JP2005072434A - Film forming method of semiconductor substrate and semiconductor device manufactured by employing the method - Google Patents

Film forming method of semiconductor substrate and semiconductor device manufactured by employing the method Download PDF

Info

Publication number
JP2005072434A
JP2005072434A JP2003302604A JP2003302604A JP2005072434A JP 2005072434 A JP2005072434 A JP 2005072434A JP 2003302604 A JP2003302604 A JP 2003302604A JP 2003302604 A JP2003302604 A JP 2003302604A JP 2005072434 A JP2005072434 A JP 2005072434A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
film
surface treatment
resist film
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003302604A
Other languages
Japanese (ja)
Inventor
Matsuo Iwasaki
松夫 岩▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003302604A priority Critical patent/JP2005072434A/en
Publication of JP2005072434A publication Critical patent/JP2005072434A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a film forming method of a semiconductor substrate capable of forming a thick film thickness without the need for heat treatment for a long time, and to provide a semiconductor device manufactured by employing the method. <P>SOLUTION: A resist film on the surface of the semiconductor substrate is removed, surface treatment to promote growing of a film formed on the surface of the semiconductor substrate is carried out at a prescribed temperature, and thereafter the film is formed on the surface of the semiconductor substrate at a temperature higher than the prescribed temperature. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体基板の成膜方法及び同方法を用いて製造した半導体装置に関するものである。   The present invention relates to a method for forming a semiconductor substrate and a semiconductor device manufactured using the method.

従来より、半導体装置では、半導体基板の表面に保護膜や絶縁膜として酸化膜を形成している。   Conventionally, in a semiconductor device, an oxide film is formed as a protective film or an insulating film on the surface of a semiconductor substrate.

この酸化膜は、ドライエッチング工程やリソグラフィー工程に用いたレジスト膜を所定の温度の下でアッシングにより除去し、その後、所定の温度から上昇させた温度の下で半導体基板の表面を熱酸化させて形成していた(たとえば、特許文献1参照。)。   This oxide film is obtained by removing the resist film used in the dry etching process or lithography process by ashing at a predetermined temperature, and then thermally oxidizing the surface of the semiconductor substrate at a temperature increased from the predetermined temperature. (For example, refer to Patent Document 1).

その方法としては、まず、半導体基板の表面に残されたレジスト膜に対して、アッシング装置内で約200℃の温度の下で酸素(O)ラジカルを衝突させることによってレジスト膜を除去する。その後、酸化炉内温度を約1000℃に上昇させて半導体基板の表面を熱酸化することにより酸化膜を形成していた。   As the method, first, the resist film is removed by making an oxygen (O) radical collide with the resist film remaining on the surface of the semiconductor substrate at a temperature of about 200 ° C. in an ashing apparatus. Thereafter, the temperature inside the oxidation furnace was raised to about 1000 ° C., and the surface of the semiconductor substrate was thermally oxidized to form an oxide film.

このようにして形成した酸化膜は、半導体装置の絶縁及び保護を目的として形成するものであるため、その膜厚は、所定の厚さ以上になるように形成する必要があった。
特開平11-102906号公報
Since the oxide film thus formed is formed for the purpose of insulating and protecting the semiconductor device, it has been necessary to form the film so as to have a predetermined thickness or more.
Japanese Patent Laid-Open No. 11-102906

ところが、上記した従来の成膜方法では、半導体基板の表面を長時間熱酸化しなければ、酸化膜の膜厚を厚く形成することができなかった。そのため、半導体基板は、長時間高温の下にさらされることによって歪みを生じてしまい、製品の歩留まりが低下していた。   However, in the conventional film formation method described above, the oxide film cannot be formed thick unless the surface of the semiconductor substrate is thermally oxidized for a long time. For this reason, the semiconductor substrate is distorted by being exposed to a high temperature for a long time, and the yield of the product is lowered.

しかも、長時間かけて熱酸化した場合には、レジスト膜を除去した際に発生した不純物が酸化膜の内部に混入して酸化膜を汚染してしまうため、半導体基板と酸化膜との界面特性が不安定となり、酸化膜の絶縁特性を劣化させていた。   In addition, when thermal oxidation is performed over a long period of time, impurities generated when the resist film is removed are mixed into the oxide film and contaminate the oxide film, so the interface characteristics between the semiconductor substrate and the oxide film Became unstable, and the insulating properties of the oxide film were deteriorated.

そこで、請求項1に係る本発明では、半導体基板の表面のレジスト膜を除去した後に、半導体基板の表面に形成する膜の成長を促進させるための表面処理を所定温度の下で行い、その後、所定温度より高い温度の下で半導体基板の表面に成膜することとした。   Therefore, in the present invention according to claim 1, after removing the resist film on the surface of the semiconductor substrate, surface treatment for promoting the growth of the film formed on the surface of the semiconductor substrate is performed under a predetermined temperature, The film was formed on the surface of the semiconductor substrate under a temperature higher than a predetermined temperature.

また、請求項2に係る本発明では、表面処理は、表面処理時間を変更することによって成膜する膜厚を変更することとした。   In the present invention according to claim 2, in the surface treatment, the film thickness to be formed is changed by changing the surface treatment time.

また、請求項3に係る本発明では、表面処理は、表面処理時間を20分以上とすることとした。   In the present invention according to claim 3, the surface treatment time is set to 20 minutes or longer.

また、請求項4に係る本発明では、半導体基板の表面にプラズマを照射することによって、レジスト膜の除去と表面処理とを行うこととした。   In the present invention according to claim 4, the resist film is removed and the surface treatment is performed by irradiating the surface of the semiconductor substrate with plasma.

また、請求項5に係る本発明では、半導体基板の表面のレジスト膜を除去した後に、半導体基板の表面に形成する膜の成長を促進させるための表面処理を所定温度の下で行い、その後、所定温度より高い温度の下で半導体基板の表面に成膜することによって製造することとした。   Further, in the present invention according to claim 5, after removing the resist film on the surface of the semiconductor substrate, surface treatment for promoting the growth of the film formed on the surface of the semiconductor substrate is performed under a predetermined temperature, The production was performed by forming a film on the surface of the semiconductor substrate under a temperature higher than a predetermined temperature.

請求項1に係る本発明では、半導体基板の表面のレジスト膜を除去した後に、半導体基板の表面に形成する膜の成長を促進させるための表面処理を所定温度の下で行い、その後、所定温度より高い温度の下で半導体基板の表面に成膜することとしたため、長時間の熱処理を行うことなく膜厚を厚く形成することができるので、半導体基板に歪みが発生することを防止できるとともに、膜の絶縁特性が劣化することを防止することができる。   In the present invention according to claim 1, after removing the resist film on the surface of the semiconductor substrate, a surface treatment for promoting the growth of the film formed on the surface of the semiconductor substrate is performed at a predetermined temperature, and then the predetermined temperature is reached. Since the film was formed on the surface of the semiconductor substrate at a higher temperature, the film thickness can be increased without performing a long-time heat treatment, so that the semiconductor substrate can be prevented from being distorted, It is possible to prevent the insulating properties of the film from deteriorating.

また、請求項2に係る本発明では、表面処理は、表面処理時間を変更することによって成膜する膜厚を変更することとしたため、表面処理の処理時間を変更するだけで、所望の厚さの膜を容易に形成することができる。   Further, in the present invention according to claim 2, since the surface treatment is to change the film thickness to be formed by changing the surface treatment time, the desired thickness can be obtained only by changing the surface treatment time. This film can be easily formed.

また、請求項3に係る本発明では、表面処理は、表面処理時間を20分以上とすることとしたため、この表面処理によって半導体基板の表面に形成する膜の成長を確実に促進させることができる。   In the present invention according to claim 3, since the surface treatment is performed for a surface treatment time of 20 minutes or longer, the growth of a film formed on the surface of the semiconductor substrate can be surely promoted by this surface treatment. .

また、請求項4に係る本発明では、半導体基板の表面にプラズマを照射することによって、レジスト膜の除去と表面処理とを行うこととしたため、レジスト膜の除去に用いるアッシング装置をそのまま利用して表面処理を行うことができるので、表面処理を行うために新たに設備投資を行う必要がなく、半導体装置の製造コストの増大を未然に防止することができる。   In the present invention according to claim 4, since the resist film is removed and the surface treatment is performed by irradiating the surface of the semiconductor substrate with plasma, the ashing apparatus used for removing the resist film is used as it is. Since the surface treatment can be performed, it is not necessary to make a new capital investment to perform the surface treatment, and an increase in manufacturing cost of the semiconductor device can be prevented.

また、請求項5に係る本発明では、半導体基板の表面のレジスト膜を除去した後に、半導体基板の表面に形成する膜の成長を促進させるための表面処理を所定温度の下で行い、その後、所定温度より高い温度の下で半導体基板の表面に成膜することによって製造することとしたため、長時間の熱処理による半導体基板の変形を防止できるため、不良品の発生率が低い半導体装置とすることができ、製品の歩留まりを向上させることができる。また、長時間の熱処理による悪影響を受けていない絶縁特性に優れた膜を有する半導体装置とすることができる。   Further, in the present invention according to claim 5, after removing the resist film on the surface of the semiconductor substrate, surface treatment for promoting the growth of the film formed on the surface of the semiconductor substrate is performed under a predetermined temperature, Since manufacturing is performed by forming a film on the surface of a semiconductor substrate at a temperature higher than a predetermined temperature, deformation of the semiconductor substrate due to long-time heat treatment can be prevented, so that a semiconductor device with a low incidence of defective products is obtained. And the yield of products can be improved. Further, a semiconductor device having a film with excellent insulating characteristics that is not adversely affected by heat treatment for a long time can be obtained.

本発明に係る半導体装置は、次のようにして製造する。   The semiconductor device according to the present invention is manufactured as follows.

まず、半導体基板の表面に形成されているレジスト膜に対して、アッシング装置を用いてプラズマを照射することによってレジスト膜を除去し、半導体基板の表面を露出させる。   First, the resist film formed on the surface of the semiconductor substrate is irradiated with plasma using an ashing device to remove the resist film, thereby exposing the surface of the semiconductor substrate.

その後、レジスト膜の除去を行った際と略同一のプロセス条件の下で、半導体基板の表面に形成する膜の成長を促進させるための表面処理を行う。   Thereafter, a surface treatment for promoting the growth of the film formed on the surface of the semiconductor substrate is performed under substantially the same process conditions as when the resist film was removed.

この表面処理は、レジスト膜の除去を行ったアッシング装置をそのまま用いて、半導体基板をアッシング装置から取り出すことなく半導体基板の露出面に対してプラズマを所定時間照射する。なお、この表面処理は、次の成膜処理での温度よりも低い温度の下で行う。   In this surface treatment, the ashing apparatus from which the resist film has been removed is used as it is, and the exposed surface of the semiconductor substrate is irradiated with plasma for a predetermined time without removing the semiconductor substrate from the ashing apparatus. This surface treatment is performed at a temperature lower than the temperature in the next film formation process.

このプラズマ照射によって半導体基板の表面の原子にプラズマを衝突させることで、半導体基板の表面付近の原子が成膜時に所定のプロセスガス中の原子と結合しやすい活性状態になると考えられる。   By causing the plasma to collide with atoms on the surface of the semiconductor substrate by this plasma irradiation, it is considered that atoms near the surface of the semiconductor substrate are in an active state in which they are likely to combine with atoms in a predetermined process gas during film formation.

その後、例えば1000℃の温度で半導体基板の表面付近の原子と所定のプロセスガス中の原子とを反応させることにより、半導体基板の表面に膜を形成する。   Then, a film is formed on the surface of the semiconductor substrate by reacting atoms in the vicinity of the surface of the semiconductor substrate with atoms in a predetermined process gas at a temperature of 1000 ° C., for example.

上記したように、この半導体装置に設けている膜は、膜厚を厚く形成するために長時間の熱処理を必要としないため、成膜時に半導体基板が変形するおそれがなく、不良品の発生率が低い半導体装置とすることができる。   As described above, the film provided in this semiconductor device does not require long-time heat treatment to form a thick film, so there is no possibility that the semiconductor substrate is deformed during film formation, and the incidence of defective products. The semiconductor device can be low.

さらに、レジスト膜を除去した際に発生した不純物が成膜時に膜内部に混入することがないため、半導体基板と膜との間の界面特性が安定し、絶縁特性に優れた半導体装置とすることができる。   Furthermore, since the impurities generated when the resist film is removed do not enter the film during the film formation, the interface characteristics between the semiconductor substrate and the film are stable and the semiconductor device has excellent insulating characteristics. Can do.

また、表面処理は、従来のレジスト膜除去用のアッシング装置を用いてレジスト膜を除去した後、同一の装置を用いて連続して半導体基板の表面にプラズマを照射することによって表面処理を行うこととしているため、表面処理を行うために新たに設備投資を行う必要がないので、半導体装置の製造コストが増大することを未然に防止することができる。   Also, the surface treatment is performed by irradiating the surface of the semiconductor substrate with plasma continuously using the same apparatus after removing the resist film using a conventional ashing apparatus for removing the resist film. Therefore, since it is not necessary to make a new capital investment for performing the surface treatment, it is possible to prevent an increase in the manufacturing cost of the semiconductor device.

以下に、本発明に係る半導体基板の成膜方法について、図面を参照しながら具体的に説明する。なお、以下の説明では、半導体基板の表面に酸化膜を形成する方法について説明を行うが、本発明は、これに限られず、半導体基板の表面に他の膜、たとえば、窒化膜を形成する場合にも適用できる。   Hereinafter, a method for forming a semiconductor substrate according to the present invention will be specifically described with reference to the drawings. In the following description, a method for forming an oxide film on the surface of a semiconductor substrate will be described. However, the present invention is not limited to this, and another film, for example, a nitride film is formed on the surface of a semiconductor substrate. It can also be applied to.

まず、図1(a)に示すように、表面にレジスト膜2を形成した半導体(Si)基板1をアッシング装置の内部に載置する。   First, as shown in FIG. 1A, a semiconductor (Si) substrate 1 having a resist film 2 formed on the surface is placed inside an ashing apparatus.

その後、アッシング装置の内部に流入させた酸素(O2)をアッシング装置の内部でプラズマ化して酸素ラジカル3を生成する。   Thereafter, oxygen (O 2) flowing into the ashing device is turned into plasma inside the ashing device to generate oxygen radicals 3.

次に、アッシング装置内の温度を約200℃として、図1(b)に示すように、酸素ラジカル3とレジスト膜2とを約20分間反応させる。レジスト膜2は、通常、酸素(O)と炭素(C)と水素(H)とからなる固体であり、上記した酸素ラジカル3と反応させることによってCO2とO2とH2Oとからなる気体となって除去される。   Next, the temperature in the ashing apparatus is set to about 200 ° C., and as shown in FIG. 1B, the oxygen radical 3 and the resist film 2 are reacted for about 20 minutes. The resist film 2 is usually a solid composed of oxygen (O), carbon (C), and hydrogen (H), and reacts with the oxygen radical 3 to form a gas composed of CO2, O2, and H2O. Removed.

こうして、図1(c)に示すように、レジスト膜2をすべて除去して,Si基板1の表面を露出させた状態とする。   In this way, as shown in FIG. 1C, the resist film 2 is completely removed, and the surface of the Si substrate 1 is exposed.

次に、アッシング装置内のプロセス条件はそのままにして、Si基板1の表面を活性状態とすることによってSi基板1の表面に形成する膜の成長を促進させるための表面処理を約40分間行う。この表面処理は、図1(d)に示すように、露出させたSi基板1の表面に酸素ラジカル3を照射することによって行う。   Next, the surface treatment for promoting the growth of the film formed on the surface of the Si substrate 1 is performed for about 40 minutes by leaving the surface of the Si substrate 1 in an active state while keeping the process conditions in the ashing apparatus as it is. This surface treatment is performed by irradiating the exposed surface of the Si substrate 1 with oxygen radicals 3 as shown in FIG.

こうすることによって、図1(e)に示すように、Si基板1の表面付近には表面活性領域4が形成される。   By doing so, a surface active region 4 is formed in the vicinity of the surface of the Si substrate 1 as shown in FIG.

このとき、表面活性領域4のSi原子は、熱酸化時にO原子と結合しやすい活性状態となっている。   At this time, the Si atoms in the surface active region 4 are in an active state in which they are easily bonded to O atoms during thermal oxidation.

このように、表面処理は、レジスト膜2の除去を行うためのアッシング装置を用いて連続的に行っている。   As described above, the surface treatment is continuously performed using an ashing apparatus for removing the resist film 2.

次に、Si基板1を酸化炉へ移し、このSi基板1を酸素(O2)雰囲気中で約1000℃まで加熱し所定時間熱酸化することによって、図1(f)に示すように、Si基板1の表面に酸化膜(SiO2膜)5を形成する。   Next, the Si substrate 1 is moved to an oxidation furnace, and the Si substrate 1 is heated to about 1000 ° C. in an oxygen (O 2) atmosphere and thermally oxidized for a predetermined time, thereby, as shown in FIG. An oxide film (SiO 2 film) 5 is formed on the surface of 1.

このとき、上記したように、Si基板1の表面付近のSi原子は活性状態であるため、O2雰囲気中のO原子と速やかに結合する。そのため、従来と同様の時間熱酸化を行っても従来よりも厚い酸化膜5を形成することができる。   At this time, as described above, since Si atoms near the surface of the Si substrate 1 are in an active state, they are quickly bonded to O atoms in the O 2 atmosphere. Therefore, a thicker oxide film 5 can be formed even if thermal oxidation is performed for the same period of time as before.

この熱酸化により成膜する酸化膜5の厚さと表面処理の処理時間との関係を図2に示す。   FIG. 2 shows the relationship between the thickness of the oxide film 5 formed by this thermal oxidation and the surface treatment time.

図2からわかるように、表面処理を行わずに所定時間熱酸化を行った場合(表面処理時間が0分の場合。)は、約9.7nmの厚さの酸化膜5が形成されているのに対し、表面処理を約40分間行った後に同じ所定時間熱酸化を行った場合は、約10.9nmの厚さの酸化膜5が形成されている。   As can be seen from FIG. 2, when thermal oxidation is performed for a predetermined time without surface treatment (when the surface treatment time is 0 minute), an oxide film 5 having a thickness of about 9.7 nm is formed. On the other hand, when the surface treatment is performed for about 40 minutes and then thermal oxidation is performed for the same predetermined time, the oxide film 5 having a thickness of about 10.9 nm is formed.

このように、表面処理を行った場合には、表面処理を行わなかった場合と比較して、同じ時間の熱酸化を行っているにもかかわらず、膜厚を約12%も厚く形成することができる。   In this way, when the surface treatment is performed, the film thickness is formed to be about 12% thick even though thermal oxidation is performed for the same time as compared with the case where the surface treatment is not performed. Can do.

言い換えれば、同じ膜厚の酸化膜5を形成する場合には、表面処理を行うことによってSi基板1の熱酸化の処理時間を短縮することができる。   In other words, when the oxide film 5 having the same film thickness is formed, it is possible to shorten the thermal oxidation treatment time of the Si substrate 1 by performing the surface treatment.

そのため、長時間の熱酸化によるSi基板1の変形を防止することができ、不良品の発生率が低下して、製品の歩留まりを向上させることができる。   Therefore, deformation of the Si substrate 1 due to long-time thermal oxidation can be prevented, the generation rate of defective products can be reduced, and the yield of products can be improved.

さらに、レジスト膜2を除去した際に発生した不純物が酸化膜5の内部に混入することがなく、Si基板1と酸化膜5との間の界面特性が安定することによって、絶縁特性に優れた酸化膜5を形成することができる。   Furthermore, the impurities generated when the resist film 2 is removed are not mixed into the oxide film 5 and the interface characteristics between the Si substrate 1 and the oxide film 5 are stabilized, so that the insulating characteristics are excellent. An oxide film 5 can be formed.

また、従来の成膜方法では、成膜する酸化膜5の膜厚の変化は、熱酸化を行う時間にのみ依存していたのに対し、本発明では成膜する酸化膜5の膜厚の変化は、図2に示すように、表面処理を行う時間にも依存している。   Further, in the conventional film forming method, the change in the thickness of the oxide film 5 to be formed depends only on the time for performing the thermal oxidation, whereas in the present invention, the change in the thickness of the oxide film 5 to be formed is as follows. The change also depends on the time for performing the surface treatment, as shown in FIG.

そのため、酸化膜5を厚く形成する際には、表面処理の処理時間を延ばすことによって膜厚を厚く形成することができ、長時間の熱酸化によるSi基板1の変形や酸化膜5の膜質劣化を考慮することなく所望の厚さを有する酸化膜5を容易に形成することができる。   Therefore, when the oxide film 5 is formed thick, the film thickness can be increased by extending the surface treatment time, and deformation of the Si substrate 1 or deterioration of the film quality of the oxide film 5 due to prolonged thermal oxidation. The oxide film 5 having a desired thickness can be easily formed without considering the above.

ここで、図2に示すように、表面処理を行う場合、20分間以下の表面処理ではSi基板1の表面は活性状態となりにくく、表面処理時間に対応した酸化膜5の膜厚の変化が小さいため、少なくとも20分間以上の表面処理を行うことが好ましい。   Here, as shown in FIG. 2, when performing the surface treatment, the surface treatment of 20 minutes or less makes the surface of the Si substrate 1 less likely to be in an active state, and the change in the thickness of the oxide film 5 corresponding to the surface treatment time is small. Therefore, it is preferable to perform the surface treatment for at least 20 minutes.

特に、30分間以上の表面処理を行った場合には、図2に示すように、表面処理時間に対応した酸化膜5の膜厚の変化がより顕著に現れるため、30分間以上の表面処理を行うことがより好ましい。   In particular, when the surface treatment is performed for 30 minutes or more, as shown in FIG. 2, the change in the thickness of the oxide film 5 corresponding to the surface treatment time appears more significantly. More preferably.

本発明に係る半導体基板の成膜方法を示す説明図である。It is explanatory drawing which shows the film-forming method of the semiconductor substrate which concerns on this invention. 表面処理時間と酸化膜厚の関係を示すグラフである。It is a graph which shows the relationship between surface treatment time and an oxide film thickness.

符号の説明Explanation of symbols

1 半導体基板
2 レジスト膜
3 酸素ラジカル
4 表面活性領域
5 酸化膜
DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2 Resist film 3 Oxygen radical 4 Surface active region 5 Oxide film

Claims (5)

半導体基板の表面のレジスト膜を除去した後に、前記半導体基板の表面に形成する膜の成長を促進させるための表面処理を所定温度の下で行い、その後、前記所定温度より高い温度の下で前記半導体基板の表面に成膜することを特徴とする半導体基板の成膜方法。   After removing the resist film on the surface of the semiconductor substrate, surface treatment for promoting the growth of the film formed on the surface of the semiconductor substrate is performed under a predetermined temperature, and then the temperature is higher than the predetermined temperature. A method for forming a semiconductor substrate, comprising forming a film on a surface of the semiconductor substrate. 前記表面処理は、表面処理時間を変更することによって成膜する膜厚を変更することを特徴とする請求項1に記載の半導体基板の成膜方法。   The method of forming a semiconductor substrate according to claim 1, wherein the surface treatment changes a film thickness to be formed by changing a surface treatment time. 前記表面処理は、表面処理時間を20分以上とすることを特徴とする請求項1又は2に記載の半導体基板の成膜方法。   3. The method of forming a semiconductor substrate according to claim 1, wherein the surface treatment has a surface treatment time of 20 minutes or more. 前記半導体基板の表面にプラズマを照射することによって、前記レジスト膜の除去と前記表面処理とを行うことを特徴とする請求項1から請求項3のいずれかに記載の半導体基板の成膜方法。   4. The method for forming a semiconductor substrate according to claim 1, wherein the resist film is removed and the surface treatment is performed by irradiating the surface of the semiconductor substrate with plasma. 半導体基板の表面のレジスト膜を除去した後に、前記半導体基板の表面に形成する膜の成長を促進させるための表面処理を所定温度の下で行い、その後、前記所定温度より高い温度の下で前記半導体基板の表面に成膜することによって製造したことを特徴とする半導体装置。   After removing the resist film on the surface of the semiconductor substrate, surface treatment for promoting the growth of the film formed on the surface of the semiconductor substrate is performed under a predetermined temperature, and then the temperature is higher than the predetermined temperature. A semiconductor device manufactured by forming a film on a surface of a semiconductor substrate.
JP2003302604A 2003-08-27 2003-08-27 Film forming method of semiconductor substrate and semiconductor device manufactured by employing the method Pending JP2005072434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003302604A JP2005072434A (en) 2003-08-27 2003-08-27 Film forming method of semiconductor substrate and semiconductor device manufactured by employing the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003302604A JP2005072434A (en) 2003-08-27 2003-08-27 Film forming method of semiconductor substrate and semiconductor device manufactured by employing the method

Publications (1)

Publication Number Publication Date
JP2005072434A true JP2005072434A (en) 2005-03-17

Family

ID=34406837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003302604A Pending JP2005072434A (en) 2003-08-27 2003-08-27 Film forming method of semiconductor substrate and semiconductor device manufactured by employing the method

Country Status (1)

Country Link
JP (1) JP2005072434A (en)

Similar Documents

Publication Publication Date Title
US5869405A (en) In situ rapid thermal etch and rapid thermal oxidation
JP2002314076A (en) Method of forming metal gate
JP2007524994A (en) Two-step post nitrided annealing for low EOT plasma nitrided gate dielectric
JP2010219106A (en) Substrate processing method
JP3965167B2 (en) Heat treatment method and heat treatment apparatus
JP2007096002A (en) Method of manufacturing semiconductor device, and semiconductor device
JPS618931A (en) Manufacture of semiconductor device
KR102071794B1 (en) Boron film removing method, and pattern forming method and apparatus using boron film
JP2005072434A (en) Film forming method of semiconductor substrate and semiconductor device manufactured by employing the method
KR20000017498A (en) A controllable oxidation technique for high quality ultra-thin gate oxide
KR19980073847A (en) Semiconductor Wafer Cleaning Method and Oxide Film Forming Method
JPH11186257A (en) Manufacture of semiconductor device
JP2006339370A (en) Manufacturing method of semiconductor device
JP2000100747A (en) Semiconductor device and manufacture thereof
KR100444166B1 (en) Method for annealing in the rapid thermal treatment device
JPH02215125A (en) Manufacture of semiconductor device
US6645827B2 (en) Method for forming isolation regions on semiconductor device
KR20030002245A (en) Method for manufacturing a transistor
KR100588217B1 (en) Method for forming gate oxide in semiconductor device
JPH02237025A (en) Manufacture of semiconductor device
JPH0637063A (en) Manufacture of semiconductor device
JP2006278483A (en) Ald-depositing apparatus and method therefor
JP2011014567A (en) Method of manufacturing semiconductor device, and semiconductor device
JPH03266434A (en) Manufacture of semiconductor device
CN117238763A (en) Silicon dioxide etching method based on titanium substrate