ends of the guide plate 17 is ½ of the width of the flow path 10f.

ここで、この作用について説明する。折り返し部10gに略半円形のガイド板17を配置した場合においても、図8のAに示す箇所、即ち折り返し後の流路における仕切板10eに沿った範囲に剥離領域が形成される。ここで、該剥離領域Aにより近い部分に略半円形のガイド板17の端部を配置することによって剥離領域Aに流れを形成して、結果的に剥離領域を小さくして圧損の低減につながるのである。従って、流路10fの幅の1/4のほうが流路10fの幅の1/2に比べて、折り返し部10gの圧損を低減することができる。この作用は、略半円形のガイド板17に限ったものではなく、他形状のガイド板でも同様である。   Here, this operation will be described. Even when the substantially semicircular guide plate 17 is disposed in the folded portion 10g, a separation region is formed at the position shown in FIG. 8A, that is, in the range along the partition plate 10e in the channel after the folding. Here, a flow is formed in the peeling area A by disposing the end portion of the substantially semicircular guide plate 17 in a portion closer to the peeling area A. As a result, the peeling area is reduced and pressure loss is reduced. It is. Therefore, 1/4 of the width of the flow path 10f can reduce the pressure loss of the folded portion 10g compared to 1/2 of the width of the flow path 10f. This action is not limited to the substantially semicircular guide plate 17, and the same applies to guide plates of other shapes.

尚、本実施形態では1枚のガイド板17で整流機構を構成しているが、略半円形のガイド板を複数枚配置してもよい。例えば、ガイド板の両端部の相互間隔の半分長を流路の幅の1/2としたガイド板をガイド板17よりも外側に配置し、ガイド板17と同心円周上に配置している。この結果、圧損は21となり、両端部の相互間隔の半分長を流路10fの幅の1/4としたガイド板17を1枚配置した場合よりも更に圧損を低減することができる。   In this embodiment, the rectifying mechanism is constituted by one guide plate 17, but a plurality of substantially semicircular guide plates may be arranged. For example, a guide plate in which half the distance between both ends of the guide plate is ½ of the width of the flow path is disposed outside the guide plate 17 and is disposed on the circumference concentric with the guide plate 17. As a result, the pressure loss becomes 21, and the pressure loss can be further reduced as compared with the case where one guide plate 17 in which the half length of the mutual interval between both ends is 1/4 of the width of the flow path 10f is arranged.

(実施形態3)
続いて、本発明の実施形態3について説明する。本実施形態では図9に示すように流路10fの折り返し部10gに空気の流れを整流するガイド板18(ガイド部材)を配置している。このガイド板18は、正八角形を半分に切断した形状に形成され、ガイド板18の両端部18a、18aが仕切板10eで仕切られた2つの空間にそれぞれ流路幅と垂直な方向に突出するとともに、ガイド板18の中間部18bは仕切板10eの先端部10hからの延長線10i上に位置する。つまり、ガイド板18は仕切板10eの先端部10hからの延長線10iに対して線対称な形状となっており、ガイド板18の内側の流路の断面積を均一にすることができ、折り返し部の前後における圧損を低減することができる。また、本実施形態では、吸気口22から流入した空気がガイド板18と仕切板10eとの間の空間に流れ込むと、流入した空気がガイド板18の表面に当たり、ガイド板18の表面に沿って、空気の流れる方向が徐々に変えられることになって、流れの剥離がさらに抑えられ乱流の発生が抑制されるから、折り返し部10gの前後での圧損がさらに低減される。
(Embodiment 3)
Subsequently, Embodiment 3 of the present invention will be described. In the present embodiment, as shown in FIG. 9, a guide plate 18 (guide member) that rectifies the flow of air is arranged in the folded portion 10g of the flow path 10f. The guide plate 18 is formed in a shape obtained by cutting a regular octagon in half, and both end portions 18a and 18a of the guide plate 18 project into the two spaces partitioned by the partition plate 10e in the direction perpendicular to the channel width. At the same time, the intermediate portion 18b of the guide plate 18 is located on the extension line 10i from the tip portion 10h of the partition plate 10e. That is, the guide plate 18 has a shape symmetrical with respect to the extended line 10i from the tip portion 10h of the partition plate 10e, and the cross-sectional area of the flow path inside the guide plate 18 can be made uniform. The pressure loss before and after the part can be reduced. In the present embodiment, when the air that has flowed in from the air inlet 22 flows into the space between the guide plate 18 and the partition plate 10 e, the air that has flowed in hits the surface of the guide plate 18 and along the surface of the guide plate 18. Since the air flow direction is gradually changed, the flow separation is further suppressed and the generation of turbulent flow is suppressed, so that the pressure loss before and after the folded portion 10g is further reduced.

さらに、本実施形態では、ガイド板18の両端部18a、18aの相互間隔の半分長が仕切板10eで仕切られた流路10fの幅の1/4に形成されている。ここで、両端部18a、18aの相互間隔の半分長とは、両端部同士を直線で結んだ距離における半分の長さをいう。ここで、図9の解析モデルについて空気の流れを解析した結果、図12に示すような熱交換器本体10の折り返し部10gにおける圧損を100とした場合、図9に示すように折り返し部10gに半正八角形状のガイド板18を配置した場合の圧損は27となり、折り返し部10gの圧損を低減することができる。   Furthermore, in the present embodiment, the half length of the mutual interval between the both end portions 18a, 18a of the guide plate 18 is formed to be 1/4 of the width of the flow path 10f partitioned by the partition plate 10e. Here, the half length of the mutual interval between the both end portions 18a, 18a means a half length in a distance obtained by connecting both end portions with a straight line. Here, as a result of analyzing the air flow for the analysis model of FIG. 9, when the pressure loss in the folded portion 10g of the heat exchanger main body 10 as shown in FIG. 12 is 100, the folded portion 10g as shown in FIG. When the semi-regular octagonal guide plate 18 is disposed, the pressure loss is 27, and the pressure loss of the folded portion 10g can be reduced.

ここで、この作用について説明する。折り返し部10gに半正八角形状のガイド板18を配置した場合においても、図9のAに示す箇所、即ち折り返し後の流路における仕切板10eに沿った範囲に剥離領域が形成される。ここで、該剥離領域Aにより近い部分にガイド板18の端部を配置することによって剥離領域Aに流れを形成して、結果的に剥離領域を小さくして圧損の低減につながるのである。   Here, this operation will be described. Even in the case where the semi-regular octagonal guide plate 18 is disposed in the folded portion 10g, a separation region is formed at a position shown in FIG. 9A, that is, in a range along the partition plate 10e in the channel after the folding. Here, by arranging the end portion of the guide plate 18 at a portion closer to the peeling area A, a flow is formed in the peeling area A, and as a result, the peeling area is reduced and pressure loss is reduced.

また、本実施形態においては、ガイド板18を半正八角形状としたが、これに限ったものではなく、正十二角形を半分に切断した形状として形成してもよい。ここで、他の条件を上述した半正八角形状と同様とした場合における圧損は26となり、ガイド板は略半円形に近づいていくにつれて圧損が低減される傾向にある。   In the present embodiment, the guide plate 18 has a half regular octagonal shape, but the present invention is not limited to this, and the guide plate 18 may be formed by cutting a regular dodecagon into half. Here, when other conditions are the same as those of the semi-regular octagonal shape described above, the pressure loss is 26, and the pressure loss tends to be reduced as the guide plate approaches a substantially semicircular shape.

尚、本発明の実施形態1〜3の生ごみ処理装置は各部を制御する制御装置を備えており、高温式の場合には生ごみ処理槽2の内部を生ごみに含まれる水分の処理に適した温度まで加熱するように、脱臭器8のヒータ等を制御して熱交換器9内の流路10fに流れる空気の温度を変更する。また、熱交換器9はバイオ式の生ごみ処理装置にも適用が可能であり、その場合は制御装置により生ごみ処理槽2の内部を微生物の活動に適した温度まで加熱するように、脱臭器8のヒータ等を制御して熱交換器9内の流路10fに流れる空気の温度を変更すればよい。   In addition, the garbage processing apparatus of Embodiment 1-3 of this invention is equipped with the control apparatus which controls each part, and in the case of a high temperature type, the inside of the garbage processing tank 2 is processed for the water | moisture content contained in garbage. The temperature of the air flowing through the flow path 10f in the heat exchanger 9 is changed by controlling the heater and the like of the deodorizer 8 so as to heat to a suitable temperature. The heat exchanger 9 can also be applied to a bio-type garbage treatment apparatus. In that case, the controller deheats the inside of the garbage treatment tank 2 to a temperature suitable for the activity of microorganisms. What is necessary is just to change the temperature of the air which flows into the flow path 10f in the heat exchanger 9 by controlling the heater etc. of the apparatus 8.

また、熱交換器9内の流路10fに流れる流体は空気だけでなく、例えばコジェネレーションシステムを利用した温水を循環させて、生ごみ処理槽2の内部の温度を加熱するようにしてもよい。   In addition, the fluid flowing in the flow path 10f in the heat exchanger 9 is not limited to air, but for example, hot water using a cogeneration system may be circulated to heat the temperature inside the garbage treatment tank 2. .

実施形態1の熱交換器を生ごみ処理槽に取り付けた状態を示し、(a)は斜視図、(b)は側面図である。The state which attached the heat exchanger of Embodiment 1 to the garbage processing tank is shown, (a) is a perspective view, (b) is a side view. 同上を用いる生ごみ処理装置の一部破断せる外観斜視図である。It is an external appearance perspective view which fractures | ruptures partially the garbage processing apparatus using the same. 同上を用いる生ごみ処理装置の内部を前方から見た斜視図である。It is the perspective view which looked at the inside of the garbage processing apparatus using the same from the front. 同上を用いる生ごみ処理装置の内部を後方から見た斜視図である。It is the perspective view which looked at the inside of the garbage processing apparatus using the same from the back. 同上の別の熱交換器を生ごみ処理槽に取り付けた状態の斜視図である。It is a perspective view of the state which attached another heat exchanger same as the above to a garbage processing tank. 同上の熱交換器の解析モデルを説明する図である。It is a figure explaining the analysis model of a heat exchanger same as the above. 同上の別の熱交換器の解析モデルを説明する図である。It is a figure explaining the analysis model of another heat exchanger same as the above. 実施形態2の熱交換器の解析モデルを説明する図である。It is a figure explaining the analysis model of the heat exchanger of Embodiment 2. FIG. 実施形態3の熱交換器の解析モデルを説明する図である。It is a figure explaining the analysis model of the heat exchanger of Embodiment 3. 従来の熱交換器を生ごみ処理槽に取り付けた状態の斜視図である。It is a perspective view of the state which attached the conventional heat exchanger to the garbage processing tank. 熱交換器の説明図である。It is explanatory drawing of a heat exchanger. 熱交換器の折り返し部の説明図である。It is explanatory drawing of the folding | turning part of a heat exchanger.

符号の説明Explanation of symbols

2 生ごみ処理槽
9 熱交換器
10 熱交換器本体
10c 吸気口
10d 排気口
10e 仕切板
10f 流路
16 ガイド板
2 Garbage treatment tank 9 Heat exchanger 10 Heat exchanger body 10c Intake port 10d Exhaust port 10e Partition plate 10f Flow path 16 Guide plate

Claims (5)

生ごみ処理槽の内部に投入された生ごみを減量処理する生ごみ処理装置に用いられ、生ごみ処理槽内部の生ごみと熱交換を行うことで生ごみを加熱する熱交換器であって、生ごみ処理槽の外側面との接触面の形状が生ごみ処理槽の外側面に沿うような形状に形成され、生ごみ処理槽の外側面と接触面とを面接触させた状態で生ごみ処理槽に取り付けられる中空の熱交換器本体を備え、熱交換器本体の内部を仕切板で仕切ることによって流路を形成し、前記流路の一方の端に流入口を設けるとともに、前記流路の他方の端に流出口を設け、前記仕切板は熱交換器本体の内壁から反対側の内壁に向かって突出し、該仕切板の先端付近には流れる方向が略逆向きに反転する折り返し部が形成されており、該折り返し部に流れを整流する整流機構を配置し、前記整流機構は、両端部が前記仕切板の延長線で区切られた2つの空間にそれぞれ位置するようにし、該延長線に対して線対称な形状としたことを特徴とする生ごみ処理装置の熱交換器。   A heat exchanger that heats food waste by exchanging heat with the food waste inside the food waste treatment tank. The shape of the contact surface with the outer surface of the garbage treatment tank is formed so as to be along the outer surface of the garbage treatment tank, and the raw surface is brought into surface contact with the outer surface of the garbage treatment tank. A hollow heat exchanger main body attached to the waste treatment tank, and a flow path is formed by partitioning the inside of the heat exchanger main body with a partition plate; an inlet is provided at one end of the flow path; An outlet is provided at the other end of the path, and the partition plate projects from the inner wall of the heat exchanger body toward the inner wall on the opposite side, and a folded portion where the flow direction is reversed in a substantially reverse direction near the tip of the partition plate A rectifying mechanism that rectifies the flow is arranged at the folded portion. The rectifying mechanism has both ends positioned in two spaces separated by an extension line of the partition plate, and has a shape symmetrical with respect to the extension line. Equipment heat exchanger. 前記整流機構は、両端部間隔の半分長が前記流路の幅の1/4以上1/2以下としたことを特徴とする請求項1記載の生ごみ処理装置の熱交換器。   2. The heat exchanger of a garbage disposal apparatus according to claim 1, wherein the rectifying mechanism has a half length between both end portions of ¼ or more and ½ or less of the width of the flow path. 前記整流機構は、両端部間隔の半分長が前記流路の幅の1/2とした第1の整流機構と、両端部間隔の半分長が前記流路の幅の1/4とした第2の整流機構を備え、前記第1の整流機構よりも前記仕切板側に前記第2の整流機構を配置したことを特徴とする請求項1または請求項2記載の生ごみ処理装置の熱交換器。   The rectifying mechanism includes a first rectifying mechanism in which a half length of the gap between both ends is ½ of the width of the flow path, and a second rectification mechanism in which a half length of the gap between both ends is ¼ of the width of the flow path. 3. The heat exchanger for a garbage disposal apparatus according to claim 1, wherein the second rectification mechanism is disposed closer to the partition plate than the first rectification mechanism. . 前記整流機構は、略半円形であって、両端部が前記仕切板で仕切られた2つの空間に向かうように前記折り返し部に配置されたガイド部材からなることを特徴とする請求項1から3のうちいずれか1つに記載の生ごみ処理装置の熱交換器。   The said rectification | straightening mechanism is a substantially semicircle, Comprising: It consists of a guide member arrange | positioned at the said folding | turning part so that both ends may go to the two spaces partitioned by the said partition plate. The heat exchanger of the garbage processing apparatus as described in any one of these. 前記整流機構は、半多角形状であって、両端部が前記仕切板で仕切られた2つの空間に向かうように前記折り返し部に配置されたガイド部材からなることを特徴とする請求項1から3のうちいずれか1つに記載の生ごみ処理装置の熱交換器。   The said rectification | straightening mechanism is a semi-polygonal shape, Comprising: It consists of a guide member arrange | positioned at the said folding | turning part so that both ends may go to two spaces partitioned off with the said partition plate. The heat exchanger of the garbage processing apparatus as described in any one of these.
JP2003306238A 2003-08-29 2003-08-29 Heat exchanger of garbage treatment apparatus Pending JP2005074277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003306238A JP2005074277A (en) 2003-08-29 2003-08-29 Heat exchanger of garbage treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003306238A JP2005074277A (en) 2003-08-29 2003-08-29 Heat exchanger of garbage treatment apparatus

Publications (1)

Publication Number Publication Date
JP2005074277A true JP2005074277A (en) 2005-03-24

Family

ID=34409369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003306238A Pending JP2005074277A (en) 2003-08-29 2003-08-29 Heat exchanger of garbage treatment apparatus

Country Status (1)

Country Link
JP (1) JP2005074277A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007136328A (en) * 2005-11-17 2007-06-07 Kyushu Electric Power Co Inc Apparatus for carbonizing waste
JP2014176784A (en) * 2013-03-13 2014-09-25 Zukosha:Kk Methane fermentation system
KR101598505B1 (en) * 2015-04-29 2016-02-29 박영범 Drying apparatus
KR101598504B1 (en) * 2015-04-29 2016-02-29 박영범 Drying apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007136328A (en) * 2005-11-17 2007-06-07 Kyushu Electric Power Co Inc Apparatus for carbonizing waste
JP4564443B2 (en) * 2005-11-17 2010-10-20 九州電力株式会社 Waste carbonization equipment
JP2014176784A (en) * 2013-03-13 2014-09-25 Zukosha:Kk Methane fermentation system
KR101598505B1 (en) * 2015-04-29 2016-02-29 박영범 Drying apparatus
KR101598504B1 (en) * 2015-04-29 2016-02-29 박영범 Drying apparatus

Similar Documents

Publication Publication Date Title
KR100710028B1 (en) Apparatus for processing food waste
KR20050077587A (en) Air-cleaner having ventilation
JP2005074277A (en) Heat exchanger of garbage treatment apparatus
CN110585901A (en) Disinfection cabinet and disinfection method applying same
JP2004000902A (en) Heat exchanger for garbage treatment apparatus
JP2005334849A (en) Heat exchanger of garbage treatment apparatus
JP2004160434A (en) Garbage disposer
KR101318008B1 (en) Food garbage processing apparatus
KR101218813B1 (en) Exhaust deodorization unit with Kitchen
CN109340914A (en) Air conditioner
KR100933067B1 (en) Catalytic reaction device
KR100515114B1 (en) Deodorizing Device for Food Garbage Disposal
CN217938039U (en) Air purification hand drier
CN208398260U (en) A kind of low-noise air clarifier
JP3724294B2 (en) Garbage disposal equipment
CN110772977A (en) Disinfection cabinet and disinfection method applying same
JP4556578B2 (en) Deodorizing device and garbage processing machine equipped with this deodorizing device
JPH04210210A (en) Ozone deodorizer
JP2005254086A (en) Photocatalyst device, deodorizing device and air-treating apparatus using the same
JP3666399B2 (en) Garbage disposal equipment
KR100826283B1 (en) Multi-function deodorization apparatus
JP2006247517A (en) Garbage treatment machine
JP3611960B2 (en) Garbage disposal equipment
JP2004358408A (en) Deodorizing apparatus and garbage disposal equipped with the same
JP2003126810A (en) Device for treating organic matter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071127