JP2005073421A - Electrostatic attraction device - Google Patents

Electrostatic attraction device Download PDF

Info

Publication number
JP2005073421A
JP2005073421A JP2003301174A JP2003301174A JP2005073421A JP 2005073421 A JP2005073421 A JP 2005073421A JP 2003301174 A JP2003301174 A JP 2003301174A JP 2003301174 A JP2003301174 A JP 2003301174A JP 2005073421 A JP2005073421 A JP 2005073421A
Authority
JP
Japan
Prior art keywords
adsorption layer
adsorption
layer
volume resistivity
electrostatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003301174A
Other languages
Japanese (ja)
Inventor
Yoji Nakatani
洋二 中谷
Yukito Matsuda
幸人 松田
Shiro Nakagawa
士郎 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP2003301174A priority Critical patent/JP2005073421A/en
Publication of JP2005073421A publication Critical patent/JP2005073421A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an electrostatic attraction device wherein degradation in attractive force due to attractive electric charges is prevented, and even if a conductive substance is attracted for a long time, deterioration in an attractive layer is virtually negligible. <P>SOLUTION: An attractive layer that meets the following conditions is used the volume resistivity of the attractive layer that is brought into contact with attracted substances should be varied in the direction of its film thickness, the volume resistivity should be higher on the side closer to the attraction surface than in the central part, and the volume resistivity of the portion close to the attraction surface is 1.0×10<SP>14</SP>Ωcm or higher. Thus, frictional charges and the like produced on the attractive layer are discharged to a pair of electrodes in a relatively short time, and a current passed between a conductive attracted substance and a pair of the electrodes is suppressed. Thus, the attractive layer as the path of the current is prevented from being deteriorated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は静電クーロン力によって対象物を吸着する、静電吸着装置に関するものである。   The present invention relates to an electrostatic adsorption device that adsorbs an object by electrostatic Coulomb force.

静電クーロン力によって対象物を吸着する、いわゆる静電吸着装置は、磁気吸着とことなり吸着対象を選ばないので、産業上の用途が広い。たとえば、真空蒸着装置内でシリコンウエハを保持するための静電吸着装置(特許文献1参照)、コピーマシンにおける紙めくり機構に静電吸着装置を用いたもの(特許文献2参照)、シートを張り付ける手段として静電吸着装置をもつ電子黒板(特許文献3参照)などが開示されている。   A so-called electrostatic adsorption device that adsorbs an object by electrostatic Coulomb force has a wide range of industrial applications because it is magnetic adsorption and does not select an adsorption object. For example, an electrostatic adsorption device (see Patent Document 1) for holding a silicon wafer in a vacuum evaporation apparatus, an apparatus using an electrostatic adsorption device as a paper turning mechanism in a copy machine (see Patent Document 2), and a sheet attached An electronic blackboard (see Patent Document 3) having an electrostatic adsorption device is disclosed as a means for achieving this.

静電吸着装置は電界中の物体に誘起される静電誘導による逆極性電荷(導電体の場合)、あるいは分極による逆極性分極電荷(絶縁体の場合)と電界との間のクーロン力による引力で、対象物をその電界を形成している電極の方向へと吸着する装置である。
電界を発生させる方法としては、電極対に電圧を印加し電位差を与えるものや強誘電体の自発分極を利用するものがあるが、前者が一般的である。
An electrostatic adsorption device is a reverse polarity charge due to electrostatic induction induced by an object in an electric field (in the case of a conductor) or an attractive force due to a Coulomb force between a reverse polarity polarization charge due to polarization (in the case of an insulator) and the electric field. In this apparatus, the object is adsorbed in the direction of the electrode forming the electric field.
As a method for generating an electric field, there are a method in which a voltage is applied to an electrode pair to give a potential difference and a method in which spontaneous polarization of a ferroelectric material is used, but the former is generally used.

静電吸着装置は対象物が導電体であるか絶縁体であるかを問わず、これに吸着力を働かせることができる。しかし電極対に電圧を印加して発生した電界により対象物を吸着する形式の静電吸着装置においては、吸着対象物が導電体の場合、電極対が露出していると、電極対と吸着対象物が短絡して吸着電界の形成が困難になり、さらに被吸着物に課題な電流が流れるためこれを破損する恐れがあった。このため、特許文献1に記載された静電吸着装置においては、電極対の体積抵抗を1.0×10〜1.0×1012Ωcmとなるよう工夫し、被吸着物に過大な電流が流れるのを防ぐことが行われる。 The electrostatic adsorption device can apply an adsorption force to the object regardless of whether the object is a conductor or an insulator. However, in an electrostatic adsorption device that attracts an object with an electric field generated by applying a voltage to the electrode pair, if the object to be attracted is a conductor and the electrode pair is exposed, the electrode pair and the object to be attracted An object is short-circuited to make it difficult to form an adsorption electric field, and a problem current flows through the object to be adsorbed, which may damage the object. For this reason, in the electrostatic attraction apparatus described in Patent Document 1, the volume resistance of the electrode pair is devised to be 1.0 × 10 9 to 1.0 × 10 12 Ωcm, and an excessive current is applied to the object to be adsorbed. Is done to prevent the flow.

電極対が露出していても、被吸着物が絶縁体の場合には被吸着物による電極対の短絡という不都合は起こらないが、一般に電極対間の電位差は数100〜数1000Vを必要とするので、電極対の露出は感電の危険性があり、湿気や埃の付着などによる電極対間の放電が吸着動作を不完全にする可能性がある。このため何らかの電極対表面の被覆が必要である。   Even if the electrode pair is exposed, if the object to be adsorbed is an insulator, there is no inconvenience that the electrode pair is short-circuited by the object to be adsorbed, but generally the potential difference between the electrode pair needs several hundred to several thousand volts. Therefore, there is a risk of electric shock when the electrode pair is exposed, and discharge between the electrode pair due to adhesion of moisture or dust may cause the adsorption operation to be incomplete. Therefore, some kind of electrode pair surface coating is required.

電極対の露出による不都合を避けるために、電極対の表面に、これを覆う薄い誘電体膜よりなる吸着層を設置することが行われている(特許文献3、特許文献4参照)。
電極対をこのような構造に変更することにより、誘電体膜の厚さだけ電極対と被吸着物の距離が離れるので、吸着力がやや減少する。しかし、それでも吸着対象物上に静電誘導電荷や分極電荷を発生させることができるため吸着動作は十分に可能である。
In order to avoid inconvenience due to the exposure of the electrode pair, an adsorption layer made of a thin dielectric film covering the surface of the electrode pair is installed (see Patent Documents 3 and 4).
By changing the electrode pair to such a structure, the distance between the electrode pair and the object to be adsorbed is increased by the thickness of the dielectric film, so that the attractive force is slightly reduced. However, since the electrostatic induction charge and the polarization charge can be generated on the object to be attracted, the attracting operation is sufficiently possible.

このように、電極対を薄い誘電体膜よりなる吸着層で覆うことにより、電極対が露出していることによる不都合を解決し、感電の危険性もなく、導電体も絶縁体も区別無く吸着できる静電吸着装置を実現している。
しかし一方では、電極対を吸着層で被覆すると、被覆膜表面に吸着されたイオンや発生した摩擦電荷等がそのまま留まって、吸着力を低下させる現象が発生する。
このため電極対を被覆する吸着層は導電体吸着時の短絡や感電の問題と、吸着層表面にトラップされたイオンや電荷の電極対への放電の問題とを同時に解決できるよう設計されねばならない。
このような吸着層の改良としては、吸着層をさらに覆って水分浸透性が少なく酸素バリア特性を有する被覆層を形成することが提案されている(特許文献4参照)。さらに吸着層を表面抵抗値の異なる積層構造とし、吸着面側に表面抵抗の高い材質を配置することにより、全体として最適な吸着層の特性を得ることも提案されている(特許文献5参照)。
In this way, by covering the electrode pair with an adsorption layer made of a thin dielectric film, the problem caused by the exposed electrode pair is solved, there is no risk of electric shock, and the conductor and the insulator are adsorbed without distinction. An electrostatic chuck that can be used is realized.
However, on the other hand, when the electrode pair is covered with the adsorption layer, the ions adsorbed on the surface of the coating film, the generated triboelectric charges, etc. remain as they are, and a phenomenon of reducing the adsorption force occurs.
For this reason, the adsorption layer covering the electrode pair must be designed to simultaneously solve the problem of short circuit and electric shock during adsorption of the conductor and the problem of discharge of ions and charges trapped on the adsorption layer surface to the electrode pair. .
As an improvement of such an adsorption layer, it has been proposed to form a coating layer that further covers the adsorption layer and has a low water permeability and an oxygen barrier property (see Patent Document 4). Furthermore, it has also been proposed that the adsorption layer has a laminated structure with different surface resistance values, and a material having a high surface resistance is disposed on the adsorption surface side to obtain the optimum adsorption layer characteristics as a whole (see Patent Document 5). .

しかしこれら吸着層の改良に係わる試みにおいては、吸着力の向上や、吸着層の耐久性向上のための方法を、主に被吸着物が絶縁性物質の場合において提示するに留まっており、被吸着物が導電性物質の場合の安定的吸着に係わる改良は未だ提案されていなかった。したがって導電性物質を吸着するときに吸着膜の膜厚方向に流れる高い電流値の問題や、導電性物質と電極との短絡の危険性については考慮されておらず、それらを解決するための方法も提示されていない。ましてや導電性物質の安定的吸着のために必要とされる吸着層の体積抵抗率の範囲については全く言及されていない。   However, in these attempts to improve the adsorption layer, methods for improving the adsorption power and improving the durability of the adsorption layer have been presented mainly when the adsorbent is an insulating substance. No improvement has yet been proposed for stable adsorption when the adsorbate is a conductive material. Therefore, the problem of the high current value flowing in the film thickness direction of the adsorption film when adsorbing the conductive material and the risk of short circuit between the conductive material and the electrode are not considered, and a method for solving them Also not presented. Furthermore, there is no mention of the range of the volume resistivity of the adsorption layer required for the stable adsorption of the conductive substance.

図1に従来の静電吸着装置の真横から見た断面図を提示した。電極対は複数あってもよく、その平面状の構成は櫛型電極であってもよい。1、2は電極対、3は電極対を覆う吸着層、4は接着層、5は電極の保持材としての基体であって、電極1,2には電源6により電圧が加えられている。電極1,2間に加えられた電位差により、電極1,2間には電界が発生する。電界は電気力線7で表現されるが、電気力線の一部は吸着層3をとおりぬけ、近傍の物体8に静電誘導または分極による逆電荷を発生させ、クーロン力により吸着層3の表面に物体を吸着させる。   FIG. 1 shows a cross-sectional view of a conventional electrostatic attraction apparatus viewed from the side. There may be a plurality of electrode pairs, and the planar configuration may be a comb-shaped electrode. Reference numerals 1 and 2 denote electrode pairs, 3 denotes an adsorption layer covering the electrode pairs, 4 denotes an adhesive layer, and 5 denotes a substrate as a holding material for the electrodes. An electric field is generated between the electrodes 1 and 2 due to the potential difference applied between the electrodes 1 and 2. The electric field is expressed by the electric force lines 7, but a part of the electric force lines passes through the adsorption layer 3 to generate a reverse charge due to electrostatic induction or polarization in the nearby object 8, and the coulomb force causes the adsorption layer 3 to Adsorb an object on the surface.

図1で、吸着層3が絶縁体であると、吸着層3の表面に吸着されたイオンや摩擦電荷は長時間にわたり残存し、電極電位を相殺するので長時間にわたり吸着力が減少する。これをさけるため、吸着層3にわずかに導電性を付与し、吸着電荷を電極に放電することで吸着力の低下を防ぐ方式も考えられる。しかし、吸着層3が導電性をもつと、物体8が金属などの導電体であるとき、吸着層3には、電極1−吸着層3−物体8−吸着層3−電極2の経路で電流が流れる。とくに、導電性がイオン導電による場合には、短絡電流が導電性を発揮するイオン性物質を破壊する。また、イオン性の物質のポリマー中での異動を誘起する。これらの現象は吸着層中の電流が大きいほど加速され、あるときは吸着層を変色させ、また一定値を超えると吸着層3の分子構造を破壊するおそれがある。また一方吸着されている金属によっては、吸着層と接している側の面から腐蝕が進む可能性がある。   In FIG. 1, when the adsorption layer 3 is an insulator, ions and frictional charges adsorbed on the surface of the adsorption layer 3 remain for a long time and cancel the electrode potential, so that the adsorption force decreases for a long time. In order to avoid this, a method is conceivable in which a slight conductivity is imparted to the adsorption layer 3 and the adsorption force is discharged to the electrode to prevent the adsorption force from being lowered. However, when the adsorption layer 3 has conductivity, when the object 8 is a conductor such as a metal, the adsorption layer 3 has a current in the path of electrode 1 -adsorption layer 3 -object 8 -adsorption layer 3 -electrode 2. Flows. In particular, when the conductivity is ionic conduction, the short-circuit current destroys the ionic substance exhibiting the conductivity. It also induces transfer of ionic substances in the polymer. These phenomena are accelerated as the current in the adsorbing layer is increased. In some cases, the adsorbing layer is discolored, and when the value exceeds a certain value, the molecular structure of the adsorbing layer 3 may be destroyed. On the other hand, depending on the metal adsorbed, there is a possibility that the corrosion proceeds from the surface in contact with the adsorption layer.

代表的な静電吸着装置では吸着層の厚さは電極対間距離の数十分の一であるから、導電性を付与した吸着層表面に金属を吸着したままで放置すると、電極―吸着層―吸着金属―吸着層―他方の電極という電流経路長は電極対間の数十分の一のオーダーとなり、電極対間電流の数十倍の電流がながれることになる。これによる吸着層の破壊は装置の長期信頼性の点から無視できない。   In a typical electrostatic adsorption device, the thickness of the adsorption layer is a few tenths of the distance between the electrode pairs, so if the metal is adsorbed on the surface of the adsorption layer to which conductivity is imparted, the electrode-adsorption layer The current path length of the adsorbed metal, the adsorbed layer, and the other electrode is on the order of several tenths between the electrode pairs, and a current several tens of times greater than the current between the electrode pairs can be obtained. The destruction of the adsorption layer due to this cannot be ignored from the viewpoint of long-term reliability of the apparatus.

実験によれば、吸着層3として体積抵抗1.0×1013Ωcmの塩化ビニル(厚さ100μm)を用い、電極間電位差1500Vでアルミニュウム板を吸着させたとき、電流による吸着層の破壊のため、吸着力が不安定になる時間は約1000時間であった。商品化された静電吸着装置としての寿命は少なくとも5年(43000時間)は必要である。したがって、電流による吸着層の破壊は電流値に比例すると考えると、理想的には吸着層3の体積抵抗を50倍(5.0×1014Ωcm程度)にする必要がある。 According to the experiment, when vinyl chloride (thickness: 100 μm) having a volume resistance of 1.0 × 10 13 Ωcm is used as the adsorption layer 3 and the aluminum plate is adsorbed with an interelectrode potential difference of 1500 V, the adsorption layer is destroyed by current. The time when the adsorptive power becomes unstable was about 1000 hours. At least 5 years (43,000 hours) is necessary as a commercialized electrostatic adsorption device. Therefore, considering that the destruction of the adsorption layer due to current is proportional to the current value, ideally, the volume resistance of the adsorption layer 3 needs to be 50 times (about 5.0 × 10 14 Ωcm).

一方吸着層表面の摩擦電荷やイオンなどの吸着電荷を理想的に除去するためには吸着層の体積抵抗率は理想的には1.0×1011〜1.0×1014Ωcmの体積抵抗率が必要である。このため、吸着層破壊の発生を回避するために電流を抑制することを最優先とし、かつ少なくとも実用的な時間(1時間以内)での摩擦電荷などの吸着電荷を除去するためには、吸着層の体積抵抗率として1.0×1014〜1.0×1015Ωcmの体積抵抗率が安定的に得られることが好ましい。 On the other hand, the volume resistivity of the adsorption layer is ideally 1.0 × 10 11 to 1.0 × 10 14 Ωcm in order to ideally remove adsorption charges such as triboelectric charge and ions on the adsorption layer surface. A rate is needed. For this reason, in order to avoid the occurrence of adsorption layer destruction, the highest priority is to suppress the current, and at least to remove adsorption charges such as frictional charges in a practical time (within 1 hour) It is preferable that a volume resistivity of 1.0 × 10 14 to 1.0 × 10 15 Ωcm is stably obtained as the volume resistivity of the layer.

しかし、静電吸着装置の吸着層に要求される特性としては、耐熱性、耐候性、吸水性、可撓性、色、コストなど多くの特性があり、それらの特性を満足させながら、吸着層に規定の体積抵抗率を付与することは簡単なことではない。
たとえば、吸着層として適当な塩化ビニル樹脂、PET樹脂は体積抵抗として1.0×1013Ωcmより低いものは、導電材を練りこむなどにより比較的容易に得ることができる。しかし、1.0×1013Ωcmより高い体積抵抗を得ることは困難であり、特に1.0×1014〜1.0×1015Ωcmの体積抵抗率の均一な層を安定的に得るのは困難である。
特開平5−315435号公報 特開平5−201175号公報 特開平5−56201号公報 特開平6−225556号公報 特開昭61−152497号公報
However, there are many characteristics required for the adsorption layer of the electrostatic adsorption device, such as heat resistance, weather resistance, water absorption, flexibility, color, and cost. While satisfying these characteristics, the adsorption layer It is not easy to give a prescribed volume resistivity to.
For example, a vinyl chloride resin and a PET resin suitable for the adsorption layer having a volume resistance lower than 1.0 × 10 13 Ωcm can be obtained relatively easily by kneading a conductive material. However, it is difficult to obtain a volume resistance higher than 1.0 × 10 13 Ωcm, and in particular, it is possible to stably obtain a uniform layer having a volume resistivity of 1.0 × 10 14 to 1.0 × 10 15 Ωcm. It is difficult.
JP-A-5-315435 JP-A-5-2011175 JP-A-5-56201 JP-A-6-225556 Japanese Patent Laid-Open No. 61-152497

すなわち本発明の目的は、自由電荷やイオン、摩擦電荷の等の吸着層への滞留による吸着力の低下を防止して、安定した吸着力を発生することが可能であり、かつ導電体の長期吸着によっても吸着層中を流れる電流によって該吸着層や被吸着物が変色したり破壊されることがなく、長期安定使用が可能な静電吸着装置を提供することである。   That is, the object of the present invention is to prevent a decrease in the adsorption force due to retention of free charges, ions, frictional charges, etc. in the adsorption layer, and to generate a stable adsorption force, and for a long time of the conductor. It is an object of the present invention to provide an electrostatic adsorption device that can be used stably for a long period of time without being discolored or destroyed by the current flowing in the adsorption layer even by adsorption.

以上に鑑み発明者らは、電極対を覆う吸着層の体積抵抗率とその膜厚方向の分布を検討することにより、吸着層にトラップされた電荷を容易に電極対へと放電させることができ、かつ導電体を長期にわたり吸着させつづけても吸着層が破壊しない静電吸着装置を見出した。   In view of the above, the inventors can easily discharge the charges trapped in the adsorption layer to the electrode pair by examining the volume resistivity of the adsorption layer covering the electrode pair and the distribution in the film thickness direction. In addition, the present inventors have found an electrostatic adsorption device that does not break the adsorption layer even if the conductor is continuously adsorbed for a long time.

すなわち本発明は、層状の誘電体よりなる吸着層の裏面に近接して、略同一平面上に配された正負少なくとも一対の層状の電極と、該電極に電位差を与える手段とを有し、前記電極の発生する電界で誘起された分極電荷によるクーロン力によって、前記吸着層表面に物体を吸着する静電吸着装置において、該吸着層の中央部の体積抵抗率よりも、該吸着層の吸着面に近い部分の体積抵抗率の方が高く、前記吸着面近傍の体積抵抗率が1.0×1014Ωcm以上であることを特徴とする静電吸着装置を提供する。 That is, the present invention includes at least a pair of positive and negative layered electrodes arranged on substantially the same plane in the vicinity of the back surface of the adsorption layer made of a layered dielectric, and means for applying a potential difference to the electrodes, In an electrostatic adsorption device that adsorbs an object to the surface of the adsorption layer by Coulomb force caused by polarization charges induced by an electric field generated by an electrode, the adsorption surface of the adsorption layer is more than the volume resistivity of the central portion of the adsorption layer. An electrostatic attracting device is provided, in which the volume resistivity in a portion close to is higher and the volume resistivity in the vicinity of the attracting surface is 1.0 × 10 14 Ωcm or more.

吸着層の体積抵抗率に膜厚方向の変化をもたせて、吸着面側に体積抵抗率の高い部分を形成し、かつその体積抵抗率の値を1.0×1014Ωcm以上とすることにより、導電体が吸着したとしても、一方の電極対から吸着面と導電体を介して他方の電極対へと流れる電流経路の抵抗値が高くなるため、該経路を過大な電流が流れることがなく吸着層が破壊することがない。 By changing the volume resistivity of the adsorption layer in the film thickness direction, forming a portion with a high volume resistivity on the adsorption surface side, and setting the value of the volume resistivity to 1.0 × 10 14 Ωcm or more Even if the conductor is adsorbed, the resistance value of the current path flowing from one electrode pair to the other electrode pair via the adsorption surface and the conductor increases, so that an excessive current does not flow through the path. The adsorption layer is not destroyed.

以上詳細に説明した通り本発明によれば、吸着層へ滞留した電荷による吸着力低下がなく、また導電体を吸着したときも吸着層の劣化が実用上無視でき、また被吸着物と電極対との短絡の危険性もないため、被吸着物が絶縁性物質であるか導電性物質であるかを問わず、長期間の安定使用が可能である。   As described above in detail, according to the present invention, there is no decrease in the adsorption force due to the charge accumulated in the adsorption layer, and the degradation of the adsorption layer can be ignored practically even when the conductor is adsorbed. Therefore, it can be used stably for a long period of time regardless of whether the object to be adsorbed is an insulating material or a conductive material.

本発明の静電吸着装置の吸着層は、予め膜厚方向の体積抵抗率に変化を持たせたプラスティックフィルムを用いることができるが、該吸着層が電極側の吸着層bと、それより体積抵抗率の高い吸着面側の吸着層aとの積層構造をしていてもよい。このような積層構造を取ることにより、一定の膜厚分布の安定した吸着層を容易に作製することができる。   As the adsorption layer of the electrostatic adsorption apparatus of the present invention, a plastic film having a change in volume resistivity in the film thickness direction can be used in advance, and the adsorption layer is composed of the adsorption layer b on the electrode side and the volume thereof. You may have a laminated structure with the adsorption layer a of the adsorption surface side with high resistivity. By adopting such a laminated structure, a stable adsorption layer with a constant film thickness distribution can be easily produced.

吸着面近傍の体積抵抗率は、1.0×1014Ωcm以上である。吸着面近傍に層状に1.0×1014Ωcm以上の体積抵抗率の部分あると、導電性物質の吸着のときに吸着面と導電性物質を経た経路に過大な電流が流れて吸着層が破壊されることがない。体積抵抗率は1.0×1015Ωcm以上であることが好ましい。
また吸着層bのさらに電極側に体積抵抗率が1.0×1014Ωcm以上の吸着層cを設けることもできる。このような吸着層cを設けることによって、導電性の被吸着材から吸着層を通って電極対に至る電流値をさらに効果的に低下させることができる。
吸着層bの体積抵抗率は1.0×1011〜9.9×1013Ωcmの範囲であると、吸着層表面にトラップされたイオンや電荷が比較的短時間で電極対へと放電されやすく好ましい。
The volume resistivity in the vicinity of the adsorption surface is 1.0 × 10 14 Ωcm or more. If there is a layer having a volume resistivity of 1.0 × 10 14 Ωcm or more in the vicinity of the adsorption surface, an excessive current flows through the adsorption surface and the path through the conductive material when the conductive material is adsorbed, and the adsorption layer is formed. It will not be destroyed. The volume resistivity is preferably 1.0 × 10 15 Ωcm or more.
Further, an adsorption layer c having a volume resistivity of 1.0 × 10 14 Ωcm or more can be provided further on the electrode side of the adsorption layer b. By providing such an adsorption layer c, the current value from the conductive adsorbent to the electrode pair through the adsorption layer can be further effectively reduced.
When the volume resistivity of the adsorption layer b is in the range of 1.0 × 10 11 to 9.9 × 10 13 Ωcm, ions and charges trapped on the surface of the adsorption layer are discharged to the electrode pair in a relatively short time. It is easy and preferable.

吸着層は通常100〜200μmの厚さであって、その膜厚の好ましい内訳としては、吸着層aが0.5〜30μmが好ましい。吸着層bは5〜300μmの膜厚を有することが好ましい。吸着層aは吸着面に沿って体積抵抗率の高い層状の領域を形成することにより、吸着面と導電体を経由する電流経路を遮断すればよく、吸着層bとの膜厚比にもよるが1.0×1014Ωcm以上の体積抵抗率を有する吸着層aであれば機能する。1.0×1015Ωcm以上であれば、通常使用する材質の吸着層bを想定して、吸着層aは数μmの厚さに設定することも可能である。 The adsorption layer is usually 100 to 200 μm in thickness, and the preferred breakdown of the film thickness is preferably 0.5 to 30 μm for the adsorption layer a. The adsorption layer b preferably has a thickness of 5 to 300 μm. The adsorbing layer a may be formed by forming a layered region having a high volume resistivity along the adsorbing surface, thereby blocking the current path passing through the adsorbing surface and the conductor, and depends on the film thickness ratio of the adsorbing layer b. Will function if the adsorbed layer a has a volume resistivity of 1.0 × 10 14 Ωcm or more. If it is 1.0 × 10 15 Ωcm or more, the adsorption layer a can be set to a thickness of several μm, assuming an adsorption layer b of a normally used material.

一方吸着層bは、トラップされたイオンや電荷が電極対へと短時間で効果的に放電される経路を確保する必要上、吸着層aに比較して膜厚は厚い必要がある。したがって吸着層bの膜厚は吸着層aの膜厚の5倍以上が好ましく、10倍以上がさらに好ましい。吸着層cの追加によって、吸着面と導電体を介する電流経路は一層効果的に遮断されるが、トラップされたイオンや電荷の放電経路も遮断されるため、吸着層cの膜厚は、吸着層aの膜厚と同程度薄く設定されていることが好ましい。   On the other hand, the adsorption layer b needs to be thicker than the adsorption layer a in order to secure a path through which trapped ions and charges are effectively discharged to the electrode pair in a short time. Therefore, the film thickness of the adsorption layer b is preferably 5 times or more, more preferably 10 times or more that of the adsorption layer a. By adding the adsorption layer c, the current path through the adsorption surface and the conductor is more effectively blocked, but the discharge path of trapped ions and charges is also blocked. It is preferable that the thickness is set to be as thin as the layer a.

実際に体積抵抗率との組み合わせでいえば、吸着層の全厚が50〜150μmで、吸着層bの低体積抵抗率部分が80〜98%、残りを吸着層aまたは吸着層cの高体積抵抗率部分が占め、吸着層bの体積抵抗率が1.0×1012〜5.0×1013Ωcmで、吸着層a、吸着層cの体積抵抗率が1.0×1015〜5.0×1016Ωcmであることが好ましい。 Actually speaking, in combination with the volume resistivity, the total thickness of the adsorption layer is 50 to 150 μm, the low volume resistivity portion of the adsorption layer b is 80 to 98%, and the rest is the high volume of the adsorption layer a or the adsorption layer c. The resistivity part occupies, the volume resistivity of the adsorption layer b is 1.0 × 10 12 to 5.0 × 10 13 Ωcm, and the volume resistivity of the adsorption layer a and the adsorption layer c is 1.0 × 10 15 to 5 It is preferably 0.0 × 10 16 Ωcm.

吸着層a、吸着層b、吸着層cの各層の膜厚の設定は、膜厚方向の等価的な抵抗値がどの程度の大きさになるかを計算して決定することができる。たとえば、断面方向に、体積抵抗率1.0×1014Ωcm、厚さ100μmの部分と体積抵抗率1.0×1015Ωcm、厚さ9μmの部分をもつ吸着層は、体積抵抗率(1+9)×1014Ωcm、厚さ100μm、すなわち、体積抵抗率5.0×1014Ωcm、厚さ200μmの吸着層と等価的な抵抗を持つことになる。 The film thickness of each of the adsorption layer a, the adsorption layer b, and the adsorption layer c can be determined by calculating how much the equivalent resistance value in the film thickness direction is. For example, an adsorption layer having a volume resistivity of 1.0 × 10 14 Ωcm and a thickness of 100 μm and a volume resistivity of 1.0 × 10 15 Ωcm and a thickness of 9 μm in the cross-sectional direction has a volume resistivity (1 +9) × 10 14 Ωcm and a thickness of 100 μm, that is, a resistivity equivalent to an adsorption layer having a volume resistivity of 5.0 × 10 14 Ωcm and a thickness of 200 μm.

このように、その断面方向に体積抵抗率に応じて厚さを変えた部分を設けることにより、導電性の被吸着剤の短絡を有効に阻止することができ、また吸着面を介して流れる電流も低い値に抑えて、吸着層や被吸着物の特性変化を防ぐことができる。一方吸着面近傍の部分以外の部分は、体積抵抗率を相対的に低くでき、吸着面と平行な方向の抵抗も低く維持することができる。このため吸着イオンや摩擦電荷を電極対へと短時間に放電する機能も保持させることができる。   Thus, by providing a portion whose thickness is changed in accordance with the volume resistivity in the cross-sectional direction, it is possible to effectively prevent a short circuit of the conductive adsorbent, and the current flowing through the adsorption surface Can also be suppressed to a low value to prevent changes in properties of the adsorbed layer and the object to be adsorbed. On the other hand, portions other than the portion near the suction surface can have a relatively low volume resistivity, and the resistance in the direction parallel to the suction surface can also be kept low. For this reason, the function of discharging adsorbed ions and triboelectric charges to the electrode pair in a short time can also be maintained.

吸着層b(図2の3b)に用いられる材料としては、はポリエステル、ポリウレタン、ポリ塩化ビニル、ポリ塩化ビニリデン、ナイロン、アクリル、ポリカーボネート、ポリアセタール、フェノール、エポキシ等のプラスティック、またはこれらを2種以上混合した混合プラスティックのプレートもしくはシート、またはそれら同種、もしくは異種のプレートやシートを積層した材料が用いられる。通常吸着層全体の膜厚方向の体積抵抗率としては、導電性の被吸着材を介してのリークをなくすため1.0×1014〜1.0×1015Ωcmの体積抵抗に設定することが好ましい。しかし、自由電荷を電極対へと短時間に放電させ易くするためには、吸着層bの体積抵抗率を1.0×1011〜9.9×1013Ωcmの範囲に設定することが好ましく、1.0×1012〜5.0×1013Ωcmであればさらに好ましい。そのような体積抵抗範囲に設定が可能なプラスティックとしては、例えばポリ塩化ビニル、ナイロン、ポリエステルエラストマー、及び下記一般式(1)で表される樹脂等が好適に用いられる。 The material used for the adsorption layer b (3b in FIG. 2) is polyester, polyurethane, polyvinyl chloride, polyvinylidene chloride, nylon, acrylic, polycarbonate, polyacetal, phenol, epoxy and other plastics, or two or more thereof. A mixed plastic plate or sheet, or a material obtained by laminating the same or different kinds of plates or sheets is used. Usually, the volume resistivity in the film thickness direction of the entire adsorption layer is set to a volume resistance of 1.0 × 10 14 to 1.0 × 10 15 Ωcm in order to eliminate leakage through the conductive adsorbent. Is preferred. However, the volume resistivity of the adsorption layer b is preferably set in the range of 1.0 × 10 11 to 9.9 × 10 13 Ωcm in order to easily discharge the free charge to the electrode pair in a short time. 1.0 × 10 12 to 5.0 × 10 13 Ωcm is more preferable. As a plastic that can be set in such a volume resistance range, for example, polyvinyl chloride, nylon, polyester elastomer, and a resin represented by the following general formula (1) are preferably used.

Figure 2005073421

(1)
Figure 2005073421

(1)

ここでl,m,nは重合度を表し
l/(l+m+n)=0〜0.5
m/(l+m+n)=0.5〜0.995
n/(l+m+n)=0〜0.25
の関係があるものとする。一般式(1)のなかにはエチレンビニルアルコール共重合体樹脂、ポリビニルアルコール等が含まれる。
Here, l, m and n represent the degree of polymerization l / (l + m + n) = 0 to 0.5
m / (l + m + n) = 0.5 to 0.995
n / (l + m + n) = 0-0.25
It shall be related. In general formula (1), ethylene vinyl alcohol copolymer resin, polyvinyl alcohol, and the like are included.

吸着層の厚さは静電吸着装置の電極への印加電圧、想定している吸着力にもよるが1μm〜1mmの間で適宜設定することができる。ただし、クーロン力による吸着力を減少させないためには100〜200μmが好ましい。   The thickness of the adsorption layer can be appropriately set between 1 μm and 1 mm, depending on the voltage applied to the electrode of the electrostatic adsorption device and the assumed adsorption force. However, in order not to reduce the adsorption force due to the Coulomb force, 100 to 200 μm is preferable.

さらに吸着層bに用いるプラスティックに導電性微粉を含有させると、ノンオーミックな導電機構の寄与を大きくすることができ、より一層短時間で自由電荷を電極対へと放電することができる。
導電性微粉としては、1.0×10〜9.9×1010Ωcmの体積抵抗率を有する微粒子を用いることが好ましく、1.0×1010〜9.9×1010Ωcmの体積抵抗率を有する微粒子を用いることが、その添加量の調整によってプラスティックの体積抵抗率を上記した好ましい範囲内に設定することが容易でさらに好ましい。
Further, when conductive plastic powder is contained in the plastic used for the adsorption layer b, the contribution of the non-ohmic conductive mechanism can be increased, and free charge can be discharged to the electrode pair in a shorter time.
As the conductive fine powder, it is preferable to use fine particles having a volume resistivity of 1.0 × 10 6 to 9.9 × 10 10 Ωcm, and a volume resistance of 1.0 × 10 10 to 9.9 × 10 10 Ωcm. It is more preferable to use fine particles having a ratio because it is easy to set the volume resistivity of the plastic within the above-mentioned preferred range by adjusting the amount of addition.

本発明の吸着層a、吸着層c(図2の3a、3c)としては体積抵抗率が1.0×1014Ωcm以上であれば好ましく、1.0×1015Ωcm以上であることがさらに好ましい。この様なプラスティックとしては、前記3b層に記載したと同様な材料から2種以上混合した混合プラスティックのシートもしくはフィルム、またはそれら同種、もしくは異種のシートやフィルムを積層した材料で上記の体積抵抗率を満たすものが用いられる。具体的には、アクリル樹脂、ポリエステル樹脂、塩酢ビ樹脂、セルロース樹脂、ポリアミド樹脂、エポキシ樹脂等が好ましく用いられる。 The adsorbing layer a and adsorbing layer c (3a and 3c in FIG. 2) preferably have a volume resistivity of 1.0 × 10 14 Ωcm or more, and more preferably 1.0 × 10 15 Ωcm or more. preferable. Such plastics include a mixed plastic sheet or film in which two or more of the same materials as described in the layer 3b are mixed, or a material obtained by laminating the same or different types of sheets or films, and the volume resistivity described above. Those satisfying the above are used. Specifically, acrylic resin, polyester resin, vinyl chloride resin, cellulose resin, polyamide resin, epoxy resin and the like are preferably used.

各層の形成方法については、特に制限されない。吸着層bにプラスティックフィルムを用い、該フィルムに吸着層aまたは吸着層cを溶剤を用いた塗布液の塗布によって形成してもよいし、吸着層a、b、cそれぞれにフィルムを用いこれらをラミネートしてもよい。あるいは共押し出しで各層を同時に形成することもできる。   The method for forming each layer is not particularly limited. A plastic film may be used for the adsorption layer b, and the adsorption layer a or the adsorption layer c may be formed on the film by applying a coating solution using a solvent, or a film may be used for each of the adsorption layers a, b, and c. You may laminate. Alternatively, each layer can be formed simultaneously by coextrusion.

本発明の静電吸着装置における吸着層以外の部分については従来公知の静電吸着装置の製造方法を用いて製造することができる。
本発明の静電吸着装置の層状の電極部分(図2の4)については、その基本構成が上記の先行文献に提示されている。電極対は複数あってよく、その平面上の構成は吸着効率をあげるため例えば櫛形形状を用いることができる。このような一定の平面状パターンを有する電極は、絶縁性フィルム状支持体の上に金属蒸着または金属粉やカーボン粉を含有する導電性塗料を塗布することによって形成することができる。
About parts other than the adsorption layer in the electrostatic adsorption apparatus of this invention, it can manufacture using the manufacturing method of a conventionally well-known electrostatic adsorption apparatus.
The basic structure of the layered electrode portion (4 in FIG. 2) of the electrostatic attraction apparatus of the present invention is presented in the above-mentioned prior literature. There may be a plurality of electrode pairs, and the configuration on the plane may be, for example, a comb shape in order to increase the adsorption efficiency. The electrode having such a constant planar pattern can be formed by applying metal vapor deposition or a conductive paint containing metal powder or carbon powder on the insulating film-like support.

第2図は本発明による静電吸着装置の一例の断面図であって、吸着層は低体積抵抗率の吸着層bの部分と、高体積抵抗率の吸着層a、吸着層cの部分からなる。低体積抵抗率部分と高体積抵抗率部分は導電率の異なる同一材であってもよく、導電率の異なる異材質であってもよい。また、吸着層a、吸着層b、吸着層cはそれぞれが積層構造となっていてもよい。さらに、基材5は吸着層aまたは吸着層cと同程度以上の体積抵抗率を有する絶縁性フィルム状支持体であることが好ましい。   FIG. 2 is a cross-sectional view of an example of an electrostatic adsorption device according to the present invention. The adsorption layer is composed of an adsorption layer b having a low volume resistivity, an adsorption layer a and an adsorption layer c having a high volume resistivity. Become. The low volume resistivity portion and the high volume resistivity portion may be the same material having different electrical conductivity or different materials having different electrical conductivity. Further, each of the adsorption layer a, the adsorption layer b, and the adsorption layer c may have a laminated structure. Furthermore, the substrate 5 is preferably an insulating film-like support having a volume resistivity equal to or higher than that of the adsorption layer a or the adsorption layer c.

第2図に示すような本発明の静電吸着装置を作製する方法としては、例えば、吸着層a、吸着層b、吸着層cからなる吸着層の電極側にエポキシ系樹脂、アクリル系樹脂等の絶縁性の接着剤または粘着剤を塗布し、また電極パターンを形成した基体と電極を内側にして貼り合わせる方法を用いることができる。このとき、接着剤または粘着剤よりなる接着層4自体は電極対の絶縁の必要上、吸着層a、吸着層cと同等以上の高体積抵抗率を有することが好ましい。   As a method for producing the electrostatic adsorption device of the present invention as shown in FIG. 2, for example, an epoxy resin, an acrylic resin or the like on the electrode side of the adsorption layer comprising the adsorption layer a, the adsorption layer b, and the adsorption layer c. The insulating adhesive or pressure-sensitive adhesive can be applied, and the substrate on which the electrode pattern is formed and the electrode can be bonded inside. At this time, the adhesive layer 4 itself made of an adhesive or a pressure-sensitive adhesive preferably has a high volume resistivity equal to or higher than that of the adsorption layer a and the adsorption layer c because of the necessity of insulating the electrode pair.

吸着層の表面を材質の異なる高体積抵抗率の素材にできることは、静電吸着装置にとって、さらに有利である。静電吸着装置はその用途により、その表面に硬化処理や耐水、耐油、耐溶剤処理が必要なことが多い。例えばナイロンは体積抵抗率の環境による変動が大きいので吸着層として用いるためには表面被覆の処理が必須である。また塩化ビニル系樹脂は可塑剤のブリード現象があるためこれも表面被覆処理が好ましい。それらの処理膜は多くの場合体積抵抗が1.0×1016Ωcm以上の絶縁体である。しかし、本発明によって、それら処理膜の厚さをその体積抵抗にしたがって決定することで、これら処理膜を吸着層aとしても機能させることができるようにして多機能的な表面処理を行うことが可能となる。 It is further advantageous for the electrostatic adsorption device that the surface of the adsorption layer can be made of a material having a high volume resistivity and different materials. Electrostatic adsorption devices often require curing, water, oil, and solvent resistance on their surfaces, depending on their application. For example, since the volume resistivity of nylon varies greatly depending on the environment, a surface coating treatment is essential for use as an adsorption layer. Further, since the vinyl chloride resin has a bleed phenomenon of a plasticizer, this is also preferably subjected to a surface coating treatment. These treated films are often insulators having a volume resistance of 1.0 × 10 16 Ωcm or more. However, according to the present invention, by determining the thickness of these treatment films according to their volume resistance, it is possible to perform the multifunctional surface treatment so that these treatment films can also function as the adsorption layer a. It becomes possible.

図2には、実施例において作製された静電吸着装置の概念図を断面図として示した。1、2は電極対、3a,3b,3cは電極対を覆う吸着層a、吸着層b。吸着層cである。4は接着層、5は電極の保持材であって、電極1,2には電源6により電圧が加えられている。電極1,2間に加えられた電位差により、電極1,2間には電界が発生する。電界は電気力線7で表現されるが、電気力線の一部は膜3をとおりぬけ、近傍の物体8に静電誘導または分極による逆電荷を発生させる。このため、クーロン力により吸着膜a、(3a)の表面に物体を吸着させることができる。   In FIG. 2, the conceptual diagram of the electrostatic attraction apparatus produced in the Example was shown as sectional drawing. 1 and 2 are electrode pairs, 3a, 3b and 3c are adsorption layers a and adsorption layers b covering the electrode pairs. It is the adsorption layer c. Reference numeral 4 denotes an adhesive layer, and 5 denotes an electrode holding material. A voltage is applied to the electrodes 1 and 2 by a power source 6. An electric field is generated between the electrodes 1 and 2 due to the potential difference applied between the electrodes 1 and 2. The electric field is expressed by the electric force lines 7, but a part of the electric force lines passes through the film 3 and generates a reverse charge due to electrostatic induction or polarization in the nearby object 8. For this reason, an object can be adsorbed on the surface of the adsorption films a and (3a) by Coulomb force.

以下に吸着層a、吸着層b、吸着層cに各種の材料を使用して静電吸着装置用の吸着シートを作製した。   In the following, an adsorption sheet for an electrostatic adsorption apparatus was prepared using various materials for the adsorption layer a, the adsorption layer b, and the adsorption layer c.

吸着層bとなりうるフィルムとして厚さ100μm、体積抵抗率2.4×1012Ωcmのポリ塩化ビニル系樹脂フィルム(リケンテクノス社製 30A 導電性可塑剤使用)を用い、該フィルムの上に、吸着層aとしてTg100℃のポリメチルメタクリレート(パラロイドA−11 ローム&ハース社製 体積抵抗1.2×1015Ωcm)の膜厚5μmの吸着層aを塗布法によって形成し吸着シートを作製した。
一方PETの基体シート上にカーボンを含有する導電性塗料をスクリーン印刷して、膜厚4μmの電極パターンを形成した。電極パターンとしては基本的に電極対のそれぞれの電極が櫛歯状をしており、電極対の一方の電極の歯の部分が、他方の電極の歯と歯の間の部分に進入した形状をしており、隣り合った電極間のチャンネル幅は2mmである。
前記吸着シートの電極側にアクリル2液硬化型の粘着剤で厚さ30μmの接着層を形成し、電極パターンを形成した基体シートと電極を内側にして貼り合わせた後電極対間に電圧を加えて評価用の静電吸着シートとした。以下、電極対のそれぞれの電極に+750Vと−750Vをかけ、電極間電位差1500Vにて以下の実験を行った。
A polyvinyl chloride resin film having a thickness of 100 μm and a volume resistivity of 2.4 × 10 12 Ωcm (using 30A conductive plasticizer manufactured by Riken Technos Co., Ltd.) is used as a film that can serve as the adsorption layer b, and the adsorption layer is formed on the film. An absorptive sheet was prepared by forming, by a coating method, an adsorbing layer a having a film thickness of 5 μm and a polymethylmethacrylate having a Tg of 100 ° C. (volume ratio: 1.2 × 10 15 Ωcm, manufactured by Rohm & Haas Co., Ltd.).
On the other hand, a conductive paint containing carbon was screen-printed on a PET substrate sheet to form an electrode pattern having a thickness of 4 μm. As an electrode pattern, each electrode of the electrode pair basically has a comb-like shape, and the tooth part of one electrode of the electrode pair has entered the part between the teeth of the other electrode. The channel width between adjacent electrodes is 2 mm.
An adhesive layer with a thickness of 30 μm is formed on the electrode side of the adsorption sheet with an acrylic two-component curable pressure-sensitive adhesive, and the substrate sheet on which the electrode pattern is formed and the electrode are bonded together, and then a voltage is applied between the electrode pair. Thus, an electrostatic adsorption sheet for evaluation was obtained. Hereinafter, + 750V and -750V were applied to each electrode of the electrode pair, and the following experiment was performed with an interelectrode potential difference of 1500V.

実施例1で作製した吸着シートの吸着層aの吸着層bを挟んで反対側に吸着層aと同様の組成の吸着層cを形成して吸着シートを作製し、実施例1と同様に静電吸着装置を形成した。   An adsorbing layer c having the same composition as that of the adsorbing layer a is formed on the opposite side of the adsorbing layer b of the adsorbing layer a of the adsorbing sheet prepared in Example 1, and an adsorbing sheet is produced. An electroadsorption device was formed.

実施例1と同様の吸着層bの上に(実施例1で用いたポリメチルメタクリレート)/イソシアネート=100/5の架橋物(体積抵抗 7.2×1015Ωcm)の膜厚5μmの吸着層aを塗布方法によって形成し吸着シートを作製した。イソシアネートはコロネートHL(日本ポリウレタン社製)を用いた。この吸着シートを用い実施例1と同様に静電吸着装置を形成した。 On the same adsorption layer b as in Example 1, (polymethyl methacrylate used in Example 1) / isocyanate = 100/5 cross-linked product (volume resistance 7.2 × 10 15 Ωcm) with a film thickness of 5 μm a was formed by a coating method to produce an adsorption sheet. As the isocyanate, Coronate HL (manufactured by Nippon Polyurethane Co., Ltd.) was used. An electrostatic chuck was formed in the same manner as in Example 1 using this suction sheet.

吸着層aの膜厚を10μmにした以外は実施例3と同様にして吸着シートを形成した。この吸着シートを用い実施例1と同様に静電吸着装置を形成した。 An adsorption sheet was formed in the same manner as in Example 3 except that the thickness of the adsorption layer a was 10 μm. An electrostatic chuck was formed in the same manner as in Example 1 using this suction sheet.

実施例1と同様の吸着層bの上に飽和ポリエステル(Tg65℃)/イソシアネート=100/5の架橋物(体積抵抗 1.6×1015Ωcm)からなる膜厚5μmの吸着層aを塗布方法によって形成し吸着シートを作製した。)ポリエステルはエリーテルUE3201(ユニチカ製)を用いた。この吸着シートを用い実施例1と同様に静電吸着装置を形成した。 Application method of adsorbing layer a having a film thickness of 5 μm made of a crosslinked product (volume resistance 1.6 × 10 15 Ωcm) of saturated polyester (Tg 65 ° C.) / Isocyanate = 100/5 on the adsorbing layer b similar to Example 1. An adsorption sheet was prepared. ) Eritel UE3201 (manufactured by Unitika) was used as the polyester. An electrostatic chuck was formed in the same manner as in Example 1 using this suction sheet.

(実施例6〜実施例8、比較例1、比較例2、実施例9〜12、比較例3、比較例4)
以下実施例用、比較例用の吸着シートを作製した。使用原料の種類、形状、塗膜厚等は表1に示す通りである。それぞれ作製した
吸着シートを用い実施例1と同様に静電吸着装置を形成した。
(表1)
(Examples 6 to 8, Comparative Example 1, Comparative Example 2, Examples 9 to 12, Comparative Example 3, and Comparative Example 4)
Hereinafter, adsorption sheets for Examples and Comparative Examples were prepared. Table 1 shows the types, shapes, and coating thicknesses of the raw materials used. An electrostatic adsorption device was formed in the same manner as in Example 1 using the produced adsorption sheets.
(Table 1)

Figure 2005073421
UV塗料は、アクリディック17813(大日本インキ社製)を用いた。
PET−1は、ポリエステルポリオールのシートであり、ヌーベラン(テイジン化成社製)を用いた。ヌーベランはポリマーに金属塩を坦持させ、導電性付与処理をしたものである。
ナイロンは東レ合成の1401 No.20を用いた。
以上作製した吸着シートを静電吸着装置に組み込み、以下の試験方法によって評価した。
Figure 2005073421
As the UV paint, ACRICID 17813 (Dainippon Ink Co., Ltd.) was used.
PET-1 is a sheet of polyester polyol, and Nouvelan (manufactured by Teijin Kasei Co., Ltd.) was used. Nouvelan is a product in which a metal salt is supported on a polymer and conductivity is imparted.
Nylon is Toray Gosei's 1401 No. 20 was used.
The suction sheet produced as described above was incorporated into an electrostatic suction device and evaluated by the following test method.

(1)摩擦後電位の測定
通電時に摩擦を受けることにより、吸着層表面には、電位と逆方向の電荷が発生する。
この電荷の経時における消失の速さを測定することにより静電吸着装置の吸着電荷回復性を評価できる。測定は、装置の電源6をONにした状態で、吸着層3の表面をテッィシュペーパで20往復摩擦する。摩擦後、電源をOFFとし、更に電極1,2のアースを取った状態で吸着層3表面の電位を測定する。摩擦後から1分、10分の値を測定する。
(1) Measurement of potential after friction When subjected to friction during energization, a charge in the direction opposite to the potential is generated on the surface of the adsorption layer.
By measuring the rate of disappearance of this charge over time, the adsorptive charge recoverability of the electrostatic adsorption device can be evaluated. In the measurement, the surface of the adsorption layer 3 is subjected to 20 reciprocating frictions with a tissue paper while the power supply 6 of the apparatus is turned on. After friction, the power is turned off, and the potential of the adsorption layer 3 surface is measured with the electrodes 1 and 2 grounded. Measure the values for 1 minute and 10 minutes after friction.

(2)経時吸着電位変化率の測定
装置の電源をONにしたまま40℃−80%の促進条件下で、吸着層表面にアルミを吸着させた状態で2週間保管し、アルミを吸着させていた部分の表面電位の変化を測定する。表面電位の変化分を保管前の表面電位で除して経時吸着電位変化率とした。
(2) Measurement of the rate of change in adsorption potential with time The sample was stored for 2 weeks with aluminum adsorbed on the surface of the adsorption layer under accelerated conditions of 40 ° C-80% with the device turned on to adsorb the aluminum. Measure the change in the surface potential of the part. The change in surface potential was divided by the surface potential before storage to obtain the rate of change in adsorption potential with time.

(3)促進試験後外観の観察
吸着層bとしてPVCシートを用いた場合には、装置の電源をONにしたまま40℃ 80%の状態で2週間保管し、吸着層表面の外観(変色)の変化を観察する。観察結果について5段階評価を行った。
◎ 変化無し
○ わずかに黄変またはピンク色に着色する。
△ 黄色に変色する
× 黄色〜茶色に変色する。
×× 茶色〜暗褐色に変色する。
(3) Observation of appearance after accelerated test When a PVC sheet is used as the adsorption layer b, it is stored for 2 weeks at 40 ° C. and 80% with the power of the apparatus turned on, and the appearance of the adsorption layer surface (discoloration) Observe the changes. The observation results were evaluated on a five-point scale.
◎ No change ○ Colored slightly yellow or pink.
Δ Change to yellow × Change to yellow to brown.
XX Turns brown to dark brown.

(4)表面ふき取り性
通電し、室温で2週間放置した静電吸着シートの汚れの付着した吸着層表面を、水で湿らせたウェスで拭取り汚れの拭い取り易さを比較した。結果について5段階評価を行った。
◎ 簡単に除去が可能で汚れが全く残らない。
○ 簡単に除去が可能汚れほとんどなし。
△ 取れにくいが除去は可能。
× 取りにくく一部汚れが残る。
×× 拭いても取れない。
(4) Surface wiping property The surface of the adsorbing layer on the electrostatic adsorbing sheet that was energized and left at room temperature for 2 weeks was wiped with a cloth moistened with water, and the easiness of wiping off the dirt was compared. The results were evaluated on a 5-point scale.
◎ Easy to remove and no dirt remains.
○ Easy to remove.
△ Hard to remove but can be removed.
× Some dirt remains difficult to remove.
XX Cannot be removed by wiping.

(5)体積抵抗
吸着層に使用したフィルム及び塗膜の膜厚方向の体積抵抗率を測定する。
(5) Volume resistance The volume resistivity in the film thickness direction of the film and coating film used for the adsorption layer is measured.

以下表2と表3と表4に測定結果を示す。   The measurement results are shown in Table 2, Table 3 and Table 4 below.

(表2) (Table 2)

Figure 2005073421
Figure 2005073421

(表3) (Table 3)

Figure 2005073421
Figure 2005073421

(表4) (Table 4)

Figure 2005073421
Figure 2005073421

表2、表3、表4の結果から明らかなように吸着層bに塩化ビニル系樹脂を用いたものは、吸着層aを積層することで促進試験後の吸着層bの変色を抑えることができる。吸着層bにPETを用いたもの、ナイロンを用いたものは促進試験後も外観に変化はなかった。しかし吸着層bにPETを用いて吸着層aを用いなかった比較例3は、アルミに接していた吸着層bの表面が傷つきやすく変化することがわかっている。吸着層aを積層することでこのような吸着層の表面変化は防止することができた。また吸着層bにナイロンを用いて吸着層aを用いなかった比較例4は、アルミが腐蝕を受けることが確認できている。しかし吸着層aを積層した実施例12ではアルミが腐蝕を受けることはなかった。
また吸着層aは被覆層としての機能も果たしており、吸着層bが塩化ビニル系樹脂やPETのときは、電界で吸着される埃の表面ふき取り性を向上させているのがわかる。また吸着層bがナイロンのときは、ナイロンの吸湿を抑制し環境変化で体積抵抗率が変動するのを防ぐことが確認できている。
As is clear from the results of Table 2, Table 3, and Table 4, those using a vinyl chloride resin for the adsorption layer b can suppress discoloration of the adsorption layer b after the accelerated test by laminating the adsorption layer a. it can. There was no change in the appearance of the adsorption layer b using PET or nylon using the accelerated test. However, in Comparative Example 3 in which the adsorption layer b is made of PET and the adsorption layer a is not used, it is known that the surface of the adsorption layer b that is in contact with aluminum is easily damaged. By laminating the adsorption layer a, such a change in the surface of the adsorption layer could be prevented. Moreover, it has confirmed that the comparative example 4 which used nylon for the adsorption layer b and did not use the adsorption layer a received aluminum corrosion. However, in Example 12 in which the adsorption layer a was laminated, aluminum was not corroded.
The adsorption layer a also functions as a coating layer. When the adsorption layer b is a vinyl chloride resin or PET, it can be seen that the surface wiping property of dust adsorbed by an electric field is improved. Moreover, when the adsorption layer b is nylon, it has been confirmed that moisture absorption of nylon is suppressed and volume resistivity is prevented from fluctuating due to environmental changes.

従来の静電吸着装置の概念を示す断面図である。It is sectional drawing which shows the concept of the conventional electrostatic attraction apparatus. 本発明の静電吸着装置の構成を概念的に示す断面図である。It is sectional drawing which shows notionally the structure of the electrostatic attraction apparatus of this invention.

符号の説明Explanation of symbols

1、2 電極対
3 吸着層
3a 吸着層a(高体積抵抗率部分)
3b 吸着層b(低体積抵抗率部分)
3c 吸着層c(高体積抵抗率部分)
4 粘着層
5 基体
6 電源
7 電気力線
8 被吸着物(導電性物質)
1, 2 Electrode pair 3 Adsorption layer 3a Adsorption layer a (High volume resistivity part)
3b Adsorption layer b (low volume resistivity part)
3c adsorption layer c (high volume resistivity part)
4 Adhesive layer 5 Substrate 6 Power supply 7 Electric field lines 8 Object to be adsorbed (conductive substance)

Claims (10)

層状の誘電体よりなる吸着層の裏面に近接して、略同一平面上に配された正負少なくとも一対の層状の電極と、該電極に電位差を与える手段とを有し、前記電極の発生する電界で誘起された分極電荷によるクーロン力によって、前記吸着層表面に物体を吸着する静電吸着装置において、該吸着層の中央部の体積抵抗率よりも、該吸着層の吸着面近傍の体積抵抗率の方が高く、前記吸着面近傍の体積抵抗率が1.0×1014Ωcm以上であることを特徴とする静電吸着装置。 An electric field generated by the electrodes, comprising at least a pair of positive and negative layered electrodes arranged on substantially the same plane in proximity to the back surface of the adsorption layer made of a layered dielectric, and means for giving a potential difference to the electrodes In the electrostatic adsorption device that adsorbs an object to the surface of the adsorption layer by the Coulomb force caused by the polarization charge induced in step 1, the volume resistivity in the vicinity of the adsorption surface of the adsorption layer is more than the volume resistivity in the central part of the adsorption layer. Is higher, and the volume resistivity in the vicinity of the suction surface is 1.0 × 10 14 Ωcm or more. 前記吸着層が電極側の吸着層bと、吸着層bよりも体積抵抗率の高い吸着面側の吸着層aとの積層構造よりなる請求項1に記載の静電吸着装置。   The electrostatic adsorption device according to claim 1, wherein the adsorption layer has a laminated structure of an adsorption layer b on the electrode side and an adsorption layer a on the adsorption surface side having a higher volume resistivity than the adsorption layer b. 前記吸着層bの体積抵抗率が1.0×1011〜9.9×1013Ωcmである請求項2に記載の静電吸着装置。 The electrostatic adsorption apparatus according to claim 2, wherein the adsorption layer b has a volume resistivity of 1.0 × 10 11 to 9.9 × 10 13 Ωcm. 前記吸着層bのさらに電極側に吸着層cを有し、吸着層cの体積抵抗率が1.0×1014Ωcm以上である請求項3に記載の静電吸着装置。 The electrostatic adsorption device according to claim 3, further comprising an adsorption layer c on the electrode side of the adsorption layer b, wherein the volume resistivity of the adsorption layer c is 1.0 × 10 14 Ωcm or more. 吸着層aの膜厚が0.5〜30μm,吸着層bの膜厚が5〜300μm,吸着層cの膜厚が0.5〜20μmである請求項4に記載の静電吸着装置。   The electrostatic attraction apparatus according to claim 4, wherein the adsorption layer a has a thickness of 0.5 to 30 µm, the adsorption layer b has a thickness of 5 to 300 µm, and the adsorption layer c has a thickness of 0.5 to 20 µm. 吸着層bがポリ塩化ビニル系樹脂を含有する請求項3〜5のいずれか1項に記載の静電吸着装置。   The electrostatic adsorption device according to claim 3, wherein the adsorption layer b contains a polyvinyl chloride resin. 吸着層bがナイロンを含有する請求項3〜5のいずれか1項に記載の静電吸着装置。 The electrostatic adsorption device according to claim 3, wherein the adsorption layer b contains nylon. 吸着層bがポリエステルエラストマーを含有する請求項3〜5のいずれか1項に記載の静電吸着装置。 The electrostatic adsorption device according to claim 3, wherein the adsorption layer b contains a polyester elastomer. 吸着層bが下記一般式(1)
Figure 2005073421
(1)
であらわされる繰り返し単位を有し、重合度を表す整数l,m,nが
l/(l+m+n)=0〜0.5
m/(l+m+n)=0.5〜0.995
n/(l+m+n)=0〜0.25
で表される関係を有する樹脂を含有する請求項3〜5のいずれか1項に記載の静電吸着装置。
The adsorption layer b is represented by the following general formula (1)
Figure 2005073421
(1)
And an integer l, m, n representing the degree of polymerization is 1 / (l + m + n) = 0 to 0.5.
m / (l + m + n) = 0.5 to 0.995
n / (l + m + n) = 0-0.25
The electrostatic attraction apparatus of any one of Claims 3-5 containing resin which has the relationship represented by these.
前記吸着層a、及び吸着層cのそれぞれが、アクリル樹脂、ポリエステル樹脂、塩酢ビ樹脂、セルロース系樹脂、ポリアミド系樹脂、及びエポキシ樹脂からなる群のいずれか一つである、請求項4〜9のいずれか1項に記載の静電吸着装置。
Each of the adsorption layer a and the adsorption layer c is one of the group consisting of an acrylic resin, a polyester resin, a vinyl acetate resin, a cellulose resin, a polyamide resin, and an epoxy resin. The electrostatic attraction apparatus according to any one of 9.
JP2003301174A 2003-08-26 2003-08-26 Electrostatic attraction device Pending JP2005073421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003301174A JP2005073421A (en) 2003-08-26 2003-08-26 Electrostatic attraction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003301174A JP2005073421A (en) 2003-08-26 2003-08-26 Electrostatic attraction device

Publications (1)

Publication Number Publication Date
JP2005073421A true JP2005073421A (en) 2005-03-17

Family

ID=34405872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003301174A Pending JP2005073421A (en) 2003-08-26 2003-08-26 Electrostatic attraction device

Country Status (1)

Country Link
JP (1) JP2005073421A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111918605A (en) * 2018-03-29 2020-11-10 创意科技股份有限公司 Suction pad

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111918605A (en) * 2018-03-29 2020-11-10 创意科技股份有限公司 Suction pad

Similar Documents

Publication Publication Date Title
EP3048489B1 (en) Charging member, method for manufacturing same, process cartridge, and electrophotographic device
JP2740036B2 (en) Corona generator
EP2583761A1 (en) Cleaning system
JP2010099565A (en) Cleaning system
JP2005073421A (en) Electrostatic attraction device
EP0055599B1 (en) Direct imaging method and electrostatic printing equipment
JP2010029839A (en) Electrostatic dust collecting device
JPH06225556A (en) Electrostatic sucker
JP2007031145A (en) Paper taking out device
JP2005245157A (en) Electrostatic attraction device
US9594326B2 (en) Photoconductive layer refresh
JP2004147358A (en) Electrostatic attracting device
GB2136207A (en) Manufacture of electrets
JP4443798B2 (en) Digital image forming element and image forming method
WO2011135765A1 (en) Cleaning device
JP2007133034A (en) Image forming apparatus and process cartridge
JPH11160963A (en) Electrifying device and electrostatic photographic printing machine
JP2005266774A (en) Conductive member and process cartridge including the same, and image forming apparatus including the process cartridge
JP2003004552A (en) Resistor for pressure-sensitive sensor and pressure- sensitive sensor using the same
US7590367B2 (en) Charge device coatings
JP2006316208A (en) Pressure-sensitive adhesive sheet
FR2694436A1 (en) Electrostatic information board system.
JPH09121564A (en) Electrostatic actuator
JPH038544B2 (en)
EP1791032B1 (en) Electrically conductive member, process cartridge and image forming apparatus

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050905