JP2005072227A - Multilayer circuit board and method for inspecting positional deviation between layers thereof - Google Patents

Multilayer circuit board and method for inspecting positional deviation between layers thereof Download PDF

Info

Publication number
JP2005072227A
JP2005072227A JP2003299597A JP2003299597A JP2005072227A JP 2005072227 A JP2005072227 A JP 2005072227A JP 2003299597 A JP2003299597 A JP 2003299597A JP 2003299597 A JP2003299597 A JP 2003299597A JP 2005072227 A JP2005072227 A JP 2005072227A
Authority
JP
Japan
Prior art keywords
circuit board
inspection mark
inspection
mark
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003299597A
Other languages
Japanese (ja)
Inventor
Koichi Wakitani
康一 脇谷
Hiroyasu Kubo
泰康 久保
Masanori Fukuda
雅典 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003299597A priority Critical patent/JP2005072227A/en
Publication of JP2005072227A publication Critical patent/JP2005072227A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4638Aligning and fixing the circuit boards before lamination; Detecting or measuring the misalignment after lamination; Aligning external circuit patterns or via connections relative to internal circuits

Landscapes

  • Structure Of Printed Boards (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the subject that a positional deviation with large error is detected by comparing a periphery with a center in a monitoring range from an aberration, since the monitoring range of a transmitted image by an X-ray is broadened remarkably when a multilayer circuit board is laminated, and the transmitted image is condensed via a lens system and monitored. <P>SOLUTION: For an alignment accuracy a and a first inspecting mark 14 of a diameter L, there are taken as a monitoring range a second inspecting mark 22 of a diameter (2a+L) and a third inspecting mark 32 of a diameter (4a+L), and a diameter (2Na+L) if the multilayer circuit board is laminated to an N layer. Thus, the range includes all the inspecting marks to the N layer. Such an inspecting mark is narrower in the monitoring range than the conventional inspecting mark, and an accurate alignment can be performed with high accuracy and with small aberration. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、多層回路板および多層回路板の層間位置ずれ検査方法に関し、特に回路板に作製される検査マークに関する。   The present invention relates to a multilayer circuit board and an interlayer misalignment inspection method for multilayer circuit boards, and more particularly to an inspection mark produced on a circuit board.

従来、回路板を積層して構成した多層回路板の層間位置ずれは、回路板の各層に設けられた検査マークにX線を透過させてX線カメラで透過画像をモニターし、層毎の検査マーク位置の検出を行っていた。その際、各層の検査マークが重なっていると、層毎の検査マークの判別ができなくなるため、層毎の検査マークの位置をずらして作製していた(例えば特許文献1参照)。   Conventionally, the interlayer misalignment of a multilayer circuit board constructed by laminating circuit boards is made by transmitting X-rays to inspection marks provided on each layer of the circuit board, monitoring the transmission image with an X-ray camera, and inspecting each layer. The mark position was detected. At this time, if the inspection marks of each layer overlap, it becomes impossible to discriminate the inspection mark for each layer, so that the inspection marks for each layer are shifted in position (see, for example, Patent Document 1).

図7は、従来の層毎の検査マークが重ならないように作製する方法を説明する図で、3層の回路板を積層する場合である。また、紙面上の右方向に2層目、3層目の検査マークを作製する場合である。検査マークは層毎に同一形状で、その形状は、円形マークが用いられる場合が多い。そのマーク径をL、また露光装置等の位置合わせ装置によって決まる位置合わせ精度(例えば、1層目の検査マークの作製範囲ならびに1層目に対して2層目を位置合わせする際の最大ずれ量)がaであるとする。図7(a)に示すように、1層目の検査マーク作製位置は、検査マーク作製精度から第1の検査マーク50の位置に作製しようとしても、第1の検査マーク52、第1の検査マーク54、第1の検査マーク56等に作製される場合がある。従って、このときX線の透過画像をモニターする範囲は、第1の検査マークが作製され得る範囲であるから、1層モニター範囲55は径(2a+L)の円内となる。   FIG. 7 is a diagram for explaining a conventional method of manufacturing so that inspection marks for each layer do not overlap each other, in which three circuit boards are laminated. In addition, the second layer and the third layer inspection mark are produced in the right direction on the paper surface. The inspection mark has the same shape for each layer, and a circular mark is often used for the shape. The mark diameter is L, and alignment accuracy determined by an alignment apparatus such as an exposure apparatus (for example, the manufacturing range of the first layer inspection mark and the maximum deviation amount when the second layer is aligned with the first layer) ) Is a. As shown in FIG. 7A, the first inspection mark 52 and the first inspection mark are produced even if the inspection mark production position of the first layer is produced at the position of the first inspection mark 50 from the inspection mark production accuracy. The mark 54, the first inspection mark 56, and the like may be manufactured. Accordingly, at this time, the range in which the X-ray transmission image is monitored is a range in which the first inspection mark can be produced. Therefore, the one-layer monitor range 55 is within a circle having a diameter (2a + L).

図7(b)は、2層目の検査マーク作製位置を示す図である。1層目の検査マークを作製しようとする位置から、紙面上で最も右にずれて第1の検査マーク54が作製され、さらに2層目の検査マークが紙面上で最も右にずれて第2の検査マーク64が作製された場合である。2層目の検査マーク中心位置は、位置合わせ精度aの下で、1層目の検査マークと重ならないようにするため、第1の検査マーク54の中心位置から(a+L)離す必要がある。この位置に作製される2層目の検査マークは第2の検査マーク60であるが、位置合わせ精度aを考慮すると、1層目から最も離れて作製されるときは、第1の検査マーク54の中心位置から(2a+L)離れた第2の検査マーク64となる。このときX線の透過画像をモニターする範囲は、第1の検査マーク52の端部から第2の検査マーク64の端部まで必要で、2層モニター範囲65は径(4a+2L)の円内となる。   FIG. 7B is a diagram showing the production position of the second layer inspection mark. The first inspection mark 54 is produced by shifting to the rightmost position on the paper from the position where the first inspection mark is to be produced, and the second inspection mark is further displaced to the rightmost on the paper. This is a case where the inspection mark 64 is prepared. The center position of the second inspection mark needs to be separated from the center position of the first inspection mark 54 by (a + L) so as not to overlap with the inspection mark of the first layer under the alignment accuracy a. The second inspection mark 60 produced at this position is the second inspection mark 60. However, when the alignment accuracy a is taken into consideration, the first inspection mark 54 is produced when it is produced farthest from the first layer. The second inspection mark 64 is (2a + L) away from the center position. At this time, the X-ray transmission image monitoring range is required from the end of the first inspection mark 52 to the end of the second inspection mark 64, and the two-layer monitoring range 65 is within a circle having a diameter (4a + 2L). Become.

図7(c)は、3層目の検査マーク作製位置を示す図で、1、2層目の検査マークが紙面上、最も右にずれた位置である第1の検査マーク54、第2の検査マーク64が作製され、さらに3層目の検査マークが紙面上、最も右にずれた位置に第3の検査マーク74が作製された場合である。3層目の検査マーク中心位置は、2層目の検査マーク中心位置から、1層目の検査マークに対する2層目の検査マーク位置の関係と同様に(a+L)離す必要がある。この位置に作製される3層目の検査マークは第3の検査マーク70であるが、位置合わせ精度aから、2層目の検査マークから最も離れて作製されるときは、第2の検査マーク64の中心位置から(2a+L)離れた第3の検査マーク74となる。このとき、X線の透過画像をモニターする範囲は、第1の検査マーク52の端部から第3の検査マーク74の端部まで必要で、3層モニター範囲75は径(6a+3L)の円内となる。   FIG. 7C is a diagram showing the position where the third-layer inspection mark is produced. The first and second inspection marks 54 and 2 are the positions where the first and second-layer inspection marks are shifted to the rightmost on the paper surface. This is a case where the inspection mark 64 is manufactured, and the third inspection mark 74 is manufactured at a position where the inspection mark of the third layer is shifted to the rightmost on the paper surface. The center position of the inspection mark of the third layer needs to be separated from the center position of the inspection mark of the second layer by (a + L) as in the relationship of the position of the inspection mark of the second layer with respect to the inspection mark of the first layer. The third inspection mark produced at this position is the third inspection mark 70. However, the second inspection mark is formed when it is produced farthest from the second inspection mark from the alignment accuracy a. The third inspection mark 74 is (2a + L) away from the center position of 64. At this time, an X-ray transmission image monitoring range is required from the end of the first inspection mark 52 to the end of the third inspection mark 74, and the three-layer monitoring range 75 is within a circle having a diameter (6a + 3L). It becomes.

このように、位置合わせする層が一方向に最もずれた状態で積層されていく場合は、1層毎にモニター範囲径は(2a+L)増える。従って、一般にN層が積層される場合のモニター範囲は、(2Na+NL)の円内となる。
特開昭61−51510号公報(第1−3頁、第3図)
As described above, when the layers to be aligned are stacked in a state where they are most shifted in one direction, the monitor range diameter increases by (2a + L) for each layer. Therefore, in general, the monitor range when N layers are stacked is within a circle of (2Na + NL).
JP 61-51510 A (page 1-3, FIG. 3)

しかしながら、このような検査マークを有する多層回路板および多層回路板の層間位置ずれ検査方法では、多層になるに従い飛躍的にX線による透過画像のモニター範囲が広くなる。そして、透過画像はレンズ系で集光してモニターされるため、収差(球面収差、コマ、非点収差、歪曲収差)からモニター範囲の周辺部は中央部に比べ、誤差の大きな位置ずれ量を検出するという課題があった。   However, in the multilayer circuit board having such an inspection mark and the method of inspecting the interlayer misalignment of the multilayer circuit board, the monitor range of the transmitted image by X-rays is dramatically widened as the number of layers increases. Since the transmitted image is collected and monitored by the lens system, the peripheral portion of the monitor range has a large amount of misalignment compared to the central portion due to aberrations (spherical aberration, coma, astigmatism, distortion). There was a problem of detecting.

本発明はこのような課題に鑑みてなされたものであり、多層回路板の積層ずれの検出を、誤差が大きくなく高精度で行う多層回路板および多層回路板の層間位置ずれ検査方法を提供することを目的とする。   The present invention has been made in view of the above problems, and provides a multilayer circuit board and a method for inspecting misalignment of a multilayer circuit board, in which the misregistration of the multilayer circuit board is detected with high accuracy without a large error. For the purpose.

本発明の多層回路板は、検査マークを備え位置合わせされる第1の回路板と、第1の回路板の検査マークの大きさに、位置合わせする際に生じる位置ずれ量である位置合わせ精度の少なくとも2倍の位置合わせ量を加算した検査マークを備え、第1の回路板に位置合わせし積層する第2の回路板と、さらに回路板を位置合わせし積層する場合は位置合わせされる回路板の検査マークの大きさに位置合わせ量を加算した検査マークを備えた回路板とを有する構成とする。   The multilayer circuit board according to the present invention includes a first circuit board to be aligned with an inspection mark, and an alignment accuracy that is an amount of misalignment that occurs when aligning with the size of the inspection mark on the first circuit board. And a second circuit board that is aligned and stacked on the first circuit board, and a circuit that is aligned when the circuit board is aligned and stacked And a circuit board provided with an inspection mark obtained by adding the alignment amount to the size of the inspection mark on the board.

このような検査マークを備えた多層回路板とすることで、位置合わせする回路板の検査マークは、位置合わせされる回路板の検査マークを必ず包含する。そして、モニターする範囲は全ての検査マークを包含する検査マークの領域でよい。そのため、透過画像をモニターする領域が小さくてよく、収差の大きな領域までモニターする必要がなくなる。その結果、高精度な多層回路板の層間位置ずれ検出を行える。   By using a multilayer circuit board having such an inspection mark, the inspection mark of the circuit board to be aligned necessarily includes the inspection mark of the circuit board to be aligned. The range to be monitored may be an inspection mark area including all inspection marks. Therefore, the area for monitoring the transmission image may be small, and it is not necessary to monitor the area with large aberration. As a result, it is possible to detect the interlayer displacement of the multilayer circuit board with high accuracy.

また、本発明の多層回路板の検査マークの形状は円形であり、第1の回路板の検査マークの直径をL、位置合わせ精度をa、積層する回路板の数をNとしたとき、加算する位置合わせ量が   Also, the shape of the inspection mark of the multilayer circuit board of the present invention is circular, the diameter of the inspection mark of the first circuit board is L, the alignment accuracy is a, and the number of circuit boards to be stacked is N. Alignment amount to be

Figure 2005072227
Figure 2005072227

より小さい構成とする。 Use a smaller configuration.

このような検査マークの形状、ならびにその大きさを決める加算する位置合わせ量とすることで、従来の検査マークをずらして作製する場合に比べ、X線の透過画像をモニターする範囲が確実に狭くなる。   By setting the amount of alignment to determine the shape and size of the inspection mark, the range for monitoring the X-ray transmission image is surely narrow compared to the case where the inspection mark is shifted and manufactured. Become.

また本発明の多層回路板の層間位置ずれ検査方法は、位置合わせされる第1の回路板には第1の検査マークを備え、第1の回路板に位置合わせし積層する第2の回路板には第2の検査マークを備え、第2の検査マークの大きさは第1の検査マークの大きさに、位置合わせする際に生じる位置ずれ量である位置合わせ精度の少なくとも2倍の位置合わせ量を加算したものであり、第1の回路板に第2の回路板を位置合わせしたときに第2の検査マークの中心位置は第1の検査マークの中心位置と重なるようにし、さらに回路板を位置合わせし積層する場合は位置合わせされる回路板の検査マークの大きさに上述の位置合わせ量を加算した検査マークを回路板に作製するとともに、検査マークの中心位置は第1の検査マークの中心位置と重なるようにし、検査マークの作製範囲にX線を照射しその透過光量を計測するX線光量計測ステップと、透過光量を(積層する回路板数+1)に区分した透過光量レベルで分類する透過光量分類ステップと、透過光量レベルのうち最も透過光量レベルの大きい透過光量レベルを除外しそれぞれの透過光量レベル以上となる領域の特定位置座標を求める特定位置座標算出ステップと、特定位置座標算出ステップで算出されたそれぞれの領域の特定位置座標の間の距離を求めて積層された回路板の層間の位置ずれ量を算出する層間位置ずれ量算出ステップとを有する方法である。   In the multilayer circuit board interlayer misalignment inspection method of the present invention, the first circuit board to be aligned has a first inspection mark, and the second circuit board is aligned and stacked on the first circuit board. Includes a second inspection mark, and the size of the second inspection mark is adjusted to the size of the first inspection mark at least twice the alignment accuracy, which is the amount of misalignment that occurs during alignment. The center position of the second inspection mark overlaps the center position of the first inspection mark when the second circuit board is aligned with the first circuit board, and the circuit board When the circuit board is aligned and laminated, an inspection mark obtained by adding the above-mentioned alignment amount to the size of the inspection mark of the circuit board to be aligned is produced on the circuit board, and the center position of the inspection mark is the first inspection mark. It overlaps with the center position of The X-ray light quantity measuring step for irradiating the inspection mark production range with X-rays and measuring the transmitted light quantity, and the transmitted light quantity classification step for classifying the transmitted light quantity by the transmitted light quantity level divided into (number of circuit boards to be stacked + 1) Calculated in the specific position coordinate calculation step and the specific position coordinate calculation step for obtaining a specific position coordinate of an area that is equal to or higher than each transmitted light amount level by excluding the transmitted light amount level having the largest transmitted light amount level from among the transmitted light amount levels. And an interlayer misregistration amount calculating step for calculating a misregistration amount between layers of the circuit boards stacked by obtaining a distance between specific position coordinates of each region.

このような多層回路板の層間位置ずれ検査方法では、位置合わせされる回路板の検査マークは、位置合わせする回路板の位置合わせ精度を考慮した検査マークに必ず包含される。そして、各検査マークの中心位置を重なるように形成することで、モニターする範囲をより小さくすることができる。さらに、検査マークの重なっている部分は、X線の透過光量が低下するため、X線の透過光量に応じて各層の検査マーク位置を明確に算出できる。そして、各層の検査マークの特定位置を決めその位置座標を求め、各層の位置座標の間の距離を求めることで、各層の位置ずれ量を容易に求められる。   In such a multilayer circuit board interlayer misalignment inspection method, the inspection mark of the circuit board to be aligned is always included in the inspection mark in consideration of the alignment accuracy of the circuit board to be aligned. Then, by forming the center positions of the inspection marks so as to overlap each other, the range to be monitored can be further reduced. Furthermore, since the amount of transmitted X-rays decreases in the portion where the inspection marks overlap, the inspection mark position of each layer can be clearly calculated according to the amount of transmitted X-rays. Then, the specific position of the inspection mark of each layer is determined, its position coordinate is obtained, and the distance between the position coordinates of each layer is obtained, whereby the positional deviation amount of each layer can be easily obtained.

また本発明の多層回路板の層間位置ずれ検査方法の検査マークの作製範囲は、N層の回路板が積層されるとき、第1の検査マークの作製範囲を一端とする径(2Na+L)の円形状(ただし、Nは2以上の整数、aは位置合わせ精度、Lは第1の検査マークの直径)とする。このような方法とすることで、最も大きな検査マークは、位置合わせ精度を考慮して、各層の全ての検査マークを包含する最小の円形状となり、最も大きな検査マークも必ず径(2Na+L)の円内に入る。   In addition, the inspection mark preparation range of the multilayer circuit board interlayer misalignment inspection method of the present invention is such that when an N-layer circuit board is stacked, the first inspection mark preparation range is a circle having a diameter (2Na + L). The shape (where N is an integer of 2 or more, a is the alignment accuracy, and L is the diameter of the first inspection mark). By adopting such a method, the largest inspection mark has a minimum circular shape including all the inspection marks in each layer in consideration of alignment accuracy, and the largest inspection mark is always a circle having a diameter (2Na + L). Get inside.

また本発明の多層回路板の層間位置ずれ検査方法の特定位置座標は、領域の中心位置座標とする。特定位置座標は、同一のX線の透過光量の領域であればどこでもよいが、領域は円形状でありその中心位置座標とすると、その領域の最長の座標間隔さえ求められれば、容易にその中心位置座標は決定される。   In addition, the specific position coordinate in the multilayer circuit board interlayer displacement inspection method of the present invention is the center position coordinate of the region. The specific position coordinates may be anywhere as long as they have the same amount of transmitted X-ray light. However, if the area is circular and its center position coordinates, if the longest coordinate interval of the area is obtained, its center can be easily obtained. The position coordinates are determined.

本発明の多層回路板は、検査マークを備え位置合わせされる第1の回路板と、検査マークの大きさに、位置合わせする際に生じる位置ずれ量である位置合わせ精度の少なくとも2倍の位置合わせ量を加算した検査マークを備え、第1の回路板に位置合わせし積層する第2の回路板と、さらに回路板を位置合わせし積層する場合は位置合わせされる回路板の検査マークの大きさに位置合わせ量を加算した検査マークを備えた回路板とを有する構成とする。   The multilayer circuit board according to the present invention includes a first circuit board which is provided with an inspection mark and is aligned, and a position at least twice as large as the alignment accuracy, which is the amount of misalignment that occurs when alignment is performed with the size of the inspection mark. The size of the second circuit board that is aligned with the first circuit board and stacked, and the inspection mark of the circuit board to be aligned when the circuit board is aligned and stacked And a circuit board provided with an inspection mark obtained by adding the alignment amount.

このような検査マークを備えた多層回路板とすることで、位置合わせする回路板の検査マークは、位置合わせされる回路板の検査マークを必ず包含する。そして、モニターする範囲は従来に比べ狭い領域でよい。そのため、収差の大きな領域の透過画像をモニターする必要がなくなり、高精度な多層回路板の層間位置ずれ検出を行える。   By using a multilayer circuit board having such an inspection mark, the inspection mark of the circuit board to be aligned necessarily includes the inspection mark of the circuit board to be aligned. The range to be monitored may be narrower than that in the prior art. For this reason, it is not necessary to monitor a transmission image in a region with a large aberration, and the interlayer displacement detection of the multilayer circuit board can be performed with high accuracy.

まず、本発明の実施の形態の多層回路板について図面を参照しながら詳細に説明する。   First, a multilayer circuit board according to an embodiment of the present invention will be described in detail with reference to the drawings.

(実施の形態)
図1は本発明の実施の形態の多層回路板の断面図である。例として3層の回路板が積層された状態を示す。第1の回路板100と第2の回路板200は接着層410で、第2の回路板200と第3の回路板300は接着層420で接着され、多層回路板を形成している。また、各層の回路板の端部にはそれぞれ検査マーク作製領域があり、第1の回路板100には第1の検査マーク作製領域110、第2の回路板200には第2の検査マーク作製領域210、第3の回路板300には第3の検査マーク作製領域310が備えられている。ここで、検査マークは銅等の金属箔より作製されている。
(Embodiment)
FIG. 1 is a cross-sectional view of a multilayer circuit board according to an embodiment of the present invention. As an example, a state in which three layers of circuit boards are laminated is shown. The first circuit board 100 and the second circuit board 200 are bonded with an adhesive layer 410, and the second circuit board 200 and the third circuit board 300 are bonded with an adhesive layer 420 to form a multilayer circuit board. In addition, an inspection mark preparation region is provided at each end of the circuit board of each layer, the first inspection mark preparation region 110 is provided in the first circuit board 100, and the second inspection mark preparation is provided in the second circuit board 200. The area 210 and the third circuit board 300 are provided with a third inspection mark production area 310. Here, the inspection mark is made of a metal foil such as copper.

ここで回路板は、フェノール樹脂、エポキシ樹脂、ポリエステル樹脂等の樹脂基板や、ポリイミドフィルム、ポリエステルフィルム等の有機フィルム基板が用いられる。   Here, the circuit board is a resin substrate such as a phenol resin, an epoxy resin, or a polyester resin, or an organic film substrate such as a polyimide film or a polyester film.

図2〜図4は本発明の実施の形態の多層回路板の検査マークの作製状態を示す図で、図1の各層の検査マーク作製領域の詳細を示している。図2は3層の回路板が積層された場合で、3層の回路板が位置ずれがなく積層されたときの各層の検査マークの重なり状態を表わすX線の透過画像を示す図である。1層目の回路板の第1の検査マーク10は直径Lの円形状で、位置合わせ精度aで作製される。そのため、図2の左右方向では第1の検査マーク12から第1の検査マーク14のいずれかの位置に作製されるが、位置ずれがないと第1の検査マーク10の位置に作製される。   2 to 4 are views showing a state of manufacturing the inspection mark of the multilayer circuit board according to the embodiment of the present invention, and show details of the inspection mark manufacturing region of each layer in FIG. FIG. 2 is a view showing an X-ray transmission image showing an overlapping state of the inspection marks of each layer when the three-layer circuit boards are laminated without misalignment. The first inspection mark 10 on the first-layer circuit board has a circular shape with a diameter L and is manufactured with a positioning accuracy a. Therefore, in the left-right direction in FIG. 2, it is produced at any position from the first inspection mark 12 to the first inspection mark 14, but is produced at the position of the first inspection mark 10 if there is no misalignment.

次に2層目の検査マークは、1層目の検査マークに対して位置合わせ精度aで作製される。従って2層目の検査マークの径を、(2a+L)とすると、1層目の検査マークを必ず包含する。2層目の第2の検査マーク20は、第1の検査マーク10に対して、位置ずれなく作製したものである。さらに3層目の検査マークも、2層目の検査マークに対して位置合わせ精度aで作製されるので、3層目の検査マークの径を、(4a+L)とすると、2層目の検査マークを必ず包含する。3層目の第3の検査マーク30も、第2の検査マーク20に対して、位置ずれなく作製したものである。このように3層まで位置ずれなく検査マークが作製されたときは、検査マークの重なり状態のモニター範囲は径(4a+L)の円内でよい。   Next, the second layer inspection mark is produced with the alignment accuracy a with respect to the first layer inspection mark. Therefore, if the diameter of the second layer inspection mark is (2a + L), the first layer inspection mark is necessarily included. The second inspection mark 20 in the second layer is produced with no positional deviation with respect to the first inspection mark 10. Further, since the inspection mark for the third layer is also produced with the alignment accuracy a with respect to the inspection mark for the second layer, if the diameter of the inspection mark for the third layer is (4a + L), the inspection mark for the second layer Must be included. The third inspection mark 30 in the third layer is also produced without positional deviation with respect to the second inspection mark 20. In this way, when the inspection mark is produced up to three layers without positional deviation, the monitoring range of the inspection mark overlapping state may be within a circle of diameter (4a + L).

図3は、図2と同様に3層の回路板が積層された場合で、3層の回路板の位置ずれが一方向に最も大きいときの各層の検査マークの重なり状態を表わすX線の透過画像を示す図である。図3(a)は1層目の回路板の検査マークの作製状態を示す図である。1層目の回路板の検査マークは第1の検査マーク10の位置に作製することを目標とするが、位置合わせ精度aから第1の検査マーク12、第1の検査マーク14、第1の検査マーク16等、径(2a+L)の円内に作製される。従って、1層モニター範囲15は径(2a+L)の円内となる。図3(a)は、紙面上最も右に位置ずれをおこして、第1の検査マーク14の位置に作製された場合である。ここで、第1の検査マーク14は円形マークで、その径はLである。   FIG. 3 shows a case where three layers of circuit boards are stacked in the same manner as in FIG. 2, and transmission of X-rays representing the overlapping state of inspection marks of the respective layers when the positional deviation of the three layers of circuit boards is greatest in one direction. It is a figure which shows an image. FIG. 3A is a diagram showing a state in which an inspection mark is formed on the first-layer circuit board. The target of the inspection mark on the first-layer circuit board is to be produced at the position of the first inspection mark 10, but the first inspection mark 12, the first inspection mark 14, and the first inspection mark are determined from the alignment accuracy a. An inspection mark 16 or the like is produced in a circle having a diameter (2a + L). Accordingly, the one-layer monitor range 15 is within a circle having a diameter (2a + L). FIG. 3A shows a case where the position is shifted to the rightmost position on the paper surface and the first inspection mark 14 is produced. Here, the first inspection mark 14 is a circular mark, and its diameter is L.

次に2層目の検査マークは、1層目の検査マークに対して位置合わせ精度aで作製されるため、1層目の検査マークを必ず包含するには、2層目の検査マーク径を、(2a+L)とすればよい。図3(b)は第2の検査マーク22が、第1の検査マーク14に対して、紙面上最も右に位置ずれをおこして作製された場合である。このときX線の透過画像をモニターする範囲は、第1の検査マーク12の端部から第2の検査マーク22の端部まで必要で、2層モニター範囲25は径(4a+L)の円内となる。   Next, since the inspection mark for the second layer is produced with the alignment accuracy a with respect to the inspection mark for the first layer, the diameter of the inspection mark for the second layer must be set to include the inspection mark for the first layer. , (2a + L). FIG. 3B shows a case where the second inspection mark 22 is produced with the first inspection mark 14 being displaced to the rightmost on the paper surface. At this time, the range for monitoring the X-ray transmission image is necessary from the end of the first inspection mark 12 to the end of the second inspection mark 22, and the two-layer monitor range 25 is within a circle of diameter (4a + L). Become.

さらに3層目の検査マークも、2層目の検査マークに対して位置合わせ精度aで作製されるので、3層目の検査マーク径を、(4a+L)とすると、2層目の検査マークを必ず包含する。図3(c)は第3の検査マーク32が、第2の検査マーク22に対して、紙面上最も右に位置ずれをおこして作製された場合である。このように、3層まで最も一方向に位置ずれをおこして検査マークが作製されたとき、検査マークの重なり状態をモニターする範囲は、第1の検査マーク12の端部から第3の検査マーク32の端部まで必要で、3層モニター範囲35は径(6a+L)の円内となる。   Furthermore, since the inspection mark for the third layer is also produced with the alignment accuracy a with respect to the inspection mark for the second layer, if the diameter of the inspection mark for the third layer is (4a + L), the inspection mark for the second layer is Always include. FIG. 3C shows a case where the third inspection mark 32 is produced with the second inspection mark 22 being displaced to the rightmost on the paper surface. As described above, when the inspection mark is produced with the positional deviation in the most one direction up to three layers, the range of monitoring the overlapping state of the inspection mark is from the end of the first inspection mark 12 to the third inspection mark. Up to 32 ends are required, and the three-layer monitor range 35 is within a circle of diameter (6a + L).

図4も3層の回路板が積層された場合で、検査マークの重なりが生じる一般的な例である。第1の検査マーク18は径Lで、1層目の検査マークの作製範囲である1層モニター範囲15内に作製される。そして、第1の検査マーク18を包含する径(2a+L)の第2の検査マーク24、第2の検査マーク24を包含する径(4a+L)の第3の検査マーク34が作製されるが、第3の検査マーク34は径(6a+L)の3層モニター範囲35に含まれる。従って、3層モニター範囲35をモニターすれば、検査マークの重なりを調べることができる。   FIG. 4 is also a general example in which inspection marks overlap when a three-layer circuit board is laminated. The first inspection mark 18 has a diameter L and is manufactured within a single-layer monitor range 15 that is a manufacturing range of the first-layer inspection mark. Then, a second inspection mark 24 having a diameter (2a + L) including the first inspection mark 18 and a third inspection mark 34 having a diameter (4a + L) including the second inspection mark 24 are produced. The three inspection marks 34 are included in the three-layer monitor range 35 having a diameter (6a + L). Therefore, if the three-layer monitor range 35 is monitored, the overlap of inspection marks can be examined.

このように、各層の検査マークを包含させていく本発明の実施の形態では、1層の回路板が増える毎に、検査マークの重なり状態をモニターする範囲は、位置合わせ精度aの少なくとも2倍である2a拡大すればよい。従って、検査マークのモニター範囲が最も大きい図3の場合で、一般にN層の多層回路板を積層する場合の検査マークの重なり状態のモニター範囲は、径(2Na+L)の円内となる。これに対して従来の検査マークを重ならせずに作製する方法では、径(2Na+NL)の円内である。   As described above, in the embodiment of the present invention in which the inspection marks of each layer are included, each time the circuit board of one layer is increased, the range of monitoring the overlapping state of the inspection marks is at least twice the alignment accuracy a. What is necessary is just to enlarge 2a which is. Therefore, in the case of FIG. 3 where the monitoring range of the inspection mark is the largest, the monitoring range of the inspection mark overlapping state in the case of stacking N multilayer circuit boards is generally within a circle of diameter (2Na + L). On the other hand, in the method of manufacturing without overlapping the conventional inspection mark, it is within a circle of diameter (2Na + NL).

ここで、本発明の実施の形態による多層回路板の検査マークを作製する方法が、従来の方法に比べて、モニター範囲が狭くなる条件を求める。位置合わせ精度aのx倍まで検査マークの大きさの加算値を増やすとすれば、本発明の実施の形態による方法では、N層の多層回路板を積層する場合の検査マークの重なり状態のモニター範囲は、径(2Nax+L)の円内となり、1層増える毎に広げるモニター範囲は2axである。従来の方法のモニター範囲(2Na+NL)と、本発明の実施の形態による方法(2Nax+L)との差が0より大きくなる条件から2axの範囲を求めると、   Here, the method for producing the inspection mark of the multilayer circuit board according to the embodiment of the present invention obtains the condition that the monitor range becomes narrower than the conventional method. If the added value of the size of the inspection mark is increased to x times the alignment accuracy a, the method according to the embodiment of the present invention monitors the overlap state of the inspection mark when stacking N multilayer circuit boards. The range is within a circle of diameter (2Nax + L), and the monitor range that is expanded every time one layer is added is 2ax. When the range of 2ax is obtained from the condition that the difference between the monitor range (2Na + NL) of the conventional method and the method (2Nax + L) according to the embodiment of the present invention is larger than 0,

Figure 2005072227
Figure 2005072227

となる。このように、本発明の実施の形態による方法は、従来に比べモニター範囲が狭くなるため、収差の大きな領域の透過画像をモニターする必要がなくなり、高精度な多層回路板の層間位置ずれ検出を行える。 It becomes. As described above, the method according to the embodiment of the present invention has a narrower monitor range than the conventional method, so that it is not necessary to monitor a transmission image in a region with a large aberration, and the interlayer positional deviation detection of the multilayer circuit board can be performed with high accuracy. Yes.

次に本発明の多層回路板の層間位置ずれ検査方法について説明する。   Next, an interlayer misalignment inspection method for multilayer circuit boards according to the present invention will be described.

図5、図6は本発明の実施の形態の多層回路板の層間位置ずれ検査方法を示す図で、図5はそのフロー図、図6は検査マークの特定位置座標の算出を説明する図である。図6は、3層の回路板が積層された場合で、第1の検査マーク18を第2の検査マーク24が包含し、さらに第3の検査マーク34が第2の検査マーク24を包含している。また、縦横線が直交して多数の格子点80等が形成されているが、この格子点の位置が計測点であり、縦横線は説明の便宜上示したもので、回路板上に実際に形成されるものではない。また、第1の回路板の第1の検査マーク18の中心位置に、第2の回路板の第2の検査マーク24の中心位置、第3の回路板の第3の検査マーク34の中心位置が重なるようにして作製したものである。   5 and 6 are diagrams showing an interlayer misalignment inspection method for a multilayer circuit board according to an embodiment of the present invention. FIG. 5 is a flowchart of the method, and FIG. 6 is a diagram for explaining calculation of specific position coordinates of an inspection mark. is there. FIG. 6 shows a case where three layers of circuit boards are laminated. The first inspection mark 18 includes the second inspection mark 24, and the third inspection mark 34 includes the second inspection mark 24. ing. In addition, a large number of grid points 80 and the like are formed with the vertical and horizontal lines orthogonal to each other. The positions of the grid points are measurement points, and the vertical and horizontal lines are shown for convenience of explanation and are actually formed on the circuit board. Is not to be done. Further, the center position of the second inspection mark 24 on the second circuit board and the center position of the third inspection mark 34 on the third circuit board at the center position of the first inspection mark 18 on the first circuit board. Are produced in such a way that they overlap.

X線光量計測ステップでは上述した多層回路板の検査マークの作製範囲に、多層回路板に対して鉛直にX線を照射し、それぞれの格子点に対するX線の透過光量を計測する。ここで多層回路板の検査マークの作製範囲は、Nを2以上の整数、aを位置合わせ精度、Lを第1の検査マーク径とすると、N層の回路板が積層されるとき、第1の検査マークの作製範囲を一端とする径(2Na+L)の円内である。この円内をモニターすれば、N層の検査マークまで全て包含されている。図6の場合では、3層モニター範囲35内の全ての格子点でのX線の透過光量を計測すればよい。   In the X-ray light quantity measurement step, X-rays are irradiated vertically to the multilayer circuit board in the above-described inspection mark production range of the multilayer circuit board, and the transmitted light quantity of X-rays to each lattice point is measured. Here, the production range of the inspection mark on the multilayer circuit board is as follows. When N is an integer of 2 or more, a is the alignment accuracy, and L is the first inspection mark diameter, This is within a circle having a diameter (2Na + L) with the production range of the inspection mark as one end. If this circle is monitored, all the inspection marks of the N layer are included. In the case of FIG. 6, the amount of transmitted X-ray light at all lattice points in the three-layer monitor range 35 may be measured.

検査マークの重なりが多いほど、X線の透過光量は少なくなる。すなわち、ランバートの法則に従って、X線が透過する媒質が厚くなるほど透過光量が減衰する。そこで、検査マークの作製範囲にX線を透過させたときの透過光量レベル数は、(積層する回路板数+1)となる。図6では、透過光量レベルは、検査マークの作製されていない格子点82で、最もX線の透過光量が大きく、例えば「0」、1層だけ検査マークの作製されてある格子点80では「1」、2層の検査マークが重なっている格子点84では「2」、3層の検査マークが重なっている格子点86では「3」とする。このように透過光量分類ステップでは、各格子点に対するX線の透過光量計測値から対応する透過光量レベルを算出する。   As the number of inspection marks overlaps, the amount of transmitted X-rays decreases. That is, according to Lambert's law, the amount of transmitted light attenuates as the medium through which X-rays pass becomes thicker. Therefore, the number of transmitted light levels when X-rays are transmitted through the inspection mark production range is (number of circuit boards to be stacked + 1). In FIG. 6, the transmitted light amount level is the largest at the lattice point 82 where the inspection mark is not produced, and is “0”, for example, “0” at the lattice point 80 where only one layer of the inspection mark is produced. “1” is “2” at the lattice point 84 where the two-layer inspection marks overlap, and “3” at the lattice point 86 where the three-layer inspection marks overlap. Thus, in the transmitted light amount classification step, the corresponding transmitted light amount level is calculated from the measured X-ray transmitted light amount for each lattice point.

各格子点の透過光量レベルが決まると、検査マークの作製されていない領域を除くため、X線の透過光量が最も大きい透過光量レベル「0」を除外する。そして、Mを2以上の整数とすると、第Mの検査マークは第1の検査マークから第(M−1)の検査マークを包含するので、ある透過光量レベルの領域を求めるには、その透過光量レベル以上を有する格子点を含める。図6では、第3の検査マーク34内は、格子点80が透過光量レベル「1」であるが、第2の検査マーク24内の格子点84の透過光量レベル「2」、第1の検査マーク18内の格子点86の透過光量レベル「3」を含む。従って、第3の検査マーク34の領域の中心座標は、透過光量レベルが「1」「2」「3」の格子点を求め、その中心の格子点80Cの座標を算出する。同様に、第2の検査マーク24の領域の中心座標は、透過光量レベルが「2」「3」の格子点を求め、その中心の格子点84Cの座標を、第1の検査マーク18の領域の中心座標は、透過光量レベルが「3」の中心の格子点86Cの座標を算出する。このようにして、特定位置座標算出ステップでは、それぞれの透過光量レベル以上の中心座標を算出して、それぞれの検査マークの特定位置座標とする。   When the transmitted light amount level of each lattice point is determined, the transmitted light amount level “0” having the largest X-ray transmitted light amount is excluded in order to exclude the region where the inspection mark is not formed. When M is an integer of 2 or more, the Mth inspection mark includes the (M-1) th inspection mark from the first inspection mark. Include grid points with light level or higher. In FIG. 6, in the third inspection mark 34, the lattice point 80 has the transmitted light amount level “1”, but the transmitted light amount level “2” of the lattice point 84 in the second inspection mark 24 indicates the first inspection. The transmitted light amount level “3” of the lattice point 86 in the mark 18 is included. Therefore, as the center coordinates of the region of the third inspection mark 34, the lattice point with the transmitted light amount level “1”, “2”, and “3” is obtained, and the coordinates of the center lattice point 80C are calculated. Similarly, the center coordinates of the area of the second inspection mark 24 are obtained as lattice points with the transmitted light level “2” and “3”, and the coordinates of the lattice point 84C at the center are determined as the area of the first inspection mark 18. As the center coordinates, the coordinates of the lattice point 86C at the center where the transmitted light amount level is “3” are calculated. In this way, in the specific position coordinate calculation step, center coordinates that are equal to or higher than the respective transmitted light amount levels are calculated and used as the specific position coordinates of the respective inspection marks.

そして、層間位置ずれ量算出ステップでは、算出されたそれぞれの領域の中心座標の間の距離を求める。図6では、中心の格子点84Cから中心の格子点86Cの座標間の距離を求め、第2層の回路板の第1層の回路板に対する位置ずれ量を算出する。また、中心の格子点80Cから中心の格子点84Cの座標間の距離を求め、第3層の回路板の第2層の回路板に対する位置ずれ量を算出する。   In the interlayer misregistration amount calculating step, the distance between the calculated center coordinates of each region is obtained. In FIG. 6, the distance between the coordinates of the center lattice point 84C from the center lattice point 84C is obtained, and the amount of displacement of the second layer circuit board relative to the first layer circuit board is calculated. In addition, the distance between the coordinates of the center lattice point 84C from the center lattice point 80C is obtained, and the positional deviation amount of the third layer circuit board with respect to the second layer circuit board is calculated.

以上の方法で層間位置ずれ量を算出することにより、従来に比べ検査マークをモニターする範囲が狭くなり高精度の位置合わせを実現できる。   By calculating the amount of misalignment between the layers by the above method, the range for monitoring the inspection mark becomes narrower than in the prior art, and high-accuracy alignment can be realized.

なお、本発明の実施の形態では検査マークの形状として、円形で説明したが正方形や正多角形でもよく、円形に限定されるものではない。   In the embodiment of the present invention, the shape of the inspection mark has been described as a circle, but it may be a square or a regular polygon, and is not limited to a circle.

また、本発明の実施の形態では、位置合わせされる回路板の検査マークは、位置合わせする回路板の検査マークに必ず包含されることとしたが、逆に位置合わせする回路板の検査マークが、位置合わせされる回路板の検査マークに包含されるようにしてもよい。   Further, in the embodiment of the present invention, the inspection mark of the circuit board to be aligned is necessarily included in the inspection mark of the circuit board to be aligned. It may be included in the inspection mark of the circuit board to be aligned.

また、本発明の実施の形態では特定位置座標として、それぞれの検査マークの領域の中心の格子点80C、84C、86Cとしたが、特定の端部の格子点80E、84E、86Eでもよく、中心座標に限定されるものでない。   In the embodiment of the present invention, the lattice points 80C, 84C, and 86C at the center of each inspection mark region are used as the specific position coordinates. However, lattice points 80E, 84E, and 86E at specific ends may be used as the center. It is not limited to coordinates.

また、本発明はX線の透過光量を測定することが必要なため、異なる積層回路板数の透過光量を判別できる範囲とする。   Moreover, since it is necessary to measure the transmitted light amount of X-rays in the present invention, the transmitted light amount of different numbers of laminated circuit boards is set in a range that can be determined.

本発明にかかる多層回路板および多層回路板の層間位置ずれ検査方法は、収差の大きな領域の透過画像をモニターする必要がなくなり、高精度な多層回路板の層間位置ずれ検出を行える。従って、多層回路板および多層回路板の層間位置ずれ検査方法等として有用である。   The multilayer circuit board and the method for inspecting the interlayer misalignment of the multilayer circuit board according to the present invention eliminates the need to monitor a transmission image in a region having a large aberration, and can detect the interlayer misalignment of the multilayer circuit board with high accuracy. Therefore, it is useful as a multilayer circuit board and a method for inspecting interlayer misalignment between multilayer circuit boards.

本発明の本発明の実施の形態の多層回路板の断面図Sectional drawing of the multilayer circuit board of embodiment of this invention of this invention 本発明の実施の形態の多層回路板の検査マークの位置ずれのない状態を示す図The figure which shows the state without the position shift of the inspection mark of the multilayer circuit board of embodiment of this invention. 本発明の実施の形態の多層回路板の検査マークの位置ずれが最も大きい状態を示す図The figure which shows the state with the largest position shift of the inspection mark of the multilayer circuit board of embodiment of this invention. 本発明の実施の形態の多層回路板の検査マークの位置ずれの一般的な状態を示す図The figure which shows the general state of position shift of the inspection mark of the multilayer circuit board of embodiment of this invention 本発明の実施の形態の多層回路板の層間位置ずれ検査方法を示すフロー図The flowchart which shows the interlayer position shift inspection method of the multilayer circuit board of embodiment of this invention 本発明の実施の形態の多層回路板の層間位置ずれの検査マークの特定位置座標算出を説明する図The figure explaining the specific position coordinate calculation of the inspection mark of the interlayer position shift of the multilayer circuit board of embodiment of this invention 従来の層毎の検査マークが重ならないように作製する方法を説明する図The figure explaining the method of producing so that the inspection mark for every conventional layer may not overlap

符号の説明Explanation of symbols

10,12,14,16,18,50,52,54,56 第1の検査マーク
15,55 1層モニター範囲
20,22,24,60,64 第2の検査マーク
25,65 2層モニター範囲
30,32,34,70,74 第3の検査マーク
35,75 3層モニター範囲
80,82,84,86 格子点
80C,84C,86C 中心の格子点
80E,84E,86E 端部の格子点
100 第1の回路板
110 第1の検査マーク作製領域
200 第2の回路板
210 第2の検査マーク作製領域
300 第3の回路板
310 第3の検査マーク作製領域
410,420 接着層
10, 12, 14, 16, 18, 50, 52, 54, 56 1st inspection mark 15, 55 1 layer monitor range 20, 22, 24, 60, 64 2nd inspection mark 25, 65 2 layer monitor range 30, 32, 34, 70, 74 Third inspection mark 35, 75 Three-layer monitor range 80, 82, 84, 86 Grid point 80C, 84C, 86C Center grid point 80E, 84E, 86E End grid point 100 First circuit board 110 First inspection mark production region 200 Second circuit board 210 Second inspection mark production region 300 Third circuit board 310 Third inspection mark production region 410, 420 Adhesive layer

Claims (5)

検査マークを備え位置合わせされる第1の回路板と、
前記第1の回路板の検査マークの大きさに、位置合わせする際に生じる位置ずれ量である位置合わせ精度の少なくとも2倍の位置合わせ量を加算した検査マークを備え、前記第1の回路板に位置合わせし積層する第2の回路板と、
さらに回路板を位置合わせし積層する場合は位置合わせされる回路板の検査マークの大きさに前記位置合わせ量を加算した検査マークを備えた回路板と
を有する多層回路板。
A first circuit board that is aligned with an inspection mark;
An inspection mark obtained by adding an alignment amount that is at least twice the alignment accuracy, which is an amount of misalignment that occurs during alignment, to the size of the inspection mark on the first circuit board; A second circuit board aligned and laminated to
And a circuit board having a test mark obtained by adding the alignment amount to the size of the test mark of the circuit board to be aligned when the circuit boards are aligned and stacked.
前記検査マークの形状は円形であり、前記第1の回路板の検査マークの直径をL、前記位置合わせ精度をa、積層する前記回路板の数をNとしたとき、前記位置合わせ量が
Figure 2005072227
より小さい請求項1記載の多層回路板。
The inspection mark has a circular shape, where the inspection mark diameter of the first circuit board is L, the alignment accuracy is a, and the number of circuit boards to be stacked is N, the alignment amount is
Figure 2005072227
The multilayer circuit board of claim 1 that is smaller.
位置合わせされる第1の回路板には第1の検査マークを備え、前記第1の回路板に位置合わせし積層する第2の回路板には第2の検査マークを備え、前記第2の検査マークの大きさは前記第1の検査マークの大きさに、位置合わせする際に生じる位置ずれ量である位置合わせ精度の少なくとも2倍の位置合わせ量を加算したものであり、前記第1の回路板に前記第2の回路板を位置合わせしたときに前記第2の検査マークの中心位置は前記第1の検査マークの中心位置と重なるようにし、さらに回路板を位置合わせし積層する場合は位置合わせされる回路板の検査マークの大きさに前記位置合わせ量を加算した検査マークを回路板に作製するとともに、前記検査マークの中心位置は前記第1の検査マークの中心位置と重なるようにし、前記検査マークの作製範囲にX線を照射しその透過光量を計測するX線光量計測ステップと、
前記透過光量を(積層する回路板数+1)に区分した透過光量レベルで分類する透過光量分類ステップと、
前記透過光量レベルのうち最も透過光量レベルの大きい透過光量レベルを除外しそれぞれの透過光量レベル以上となる領域の特定位置座標を求める特定位置座標算出ステップと、
前記特定位置座標算出ステップで算出されたそれぞれの前記領域の前記特定位置座標の間の距離を求めて積層された回路板の層間の位置ずれ量を算出する層間位置ずれ量算出ステップと
を有する多層回路板の層間位置ずれ検査方法。
The first circuit board to be aligned has a first inspection mark, the second circuit board to be aligned and stacked on the first circuit board has a second inspection mark, and the second circuit board has the second inspection mark. The size of the inspection mark is the size of the first inspection mark plus an alignment amount that is at least twice the alignment accuracy, which is the amount of misalignment that occurs during alignment. When the second circuit board is aligned with the circuit board, the center position of the second inspection mark overlaps the center position of the first inspection mark, and the circuit board is aligned and stacked. An inspection mark obtained by adding the alignment amount to the size of the inspection mark of the circuit board to be aligned is prepared on the circuit board, and the center position of the inspection mark is overlapped with the center position of the first inspection mark. , The inspection And X-ray light amount measuring step of measuring the amount of transmitted light is irradiated with X-rays to produce a range of marks,
A transmitted light amount classification step for classifying the transmitted light amount by a transmitted light level divided into (number of circuit boards to be stacked + 1);
A specific position coordinate calculation step for obtaining a specific position coordinate of an area that is equal to or higher than each transmitted light amount level by excluding the transmitted light amount level having the largest transmitted light amount level from among the transmitted light amount levels;
A multilayer misregistration amount calculating step of calculating a misalignment amount between the layers of the circuit boards stacked by obtaining a distance between the specific position coordinates of each of the regions calculated in the specific position coordinate calculating step. Circuit board interlayer displacement inspection method.
前記検査マークの作製範囲はN層の回路板が積層されるとき前記第1の検査マークの作製範囲を一端とする径(2Na+L)の円形状(ただし、Nは2以上の整数、aは前記位置合わせ精度、Lは前記第1の検査マークの直径)である請求項3記載の多層回路板の層間位置ずれ検査方法。 The manufacturing range of the inspection mark is a circular shape having a diameter (2Na + L) with the manufacturing range of the first inspection mark as one end when an N-layer circuit board is laminated (where N is an integer of 2 or more, a is the above 4. The method for inspecting an interlayer misalignment of a multilayer circuit board according to claim 3, wherein the alignment accuracy, L is the diameter of the first inspection mark). 前記特定位置座標は前記領域の中心位置座標である請求項3記載の多層回路板の層間位置ずれ検査方法。 4. The method for inspecting an interlayer misalignment of a multilayer circuit board according to claim 3, wherein the specific position coordinates are center position coordinates of the area.
JP2003299597A 2003-08-25 2003-08-25 Multilayer circuit board and method for inspecting positional deviation between layers thereof Pending JP2005072227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003299597A JP2005072227A (en) 2003-08-25 2003-08-25 Multilayer circuit board and method for inspecting positional deviation between layers thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003299597A JP2005072227A (en) 2003-08-25 2003-08-25 Multilayer circuit board and method for inspecting positional deviation between layers thereof

Publications (1)

Publication Number Publication Date
JP2005072227A true JP2005072227A (en) 2005-03-17

Family

ID=34404762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003299597A Pending JP2005072227A (en) 2003-08-25 2003-08-25 Multilayer circuit board and method for inspecting positional deviation between layers thereof

Country Status (1)

Country Link
JP (1) JP2005072227A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016758A (en) * 2006-07-10 2008-01-24 Adtec Engineeng Co Ltd Marking apparatus in manufacturing multi-layer circuit board
KR20170039024A (en) * 2015-09-30 2017-04-10 삼성디스플레이 주식회사 Display device and fabricating method of the same
CN110536569A (en) * 2019-09-29 2019-12-03 胜宏科技(惠州)股份有限公司 It is a kind of to avoid the pcb board processing method that layer is inclined after pressing
CN111182746A (en) * 2020-01-18 2020-05-19 信泰电子(西安)有限公司 Circuit board layer deviation judging method, whole edition structure and deviation circuit board processing method
WO2020250381A1 (en) * 2019-06-13 2020-12-17 株式会社Fuji Multilayer circuit substrate and method for manufacturing the same
CN112165854A (en) * 2020-10-21 2021-01-01 宜兴硅谷电子科技有限公司 Interlayer alignment visual monitoring method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016758A (en) * 2006-07-10 2008-01-24 Adtec Engineeng Co Ltd Marking apparatus in manufacturing multi-layer circuit board
KR20170039024A (en) * 2015-09-30 2017-04-10 삼성디스플레이 주식회사 Display device and fabricating method of the same
KR102390991B1 (en) * 2015-09-30 2022-04-27 삼성디스플레이 주식회사 Display device and fabricating method of the same
WO2020250381A1 (en) * 2019-06-13 2020-12-17 株式会社Fuji Multilayer circuit substrate and method for manufacturing the same
JPWO2020250381A1 (en) * 2019-06-13 2020-12-17
JP7269341B2 (en) 2019-06-13 2023-05-08 株式会社Fuji Multilayer circuit board and manufacturing method thereof
CN110536569A (en) * 2019-09-29 2019-12-03 胜宏科技(惠州)股份有限公司 It is a kind of to avoid the pcb board processing method that layer is inclined after pressing
CN111182746A (en) * 2020-01-18 2020-05-19 信泰电子(西安)有限公司 Circuit board layer deviation judging method, whole edition structure and deviation circuit board processing method
CN111182746B (en) * 2020-01-18 2022-11-22 信泰电子(西安)有限公司 Circuit board layer deviation judging method
CN112165854A (en) * 2020-10-21 2021-01-01 宜兴硅谷电子科技有限公司 Interlayer alignment visual monitoring method

Similar Documents

Publication Publication Date Title
KR102160840B1 (en) Device correlated metrology (dcm) for ovl with embedded sem structure overlay targets
US9429856B1 (en) Detectable overlay targets with strong definition of center locations
US8260033B2 (en) Method and apparatus for determining the relative overlay shift of stacked layers
JP6570018B2 (en) Overlay target, system and method for performing overlay measurement
JP7288144B2 (en) Periodic semiconductor device misalignment metrology system and method
US11532566B2 (en) Misregistration target having device-scaled features useful in measuring misregistration of semiconductor devices
TW388803B (en) A structure and method of measuring overlapping marks
WO2006132697A2 (en) System and method for aligning a wafer processing system in a laser marking system
US20070035039A1 (en) Overlay marker for use in fabricating a semiconductor device and related method of measuring overlay accuracy
JP2005072227A (en) Multilayer circuit board and method for inspecting positional deviation between layers thereof
JP2010267931A (en) Pattern forming method and pattern designing method
TWI547918B (en) Panel device and detecting method thereof
JP2006132947A (en) Inspection device and inspection method
JP2008085007A (en) Multilayered wafer, its manufacturing method, and its inspection apparatus
JPS6151510A (en) Inspecting method for interlayer deviation of multilayer printed board
CN106017249A (en) Layer offset detection method for printed circuit board
US20160043037A1 (en) Mark, semiconductor device, and semiconductor wafer
JP4525067B2 (en) Misalignment detection mark
WO2014136194A1 (en) X-ray nondestructive testing device
JP2022060993A (en) Defect evaluation method, defect evaluation method for soi substrate, and defect evaluation method for multilayer substrate
KR102408725B1 (en) Circuit board
CN101097410A (en) Method of detecting displacement of exposure position marks
JP6432939B2 (en) Printed board
JP2006108579A (en) Dimension measuring method and method for manufacturing semiconductor device
PAN et al. Analysis of Identifying Specific Position of Voids in Multiple Solder Layers of Power Module by 2D X-ray inspection device