JP2005071648A - Sealed battery - Google Patents

Sealed battery Download PDF

Info

Publication number
JP2005071648A
JP2005071648A JP2003209214A JP2003209214A JP2005071648A JP 2005071648 A JP2005071648 A JP 2005071648A JP 2003209214 A JP2003209214 A JP 2003209214A JP 2003209214 A JP2003209214 A JP 2003209214A JP 2005071648 A JP2005071648 A JP 2005071648A
Authority
JP
Japan
Prior art keywords
sealed
battery
explosion
sealed battery
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003209214A
Other languages
Japanese (ja)
Inventor
Takashi Kato
隆 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP2003209214A priority Critical patent/JP2005071648A/en
Publication of JP2005071648A publication Critical patent/JP2005071648A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the reliability of a battery by improving an explosion prevention valve function against an internal pressure rise in a sealed battery. <P>SOLUTION: This sealed battery has a boss 31 in which an opening of a bottomed cylindrical metal can 2 (also serving as an electrode terminal) including a power generation element is sealed with the other-side electrode terminal plate 1 and a ring-shaped sealing plate 5 by caulking by a resin gasket 3 and the resin gasket penetrates a current collecting rod 4 in the center, and a cylindrical outer peripheral part formed with a thin part 32 functioning as an explosion prevention valve. The thin part has recessed shapes at the power generation element side and the sealed part side, thereby, the fracture function is increased and the battery reliability is improved. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は防爆機構に改良を加えた密閉型電池に関する。
【0002】
【従来の技術】
密閉型電池、特に筒形アルカリ電池は、過充電や短絡によって電池内部に大量のガスが発生することがあり、これにより電池の変形や破裂が生ずるおそれがある。このため、通常筒形アルカリ電池には、缶内圧が所定の値より上昇した場合にガスを電池外部へ放出する防爆機構が設けられている。
図5、6、7に防爆機構を備えた従来の単三型アルカリ電池の一例を、また図8、9、10に別の一例を示す。
【0003】
図5、6、7に示した電池は、有底筒状の正極缶2の開口端部に、樹脂製ガスケット3を介して鋼板製のリング状封口板5、負極端子板1を嵌合し、正極缶開口端部を外側から圧縮変形させてカシメ加工した封口構造になっている。樹脂製ガスケット3の中央には集電棒4を圧入貫通させるボス部31が設けられ、その外側には防爆弁として機能する薄肉部32が形成されている。電池内部の圧力が上昇して所定値を超えた場合、この薄肉部32が破断してここからガスが逃げるようになつている。薄肉部32の断面は、発電要素(正極、負極、セパレータ、電解質)側が凹形状となっており、この凹形状とボス部31との接合部33はC面形状となつている。35は平行フランジ部である(例えば特許文献1、特許文献2及び特許文献3参照)。
一方、図8、9、10に示した電池は、上記図5、6、7に示した電池とほぼ同じであるが、防爆弁の薄肉部断面凹形状が封口部側にある点が異なっている。
【0004】
過充電や短絡によって電池内部に大量のガスが発生すると、その内圧によって図11に示すように平行フランジ部35がリング状封口板5の方向へ膨らみ、凹形状部の薄肉部32が伸びきって破断する。
【0005】
ところが、これらの防爆装置では、図7や図10に示すように薄肉部32に平行円環形状部分34があるので、破断する個所が特定化されない。また、缶内圧が所定の値に達したときに防爆弁としての機能を確実に果たすためには、薄肉部寸法公差を±0.015mm程度に抑える必要があるが、樹脂製ガスケットの製造方法やその生産性から考えて上記公差をその程度とすることは難しかった。
【0006】
【特許文献1】
特開平9−245758号公報
【特許文献2】
特開平10−162800号公報
【特許文献3】
特開平2000−100400号公報
【0007】
【発明が解決しようとする課題】
本発明は上記状況に対処してなされたもので、密閉型電池において防爆弁構造を改良してその機能を向上させることを目的とするものである。
【0008】
【課題を解決するための手段】
本発明は樹脂製ガスケットの薄肉部を発電要素側及び封口部側の両面において凹形状とすることによって上記目的を達成した。
すなわち、本発明は、一方極の電極端子を兼ねる有底筒状金属缶内部に発電要素を内包し、該金属缶の開口部を樹脂製ガスケットを介してカシメ加工により他方極端子板及びリング状封口板と共に封口し、該樹脂製ガスケットが中央に集電棒を貫通させたボス部と防爆弁として機能する薄肉部を設けた筒状外周部とを有する密閉型電池において、前記薄肉部が発電要素側及び封口部側の両面において凹形状となっていることを特徴とする。
【0009】
なお、上記薄肉部からなる防爆弁はボス部と隣接しており、ボス部と該凹形状との接合部がR形状となつているのが好ましい。さらに、封口部側の凹形状の幅寸法Bと、ボス部と凹形状とを接合するR形状の寸法C(図3参照)との間に、B<Cの関係があり、発電要素側の凹形状の幅寸法Aと、ボス部と凹形状とを接合するR形状の寸法C(図3参照)との間に、A>Cの関係があり、また発電要素側の凹形状の幅寸法Aと封口部側の幅寸法Bとの間に、A>Bの関係があることが好ましい。
【0010】
このような防爆弁構造とすれば、過充電や短絡によって電池内部に大量のガスが発生して内圧が上昇した場合、内圧が凹形状部の薄肉部に集中し、その最薄肉部から破断する。破断個所が特定できることによって、防爆弁としての信頼性を確保するための薄肉部寸法Tの公差も余裕ができる。
【0011】
【発明の実施の形態】
以下、本発明の実施例について説明する。
図1は本発明の実施例である単三形アルカリ電池の縦断面図である。また、図2は図1の封口部拡大図、図3は図1の防爆弁機構部拡大図である。
【0012】
上記図に示すように、正極端子を兼ねる有底筒状の正極缶2の内部に、正極合剤6、セパレータ7、負極ゲル8からなる発電要素が収納されており、正極缶2の開口部は樹脂製ガスケット3を介して鋼板製のリング状封口板5と負極端子板1とを嵌合して封口されている。樹脂製ガスケット3には集電棒4を圧入貫通させるボス部31と筒状外周部とを有しており、筒状外周部のボス部接合部位に薄肉部32が設けられていて、缶内圧が所定値より上昇したときに薄肉部32が破断して防爆弁として機能するようになっている。
【0013】
次に薄肉部32について説明する。図1,2,3に示すように、薄肉部32は樹脂製ガスケット3のボス部31から円環状の平行フランジ部35にかけて形成されており、発電要素側及び封口部側の両面に凹形状をなしている。そして、ボス部31と凹形状との接合部33及び36がR形状となっているので、薄肉部32には従来のような上下両側が平行となる部分が存在しない。
【0014】
このような防爆弁構造としたことで、所定値以上に上昇した内圧を凹形状部分に集中させることができ、破断部分が特定化された。また、薄肉部32は、その厚さ寸法Tの公差±0.03mmで防爆弁としての機能を確実に果たすことが可能となった。
【0015】
図5,6,7及び図8,9,10は比較例として示す単三型アルカリ電池の断面図であり、図5及び図8は全体断面図、図6及び9は各封口部の拡大断面図、図7及び図10は各防爆弁機構部の拡大断面図である。前述したように、図5,6,7に示す電池では薄肉部32の断面は発電要素側が凹形状となっており、この凹形状とボス部31との接合部33はC面形状で構成されている。また、図8,9,10に示す電池では、防爆弁の薄肉部凹形状が封口部側にあり、それ以外は図5,6,7の電池とほぼ同じである。
【0016】
図1,2,3に示した本発明のアルカリ電池と、比較例として示した上記図5,6,7及び図8,9,10のアルカリ電池を作成した。また、従来例によれば、防爆弁としての機能を確実に果たすために必要な薄肉部32の厚さ寸法Tの許容差は±0.015とされていたが、本発明において、所定値以上に上昇した内圧を凹形状部分に集中させることができ、破断部分を特定化することで、該、許容範囲を広げることが可能と考えた。
【0017】
そのため、本電池作成にあたっては、従来の許容範囲±0.015と従来の許容範囲より大きくした±0.03で、本発明のアルカリ電池及び比較例電池を作成し、それぞれについて充電時の防爆性能試験を行った。試験数は各50個である。なお、充電時の防爆性能試験は室温環境下で4本の電池のうち1本の電池のみ極性が反対になるように直列接続して充電状態とし、電池内部にガスを発生させて防爆機能が作動したときの状況を比較した。
【0018】
結果を表1に示す。また、本発明の実施例の電池の防爆弁作動後の破断状態概略断面図を図4に示す。
【0019】
【表1】

Figure 2005071648
【0020】
表1において、防爆弁の薄肉部厚さ寸法をT1±0.015mmにした本実施例並びに比較例、T2±0.03mmにした本実施例は共に充電時の防爆機能作動は全数正常だった。しかし、T2±0.03mmにした比較例はそれぞれ2/20、1/20弁作動時の高音が確認された。試験後の分解調査により、防爆弁の破断は凹形状部の薄肉部32に留まらず、フランジ部35まで及んでいることを確認した。更に薄肉部32の厚さ実寸法が公差内でも大きい場合に限定されたことが解った。結局、薄肉部32の厚さ寸法を厚くしたことによって弁強度が強くなったことが、その主因と判断された。
【0021】
表1及び図4に示すように、本発明の電池では防爆弁機能のある薄肉部に平行部が存在しないような構成としたことによって、防爆弁作動時の破断部分をH部(図4)に特定することができ、薄肉部の寸法公差は±0.03mmでも充分防爆弁としての機能を果たすことが可能となった。
【0022】
【発明の効果】
以上説明したように、本発明は密閉型電池において防爆弁構造を改良したことにより、信頼性の高い防爆弁機能を得ることができた。
【図面の簡単な説明】
【図1】本発明の実施例を示す単三形アルカリ電池の縦断面図。
【図2】図1の封口部拡大断面図。
【図3】図1の防爆弁機構部拡大断面図。
【図4】本発明電池の防爆弁作動状態後の拡大断面図。
【図5】従来の密閉型電池の縦断面図。
【図6】図5の封口部の拡大断面図。
【図7】図5の防爆弁機構部拡大断面図。
【図8】従来の他の密閉型電池の縦断面図。
【図9】図8の封口部の拡大断面図。
【図10】図8の防爆弁機構部拡大断面図。
【図11】図8の電池の防爆弁作動状態後の拡大断面図。
【符号の説明】
1…負極端子板、2…正極缶、3…樹脂製ガスケット、4…集電棒、5…鋼板のリング状封口板、31…ボス部、32…薄肉部、33,36…凹形状とボス部の接合部、34…薄肉部の平行部、35…平行フランジ部、A…発電要素を内包した側の凹形状幅寸法、B…発電要素を内包した側の対面側凹形状幅寸法、T…薄肉部の厚さ寸法。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sealed battery obtained by improving an explosion-proof mechanism.
[0002]
[Prior art]
In a sealed battery, particularly a cylindrical alkaline battery, a large amount of gas may be generated inside the battery due to overcharge or short circuit, which may cause deformation or rupture of the battery. For this reason, a normal cylindrical alkaline battery is provided with an explosion-proof mechanism that releases gas to the outside of the battery when the internal pressure of the can rises above a predetermined value.
An example of a conventional AA alkaline battery having an explosion-proof mechanism is shown in FIGS. 5, 6 and 7, and another example is shown in FIGS.
[0003]
In the battery shown in FIGS. 5, 6, and 7, a ring-shaped sealing plate 5 made of a steel plate and a negative electrode terminal plate 1 are fitted to an open end of a bottomed cylindrical positive electrode can 2 through a resin gasket 3. The sealing end structure is formed by crimping and deforming the opening end of the positive electrode can from the outside. A boss portion 31 for press-fitting the current collector rod 4 is provided in the center of the resin gasket 3, and a thin portion 32 that functions as an explosion-proof valve is formed on the outside thereof. When the pressure inside the battery rises and exceeds a predetermined value, the thin portion 32 is broken and gas escapes from here. The cross section of the thin portion 32 has a concave shape on the power generation element (positive electrode, negative electrode, separator, electrolyte) side, and a joint portion 33 between the concave shape and the boss portion 31 has a C-plane shape. 35 is a parallel flange part (for example, refer patent document 1, patent document 2, and patent document 3).
On the other hand, the batteries shown in FIGS. 8, 9, and 10 are substantially the same as the batteries shown in FIGS. Yes.
[0004]
When a large amount of gas is generated inside the battery due to overcharge or short circuit, the parallel flange portion 35 swells in the direction of the ring-shaped sealing plate 5 as shown in FIG. Break.
[0005]
However, in these explosion-proof devices, as shown in FIG. 7 and FIG. 10, the parallel ring-shaped portion 34 is present in the thin portion 32, so that the portion to be broken is not specified. Moreover, in order to reliably perform the function as an explosion-proof valve when the internal pressure of the can reaches a predetermined value, it is necessary to suppress the dimensional tolerance of the thin portion to about ± 0.015 mm. In view of its productivity, it was difficult to make the tolerances to that extent.
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 9-245758 [Patent Document 2]
Japanese Patent Laid-Open No. 10-162800 [Patent Document 3]
Japanese Patent Laid-Open No. 2000-100400
[Problems to be solved by the invention]
The present invention has been made in view of the above situation, and an object of the present invention is to improve the function of an explosion-proof valve structure in a sealed battery.
[0008]
[Means for Solving the Problems]
The present invention achieves the above object by making the thin wall portion of the resin gasket concave on both the power generation element side and the sealing portion side.
That is, the present invention encloses a power generation element inside a bottomed cylindrical metal can that also serves as an electrode terminal of one electrode, and the other electrode terminal plate and the ring shape by caulking the opening of the metal can through a resin gasket. In a sealed battery having a boss portion that is sealed together with a sealing plate and in which the resin gasket penetrates a current collecting rod in the center and a cylindrical outer peripheral portion provided with a thin portion functioning as an explosion-proof valve, the thin portion is a power generation element A concave shape is formed on both sides of the side and the sealing portion.
[0009]
In addition, it is preferable that the explosion-proof valve which consists of the said thin part is adjacent to the boss | hub part, and the junction part of a boss | hub part and this concave shape has become R shape. Further, there is a relationship of B <C between the concave width dimension B on the sealing portion side and the R-shaped dimension C (see FIG. 3) for joining the boss portion and the concave shape, and the power generation element side There is a relationship of A> C between the concave width dimension A and the R-shaped dimension C (see FIG. 3) that joins the boss and the concave shape, and the concave width dimension on the power generation element side. It is preferable that there is a relationship of A> B between A and the width dimension B on the sealing portion side.
[0010]
With such an explosion-proof valve structure, when a large amount of gas is generated inside the battery due to overcharge or short circuit and the internal pressure rises, the internal pressure concentrates on the thin part of the concave part and breaks from the thinnest part . Since the breakage point can be specified, the tolerance of the thin portion dimension T for ensuring the reliability as the explosion-proof valve can be afforded.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the present invention will be described below.
FIG. 1 is a longitudinal sectional view of an AA alkaline battery according to an embodiment of the present invention. 2 is an enlarged view of the sealing portion of FIG. 1, and FIG. 3 is an enlarged view of the explosion-proof valve mechanism portion of FIG.
[0012]
As shown in the above figure, a bottomed cylindrical positive electrode can 2 also serving as a positive electrode terminal accommodates a power generation element composed of a positive electrode mixture 6, a separator 7, and a negative electrode gel 8. Is sealed by fitting a ring-shaped sealing plate 5 made of a steel plate and the negative electrode terminal plate 1 through a resin gasket 3. The resin gasket 3 has a boss portion 31 for press-fitting the current collecting rod 4 and a cylindrical outer peripheral portion, and a thin portion 32 is provided at a boss portion joining portion of the cylindrical outer peripheral portion, so that the internal pressure of the can is reduced. When the temperature rises above a predetermined value, the thin portion 32 is broken and functions as an explosion-proof valve.
[0013]
Next, the thin portion 32 will be described. As shown in FIGS. 1, 2, and 3, the thin portion 32 is formed from the boss portion 31 of the resin gasket 3 to the annular parallel flange portion 35, and has a concave shape on both the power generation element side and the sealing portion side. There is no. And since the junction parts 33 and 36 of the boss | hub part 31 and concave shape are R shape, the part which the upper and lower both sides parallel in the conventional thin part 32 does not exist.
[0014]
By adopting such an explosion-proof valve structure, the internal pressure increased to a predetermined value or more can be concentrated on the concave portion, and the fracture portion has been specified. Further, the thin portion 32 can reliably function as an explosion-proof valve with a tolerance of the thickness dimension T of ± 0.03 mm.
[0015]
5, 6, 7 and FIGS. 8, 9, and 10 are sectional views of AA alkaline batteries shown as comparative examples, FIGS. 5 and 8 are overall sectional views, and FIGS. 6 and 9 are enlarged sectional views of the respective sealing portions. 7, 7 and 10 are enlarged cross-sectional views of each explosion-proof valve mechanism. As described above, in the battery shown in FIGS. 5, 6, and 7, the cross section of the thin portion 32 has a concave shape on the power generation element side, and the joint portion 33 between the concave shape and the boss portion 31 is formed in a C-plane shape. ing. Further, in the batteries shown in FIGS. 8, 9, and 10, the thin-walled concave shape of the explosion-proof valve is on the sealing portion side, and other than that, it is almost the same as the batteries of FIGS.
[0016]
The alkaline batteries of the present invention shown in FIGS. 1, 2, and 3 and the alkaline batteries shown in FIGS. 5, 6, 7 and 8, 9, 10 shown as comparative examples were prepared. In addition, according to the conventional example, the tolerance of the thickness dimension T of the thin portion 32 necessary for reliably performing the function as the explosion-proof valve is ± 0.015. It was thought that the allowable range could be expanded by specifying the fractured part by concentrating the internal pressure that was raised to the concave part.
[0017]
Therefore, when producing this battery, the alkaline battery of the present invention and the comparative example battery were produced with the conventional allowable range ± 0.015 and ± 0.03 larger than the conventional allowable range, and the explosion-proof performance at the time of charging for each of them. A test was conducted. The number of tests is 50 each. In addition, the explosion-proof performance test at the time of charging is performed by connecting in series so that only one of the four batteries has the opposite polarity in a room temperature environment and charging it, generating gas inside the battery and having an explosion-proof function. The situation when operating was compared.
[0018]
The results are shown in Table 1. FIG. 4 shows a schematic sectional view of the battery according to the embodiment of the present invention after the explosion-proof valve is actuated.
[0019]
[Table 1]
Figure 2005071648
[0020]
In Table 1, all the explosion-proof function operation at the time of charging was normal in both of the present example and comparative example in which the thickness of the thin-walled portion of the explosion-proof valve was T1 ± 0.015 mm, and the present example set to T2 ± 0.03 mm. . However, in the comparative example in which T2 ± 0.03 mm was set, high sounds were obtained when the 2/20 and 1/20 valves were operated. By disassembling after the test, it was confirmed that the explosion-proof valve breaks not only in the thin-walled portion 32 of the concave shape but also extends to the flange portion 35. Further, it was found that the thickness of the thin portion 32 was limited to a case where the actual dimension was large even within the tolerance. After all, it was judged that the main cause was that the valve strength was increased by increasing the thickness of the thin portion 32.
[0021]
As shown in Table 1 and FIG. 4, in the battery of the present invention, the thin portion having the explosion-proof valve function is configured not to have a parallel portion, so that the fracture portion when the explosion-proof valve is operated is the H portion (FIG. 4). Even if the dimensional tolerance of the thin-walled portion is ± 0.03 mm, it can sufficiently function as an explosion-proof valve.
[0022]
【The invention's effect】
As described above, according to the present invention, a highly reliable explosion-proof valve function can be obtained by improving the explosion-proof valve structure in a sealed battery.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an AA alkaline battery showing an embodiment of the present invention.
FIG. 2 is an enlarged cross-sectional view of a sealing portion in FIG.
FIG. 3 is an enlarged cross-sectional view of the explosion-proof valve mechanism portion of FIG.
FIG. 4 is an enlarged cross-sectional view of the battery of the present invention after the explosion-proof valve is activated.
FIG. 5 is a longitudinal sectional view of a conventional sealed battery.
6 is an enlarged cross-sectional view of the sealing portion of FIG.
7 is an enlarged cross-sectional view of the explosion-proof valve mechanism portion of FIG.
FIG. 8 is a longitudinal sectional view of another conventional sealed battery.
9 is an enlarged cross-sectional view of the sealing portion in FIG.
10 is an enlarged cross-sectional view of the explosion-proof valve mechanism portion of FIG.
11 is an enlarged cross-sectional view of the battery of FIG. 8 after the explosion-proof valve is activated.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Negative electrode terminal plate, 2 ... Positive electrode can, 3 ... Resin gasket, 4 ... Current collecting rod, 5 ... Steel ring-shaped sealing plate, 31 ... Boss part, 32 ... Thin part, 33, 36 ... Concave shape and boss part 34 ... Parallel portion of thin-walled portion, 35 ... Parallel flange portion, A ... Concave width dimension on the side including the power generation element, B ... Contrast concave width dimension on the side including the power generation element, T ... The thickness of the thin part.

Claims (5)

一方極の電極端子を兼ねる有底筒状金属缶内部に発電要素を内包し、該金属缶の開口部が、樹脂製ガスケットを介してカシメ加工により他方極の電極端子板及びリング状封口板と共に封口され、該樹脂製ガスケットが中央に集電棒を貫通させたボス部と防爆弁として機能する薄肉部を設けた筒状外周部とを有する密閉型電池において、前記薄肉部が発電要素側及び封口部側の両面において凹形状となっていることを特徴とする密閉型電池。A power generation element is enclosed in a bottomed cylindrical metal can that also serves as an electrode terminal on one side, and the opening of the metal can is caulked through a resin gasket together with the electrode terminal plate and ring-shaped sealing plate on the other electrode In a sealed battery having a sealed boss that is sealed and has a cylindrical outer peripheral portion provided with a thin portion that functions as an explosion-proof valve, and a boss portion through which the current collector rod penetrates the current collector rod, A sealed battery characterized in that it has a concave shape on both sides on the part side. 凹形状とボス部との接合部がR形状である請求項1記載の密閉型電池。The sealed battery according to claim 1, wherein a joint portion between the concave shape and the boss portion has an R shape. 発電要素側の凹形状の幅寸法Aと封口部側の凹形状の幅寸法Bとが、A>Bである請求項1記載の密閉型電池。2. The sealed battery according to claim 1, wherein a concave width dimension A on the power generation element side and a concave width dimension B on the sealing portion side satisfy A> B. 封口部側の凹形状の幅寸法Bと、ボス部と凹形状とを接合するR形状の寸法Cとが、B<Cである請求項1記載の密閉型電池。2. The sealed battery according to claim 1, wherein a concave width dimension B on the sealing portion side and an R-shaped dimension C joining the boss portion and the concave shape are B <C. 発電要素側の凹形状の幅寸法Aと、ボス部と凹形状とを接合するR形状の寸法Cとが、A>Cである請求項1記載の密閉型電池。2. The sealed battery according to claim 1, wherein a concave width dimension A on the power generation element side and an R-shaped dimension C joining the boss portion and the concave shape satisfy A> C.
JP2003209214A 2003-08-28 2003-08-28 Sealed battery Pending JP2005071648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003209214A JP2005071648A (en) 2003-08-28 2003-08-28 Sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003209214A JP2005071648A (en) 2003-08-28 2003-08-28 Sealed battery

Publications (1)

Publication Number Publication Date
JP2005071648A true JP2005071648A (en) 2005-03-17

Family

ID=34402226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003209214A Pending JP2005071648A (en) 2003-08-28 2003-08-28 Sealed battery

Country Status (1)

Country Link
JP (1) JP2005071648A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650049A (en) * 1979-09-12 1981-05-07 Berec Group Ltd Sealed galvani battery
JPH01309252A (en) * 1988-06-07 1989-12-13 Asahi Chem Ind Co Ltd Seald battery
JPH07122247A (en) * 1993-10-26 1995-05-12 Hitachi Maxell Ltd Cylindrical alkaline battery
JPH0817417A (en) * 1994-07-05 1996-01-19 Matsushita Electric Ind Co Ltd Dry battery
JPH0945303A (en) * 1995-07-26 1997-02-14 Matsushita Electric Ind Co Ltd Explosion-proof gasket of alkaline battery
JP2001351609A (en) * 2000-06-09 2001-12-21 Fdk Corp Penetrating type sealed terminal and battery
JP2002543565A (en) * 1999-04-27 2002-12-17 エヴァレディー バッテリー カンパニー インコーポレイテッド Electrochemical cell with low profile seal assembly with anti-release vent

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650049A (en) * 1979-09-12 1981-05-07 Berec Group Ltd Sealed galvani battery
JPH01309252A (en) * 1988-06-07 1989-12-13 Asahi Chem Ind Co Ltd Seald battery
JPH07122247A (en) * 1993-10-26 1995-05-12 Hitachi Maxell Ltd Cylindrical alkaline battery
JPH0817417A (en) * 1994-07-05 1996-01-19 Matsushita Electric Ind Co Ltd Dry battery
JPH0945303A (en) * 1995-07-26 1997-02-14 Matsushita Electric Ind Co Ltd Explosion-proof gasket of alkaline battery
JP2002543565A (en) * 1999-04-27 2002-12-17 エヴァレディー バッテリー カンパニー インコーポレイテッド Electrochemical cell with low profile seal assembly with anti-release vent
JP2001351609A (en) * 2000-06-09 2001-12-21 Fdk Corp Penetrating type sealed terminal and battery

Similar Documents

Publication Publication Date Title
US7700229B2 (en) Packing, production method of crimp assembly, production method of battery housing lid, and production method of battery
JP5399990B2 (en) Secondary battery
JP2010277936A (en) Sealed battery
JP2009110808A (en) Sealed battery
JP2006012831A (en) Secondary battery, cap assembly of secondary battery, and mounting method of safety valve of secondary battery
JP2009259524A (en) Lid of battery case, battery, and method of manufacturing the same
JP2003317678A (en) Secondary battery
JP2006221988A (en) Gasket for cylindrical sealed battery, the battery, and manufacturing method therefor
JP5673195B2 (en) battery
JPH11307080A (en) Electric path breaking component for battery
CN103779531A (en) Current interrupting device of sealed battery
JP4942365B2 (en) Cylindrical battery
WO2007010669A1 (en) Alkaline battery
JP2009230991A (en) Cylindrical cell and manufacturing method of cylindrical cell
US7459232B2 (en) Secondary battery having safety valve and method of manufacturing same
JP2005071648A (en) Sealed battery
JP2012038522A (en) Battery
WO2011118359A1 (en) Hermetic battery
JP2004079399A (en) Safety device of battery
US20220231386A1 (en) Terminal component, secondary battery, and method for manufacturing terminal component
WO2022107712A1 (en) Cylindrical battery
JP3688008B2 (en) Batteries equipped with explosion-proof safety devices and manufacturing methods thereof
EP4113558A1 (en) Power storage device
JP3682390B2 (en) Sealed parts with safety valve
JP3727225B2 (en) Through-type sealing terminal and battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060818

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100413