JP2005073473A - Power system stabilizer - Google Patents

Power system stabilizer Download PDF

Info

Publication number
JP2005073473A
JP2005073473A JP2003304029A JP2003304029A JP2005073473A JP 2005073473 A JP2005073473 A JP 2005073473A JP 2003304029 A JP2003304029 A JP 2003304029A JP 2003304029 A JP2003304029 A JP 2003304029A JP 2005073473 A JP2005073473 A JP 2005073473A
Authority
JP
Japan
Prior art keywords
voltage control
control signal
power
synchronous generator
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003304029A
Other languages
Japanese (ja)
Inventor
Hiroo Konishi
博雄 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003304029A priority Critical patent/JP2005073473A/en
Publication of JP2005073473A publication Critical patent/JP2005073473A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power system stabilizer that is quickly returned to a constant state without being influenced by noise and without causing an interference when returned to an operation point of a linear region. <P>SOLUTION: A synchronous generator 1 connected to a system 3 is controlled to a set value in a terminal voltage by a voltage control signal of an automatic voltage control unit 11. A non-linear compensation signal obtained by the operation of the power stabilizer 9 is added to the voltage control signal of the automatic voltage control unit 11 by a dead zone device 10. A magnetic field current of the synchronous generator 1 is controlled by a compensation voltage control signal obtained by adding the non-linear compensation signal to the voltage control signal. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は同期発電機の界磁制御を行い電力系統を安定化する電力系統安定化装置に関する。   The present invention relates to a power system stabilization device that performs field control of a synchronous generator to stabilize a power system.

特開平8−163782号公報Japanese Patent Laid-Open No. 8-163782

一般に、電力系統の送電線は安定に送電できる限界(安定送電限界)でなく、落雷等による送電線事故時にも安定に送電するために安定送電限界よりも遥かに小さな電力を送電するようにしている。電力需要の増加に伴い送電線の送電電力を安定送電限界近くまで増大させることが求められている。このためには送電線事故時の電力系統の安定度を高める必要がある。   In general, the transmission line of the power grid is not the limit that can stably transmit power (stable power transmission limit), but to transmit power that is much smaller than the stable power transmission limit in order to transmit power stably even in the event of a power line accident due to lightning strikes, etc. Yes. As the power demand increases, it is required to increase the transmission power of the transmission line to near the stable transmission limit. For this purpose, it is necessary to increase the stability of the power system in the event of a transmission line accident.

同期発電機の界磁制御を行う電力安定化装置(PSS:Power System Stabilizer)は予め決められた動作点の周りで線形化し、安定に動作するようにしている。動作点の電力は安定送電限界よりも遥かに小さな電力に設定される。しかし、安定送電限界に近いところまで送電容量を増大させると、動作点は非線形性の強い動作点に移行する。このため、電力安定化装置の線形化だけでは系統の潮流の変化時や事故時に十分な制御効果が得られなくなる。   A power system stabilizer (PSS: Power System Stabilizer) that performs field control of a synchronous generator is linearized around a predetermined operating point so as to operate stably. The power at the operating point is set to a power much smaller than the stable transmission limit. However, when the transmission capacity is increased to a point close to the stable power transmission limit, the operating point shifts to an operating point with strong nonlinearity. For this reason, a sufficient control effect cannot be obtained when the power flow of the system changes or an accident occurs only by linearizing the power stabilizer.

このことを解決するために、線形設計された電力安定化装置の出力信号に非線形補償信号を加算することが提案されている。このことは上記特許文献1に記載されている。   In order to solve this problem, it has been proposed to add a nonlinear compensation signal to the output signal of the linearly designed power stabilizer. This is described in Patent Document 1 described above.

非線形補償信号を求める非線形演算は、電圧、電流、周波数等の電力状態量の微分値を使うことになる。このため、ノイズの影響を受けることになる。ノイズ対策としてフィルタを用いると制御ゲインを大きくできないので、動作点が安定化されて線形領域に戻ってきたときに干渉して振動したり、定常状態になるのに遅れが生じるという問題点を有する。   The non-linear calculation for obtaining the non-linear compensation signal uses a differential value of the power state quantity such as voltage, current and frequency. For this reason, it is affected by noise. If a filter is used as a noise countermeasure, the control gain cannot be increased, so there is a problem that when the operating point is stabilized and returned to the linear region, it vibrates by interference or a delay occurs in the steady state. .

本発明の目的はノイズの影響を受けることなく線形領域の動作点に戻ったときに干渉せずに速やかに定常状態にすることができる電力系統安定化装置を提供することにある。   An object of the present invention is to provide a power system stabilizing device that can quickly enter a steady state without interference when it returns to an operating point in a linear region without being affected by noise.

本発明の特徴とするところは、電力安定化装置で演算により求めた非線形補償信号が不感帯手段を介して自動電圧制御装置の電圧制御信号に加算されるようにし、電圧制御信号に非線形補償信号を加算した補償電圧制御信号によって同期発電機の界磁電流を制御するようにしたことにある。   A feature of the present invention is that the nonlinear compensation signal obtained by calculation in the power stabilizing device is added to the voltage control signal of the automatic voltage control device via the dead zone means, and the nonlinear compensation signal is added to the voltage control signal. This is because the field current of the synchronous generator is controlled by the added compensation voltage control signal.

本発明は、非線形補償信号が不感帯手段を介して自動電圧制御装置の電圧制御信号に加算されるようにしている。不感帯を設けることによってノイズを不感帯によってマスクされるために非線形演算の制御ゲインを大きくできるので応答を速くできる。また、動作点が定常状態に近づき非線形補償信号が小さくなると不感帯によってマスクされるので振動することなく速やかに定常状態にすることができる。   In the present invention, the non-linear compensation signal is added to the voltage control signal of the automatic voltage control device through the dead zone means. Since the noise is masked by the dead zone by providing the dead zone, the control gain of the nonlinear calculation can be increased, so that the response can be speeded up. Further, when the operating point approaches the steady state and the nonlinear compensation signal becomes small, it is masked by the dead zone, so that the steady state can be quickly achieved without vibration.

本発明は制御ゲインを大きくできるので応答を速くできると共に線形領域の動作点に戻ったときに干渉せずに速やかに定常状態にすることができる。   According to the present invention, the control gain can be increased, so that the response can be speeded up and at the same time the steady state can be quickly achieved without interference when the operating point returns to the linear region.

系統に接続される同期発電機は界磁電流をサイリスタ変換器によって制御される。サイリスタ変換器は同期発電機の交流出力電圧を直流電圧に変換し界磁電流として供給する。自動電圧制御装置は同期発電機の端子電圧を設定値に制御する電圧制御信号を出力する。電力安定化装置は系統の電力状態量を入力して微分演算を含む演算により非線形補償信号を求める。非線形補償信号は不感帯手段を介して電圧制御信号に加算される。位相制御手段は電圧制御信号に非線形補償信号を加算して得られる点弧位相制御信号を入力してサイリスタ変換器を点弧制御する。   The synchronous generator connected to the system controls the field current by a thyristor converter. The thyristor converter converts the AC output voltage of the synchronous generator into a DC voltage and supplies it as a field current. The automatic voltage control device outputs a voltage control signal for controlling the terminal voltage of the synchronous generator to a set value. The power stabilizing device inputs a power state quantity of the system and obtains a nonlinear compensation signal by a calculation including a differential calculation. The nonlinear compensation signal is added to the voltage control signal via the dead zone means. The phase control means inputs a firing phase control signal obtained by adding a non-linear compensation signal to the voltage control signal, and performs firing control of the thyristor converter.

図1に本発明の一実施例を示す。   FIG. 1 shows an embodiment of the present invention.

図1において、同期発電機1は遮断器2を介して電力系統3に接続されている。遮断器2と系統3の間には通常変圧器を設けているが図示を省略している。同期発電機1の出力電圧(端子電圧)は変圧器5を介してサイリスタ変換器4に入力され直流電圧に変換される。同期発電機1の界磁巻線1Fはサイリスタ変換器4により界磁電流を制御される。同期発電機1は自励式になっている。   In FIG. 1, a synchronous generator 1 is connected to a power system 3 via a circuit breaker 2. Usually, a transformer is provided between the circuit breaker 2 and the system 3, but the illustration is omitted. The output voltage (terminal voltage) of the synchronous generator 1 is input to the thyristor converter 4 via the transformer 5 and converted into a DC voltage. The field winding 1 </ b> F of the synchronous generator 1 is controlled by the thyristor converter 4. The synchronous generator 1 is self-excited.

変成器6で検出された同期発電機1の端子電圧は周波数検出装置(F検出)8、電力安定化装置(PSS)9および自動電圧制御装置(AVR)11に入力される。周波数検出装置8は電力系統3の周波数を検出して電力安定化装置9に加える。電力安定化装置9には変流器7で検出した電流も入力される。電力安定化装置9には発電機電圧V、電流Iおよび周波数Fの電力状態量が入力される。電力安定化装置9は電力状態量により非線形補償信号を演算2より求め不感帯装置10を介して加算装置12に加える。   The terminal voltage of the synchronous generator 1 detected by the transformer 6 is input to a frequency detection device (F detection) 8, a power stabilization device (PSS) 9, and an automatic voltage control device (AVR) 11. The frequency detection device 8 detects the frequency of the power system 3 and adds it to the power stabilization device 9. The current detected by the current transformer 7 is also input to the power stabilizing device 9. The power stabilizing device 9 receives the power state quantities of the generator voltage V, current I and frequency F. The power stabilizing device 9 obtains a nonlinear compensation signal from the calculation 2 based on the power state quantity and adds it to the adding device 12 via the dead zone device 10.

自動電圧制御装置11は入力した端子電圧と設定値を比較し、端子電圧を設定値にする電圧制御信号を加算装置12に加える。加算装置12で加算された電圧制御信号と非線形補償信号は補償電圧制御信号として位相制御装置(APPS)13に加えられる。補償電圧制御信号は点弧位相制御信号となる。位相制御装置13は点弧位相制御信号に基づきサイリスタ変換器4を点弧制御して界磁巻線1Fに与える界磁電流を調整する。   The automatic voltage control device 11 compares the input terminal voltage with the set value, and adds a voltage control signal for setting the terminal voltage to the set value to the adding device 12. The voltage control signal and the nonlinear compensation signal added by the adder 12 are added to the phase controller (APPS) 13 as a compensation voltage control signal. The compensation voltage control signal is an ignition phase control signal. The phase controller 13 controls the thyristor converter 4 based on the ignition phase control signal to adjust the field current applied to the field winding 1F.

図2に電力安定化装置9の一例構成図を示す。   FIG. 2 shows an example configuration diagram of the power stabilizing device 9.

図2において、入力部21に入力された発電機電圧V、電流I、周波数Fの電力状態量は状態量算出部22に導かれる。状態量算出部22は電力状態量により発電機1の内部相差角(系統3との位相差)δ、電圧変化量ΔVなどを算出する。状態量算出部22で算出された状態量は微分演算部23され、座標変換部24に入力され線形化される。微分演算部23は補償量を最適値にするために用いられる。   In FIG. 2, the power state quantity of the generator voltage V, current I, and frequency F input to the input unit 21 is led to the state quantity calculation unit 22. The state quantity calculation unit 22 calculates an internal phase difference angle (phase difference with the system 3) δ, a voltage change amount ΔV, and the like of the generator 1 based on the power state quantity. The state quantity calculated by the state quantity calculation unit 22 is input to the differential calculation unit 23 and input to the coordinate conversion unit 24 to be linearized. The differential calculation unit 23 is used to set the compensation amount to an optimum value.

座標変換部24で線形化された状態量は操作量演算部25に入力され操作量が求められる。操作量演算部25で求めた操作量は線形補償信号となる。操作量演算部25で求めた操作量(線形補償信号)は座標変換部26で座標変換され非線形補償信号に変換される。座標変換部26で得られた非線形補償信号は出力部27を介して不感帯装置10に出力される。   The state quantity linearized by the coordinate conversion unit 24 is input to the operation amount calculation unit 25 to obtain the operation amount. The manipulated variable obtained by the manipulated variable calculator 25 is a linear compensation signal. The manipulated variable (linear compensation signal) obtained by the manipulated variable calculator 25 is coordinate-transformed by the coordinate converter 26 and converted into a nonlinear compensation signal. The nonlinear compensation signal obtained by the coordinate conversion unit 26 is output to the dead zone device 10 via the output unit 27.

次に動作を説明する。   Next, the operation will be described.

自動電圧制御装置11は変成器6で検出した同期発電機1の端子電圧と設定値を比較し、端子電圧を設定値にする電圧制御信号を出力して加算装置12に加える。また、電力安定化装置9には発電機電圧V、電流Iおよび周波数Fの電力状態量が入力される。電力安定化装置9は発電機電圧V、電流Iおよび周波数Fを入力して非線形補償信号を演算により求める。非線形制御演算については、例えば、文献「Konishi et. al., "Confirmation Test for Nonlinear Excitation Control System Using State-Space Linearization", IECON2002, Nov. 5-8, Sevilla, Spain」に詳細に記載されており、また、本発明の要旨に直接関係ないので概略を説明する。   The automatic voltage control device 11 compares the terminal voltage of the synchronous generator 1 detected by the transformer 6 with the set value, outputs a voltage control signal for setting the terminal voltage to the set value, and applies it to the adder 12. In addition, the power stabilizing device 9 receives the power state quantities of the generator voltage V, current I, and frequency F. The power stabilizing device 9 receives the generator voltage V, current I and frequency F and obtains a nonlinear compensation signal by calculation. Nonlinear control operations are described in detail in, for example, the literature “Konishi et. Al.,“ Confirmation Test for Nonlinear Excitation Control System Using State-Space Linearization ”, IECON2002, Nov. 5-8, Sevilla, Spain”. Also, since it is not directly related to the gist of the present invention, an outline will be described.

電力安定化装置9は発電機1が接続されている系統3を状態空間で厳密に線形化し、例えば、電力動揺時の振動を最短時間で減衰させる評価関数を定式化する。そして、評価関数が最小となる入力ゲインをリカッチ方程式によって求める。   The power stabilization device 9 strictly linearizes the system 3 to which the generator 1 is connected in the state space, and formulates, for example, an evaluation function that attenuates vibration during power oscillation in the shortest time. Then, the input gain that minimizes the evaluation function is obtained by the Riccati equation.

電力安定化装置9の座標変換部24からは式1で表される変数ベクトルYが得られる。   A variable vector Y expressed by Equation 1 is obtained from the coordinate conversion unit 24 of the power stabilizing device 9.

Y=A・Y+B・U …(式1)
Y:状態量変数
A、B:係数行列
U:入力ベクトル
操作量演算部25は式1の変数ベクトルYを入力してリカッチ方程式により線形操作量uを演算する。
Y = A · Y + B · U (Formula 1)
Y: State variable
A, B: coefficient matrix
U: Input vector The manipulated variable calculator 25 receives the variable vector Y of Equation 1 and computes the linear manipulated variable u using the Riccati equation.

u=C・Y …(式2)
C:ゲイン定数
操作量演算部25で求められた線形操作量uは座標変換部26で座標変換され非線形補償信号(非線形操作量)に変換され出力部27から出力される。電力安定化装置9から出力された非線形補償信号は不感帯装置10を介して加算装置12に加えられる。加算装置12で加算された電圧制御信号と非線形補償信号は補償電圧制御信号として位相制御装置13に加えられる。補償電圧制御信号は点弧位相制御信号となる。位相制御装置13は点弧位相制御信号に基づきサイリスタ変換器4を点弧制御して界磁巻線1Fに与える界磁電流を調整する。同期発電機1は界磁電流の大きさに応じた電気出力を発生し系統3を安定化させる。
u = C · Y (Formula 2)
C: Gain constant The linear manipulated variable u obtained by the manipulated variable calculator 25 is coordinate transformed by the coordinate converter 26 and converted into a nonlinear compensation signal (nonlinear manipulated variable) and output from the output unit 27. The nonlinear compensation signal output from the power stabilizing device 9 is applied to the adding device 12 via the dead zone device 10. The voltage control signal and the nonlinear compensation signal added by the adder 12 are added to the phase controller 13 as a compensation voltage control signal. The compensation voltage control signal is an ignition phase control signal. The phase controller 13 controls the thyristor converter 4 based on the ignition phase control signal to adjust the field current applied to the field winding 1F. The synchronous generator 1 generates an electrical output corresponding to the magnitude of the field current and stabilizes the system 3.

このようにして電力系統の安定化を行うのであるが、その効果を理解するのを容易にするために非線形制御について図3を参照して説明する。   In this way, the power system is stabilized. Nonlinear control will be described with reference to FIG. 3 in order to facilitate understanding of the effect.

図3は横軸に同期発電機の位相角δをとり、縦軸に発電機出力Pを示す。発電機出力Pは送電線のリアクタンスをX、発電機出力電圧をVg,負荷端の電圧をVr、電圧VgとVrの位相差をδとすると式3で表される。   FIG. 3 shows the phase angle δ of the synchronous generator on the horizontal axis and the generator output P on the vertical axis. The generator output P is expressed by Equation 3 where X is the reactance of the transmission line, Vg is the generator output voltage, Vr is the voltage at the load end, and δ is the phase difference between the voltages Vg and Vr.

P=Vg・Vr・sinδ/X …(式3)
いま、発電機が定常的にa点(位相角δo)で動作しているものとする。従来は界磁制御をa点で線形化し、つまり特性bのように直線近似して最適(応答が速く安定)な界磁制御回路定数を決定している。しかし、系統事故時や送電線潮流が増加して発電機の動作点の位相角δが大きくなると、a点で線形近似した直線から求まる動作点と実際の動作点との誤差αが大きくなる。このために制御応答や制御性能が悪くなるばかりでなく、場合によっては系統が不安定となる。特に既存設備を有効利用するため安定送電限界に近いところで運転を行わざるを得ない状況にある場合には不安定となる。安定送電限界は発電機出力Pの最大値より数%程度小さいところである。
P = Vg ・ Vr ・ sinδ / X (Formula 3)
Now, it is assumed that the generator is constantly operating at point a (phase angle δo). Conventionally, field control is linearized at point a, that is, linearly approximated as shown by characteristic b to determine the optimum field control circuit constant (fast response and stable). However, if the phase angle δ at the operating point of the generator increases due to a grid fault or an increase in the power line power flow, the error α between the operating point obtained from the linear approximation of point a and the actual operating point increases. For this reason, not only the control response and the control performance deteriorate, but also the system becomes unstable in some cases. In particular, it becomes unstable when it is necessary to operate in the vicinity of the stable power transmission limit in order to make effective use of existing facilities. The stable power transmission limit is about several percent smaller than the maximum value of the generator output P.

非線形制御は線形近似を行っていないので発電機の動作点が発電機出力Pの正弦波上で移動しても制御誤差を生じることがなく、制御によって不安定となることはない。しかし、非線形制御は電圧、電流、角速度等の状態量の微分値を使用するのでノイズの影響を受け易くなり、制御特性に悪影響を及ぼすことになる。このためゲインを大きくできず、線形領域での動作が線形制御に比べて悪くなる。   Since non-linear control does not perform linear approximation, no control error occurs even if the operating point of the generator moves on the sine wave of the generator output P, and the control does not become unstable. However, since non-linear control uses differential values of state quantities such as voltage, current, angular velocity, etc., it becomes susceptible to noise and adversely affects control characteristics. For this reason, the gain cannot be increased, and the operation in the linear region becomes worse compared to the linear control.

本発明は電力安定化装置9で演算により求めた非線形補償信号が不感帯装置10を介して自動電圧制御装置11の電圧制御信号に加算されるようにしている。常時の定常状態では非線形補償信号が不感帯幅より小さく線形で応答の速い制御性能の良い制御動作が行える。   In the present invention, the nonlinear compensation signal obtained by calculation in the power stabilizing device 9 is added to the voltage control signal of the automatic voltage control device 11 through the dead zone device 10. In the normal steady state, the nonlinear compensation signal is smaller than the dead band width, linear and fast, and the control operation with good control performance can be performed.

一方、重潮流時や系統事故時等により非線形性の強い領域に動作点が移ると、非線形補償信号が不感帯幅より大きくなり自動電圧制御装置11の電圧制御信号を補正して制御安定性と応答を上げるようになる。また、動作点が定常状態に戻ると非線形補償信号が小さくなるために応答も遅くなる。そして非線形補償信号が不感帯幅より小さくなると不感帯により非線形補償信号をマスクするので線形制御が行われる。また、不感帯は常時の非線形制御につきもののノイズによる影響を防止する。   On the other hand, when the operating point moves to a region with strong nonlinearity due to a heavy current or a system fault, the nonlinear compensation signal becomes larger than the dead band width, and the voltage control signal of the automatic voltage controller 11 is corrected to control stability and response. Will be raised. Also, when the operating point returns to a steady state, the response becomes slow because the nonlinear compensation signal becomes small. When the nonlinear compensation signal becomes smaller than the dead zone width, the nonlinear compensation signal is masked by the dead zone, so that linear control is performed. In addition, the dead zone prevents the influence of noise that is normally associated with nonlinear control.

以上説明したように、本発明は非線形補償信号が不感帯手段を介して自動電圧制御装置の電圧制御信号に加算されるようにしている。不感帯を設けることによってノイズを不感帯によってマスクされるために非線形演算の制御ゲインを大きくできるので応答を速くできる。また、動作点が定常状態に近づき非線形補償信号が小さくなると不感帯によってマスクされるので振動することなく速やかに定常状態にすることができる。   As described above, according to the present invention, the nonlinear compensation signal is added to the voltage control signal of the automatic voltage control device through the dead zone means. Since the noise is masked by the dead zone by providing the dead zone, the control gain of the nonlinear calculation can be increased, so that the response can be speeded up. Further, when the operating point approaches the steady state and the nonlinear compensation signal becomes small, it is masked by the dead zone, so that the steady state can be quickly achieved without vibration.

したがって、制御ゲインを大きくできるので応答を速くできると共に線形領域の動作点に戻ったときに干渉せずに速やかに定常状態にすることができる。   Therefore, since the control gain can be increased, the response can be speeded up, and the steady state can be quickly obtained without interference when returning to the operating point in the linear region.

本発明の一実施例を示す構成図である。It is a block diagram which shows one Example of this invention. 本発明の電力安定化装置の一例詳細構成図である。It is an example detailed block diagram of the electric power stabilization apparatus of this invention. 本発明を説明するための特性図である。It is a characteristic view for demonstrating this invention.

符号の説明Explanation of symbols

1…同期発電機、1F…界磁巻線、2…遮断器、3…電力系統、4…サイリスタ変換器、5…変圧器、6…変成器、7…変流器、8…周波数検出装置、9…電力安定化装置、10…不感帯装置、11…自動電圧制御装置、12…加算装置、13…位相制御装置、21…入力部、22…状態量算出部、23…微分演算部、24…座標変換部(線形)、25…操作量演算部、26…座標変換部(非線形)、27…出力部。
DESCRIPTION OF SYMBOLS 1 ... Synchronous generator, 1F ... Field winding, 2 ... Circuit breaker, 3 ... Electric power system, 4 ... Thyristor converter, 5 ... Transformer, 6 ... Transformer, 7 ... Current transformer, 8 ... Frequency detection apparatus , 9 ... Power stabilization device, 10 ... Dead band device, 11 ... Automatic voltage control device, 12 ... Addition device, 13 ... Phase control device, 21 ... Input unit, 22 ... State quantity calculation unit, 23 ... Differential operation unit, 24 ... coordinate conversion unit (linear), 25 ... manipulated variable calculation unit, 26 ... coordinate conversion unit (non-linear), 27 ... output unit.

Claims (4)

系統に接続される同期発電機と、前記同期発電機の端子電圧を設定値に制御する電圧制御信号を出力する自動電圧制御装置と、前記系統を安定化する非線形補償信号を演算により求める電力安定化装置と、前記非線形補償信号を入力して前記電圧制御信号に加算する不感帯手段と、前記電圧制御信号に前記非線形補償信号を加算した補償電圧制御信号を入力して前記同期発電機の界磁電流を制御する界磁制御手段とを具備することを特徴とする電力系統安定化装置。   A synchronous generator connected to the system, an automatic voltage control device that outputs a voltage control signal that controls the terminal voltage of the synchronous generator to a set value, and a power stabilization that obtains a nonlinear compensation signal that stabilizes the system by calculation And a dead band means for inputting the nonlinear compensation signal and adding it to the voltage control signal, and receiving a compensation voltage control signal obtained by adding the nonlinear compensation signal to the voltage control signal. A power system stabilizing device comprising a field control means for controlling current. 系統に接続される同期発電機と、前記同期発電機の端子電圧を設定値に制御する電圧制御信号を出力する自動電圧制御装置と、前記系統の電力動揺を抑制する非線形補償信号を演算により求める電力安定化装置と、前記非線形補償信号を入力して前記電圧制御信号に加算する不感帯手段と、前記電圧制御信号に前記非線形補償信号を加算した補償電圧制御信号を入力して前記同期発電機の界磁電流を制御する界磁制御手段とを具備することを特徴とする電力系統安定化装置。   A synchronous generator connected to the system, an automatic voltage control device that outputs a voltage control signal that controls the terminal voltage of the synchronous generator to a set value, and a nonlinear compensation signal that suppresses power fluctuations of the system are obtained by calculation. A power stabilization device; dead zone means for inputting the nonlinear compensation signal and adding it to the voltage control signal; and a compensation voltage control signal obtained by adding the nonlinear compensation signal to the voltage control signal. A power system stabilizing device comprising field control means for controlling a field current. 系統に接続される同期発電機と、前記同期発電機の界磁電流を制御するサイリスタ変換器と、前記同期発電機の端子電圧を設定値に制御する電圧制御信号を出力する自動電圧制御装置と、前記系統の電力状態量に基づき非線形補償信号を演算により求める電力安定化装置と、前記非線形補償信号を入力して前記電圧制御信号に加算する不感帯手段と、前記電圧制御信号に前記非線形補償信号を加算した補償電圧制御信号を入力して前記同期発電機の界磁電流を制御する界磁制御手段とを具備することを特徴とする電力系統安定化装置。   A synchronous generator connected to the grid, a thyristor converter for controlling the field current of the synchronous generator, and an automatic voltage control device for outputting a voltage control signal for controlling the terminal voltage of the synchronous generator to a set value; A power stabilizing device that obtains a nonlinear compensation signal by calculation based on a power state quantity of the system, dead band means for inputting the nonlinear compensation signal and adding it to the voltage control signal, and the nonlinear compensation signal in the voltage control signal And a field control means for controlling the field current of the synchronous generator by inputting a compensation voltage control signal obtained by adding the power to the power system stabilizing device. 系統に接続される同期発電機と、前記同期発電機の交流出力電圧を直流電圧に変換し前記同期発電機の界磁電流を制御するサイリスタ変換器と、前記同期発電機の端子電圧を設定値に制御する電圧制御信号を出力する自動電圧制御装置と、前記系統の電力状態量を入力して微分演算を含む演算により非線形補償信号を求める電力安定化装置と、前記非線形補償信号を入力して前記電圧制御信号に加算する不感帯手段と、前記電圧制御信号に前記非線形補償信号を加算して得られる点弧位相制御信号を入力して前記サイリスタ変換器を点弧制御する位相制御手段とを具備することを特徴とする電力系統安定化装置。
A synchronous generator connected to the grid, a thyristor converter that converts the AC output voltage of the synchronous generator into a DC voltage and controls the field current of the synchronous generator, and a terminal voltage of the synchronous generator as a set value An automatic voltage control device that outputs a voltage control signal to be controlled, a power stabilization device that inputs a power state quantity of the system and obtains a nonlinear compensation signal by an operation including a differential operation, and an input of the nonlinear compensation signal A dead zone means for adding to the voltage control signal; and a phase control means for controlling the thyristor converter by inputting an ignition phase control signal obtained by adding the nonlinear compensation signal to the voltage control signal. A power system stabilizing device characterized by:
JP2003304029A 2003-08-28 2003-08-28 Power system stabilizer Pending JP2005073473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003304029A JP2005073473A (en) 2003-08-28 2003-08-28 Power system stabilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003304029A JP2005073473A (en) 2003-08-28 2003-08-28 Power system stabilizer

Publications (1)

Publication Number Publication Date
JP2005073473A true JP2005073473A (en) 2005-03-17

Family

ID=34407830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003304029A Pending JP2005073473A (en) 2003-08-28 2003-08-28 Power system stabilizer

Country Status (1)

Country Link
JP (1) JP2005073473A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157933A (en) * 2011-03-02 2011-08-17 华北电力大学 Design method of stabilizer of power system
CN103532130A (en) * 2013-09-06 2014-01-22 国家电网公司 III-type PSS (Power System Stabilizer) parameter setting method
WO2020141569A1 (en) * 2019-01-04 2020-07-09 東芝三菱電機産業システム株式会社 Thyristor starting device
CN114977181A (en) * 2022-03-02 2022-08-30 南方电网科学研究院有限责任公司 Stability analysis method and system for AC-DC hybrid power grid cooperative control system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157933A (en) * 2011-03-02 2011-08-17 华北电力大学 Design method of stabilizer of power system
CN102157933B (en) * 2011-03-02 2013-06-05 华北电力大学 Design method of stabilizer of power system
CN103532130A (en) * 2013-09-06 2014-01-22 国家电网公司 III-type PSS (Power System Stabilizer) parameter setting method
WO2020141569A1 (en) * 2019-01-04 2020-07-09 東芝三菱電機産業システム株式会社 Thyristor starting device
JPWO2020141569A1 (en) * 2019-01-04 2021-02-18 東芝三菱電機産業システム株式会社 Thyristor starter
CN114977181A (en) * 2022-03-02 2022-08-30 南方电网科学研究院有限责任公司 Stability analysis method and system for AC-DC hybrid power grid cooperative control system

Similar Documents

Publication Publication Date Title
US5604420A (en) Stabilizer for power system
USRE45880E1 (en) Method and system for multiphase current sensing
US10516346B2 (en) Power converter for converting DC power to AC power with adaptive control on characteristics of load
US20040135533A1 (en) Speed control device for ac electric motor
JP2008011626A (en) Control method for static var compensator
KR20140089600A (en) Apparatus for parallel operation of pulse-width modulation power converters
WO2016170822A1 (en) Control device for power converter
US7075274B2 (en) Reactive power compensator
CA1239188A (en) Method and apparatus for suppressing resonance phenomena in the a-c network on the inverter side of a high voltage d-c transmission system
US4692855A (en) Constant voltage and frequency type PWM inverter with minimum output distortion
JP2010193535A (en) Apparatus for stabilizing non-linear system
JP2014060818A (en) Excitation control apparatus and excitation control method
JP2005073473A (en) Power system stabilizer
JPH09252537A (en) Power system stabilizer
JP4849310B2 (en) AC / AC power converter controller
JP2001078362A (en) Power system stabilizing apparatus
KR102142288B1 (en) System for controlling grid-connected apparatus for distributed generation
JP2005065423A (en) Controller for self-excitation converter
JP2809833B2 (en) Excitation controller for synchronous machine
WO2001099268A1 (en) Excitation control device and excitation control method
JP4313991B2 (en) Power system stabilization control system
JP2007151228A (en) Inverter power unit
JPH09201072A (en) Control apparatus for power converter
JPH0435973B2 (en)
JP2016152731A (en) Control apparatus, control method, and autonomous operation system