JP2005073479A - Vehicular power supply device - Google Patents

Vehicular power supply device Download PDF

Info

Publication number
JP2005073479A
JP2005073479A JP2003304215A JP2003304215A JP2005073479A JP 2005073479 A JP2005073479 A JP 2005073479A JP 2003304215 A JP2003304215 A JP 2003304215A JP 2003304215 A JP2003304215 A JP 2003304215A JP 2005073479 A JP2005073479 A JP 2005073479A
Authority
JP
Japan
Prior art keywords
voltage
predetermined
power generation
surplus
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003304215A
Other languages
Japanese (ja)
Inventor
Tatsushi Narisada
竜志 成定
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003304215A priority Critical patent/JP2005073479A/en
Publication of JP2005073479A publication Critical patent/JP2005073479A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Charge By Means Of Generators (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vehicular power supply device by which a battery is charged, even if a power generating voltage of a generator is set below an open voltage of the battery. <P>SOLUTION: When a power generation rate D<SB>f</SB>of the generator 1 becomes below a second prescribed power generation rate D<SB>lo</SB>, a timer 5 is set and the measurement of a first prescribed time T<SB>set1</SB>is started. When the power generation rate D<SB>f</SB>continues a state of below a first prescribed power generation rate D<SB>hi</SB>during within the first prescribed time T<SB>set1</SB>, a relay A12 is turned on and a relay B13 is turned off. Further, the output voltage V<SB>alt</SB>of the generator 1 is controlled by a power generating voltage control part 7 so as to become the output voltage V<SB>alteco</SB>of less than the open voltage V<SB>b</SB>of the battery 16 and above the operating voltage of an electric equipment load 17. The battery 16 is charged with a voltage of, for example, the voltage of raising the output voltage V<SB>alteco</SB>to 14.2 V with a DC/DC converter 14. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、車両に搭載される発電機を用いた車両用電源装置に関するものである。   The present invention relates to a vehicle power supply device using a generator mounted on a vehicle.

従来の発電機の発電電圧制御は、バッテリの充電状態を維持するため、発電機温度やバッテリ温度、走行状態等によって発電電圧を制御していた。   In the conventional generator voltage control of the generator, the generator voltage is controlled by the generator temperature, the battery temperature, the running state, etc. in order to maintain the charged state of the battery.

特開平7−227047号公報JP-A-7-227047

バッテリの充電状態を維持する目的に発電機の発電電圧を設定すると、発電電圧は常にバッテリの開放電圧以上の電圧に設定しているため、余分な電力を発電することになり、車両の燃費が悪化するという問題があった。   If the generator voltage is set to maintain the state of charge of the battery, the generated voltage is always set to a voltage higher than the open circuit voltage of the battery. There was a problem of getting worse.

本発明は上記の問題を解決するためになされたものであり、発電機の発電電圧をバッテリの開放電圧以下にしても、バッテリを充電する車両用電源装置を提供することを目的としている。   The present invention has been made to solve the above-described problem, and an object of the present invention is to provide a vehicular power supply device that charges a battery even when the power generation voltage of the generator is made equal to or lower than the open circuit voltage of the battery.

上記の目的を達成するため、本発明においては、車両用電源装置において、発電機の発電余力(発電率)に基づいて、発電電圧を変更する構成としている。   In order to achieve the above object, in the present invention, the vehicular power supply apparatus is configured to change the power generation voltage based on the power generation surplus (power generation rate) of the generator.

本発明によれば、発電機の発電余力が所定の値を超えた場合には、発電電圧を車両の電装負荷が作動可能な電圧以上で、バッテリの開放電圧未満に制御することにより、車両の燃費の向上を図る効果が得られる。   According to the present invention, when the power generation surplus of the generator exceeds a predetermined value, the generated voltage is controlled to be equal to or higher than the voltage at which the vehicle electrical load can be operated and less than the open circuit voltage of the battery. The effect of improving fuel consumption can be obtained.

以下、図面を用いて本発明の第1の実施の形態について説明する。なお、以下で説明する図面で、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。   Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. In the drawings described below, components having the same function are denoted by the same reference numerals, and repeated description thereof is omitted.

本発明の第1の実施の形態について、図1〜4、表1を用いて説明する。   A first embodiment of the present invention will be described with reference to FIGS.

図1は本発明の第1の実施の形態の回路構成図である。この図1を用いて本発明の第1の実施の形態の構成を説明する。エンジンの回転により発電する発電機1の固定子巻線101に発生した発電電圧は3相全波整流器102により整流され、コンデンサ106で平滑化された後、出力端子110から出力され、この発電機出力は電装負荷17と、リレーA(第1のスイッチ手段)12を介してDC/DCコンバータ(昇圧手段)14と、リレーB(第2のスイッチ手段)13を介してバッテリ16に供給される。   FIG. 1 is a circuit configuration diagram of a first embodiment of the present invention. The configuration of the first embodiment of the present invention will be described with reference to FIG. The generated voltage generated in the stator winding 101 of the generator 1 that generates power by the rotation of the engine is rectified by the three-phase full-wave rectifier 102, smoothed by the capacitor 106, and then output from the output terminal 110. The output is supplied to the battery 16 via the electrical load 17, the DC / DC converter (boost means) 14 via the relay A (first switch means) 12, and the relay B (second switch means) 13. .

発電電圧は回転子に巻かれた励磁巻線103に供給する励磁電流により制御され、その励磁電流の制御は負荷量検出部105および発電電圧制御部(発電電圧制御手段)7によって制御される。一方、励磁電流を検出することにより、発電率検出部(発電余力検出手段)4が発電機1の発電率(発電余力)を検出し、発電機1の出力電圧は出力電圧検出回路2で検出され、回転数は回転数検出部3で検出され、それぞれ出力電圧、回転数、発電率を総合制御部6に供給している。総合制御部6はこれらの情報を基に発電電圧制御部7やリレー制御部(スイッチ制御手段)8を制御する。   The generated voltage is controlled by the exciting current supplied to the exciting winding 103 wound around the rotor, and the excitation current is controlled by the load amount detecting unit 105 and the generated voltage control unit (generated voltage control means) 7. On the other hand, by detecting the excitation current, the power generation rate detector (power generation surplus detection means) 4 detects the power generation rate (power generation surplus) of the generator 1, and the output voltage of the generator 1 is detected by the output voltage detection circuit 2. The rotation number is detected by the rotation number detection unit 3 and the output voltage, the rotation number, and the power generation rate are supplied to the general control unit 6, respectively. The comprehensive control unit 6 controls the generated voltage control unit 7 and the relay control unit (switch control means) 8 based on such information.

タイマー5は発電機1の発電率が所定の発電率以下または超えた時点を総合制御部6から受け、その時点から所定の時間を計測し、所定の時間経過を総合制御部に伝える。リレー制御部8は総合制御部6の指令を受け、リレーA12、リレーB13のオン(閉路)/オフ(開路)を制御する。DC/DCコンバータ14は発電機1の出力電圧をバッテリ16を充電するに必要な電圧に昇圧する。電流検出部15はDC/DCコンバータ14からバッテリ16への充電電流を測定する。   The timer 5 receives a time when the power generation rate of the generator 1 is equal to or lower than or exceeds the predetermined power generation rate from the general control unit 6, measures a predetermined time from that time, and informs the general control unit of the elapse of the predetermined time. The relay control unit 8 receives an instruction from the general control unit 6 and controls ON (closed) / OFF (open) of the relay A12 and the relay B13. The DC / DC converter 14 boosts the output voltage of the generator 1 to a voltage necessary for charging the battery 16. The current detector 15 measures the charging current from the DC / DC converter 14 to the battery 16.

バッテリ温度検出部(バッテリ温度検出手段)10およびバッテリ電圧検出部11はそれぞれバッテリの温度と電圧を検出し、それらの値を昇圧電圧制御部(昇圧制御手段)9に与える。昇圧電圧制御部9はバッテリの温度、電圧およびバッテリ充電電流に基づいて、DC/DCコンバータ14の出力電圧を制御する。   The battery temperature detection unit (battery temperature detection means) 10 and the battery voltage detection unit 11 detect the temperature and voltage of the battery, respectively, and supply these values to the boost voltage control unit (boost control means) 9. The boosted voltage control unit 9 controls the output voltage of the DC / DC converter 14 based on the battery temperature, voltage and battery charging current.

次に本発明の第1の実施の形態の動作について、図1〜4、表1を用いて説明する。図2は本発明の第1の実施の形態の動作を示すタイムチャート、図3は本発明の第1の実施の形態の全体的な動作の概要を示すフローチャートであり、これら図1、図2、図3に沿い車両用電源装置の概略的な動作を説明する。   Next, the operation of the first embodiment of the present invention will be described with reference to FIGS. FIG. 2 is a time chart showing the operation of the first embodiment of the present invention, and FIG. 3 is a flowchart showing an overview of the overall operation of the first embodiment of the present invention. A schematic operation of the vehicle power supply device will be described with reference to FIG.

エンジンが始動し、発電機1が発電を開始すると、図3の301に示すように、まずリレーA12をオフ、リレーB13をオンにセットする。なおこれらリレーA12がオフ、リレーB13がオンのリレーの状態はエンジンが停止している場合(発電機1の出力が零)にもバッテリ16から電装負荷17に電力を供給するために保たれている。またこれらのリレーA12がオフ、リレーB13がオンの状態は発電機1が出力している状態では、電装負荷17にバッテリ16と発電機1の両方から電力を供給するモード(このリレーA12がオフ、リレーB13がオンのモードをオンモードと称する)であり、電装負荷17が大きく、発電機1の発電電力だけではまかない切れなくなっている重負荷状態に取るモードである。それ由、発電機1は出力電圧Valtをバッテリ16の開放電圧V、例えば12.8V以上(Valthi)に上げるよう動作を始め(302)、電装負荷17が大きい状態が続く場合は発電機1の出力電圧ValtはValthi(発電率100%)を維持(303でNの場合)する。この状態が図2のオンモード状態である。 When the engine is started and the generator 1 starts generating power, first, as shown by 301 in FIG. 3, the relay A12 is turned off and the relay B13 is turned on. The relay state in which the relay A12 is off and the relay B13 is on is maintained to supply power from the battery 16 to the electrical load 17 even when the engine is stopped (the output of the generator 1 is zero). Yes. Further, when these relays A12 are off and the relay B13 is on, when the generator 1 is outputting, the electric load 17 is supplied with power from both the battery 16 and the generator 1 (this relay A12 is off). The mode in which the relay B13 is turned on is referred to as the on mode), and the electric load 17 is large, and is a mode in which a heavy load state in which the power generated by the generator 1 cannot be cut off only by the generated power is taken. Therefore, the generator 1 starts to increase the output voltage V alt to the open voltage V b of the battery 16, for example, 12.8 V or higher (V althi ) (302), and generates power if the electrical load 17 continues to be large. The output voltage V alt of the machine 1 maintains V althi (power generation rate 100%) (in the case of N in 303). This state is the on-mode state of FIG.

一方、発電機1の発電量に比べ電装負荷17が小さければ、発電機1は負荷量検出部105で電装負荷17が小さいことを検出し、励磁電流を制御し発電率Dを下げる。発電率Dが第2の所定の発電率Dlo以下(第2の所定の余力以上)となった場合(303でYの場合であり、図2ではdの時点である)、タイマー5をセットし、第1の所定の時間Tset1の計時を開始(304)する。第1の所定の時間Tset1以内に発電率Dが第2の所定の発電率Dloより高い第1の所定の発電率Dhiを超えれば(第1の所定の余力未満となれば、305でNの場合)、タイマー5をリセット(304のR)し、リレーA12がオフ、リレーB13がオンの状態(オンモード)を継続する。 On the other hand, the smaller the electrical load 17 as compared to the amount of electric power generated by the generator 1, the generator 1 detects that the electrical load 17 is small load detection unit 105, lowering the controls the exciting current generator ratio D f. When the power generation rate D f becomes equal to or lower than the second predetermined power generation rate D lo (greater than or equal to the second predetermined remaining capacity) (in the case of 303 at Y, in FIG. 2 at time d), the timer 5 is set. Set and start (304) timing of the first predetermined time T set1 . If the power generation rate D f exceeds the first predetermined power generation rate D hi higher than the second predetermined power generation rate D lo within the first predetermined time T set1 (if the power generation rate D f is less than the first predetermined remaining capacity, In the case of N in 305, the timer 5 is reset (R in 304), and the relay A12 is kept off and the relay B13 is kept on (on mode).

しかし第1の所定の時間Tset1以内の間、発電率Dが第1の所定の発電率Dhi以下を継続すれば(305でYの場合)、リレーA12をオンし、リレーB13をオフ(307、図2ではeの時点)する(このリレーA12がオン、リレーB13がオフのモードをオフモードと称する)。すなわち、発電率Dが所定の発電率以下の場合(発電余力が所定の余力以上の場合)にはオフモードとする。更に、出力電圧Valtをバッテリ16の開放電圧V(例えば12.8V)未満で、電装負荷17の作動電圧以上の出力電圧Valteco(例えば12.2V)となるように発電電圧制御部7で制御するが、リレーA12がオン、リレーB13がオフし電装負荷17への電力供給が出力電圧Valthiを発電していた発電機1の出力とバッテリ1の電圧から出力電圧Valtecoを発電する発電機1のみに切り替わるために、発電機1が出力電圧を急激にValtecoにした場合、電装負荷17への短時間での電圧変動が大きくなり、ヘッドランプ等がちらついたりするため、発電機1の出力を出力電圧Valtecoに向け徐励制御(308)する。この状態を図2に徐励1として示している。一方、オフモード時にはバッテリ16は出力電圧Valteco(例えば12.2V)をDC/DCコンバータ14で例えば14.2Vに昇圧した電圧で充電される。 However, if the power generation rate D f continues to be equal to or lower than the first predetermined power generation rate D hi within the first predetermined time T set1 (Y in 305), the relay A12 is turned on and the relay B13 is turned off. (307, time point e in FIG. 2) (This mode in which the relay A12 is on and the relay B13 is off is referred to as an off mode). That is, when the power generation rate D f is equal to or less than the predetermined power ratio (power margin is equal to or greater than a predetermined margin) to off mode in. Further, the generated voltage control unit 7 controls the output voltage V alt so that the output voltage V alt is less than the open circuit voltage V b (for example, 12.8 V) of the battery 16 and equal to or higher than the operating voltage of the electrical load 17 (for example, 12.2 V). in but controlled, relay A12 is turned on, the relay B13 to power off and the output voltage V Alteco from the voltage of the output and the battery 1 of the generator 1, the power supply is not generating power output voltage V Althi to the electrical load 17 In order to switch to the generator 1 only, when the generator 1 suddenly changes the output voltage to Valteco , the voltage fluctuation to the electrical load 17 increases in a short time and the headlamp flickers. The gradual excitation control is performed for the output of 1 toward the output voltage V alteco (308). This state is shown as slow excitation 1 in FIG. On the other hand, in the off mode, the battery 16 is charged with a voltage obtained by boosting the output voltage Valteco (for example, 12.2 V) to, for example, 14.2 V by the DC / DC converter 14.

以上述べた各モードにおける負荷条件、対応電源およびDC/DCコンバータ14の出力電圧Vdd、発電機1の出力電圧Valtの一例を表1に示す。 Table 1 shows an example of the load condition, the corresponding power supply, the output voltage V dd of the DC / DC converter 14, and the output voltage V alt of the generator 1 in each mode described above.

Figure 2005073479
車両速度が遅くなり、発電機1の発電率Dが増加したり、電装負荷17が大きくならない限り発電機1は低い出力電圧Valtecoを維持(309のNの場合)し続けるため、エンジンの消費トルクを低減することになり、車両の燃費向上に貢献する(オフモード=エコノミーモード)。一方、バッテリ16は出力電圧ValtecoをDC/DCコンバータ14で昇圧した電圧、例えば14.2Vで充電されるため、充電不足にはならない。更にバッテリ16は図4に示すようなバッテリ温度−充電電圧特性があり、バッテリの温度をバッテリ温度検出部10で検出し、昇圧電圧制御部9がDC/DCコンバータ14の出力電圧Vddを制御することによって、効率的にバッテリ16を充電できる。また、バッテリ16への充電電流を電流検出部15で測定し、バッテリ電圧をバッテリ電圧検出部11で測定し、それら測定値に基づき昇圧電圧制御部9がDC/DCコンバータ14の出力電圧Vddを制御することにより、更に効率的にバッテリ16を充電することが可能となりバッテリ16の寿命も延ばせる。
Figure 2005073479
Since the generator 1 continues to maintain a low output voltage Valteco (in the case of 309 N) unless the vehicle speed decreases, the power generation rate D f of the generator 1 increases, or the electrical load 17 increases, This reduces torque consumption and contributes to improved vehicle fuel efficiency (off mode = economy mode). On the other hand, since the battery 16 is charged with a voltage obtained by boosting the output voltage V alteco by the DC / DC converter 14, for example, 14.2V, charging does not become insufficient. Further, the battery 16 has a battery temperature-charge voltage characteristic as shown in FIG. 4. The battery temperature is detected by the battery temperature detector 10, and the boost voltage controller 9 controls the output voltage V dd of the DC / DC converter 14. By doing so, the battery 16 can be charged efficiently. Further, the charging current to the battery 16 is measured by the current detection unit 15, the battery voltage is measured by the battery voltage detection unit 11, and the boost voltage control unit 9 outputs the output voltage V dd of the DC / DC converter 14 based on these measurement values. By controlling this, the battery 16 can be charged more efficiently, and the life of the battery 16 can be extended.

次に、低い出力電圧Valtecoを電装負荷17に供給しているときに、図2に示すように車両速度が遅くなり発電機1の発電量が減少する場合、発電機1が発電率Dを高め電装負荷17に対応して行くが、発電率Dが第1の所定の発電率Dhiを超えた場合(309のYの場合、図2のaの時点)、タイマー5をセットし、第2の所定の時間Tset2の計時を開始(310)する。第2の所定の時間Tset2以内に発電率Dが第2の所定の発電率Dlo未満になった場合(311のNの場合)はタイマー5をリセット(310のR)し、リレーA12がオン、リレーB13がオフの状態(オフモード)を保つ。 Next, when the low output voltage V alteco is supplied to the electrical load 17, as shown in FIG. 2, when the vehicle speed decreases and the power generation amount of the generator 1 decreases, the generator 1 generates the power generation rate D f. When the power generation rate D f exceeds the first predetermined power generation rate D hi (in the case of Y of 309, as shown in FIG. 2a), the timer 5 is set. Then, the timing of the second predetermined time T set2 is started (310). If the power generation rate D f becomes less than the second predetermined power generation rate D lo within the second predetermined time T set2 (N of 311), the timer 5 is reset (R of 310) and the relay A12 Is on and relay B13 is off (off mode).

しかし、発電率Dが第2の所定の時間(Tset2)以内の間、第2の所定の発電率Dlo以上を継続した場合(311のYの場合)には、まず、リレーA12とリレーB13の両方をオフ(313)し、バッテリの開放電圧Vをバッテリ電圧検出回路11で検出(314)する。更に、次のリレーA12をオフし、リレーB13をオンすることによる、出力電圧Valtecoからバッテリ16の電圧に変化する電装負荷17への急激な電圧変動を避けるため、発電機1を出力電圧Valthiに向け徐励(315、図2では徐励2として記載)する。その後、リレーA12をオフにしたまま、リレーB13をオンに切り替え(316、図2ではcの時点)、電装負荷17に対して発電機1とバッテリ16から電力を供給する。すなわち、発電率Dが所定の発電率を超えた場合(発電余力が所定の余力未満の場合)にはオンモードとする。 However, if the power generation rate D f continues to be greater than or equal to the second predetermined power generation rate D lo within the second predetermined time (T set2 ) (in the case of 311 Y), first, the relay A12 and Both relays B13 are turned off (313), and the battery open circuit voltage Vb is detected (314) by the battery voltage detection circuit 11. Further, in order to avoid a sudden voltage fluctuation to the electrical load 17 that changes from the output voltage V alteco to the voltage of the battery 16 by turning off the next relay A12 and turning on the relay B13, the generator 1 is connected to the output voltage V Gradual excitation (315, described as gradual excitation 2 in FIG. 2) toward althi. Thereafter, with the relay A12 turned off, the relay B13 is switched on (316, at time c in FIG. 2), and power is supplied from the generator 1 and the battery 16 to the electrical load 17. That is, power factor D f is the on mode in the case of exceeding a predetermined power generation rate (if surplus electricity is less than the predetermined margin).

次に、図2に示すように車両の速度が速くなり、発電率Dが第2の所定の発電率Dlo以下となった場合(303でYの場合)、タイマー5をセットし、第1の所定の時間Tset1の計時を開始(304)する。この動作以後の説明は先に行ったので説明は省略する。 Next, as shown in FIG. 2, when the vehicle speed increases and the power generation rate D f becomes equal to or lower than the second predetermined power generation rate D lo (when Y in 303), the timer 5 is set, The timing of a predetermined time T set1 of 1 is started (304). Since the description after this operation has been made earlier, the description is omitted.

上記のように第1、第2の所定の発電率および第1、第2の所定の時間を設定することにより、急激な負荷変動や、発電率変動により直ちにリレーA12、リレーB13が切り替わることを防御でき、無用なスイッチング動作を抑制できる。   By setting the first and second predetermined power generation rates and the first and second predetermined times as described above, the relay A12 and the relay B13 can be immediately switched due to sudden load fluctuations or power generation fluctuations. It can be protected and unnecessary switching operations can be suppressed.

なお、上記説明では車両の速度が遅くなり、発電機1が発電率Dを高めた場合の説明をしたが、車両の速度が変化しなくても、電装負荷17が例えばクーラーの使用等により増加した場合にも、発電率Dが高まるため、リレーA12をオフ、リレーB13をオンに切り替える状況が起こりえることは明らかであり、また、リレー切替の条件を発電機の余力(発電率)としてきたが、エンジンの回転数、車両速度等から、リレー切替の条件を推定することも可能である。 In the above description, the case where the speed of the vehicle becomes slow and the generator 1 increases the power generation rate Df has been described. However, even if the speed of the vehicle does not change, the electrical load 17 can be reduced by using a cooler, for example. when also increased, since the power ratio D f increases, turns off the relay A12, it is clear that may occur situations to switch the relay B13 on, also, margin generator conditions of the relay switch (power ratio) However, it is also possible to estimate relay switching conditions from the engine speed, vehicle speed, and the like.

次に本発明の第2の実施の形態について図1、図5、図6を用いて動作を説明する。なお、回路構成については図1と同一であるので説明は省略する。   Next, the operation of the second embodiment of the present invention will be described with reference to FIG. 1, FIG. 5, and FIG. The circuit configuration is the same as in FIG.

本発明の第2の実施の形態では、オンモード時の発電機1の余力を判定する閾値をオフモード時の余力を判定する閾値より小さく設定(発電率としては大きく設定)していることである。図5に示すようにオンモード時には第4の所定の発電率Dlon(第4の所定の余力)として第2の所定の発電率Dloを超え、第1の所定の発電率未満(D1o<Dlon<Dhi)とし、第3の所定の発電率Dhin(第3の所定の余力)として第1の所定の発電率Dhiを超える(Dhin>Dhi)値に設定する。 In the second embodiment of the present invention, the threshold for determining the surplus power of the generator 1 in the on mode is set to be smaller than the threshold for determining the surplus power in the off mode (the power generation rate is set to be large). is there. As shown in FIG. 5, in the on-mode, the fourth predetermined power generation rate D lon (fourth predetermined remaining power) exceeds the second predetermined power generation rate D lo and is less than the first predetermined power generation rate (D 1o <D lon <D hi ), and a third predetermined power generation rate D hin (third predetermined remaining power) is set to a value that exceeds the first predetermined power generation rate D hi (D hin > D hi ).

次に図6のフローチャートを用いて説明する。図6のフローチャートにおいて、図3と同じく301に示すように、まずリレーA12をオフ、リレーB13をオンにセットし、オンモードに設定する。発電機1は出力電圧をValthiに高めるべく発電電圧制御部7より制御されるが、発電率Dが第4の所定の発電率Dlon以下(第4の所定の余力以上)となった(603でYの場合)時点(図5のdの時点)に、タイマー5をセットし、第1の所定の時間Tset1の計時を開始(304)する。第1の所定の時間Tset1以内に発電率Dが第3の所定の発電率Dhinを超えれば(第3の所定の余力未満となれば、605でNの場合)タイマー5をリセット(304のR)し、リレーA12がオフ、リレーB13がオンの状態(オンモード)を持続する。 Next, a description will be given using the flowchart of FIG. In the flowchart of FIG. 6, as indicated by 301 in the same manner as FIG. 3, first, the relay A12 is set to OFF, the relay B13 is set to ON, and the on mode is set. The generator 1 is controlled by the power generation voltage control unit 7 to increase the output voltage to V althi , but the power generation rate D f is equal to or lower than the fourth predetermined power generation rate D lon (more than the fourth predetermined remaining capacity). (In the case of Y in 603) At the time point (time point d in FIG. 5), the timer 5 is set and the time measurement of the first predetermined time T set1 is started (304). If the power generation rate D f exceeds the third predetermined power generation rate D hin within the first predetermined time T set1 (if it is less than the third predetermined remaining capacity, N in 605), the timer 5 is reset ( 304 R), and the relay A12 is off and the relay B13 is on (on mode).

しかし第1の所定の時間Tset1以内の間、発電率Dが第3の所定の発電率Dhin以下を継続すれば(605でYの場合)、リレーA12をオンし、リレーB13をオフ(307)する(オフモードとなる)。これ以後の動作フローは第1の実施の形態で説明したの同じであるので、説明は省略する。 But first predetermined time T set1 within between, if power ratio D f is continued following the third predetermined power ratio D hin (If Y in 605), and turns on the relay A12, turns off the relay B13 (307) Yes (becomes off mode). Since the subsequent operation flow is the same as that described in the first embodiment, the description thereof will be omitted.

このようにオンモード時の発電率閾値である第4の所定の発電率Dlonを第2の所定の閾値Dloより高く、かつ第1の所定の発電率Dhiより低い値にすることにより、オフモードになる頻度を高くすることができるため、燃費の向上を更に図ることができる。また、第4の所定の発電率Dlonのみを高めてもよいが第4の所定の発電率Dlonのみを高めた場合には、第1の所定の発電率Dhiと第4の所定の発電率Dlonとの差が小さくなるため、タイマー計測中(Tset1中)に発電率Dが第1の所定の発電率Dhi超える可能性が高くなり、オフモードになる頻度が下がる可能性がある場合には、第2の実施の形態で示したようにオンモード時に第1の所定の発電率Dhiを超える第3の所定の発電率Dhinを設定することが好ましい。 In this way, by setting the fourth predetermined power generation rate D lon , which is the power generation rate threshold in the on mode, to a value higher than the second predetermined threshold D lo and lower than the first predetermined power generation rate D hi. Since the frequency of entering the off mode can be increased, the fuel consumption can be further improved. In addition, only the fourth predetermined power generation rate D lon may be increased, but when only the fourth predetermined power generation rate D lon is increased, the first predetermined power generation rate D hi and the fourth predetermined power generation rate D Since the difference from the power generation rate D lon is small, the possibility that the power generation rate D f exceeds the first predetermined power generation rate D hi during the timer measurement (during T set1 ) is increased, and the frequency of entering the off mode may be decreased. If there is sex, it is preferable to set the first third predetermined power ratio D hin exceeding a predetermined power generation rate D hi oN mode as shown in the second embodiment.

第1の実施の形態の概略的な全体構成を示す回路構成図。The circuit block diagram which shows the schematic whole structure of 1st Embodiment. 第1の実施の形態の動作を示すタイムチャート。The time chart which shows operation | movement of 1st Embodiment. 第1の実施の形態の全体的な動作の概要を示すフローチャート。The flowchart which shows the outline | summary of the whole operation | movement of 1st Embodiment. バッテリ温度−充電電圧特性図。Battery temperature-charge voltage characteristic diagram. 第2の実施の形態の動作を示すタイムチャート。The time chart which shows operation | movement of 2nd Embodiment. 第2の実施の形態の全体的な動作の概要を示すフローチャート。The flowchart which shows the outline | summary of the whole operation | movement of 2nd Embodiment.

符号の説明Explanation of symbols

1 発電機 4 発電率検出部
7 発電電圧制御部 8 リレー制御部
9 昇圧電圧制御部 11 バッテリ電圧検出部
12 リレーA 13 リレーB
14 DC/DCコンバータ 16 バッテリ
17 電装負荷
DESCRIPTION OF SYMBOLS 1 Generator 4 Power generation rate detection part 7 Power generation voltage control part 8 Relay control part 9 Boost voltage control part 11 Battery voltage detection part 12 Relay A 13 Relay B
14 DC / DC converter 16 Battery 17 Electrical load

Claims (7)

エンジンの回転によって発電する発電機と、
前記発電機に接続された電装負荷と並列して前記発電機と第2のスイッチ手段を介して接続されたバッテリと、
前記発電機に第1のスイッチ手段を介して接続され、前記発電機の出力電圧を前記バッテリの開放電圧以上の電圧に昇圧して前記バッテリヘ供給する昇圧手段と、
前記発電機の発電余力を検出する発電余力検出手段と、
少なくとも前記発電余力検出手段によって検出された発電余力に基づいて前記発電機の出力電圧を制御する発電電圧制御手段と、
前記第1のスイッチ手段および前記第2のスイッチ手段の閉路および開路を制御するスイッチ制御手段とを備え、
前記発電余力検出手段によって検出された発電余力が所定の余力以上の場合には、前記スイッチ制御手段は前記第1のスイッチ手段を閉路、前記第2のスイッチ手段を開路し、かつ前記発電電圧制御手段は前記発電機の出力電圧を、前記電装負荷が作動可能な電圧以上であって前記バッテリの開放電圧未満の所定の電圧に制御し、
前記発電余力検出手段によって検出された発電余力が前記所定の余力未満の場合には、前記スイッチ制御手段は前記第1のスイッチ手段を開路、前記第2のスイッチ手段を閉路すること
、を特徴とする車両用電源装置。
A generator that generates electricity by rotating the engine;
A battery connected in parallel with the electrical load connected to the generator via the generator and a second switch means;
Boosting means connected to the generator via first switch means, boosting the output voltage of the generator to a voltage equal to or higher than the open circuit voltage of the battery, and supplying the boosted voltage to the battery;
Power generation surplus detection means for detecting the power generation surplus power of the generator;
Power generation voltage control means for controlling the output voltage of the generator based on at least the power generation surplus detected by the power generation surplus detection means;
Switch control means for controlling closing and opening of the first switch means and the second switch means,
When the power generation surplus detected by the power generation surplus detection means is greater than or equal to a predetermined surplus power, the switch control means closes the first switch means, opens the second switch means, and generates power generation voltage control. The means controls the output voltage of the generator to a predetermined voltage that is equal to or higher than a voltage at which the electrical load is operable and less than an open voltage of the battery,
When the power generation surplus detected by the power generation surplus detection means is less than the predetermined power reserve, the switch control means opens the first switch means and closes the second switch means. A vehicle power supply device.
前記発電余力検出手段によって検出された発電余力が前記所定の余力未満の場合には、前記発電電圧制御手段は前記発電機の出力電圧を少なくとも前記バッテリの開放電圧以上の電圧に制御することを特徴とする請求項1記載の車両用電源装置。   When the power generation surplus detected by the power generation surplus detection means is less than the predetermined surplus power, the power generation voltage control means controls the output voltage of the generator to at least a voltage equal to or higher than the open circuit voltage of the battery. The vehicle power supply device according to claim 1. 前記発電余力検出手段によって検出された発電余力が第1の所定の余力以上から前記第1の所定の余力未満となった時から第2の所定の時間の間、前記第1の所定の余力を超えている第2の所定の余力以下である場合には、前記発電電圧制御手段は前記第2の所定の時間後、前記発電機の出力電圧を少なくとも前記バッテリの開放電圧以上の電圧に制御し、前記スイッチ制御手段は前記第1のスイッチ手段を開路、前記第2のスイッチ手段を閉路することを特徴とする請求項1記載の車両用電源装置。   The first predetermined surplus power is obtained for a second predetermined time after the power generation surplus detected by the power generation surplus detecting means is greater than or equal to a first predetermined surplus power and less than the first predetermined surplus power. When the second predetermined remaining capacity is exceeded, the generated voltage control means controls the output voltage of the generator to at least the open circuit voltage of the battery after the second predetermined time. 2. The vehicle power supply device according to claim 1, wherein the switch control means opens the first switch means and closes the second switch means. 前記発電余力検出手段によって検出された発電余力が前記第2の所定の余力未満から前記第2の所定の余力以上となった場合に、前記第2の所定の余力以上となった時から第1の所定時間以内の間、前記第1の所定の余力以上である場合には、前記発電電圧制御手段は前記第1の所定時間後、前記発電機の出力電圧を前記電装負荷が作動可能な電圧以上であって前記バッテリの開放電圧未満の前記所定の電圧に制御すると共に、前記スイッチ制御手段は前記第1のスイッチ手段を閉路、前記第2のスイッチ手段を開路することを特徴とする請求項3記載の車両用電源装置。   When the power generation surplus detected by the power generation surplus detection means becomes less than the second predetermined surplus to be greater than or equal to the second predetermined surplus, the first time from when the power exceeds the second predetermined surplus. The power generation voltage control means, after the first predetermined time, determines the output voltage of the generator to be a voltage at which the electrical load can operate when the power exceeds the first predetermined remaining power within a predetermined time. The control is performed to the predetermined voltage lower than the open circuit voltage of the battery, and the switch control means closes the first switch means and opens the second switch means. 4. The vehicle power supply device according to 3. 前記発電余力検出手段によって検出された発電余力が前記第2の所定の余力未満でかつ、第1の所定の余力を超えた第4の所定の余力未満から前記第4の所定の余力以上となった場合に、前記第4の所定の余力以上となった時から前記第1の所定時間以内の間、前記第1の所定の余力以上である場合には、前記発電電圧制御手段は前記第1の所定時間後、前記発電機の出力電圧を前記電装負荷が作動可能な電圧以上であって前記バッテリの開放電圧未満の前記所定の電圧に制御すると共に、前記スイッチ制御手段は前記第1のスイッチ手段を閉路、前記第2のスイッチ手段を開路することを特徴とする請求項3記載の車両用電源装置。   The power generation surplus detected by the power generation surplus detection means is less than the second predetermined surplus and less than the fourth predetermined surplus exceeding the first predetermined surplus to be greater than or equal to the fourth predetermined surplus. In the case where the power generation voltage control means is greater than or equal to the first predetermined surplus power within the first predetermined time from when the fourth predetermined surplus power is reached, the generated voltage control means After the predetermined time, the output voltage of the generator is controlled to the predetermined voltage that is equal to or higher than the voltage at which the electrical load can operate and less than the open voltage of the battery, and the switch control means includes the first switch. 4. The vehicle power supply device according to claim 3, wherein the means is closed and the second switch means is opened. 前記発電余力検出手段によって検出された発電余力が前記第2の所定の余力未満でかつ、第1の所定の余力を超えた第4の所定の余力未満から前記第4の所定の余力以上となった場合に、前記第4の所定の余力以上となった時から前記第1の所定時間以内の間、前記第1の所定の余力未満の第3の所定の余力以上である場合には、前記発電電圧制御手段は前記第1の所定時間後、前記発電機の出力電圧を前記電装負荷が作動可能な電圧以上であって前記バッテリの開放電圧未満の前記所定の電圧に制御すると共に、前記スイッチ制御手段は前記第1のスイッチ手段を閉路、前記第2のスイッチ手段を開路することを特徴とする請求項3記載の車両用電源装置。   The power generation surplus detected by the power generation surplus detection means is less than the second predetermined surplus and less than the fourth predetermined surplus exceeding the first predetermined surplus to be greater than or equal to the fourth predetermined surplus. And when it is equal to or more than a third predetermined remaining force less than the first predetermined remaining force within the first predetermined time from when the fourth predetermined remaining force is exceeded. The generated voltage control means controls, after the first predetermined time, the output voltage of the generator to be equal to or higher than the voltage at which the electrical load is operable and less than the open voltage of the battery, and the switch 4. The vehicle power supply device according to claim 3, wherein the control means closes the first switch means and opens the second switch means. 前記バッテリの温度を検出するバッテリ温度検出手段と、前記バッテリ温度検出手段によって検出されたバッテリ温度に基づいて前記昇圧手段の出力電圧を設定する昇圧制御手段を備えたことを特徴とする請求項1〜4のいずれかに記載の車両用電源装置。   2. A battery temperature detecting means for detecting the temperature of the battery, and a boost control means for setting an output voltage of the boosting means based on the battery temperature detected by the battery temperature detecting means. The power supply device for vehicles in any one of -4.
JP2003304215A 2003-08-28 2003-08-28 Vehicular power supply device Pending JP2005073479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003304215A JP2005073479A (en) 2003-08-28 2003-08-28 Vehicular power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003304215A JP2005073479A (en) 2003-08-28 2003-08-28 Vehicular power supply device

Publications (1)

Publication Number Publication Date
JP2005073479A true JP2005073479A (en) 2005-03-17

Family

ID=34407967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003304215A Pending JP2005073479A (en) 2003-08-28 2003-08-28 Vehicular power supply device

Country Status (1)

Country Link
JP (1) JP2005073479A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009177903A (en) * 2008-01-23 2009-08-06 Denso Corp Vehicle system
CN105406536A (en) * 2015-12-07 2016-03-16 湖南深拓智能设备股份有限公司 Internet-based intelligent mobile charging system and method
CN105437994A (en) * 2015-12-07 2016-03-30 湖南深拓智能设备股份有限公司 Mobile charging vehicle electrical system used for rescuing and control method for mobile charging vehicle electrical system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009177903A (en) * 2008-01-23 2009-08-06 Denso Corp Vehicle system
US8129940B2 (en) 2008-01-23 2012-03-06 Denso Corporation Vehicle control system for controlling charging and discharging control of a battery
CN105406536A (en) * 2015-12-07 2016-03-16 湖南深拓智能设备股份有限公司 Internet-based intelligent mobile charging system and method
CN105437994A (en) * 2015-12-07 2016-03-30 湖南深拓智能设备股份有限公司 Mobile charging vehicle electrical system used for rescuing and control method for mobile charging vehicle electrical system

Similar Documents

Publication Publication Date Title
JP3826822B2 (en) Vehicle power generation control device
JP2001298873A (en) Power unit for vehicle
JP2007215277A (en) Power generation control device for vehicle
WO2013088552A1 (en) Power converter and control method for power converter
JP2005102476A (en) Activation method for power conversion device
JP2005160247A (en) Controller and control method of motor driven 4wd vehicle
JP2011256827A (en) Power supply system
CN107695483A (en) Double cell hybrid power engine drives welding machine and controls its method and system
EP2824830B1 (en) Power converter for vehicle generator-motor and method for controlling vehicle generator-motor
JP4950162B2 (en) Vehicle power supply
JP6284611B2 (en) Engine drive power generator
JP5173124B2 (en) Elevator control device
JP5196011B2 (en) Charge control system
JP2011256729A (en) Engine power generating apparatus
US20050212466A1 (en) Power converter for an electric engine start system
JP2012224187A (en) Hybrid power generator
JP4780171B2 (en) Vehicle power generation control device
CN112334374B (en) Drive control device and railway vehicle drive device
JP2010022133A (en) Charger device
JP2005073479A (en) Vehicular power supply device
JP2011229275A (en) Charging system for electric vehicle
JP2009303423A (en) Drive controller for step-up and step-down converter
JP2005218163A (en) Turbine generating set and its self-sustaining operation method
JP5720183B2 (en) Power generator with DC generator
JP4450085B2 (en) Vehicle power generation control device