JP2005069760A - Emission spectrum measuring device - Google Patents

Emission spectrum measuring device Download PDF

Info

Publication number
JP2005069760A
JP2005069760A JP2003297387A JP2003297387A JP2005069760A JP 2005069760 A JP2005069760 A JP 2005069760A JP 2003297387 A JP2003297387 A JP 2003297387A JP 2003297387 A JP2003297387 A JP 2003297387A JP 2005069760 A JP2005069760 A JP 2005069760A
Authority
JP
Japan
Prior art keywords
sample
measurement
reflecting mirror
state
emission spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003297387A
Other languages
Japanese (ja)
Inventor
Eichiyuu Ikeda
英柱 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2003297387A priority Critical patent/JP2005069760A/en
Publication of JP2005069760A publication Critical patent/JP2005069760A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve analysis accuracy by heightening the accuracy of temperature control of a sample, and to facilitate visual confirmation of a measuring portion on the sample. <P>SOLUTION: A sample stand 23 itself for placing the sample 22 horizontally is constituted from a material having excellent heat conductivity to thereby form a temperature-controlled block, and the sample stand 23 is heated/cooled by a Peltier element 25. A measuring window 24 is opened on the center of the sample stand 23, and the sample 22 is set on the sample stand 23 so that the emission surface faces downward. The sample 22 is heated/cooled from the emission surface side, and since the area of the measuring window 24 is small, the temperature at the measuring portion becomes nearly equal to a target temperature. A reflecting mirror 26 rotatable around a vertical shaft 27 is installed just under the measuring window 24, and the measuring portion is projected in the mirror surface to thereby enable visual confirmation by facing the reflecting mirror 26 forward. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、発光源からの発光光のスペクトルを測定する発光スペクトル測定装置に関し、更に詳しくは、例えば有機ELパネル等の平板形状を有する試料の発光スペクトルを測定するのに好適な発光スペクトル測定装置に関する。   The present invention relates to an emission spectrum measuring apparatus for measuring a spectrum of emitted light from an emission source, and more specifically, an emission spectrum measuring apparatus suitable for measuring an emission spectrum of a sample having a flat shape such as an organic EL panel. About.

近年、有機EL等の自己発光型の薄型ディスプレイの開発に伴って、薄型平板状の発光体の発光特性(輝度、色度など)を高い精度で測定する装置の要求が非常に強まっており、こうした要求に応えるための装置が製品化されている(例えば非特許文献1、2など参照)。   In recent years, with the development of self-luminous thin displays such as organic EL, the demand for devices that measure the light emission characteristics (luminance, chromaticity, etc.) of thin flat light emitters with high accuracy has become very strong. Devices for meeting these requirements have been commercialized (see, for example, Non-Patent Documents 1 and 2).

例えば非特許文献1に開示された従来の測定装置では、平板形状の試料は垂直に立てた状態で保持され、その試料の発光面から略水平方向に放出された測定光を輝度計で検出するとともに光ファイバを介して分光器へと導入する、という構成を採っている。また、有機EL素子の発光特性の温度依存性を測定したいという要望が大きいため、非特許文献2に記載の従来の測定装置では、電子冷熱素子により試料の温調を行えるようにしている。試料を温調する場合、その温調手段が測定光を遮らないようにする必要があるため、従来、垂直に立てた状態で保持した試料の背面側に接触するように温調ブロックを設け、この温調ブロックから伝導する熱によって試料が所定温度に維持されるようにしている。   For example, in the conventional measuring apparatus disclosed in Non-Patent Document 1, a flat plate-like sample is held in a vertical state, and the measurement light emitted in a substantially horizontal direction from the light emitting surface of the sample is detected by a luminance meter. At the same time, the optical fiber is introduced into the spectrometer. In addition, since there is a great demand for measuring the temperature dependence of the light emission characteristics of the organic EL element, the conventional measuring apparatus described in Non-Patent Document 2 allows the temperature of the sample to be controlled by the electronic cooling element. When adjusting the temperature of the sample, it is necessary to prevent the temperature adjustment means from blocking the measurement light, so conventionally, a temperature adjustment block is provided so as to contact the back side of the sample held vertically. The sample is maintained at a predetermined temperature by heat conducted from the temperature control block.

しかしながら、こうした従来の構成では、背面側から試料を加熱・冷却するため、試料の熱伝導率や試料の厚さなどによっては試料上の測定部位の実際の温度と目標温度との差が大きくなり、これが測定精度を損なう一因となっていた。また、有機ELパネルの測定等においては、試料上の測定部位の確認を目視で行いたいという要望が強いが、従来の構成ではこうした目視確認を行うことは困難であった。   However, in such a conventional configuration, since the sample is heated and cooled from the back side, the difference between the actual temperature of the measurement site on the sample and the target temperature increases depending on the thermal conductivity of the sample and the thickness of the sample. This is one of the factors that impair the measurement accuracy. Further, in the measurement of the organic EL panel and the like, there is a strong demand for visually confirming the measurement site on the sample, but it has been difficult to perform such visual confirmation with the conventional configuration.

“有機EL発光効率測定装置 EL1003”、[online]、プレサイスゲージ株式会社、[平成15年8月6日検索]、インターネット〈URL : http://www.p-gauges.com/products3/EL1003.pdf〉“Organic EL Luminous Efficiency Measuring Device EL1003”, [online], Precise Gauge Co., Ltd. [Search August 6, 2003], Internet <URL: http://www.p-gauges.com/products3/EL1003 .pdf> “有機EL評価システム ELS-1500”、「有機EL製造工程と島津の評価機器」カタログ、株式会社島津製作所"Organic EL Evaluation System ELS-1500", "Organic EL Manufacturing Process and Shimadzu Evaluation Equipment" Catalog, Shimadzu Corporation

本発明はこうした課題に鑑みて成されたものであり、その目的は、試料の測定部位の温度を高い精度で目標温度に調節することにより測定精度を向上させることができる発光スペクトル測定装置を提供することにある。また、本発明の他の目的は、測定者による試料上の測定部位の目視確認が容易であるような発光スペクトル測定装置を提供することにある。   The present invention has been made in view of these problems, and an object thereof is to provide an emission spectrum measuring apparatus capable of improving measurement accuracy by adjusting the temperature of a measurement site of a sample to a target temperature with high accuracy. There is to do. It is another object of the present invention to provide an emission spectrum measuring apparatus that allows a measurer to easily visually check a measurement site on a sample.

上記課題を解決するために成された本発明は、略平板形状の試料から放出される光を測光部に導入し、その光を波長分散させて光検出器により検出することで発光スペクトルを表す情報を取得する発光スペクトル測定装置において、
a)前記試料の測定面を下に向けた状態で該試料を載置するためのものであり、該試料の下面の測定部位が覗くように測定窓が開口され、且つそれ自体が高い熱伝導性を有する材料から成る試料台と、
b)該試料台を加熱又は冷却するために該試料台と熱的に接触して配置された加熱・冷却手段と、
を備えることを特徴としている。
In order to solve the above-mentioned problems, the present invention represents a light emission spectrum by introducing light emitted from a substantially flat sample into a photometry unit, wavelength-dispersing the light and detecting it with a photodetector. In an emission spectrum measuring device for acquiring information,
a) For placing the sample with the measurement surface of the sample facing down, the measurement window is opened so that the measurement site on the lower surface of the sample can be viewed, and itself has high heat conduction A sample stage made of a material having properties;
b) heating / cooling means arranged in thermal contact with the sample stage to heat or cool the sample stage;
It is characterized by having.

発明の実施の形態及び効果Embodiments and effects of the invention

本発明に係る発光スペクトル測定装置では、その上面に試料を略水平に載置する試料台自体が試料に熱(温熱又は冷熱)を加える温調ブロックとして機能する。さらにまた、試料台に測定窓を開口させてそこから下方に測定光を取り出すことで、試料の表面(測定部位と同一面)からの加熱を実現している。こうした発光スペクトル測定装置においては、同時に測定したい又は同時に測定する必要がある試料上の測定部位は比較的狭い範囲である。したがって、上記測定窓の開口面積は小さくてよい。そのため、温調ブロックである試料台と接触している試料部分と測定部位との間の距離は短い。それにより、測定部位の温度と試料台の温度との差は殆どなくなり、試料の厚さや試料の熱伝導率に拘わらず、所定温度における発光特性や発光特性の温度依存性等を高い精度で以て測定することができる。   In the emission spectrum measuring apparatus according to the present invention, the sample stage itself, on which the sample is placed substantially horizontally, functions as a temperature control block that applies heat (hot or cold) to the sample. Furthermore, heating from the surface (same surface as the measurement site) of the sample is realized by opening a measurement window on the sample stage and extracting measurement light downward therefrom. In such an emission spectrum measuring apparatus, the measurement sites on the sample that are desired to be measured at the same time or that need to be measured at the same time are in a relatively narrow range. Therefore, the opening area of the measurement window may be small. Therefore, the distance between the sample portion that is in contact with the sample stage that is the temperature control block and the measurement site is short. As a result, there is almost no difference between the temperature of the measurement site and the temperature of the sample stage, and the light emission characteristics at a predetermined temperature and the temperature dependence of the light emission characteristics can be accurately measured regardless of the thickness of the sample and the thermal conductivity of the sample. Can be measured.

また本発明に係る発光スペクトル測定装置では、前記測定窓の下方に配置された反射鏡を含む光反射手段をさらに備え、該光反射手段は、前記測定窓を通して試料の測定部位から放出される光を反射鏡で反射させて前記測光部に導入し得る第1状態と、試料の測定部位を反射鏡に映して外部から視認可能な状態とする第2状態とが切り替え自在である構成とすることが好ましい。   The emission spectrum measuring apparatus according to the present invention further includes light reflecting means including a reflecting mirror disposed below the measurement window, and the light reflecting means emits light emitted from the measurement site of the sample through the measurement window. And a second state in which the measurement portion of the sample is reflected on the reflecting mirror and made visible from the outside can be switched. Is preferred.

この構成では、測定実行時には光反射手段を第1状態に設定しておき、測定者が試料の測定部位を目視で観察したい場合には光反射手段を第2状態に切り替える。第2状態では反射鏡の中に測定部位が映るので、これによって測定者は測定部位の状態や位置などを実際に目視で確認することができる。   In this configuration, the light reflecting means is set to the first state when measurement is performed, and the light reflecting means is switched to the second state when the measurer wants to visually observe the measurement site of the sample. In the second state, the measurement site is reflected in the reflecting mirror, so that the measurer can actually visually confirm the state and position of the measurement site.

光反射手段の一態様として、前記光反射手段は、前記測定窓の直下に位置し水平面に対して傾斜した唯一の反射鏡と、該反射鏡を鉛直軸を中心に回動させる回転機構と、を備え、該回転機構により前記反射鏡の向きを変化させることで第1状態と第2状態とが切り替わる構成とすることができる。この構成によれば、測定時と試料観察時とで反射鏡が共通化でき、コスト的に有利であるとともに省スペース性に優れる。   As one aspect of the light reflecting means, the light reflecting means includes a single reflecting mirror that is located immediately below the measurement window and is inclined with respect to a horizontal plane, and a rotating mechanism that rotates the reflecting mirror around a vertical axis; And the first state and the second state can be switched by changing the direction of the reflecting mirror by the rotating mechanism. According to this configuration, the reflecting mirror can be shared between the measurement and the sample observation, which is advantageous in terms of cost and excellent in space saving.

また、光反射手段の別の態様として、前記光反射手段は、第1状態及び第2状態にそれぞれ対応して異なる方向を向く2つの反射鏡と、その2つの反射鏡のいずれかを選択的に前記測定窓の直下に位置させる反射鏡移動手段と、を備える構成としてもよい。この構成によれば、測定時と試料観察時とに対応してそれぞれ反射鏡を設ける必要はあるものの、反射鏡移動手段はスライド式でよいのでその機構は簡単になり、信頼性が向上する。   As another aspect of the light reflecting means, the light reflecting means selectively selects two reflecting mirrors facing in different directions corresponding to the first state and the second state, and either of the two reflecting mirrors. It is good also as a structure provided with the reflecting-mirror moving means to be located directly under the said measurement window. According to this configuration, although it is necessary to provide a reflecting mirror corresponding to each time of measurement and sample observation, the reflecting mirror moving means may be a slide type, so that the mechanism becomes simple and the reliability is improved.

本発明の一実施例である有機ELパネル測定装置について、図1〜図4を参照して説明する。   An organic EL panel measuring apparatus according to an embodiment of the present invention will be described with reference to FIGS.

図1は本実施例の有機ELパネル測定装置の全体構成図である。この装置は、分光器や光検出器等を含む測光部2を内蔵した紫外可視分光光度計1と、分光光度計1の試料室設置空間に装填された有機ELパネル測定ユニット10と、分光光度計1により取得された検出データを受けて各種のデータ処理を行ったり分光光度計1の動作制御を行うためのパーソナルコンピュータ(PC)3と、有機ELパネル測定ユニット10にそれぞれ接続された温度制御装置4、冷却水循環装置5及び直流電源6と、から構成されている。この測定装置では、有機ELパネル測定ユニット10に代えて他のユニットを装填することにより、有機ELパネル以外の他の発光体の発光測定や適宜の試料の透過又は反射による吸光度、反射率等の測定が行える。   FIG. 1 is an overall configuration diagram of an organic EL panel measuring apparatus according to the present embodiment. This apparatus includes an ultraviolet-visible spectrophotometer 1 having a photometric unit 2 including a spectroscope, a photodetector, and the like, an organic EL panel measurement unit 10 loaded in a sample chamber installation space of the spectrophotometer 1, and a spectrophotometer. Temperature control connected to a personal computer (PC) 3 for performing various data processing in response to detection data acquired by the meter 1 and controlling the operation of the spectrophotometer 1, and an organic EL panel measurement unit 10, respectively. The apparatus 4 includes a cooling water circulation device 5 and a DC power source 6. In this measuring apparatus, in place of the organic EL panel measurement unit 10, other units are loaded, so that the light emission measurement of other light emitters other than the organic EL panel and the absorbance, reflectivity, and the like due to transmission or reflection of an appropriate sample can be performed. Measurement is possible.

本実施例の測定装置では、有機ELパネル測定ユニット10の構造に特徴を有する。図2は有機ELパネル測定ユニット10の概略的な外観正面図である。この有機ELパネル測定ユニット10において、その最上部には上から被せられる着脱可能なカバーによって略密閉される試料装着室11を備える。試料をセットする際にはカバーを外し、後述するように試料をセットした後にはカバーを閉める。必要に応じてパージ管12を介して内部の不純物ガスをパージする。この試料装着室11の下は前面に着脱式の試料位置確認用の蓋体14を有する光学室13になっており、その左方の前面には、温度制御装置4と接続される温度制御モニタ用コネクタの接続部16、直流電源6と接続される直流電源用コネクタの接続部17、デジタルマルチメータ(図示せず)と接続されるデジタルマルチメータ用コネクタの接続部18、温度制御装置4と接続される温度制御駆動用コネクタの接続部19などのコネクタ接続部15が纏められている。   The measuring apparatus of this embodiment is characterized by the structure of the organic EL panel measuring unit 10. FIG. 2 is a schematic external front view of the organic EL panel measurement unit 10. The organic EL panel measurement unit 10 includes a sample mounting chamber 11 that is substantially sealed by a detachable cover that covers the top of the organic EL panel measurement unit 10. Remove the cover when setting the sample, and close the cover after setting the sample as described later. The internal impurity gas is purged via the purge pipe 12 as necessary. Below the sample mounting chamber 11 is an optical chamber 13 having a detachable sample position confirming lid 14 on the front surface, and a temperature control monitor connected to the temperature control device 4 on the left front surface. Connector 16 for the connector for the connector, connector 17 for the connector for the DC power source connected to the DC power source 6, a connector 18 for the connector for the digital multimeter connected to the digital multimeter (not shown), and the temperature control device 4 A connector connection portion 15 such as a connection portion 19 of a temperature control drive connector to be connected is collected.

図3は試料装着室11のカバーと蓋体14とを取り外した状態の要部の正面概略図である。試料装着室11内には、上面が水平面に形成された試料台23と、該試料台23上に略水平に載置された試料22の上面から該試料22を押さえ付けるための試料押さえ機構20とを備える。試料押さえ機構20は、図示しないモータの駆動力によって押さえ板21が上下に移動する構造となっている。試料22をセットする際には、押さえ板21を最も上昇させた状態で試料22を測定面(発光面)を下向きにして試料台23上に載置する。その後、モータを駆動させて押さえ板21を降下させて、試料台23との間に試料22を挟み込む。   FIG. 3 is a schematic front view of the main part in a state where the cover of the sample mounting chamber 11 and the lid 14 are removed. In the sample mounting chamber 11, a sample table 23 having an upper surface formed in a horizontal plane, and a sample pressing mechanism 20 for pressing the sample 22 from the upper surface of the sample 22 placed substantially horizontally on the sample table 23. With. The sample pressing mechanism 20 has a structure in which the pressing plate 21 moves up and down by a driving force of a motor (not shown). When the sample 22 is set, the sample 22 is placed on the sample table 23 with the measurement plate (light emitting surface) facing downward with the presser plate 21 raised most. Thereafter, the motor is driven to lower the presser plate 21, and the sample 22 is sandwiched between the sample table 23.

試料台23は測定部位に相当する略中央箇所に測定窓24が上下に貫通して設けられており、試料22の下面の測定部位から放出される光はこの測定窓24を通して略鉛直下方に導かれる。ここでは、試料台23の上面のサイズをφ20mm、測定窓24の開口サイズをφ3.5mmとしているが、これは一例であってこれに限定されるものではない。   The sample stage 23 is provided with a measurement window 24 penetrating vertically at a substantially central location corresponding to the measurement site, and light emitted from the measurement site on the lower surface of the sample 22 is guided substantially vertically downward through the measurement window 24. It is burned. Here, the size of the upper surface of the sample stage 23 is φ20 mm, and the opening size of the measurement window 24 is φ3.5 mm. However, this is an example and the present invention is not limited to this.

試料台23は熱伝導性の良好な金属から成るものであって、温調ブロック(恒温ブロック)としても機能する。この試料台23の下面に密着して、加熱・冷却手段としてのペルチエ素子25が配設されている。試料台23に密着して取り付けられた図示しない温度センサで検知された温度が目標温度となるように、温度制御装置4からペルチエ素子25に駆動電流が供給される。試料台23はその全体がほぼ均一に目標温度となるから、測定窓24の開口部に面した試料22の周囲は試料台23から伝達される熱によって目標温度のごく近傍に維持される。さらに測定窓24の開口面積は小さいから、測定窓24の開口部に面していて試料台23には直接接触していない部分の温度も目標温度にきわめて近くなる。   The sample stage 23 is made of a metal having good thermal conductivity, and also functions as a temperature control block (constant temperature block). A Peltier element 25 as a heating / cooling means is disposed in close contact with the lower surface of the sample table 23. A drive current is supplied from the temperature control device 4 to the Peltier element 25 so that the temperature detected by a temperature sensor (not shown) attached in close contact with the sample stage 23 becomes the target temperature. Since the entire sample stage 23 reaches the target temperature almost uniformly, the periphery of the sample 22 facing the opening of the measurement window 24 is maintained in the vicinity of the target temperature by the heat transmitted from the sample stage 23. Furthermore, since the opening area of the measurement window 24 is small, the temperature of the portion facing the opening of the measurement window 24 and not in direct contact with the sample table 23 is also very close to the target temperature.

一般に有機EL素子の発光特性の温度依存性を測定したいという要望は大きいが、上記構成によれば試料22の測定部位を高い精度で以て温調することができるので、目標温度における発光特性を正確に測定することが可能となる。   In general, there is a great demand for measuring the temperature dependence of the light emission characteristics of the organic EL element. However, according to the above configuration, the temperature of the measurement portion of the sample 22 can be adjusted with high accuracy. It becomes possible to measure accurately.

光学室13の内部にあって測定窓24の直下には、水平面から45°の角度で起立した状態に傾斜した反射鏡26が鉛直軸27を中心に回転自在に設けられている。この回転の角度範囲はちょうど90°であり、図3に示すように反射鏡26の鏡面が左方を向いたときに、試料22から鉛直下方に放射された光が水平左方に向かうような第1状態(測定時状態)となる。一方、図4に示すように反射鏡26の鏡面が前方を向いたときに反射鏡26の中に測定部位の像30が映り、これが前方から視認できるような第2状態(試料確認時状態)となる。この第1状態と第2状態との切り替えは反射鏡26の回転によって達成され、ここではこの回転動作は手動で行われるが、モータ等により反射鏡を回転駆動する構成としてもよい。   Inside the optical chamber 13, immediately below the measurement window 24, a reflecting mirror 26 inclined to stand up at an angle of 45 ° from a horizontal plane is provided to be rotatable about a vertical axis 27. The angle range of this rotation is exactly 90 °, and when the mirror surface of the reflecting mirror 26 is directed leftward as shown in FIG. 3, the light emitted vertically downward from the sample 22 is directed horizontally leftward. The first state (measurement state) is entered. On the other hand, as shown in FIG. 4, when the mirror surface of the reflecting mirror 26 faces forward, an image 30 of the measurement site is reflected in the reflecting mirror 26, and this can be viewed from the second state (state when checking the sample). It becomes. The switching between the first state and the second state is achieved by the rotation of the reflecting mirror 26. Here, the rotating operation is performed manually, but the reflecting mirror may be driven to rotate by a motor or the like.

以上のように、通常状態では反射鏡26の位置を第1状態として蓋体14を閉鎖しておき、測定者が試料の測定位置等の目視確認を行いたい場合には、蓋体14を取り外して反射鏡26を90°回転させて第2状態とすればよい。こうして、簡単に試料22の測定部位を目視で確認することができる。   As described above, in the normal state, the lid 14 is closed with the position of the reflecting mirror 26 in the first state, and the lid 14 is removed when the measurer wants to visually check the measurement position of the sample. Then, the reflecting mirror 26 may be rotated by 90 ° to enter the second state. Thus, the measurement site of the sample 22 can be easily confirmed visually.

次に本発明の他の実施例による有機ELパネル測定装置について説明する。上記実施例1との相違は、有機ELパネル測定ユニット10における測定時と試料位置確認時との切り換え機構の構成にあるので、その点について図5により説明する。図5は本実施例における有機ELパネル測定ユニットと測光部の要部を上から見た状態の概略図である。   Next, an organic EL panel measuring apparatus according to another embodiment of the present invention will be described. The difference from the first embodiment lies in the structure of the switching mechanism between the measurement and the sample position confirmation in the organic EL panel measurement unit 10, and this point will be described with reference to FIG. FIG. 5 is a schematic view of the organic EL panel measurement unit and the main part of the photometry unit in this embodiment as viewed from above.

上記実施例1では測定時と試料位置確認時とで光路を切り替えるために、同一の反射鏡26を鉛直軸27を中心に回動させるようにしていたが、この実施例2では反射鏡として測定用の第1反射鏡261と試料位置確認用の第2反射鏡262との2つを設け、その2つの反射鏡261、262の位置をスライド移動機構により切り替えている。すなわち、図5において、後方側に鏡面が左方を向いた第1反射鏡261が設けられ、その前方に鏡面が前方を向いた第2反射鏡262が設けられ、その2つの反射鏡261、262はスライドレール41上を前後方向に移動自在の移動台40上に設置されている。   In the first embodiment, the same reflecting mirror 26 is rotated around the vertical axis 27 in order to switch the optical path between measurement and sample position confirmation. In this second embodiment, however, the measurement is performed as a reflecting mirror. The first reflecting mirror 261 and the second reflecting mirror 262 for confirming the sample position are provided, and the positions of the two reflecting mirrors 261 and 262 are switched by a slide moving mechanism. That is, in FIG. 5, a first reflecting mirror 261 having a mirror surface facing leftward is provided on the rear side, and a second reflecting mirror 262 having a mirror surface facing front is provided in front of the two reflecting mirrors 261. 262 is installed on a movable table 40 that is movable on the slide rail 41 in the front-rear direction.

移動台40が最も前方に移動された状態では、図5(a)に示すように、第1反射鏡261が測定窓24の直下に位置するようになっており、測定窓24を通して試料の測定部位から鉛直下方へ放出された光は第1反射鏡261で左方に反射されて測光部2へと入り、分光器201で波長分散されて光検出器202で検出される。一方、移動台40が最も後方に移動された状態では、図5(b)に示すように、第2反射鏡262が測定窓24の直下に位置する。このときには測定窓24内の測定部位の像が反射鏡262の鏡面の中に映り、前方からそれを見ることができる。このように、実施例1で反射鏡を回動させて第1状態と第2状態とを切り替える代わりに、移動台を最前方位置と最後方位置とで切り替えることにより、測定と試料位置確認との切り替えを実現することができる。   In the state where the moving table 40 is moved most forward, as shown in FIG. 5A, the first reflecting mirror 261 is positioned immediately below the measurement window 24, and the sample is measured through the measurement window 24. The light emitted vertically downward from the part is reflected to the left by the first reflecting mirror 261 and enters the photometric unit 2 where it is wavelength-dispersed by the spectroscope 201 and detected by the photodetector 202. On the other hand, in the state where the movable table 40 is moved to the rearmost position, the second reflecting mirror 262 is positioned directly below the measurement window 24 as shown in FIG. At this time, an image of the measurement site in the measurement window 24 is reflected in the mirror surface of the reflecting mirror 262 and can be seen from the front. In this way, instead of rotating the reflecting mirror in the first embodiment to switch between the first state and the second state, the moving table is switched between the foremost position and the rearmost position, thereby allowing measurement and sample position confirmation. Can be realized.

上記実施例1、2はいずれも本発明の一例にすぎないから、本発明の趣旨の範囲で適宜、変更、修正、追加を行っても本発明に包含されることは明らかである。   Since Examples 1 and 2 are only examples of the present invention, it is apparent that the present invention includes the present invention even if changes, modifications, and additions are made as appropriate within the scope of the present invention.

本発明の一実施例である有機ELパネル測定装置の全体構成図。1 is an overall configuration diagram of an organic EL panel measuring apparatus according to an embodiment of the present invention. 本実施例における有機ELパネル測定ユニットの概略的な外観正面図。The schematic external appearance front view of the organic electroluminescent panel measurement unit in a present Example. 試料装着室のカバーと蓋体とを取り外した状態の要部の概略図(測定時)。Schematic of the principal part in the state which removed the cover and cover body of the sample mounting chamber (at the time of measurement). 図3で試料位置確認時の反射鏡の状態を示す図。The figure which shows the state of the reflective mirror at the time of sample position confirmation in FIG. 本発明の他の実施例における有機ELパネル測定ユニットの特徴的な構成を示す概略上面図。The schematic top view which shows the characteristic structure of the organic electroluminescent panel measurement unit in the other Example of this invention.

符号の説明Explanation of symbols

1…紫外可視分光光度計
2…測光部
3…パーソナルコンピュータ
4…温度制御装置
5…冷却水循環装置
6…直流電源
10…有機ELパネル測定ユニット
11…試料装着室
12…パージ管
13…光学室
14…蓋体
20…試料押さえ機構
21…試料押さえ板
22…試料
23…試料台
24…測定窓
25…ペルチエ素子
26、261、262…反射鏡
27…鉛直軸
40…移動台
41…スライドレール
DESCRIPTION OF SYMBOLS 1 ... UV-visible spectrophotometer 2 ... Photometry part 3 ... Personal computer 4 ... Temperature control apparatus 5 ... Cooling water circulation apparatus 6 ... DC power supply 10 ... Organic EL panel measurement unit 11 ... Sample mounting chamber 12 ... Purge tube 13 ... Optical chamber 14 ... Lid 20 ... Sample holding mechanism 21 ... Sample holding plate 22 ... Sample 23 ... Sample stage 24 ... Measurement window 25 ... Peltier element 26, 261, 262 ... Reflector 27 ... Vertical axis 40 ... Moving table 41 ... Slide rail

Claims (4)

略平板形状の試料から放出される光を測光部に導入し、その光を波長分散させて光検出器により検出することで発光スペクトルを表す情報を取得する発光スペクトル測定装置において、
a)前記試料の測定面を下に向けた状態で該試料を載置するためのものであり、該試料の下面の測定部位が覗くように測定窓が開口され、且つそれ自体が高い熱伝導性を有する材料から成る試料台と、
b)該試料台を加熱又は冷却するために該試料台と熱的に接触して配置された加熱・冷却手段と、
を備えることを特徴とする発光スペクトル測定装置。
In an emission spectrum measuring apparatus for acquiring information representing an emission spectrum by introducing light emitted from a substantially flat sample into a photometry unit, wavelength-dispersing the light and detecting it by a photodetector,
a) For placing the sample with the measurement surface of the sample facing down, the measurement window is opened so that the measurement site on the lower surface of the sample can be viewed, and itself has high heat conduction A sample stage made of a material having properties;
b) heating / cooling means arranged in thermal contact with the sample stage to heat or cool the sample stage;
An emission spectrum measuring apparatus comprising:
前記測定窓の下方に配置された反射鏡を含む光反射手段をさらに備え、該光反射手段は、前記測定窓を通して試料の測定部位から放出される光を反射鏡で反射させて前記測光部に導入し得る第1状態と、試料の測定部位を反射鏡に映して外部から視認可能な状態とする第2状態とが切り替え自在であることを特徴とする請求項1に記載の発光スペクトル測定装置。   The apparatus further includes light reflecting means including a reflecting mirror disposed below the measurement window, and the light reflecting means reflects light emitted from the measurement site of the sample through the measurement window by the reflecting mirror to the photometry unit. 2. The emission spectrum measuring apparatus according to claim 1, wherein a first state that can be introduced and a second state in which a measurement site of the sample is reflected on a reflecting mirror and made visible from outside can be switched. . 前記光反射手段は、前記測定窓の直下に位置し水平面に対して傾斜した唯一の反射鏡と、該反射鏡を鉛直軸を中心に回動させる回転機構と、を備え、該回転機構により前記反射鏡の向きを変化させることで第1状態と第2状態とが切り替わることを特徴とする請求項2に記載の発光スペクトル測定装置。   The light reflecting means includes a single reflecting mirror positioned directly below the measurement window and inclined with respect to a horizontal plane, and a rotating mechanism that rotates the reflecting mirror about a vertical axis. The emission spectrum measuring apparatus according to claim 2, wherein the first state and the second state are switched by changing a direction of the reflecting mirror. 前記光反射手段は、第1状態及び第2状態にそれぞれ対応して異なる方向を向く2つの反射鏡と、その2つの反射鏡のいずれかを選択的に前記測定窓の直下に位置させる反射鏡移動手段と、を備えることを特徴とする請求項2に記載の発光スペクトル測定装置。   The light reflecting means includes two reflecting mirrors facing in different directions corresponding to the first state and the second state, respectively, and a reflecting mirror that selectively positions one of the two reflecting mirrors directly below the measurement window. The emission spectrum measuring apparatus according to claim 2, further comprising a moving unit.
JP2003297387A 2003-08-21 2003-08-21 Emission spectrum measuring device Pending JP2005069760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003297387A JP2005069760A (en) 2003-08-21 2003-08-21 Emission spectrum measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003297387A JP2005069760A (en) 2003-08-21 2003-08-21 Emission spectrum measuring device

Publications (1)

Publication Number Publication Date
JP2005069760A true JP2005069760A (en) 2005-03-17

Family

ID=34403264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003297387A Pending JP2005069760A (en) 2003-08-21 2003-08-21 Emission spectrum measuring device

Country Status (1)

Country Link
JP (1) JP2005069760A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008148329A1 (en) * 2007-06-05 2008-12-11 Everfine Photo-E-Info Co., Ltd. Distribution photometer
CN102507146A (en) * 2011-09-29 2012-06-20 中国航空工业第六一八研究所 Device and method for testing reflector parameters under high temperature and low temperature conditions
WO2014020660A1 (en) * 2012-07-30 2014-02-06 大塚電子株式会社 Optical measurement device
CN106596244A (en) * 2016-12-14 2017-04-26 宁海德宝立新材料有限公司 Temperature control sample stage

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008148329A1 (en) * 2007-06-05 2008-12-11 Everfine Photo-E-Info Co., Ltd. Distribution photometer
CN102507146A (en) * 2011-09-29 2012-06-20 中国航空工业第六一八研究所 Device and method for testing reflector parameters under high temperature and low temperature conditions
WO2014020660A1 (en) * 2012-07-30 2014-02-06 大塚電子株式会社 Optical measurement device
JPWO2014020660A1 (en) * 2012-07-30 2016-07-11 大塚電子株式会社 Optical measuring device
US9500520B2 (en) 2012-07-30 2016-11-22 Otsuka Electronics Co., Ltd. Optical measurement apparatus
CN106596244A (en) * 2016-12-14 2017-04-26 宁海德宝立新材料有限公司 Temperature control sample stage

Similar Documents

Publication Publication Date Title
US11885681B2 (en) Methods and devices for standoff differential Raman spectroscopy with increased eye safety and decreased risk of explosion
US6292532B1 (en) Fluorescent X-ray analyzer useable as wavelength dispersive type and energy dispersive type
US7980758B2 (en) Equipment for non-contact temperature measurement of samples of materials arranged under vacuum
US20050117145A1 (en) Detection of imperfections in precious stones
JP3409259B2 (en) High temperature observation device
WO2019231512A1 (en) Methods and devices for standoff differential raman spectroscopy with increased eye safety and decreased risk of explosion
JP2005172665A (en) Light radiation pattern measuring apparatus
US7852473B2 (en) Apparatus for measuring spatially resolved the luminescence of semiconductor samples
JP2005069760A (en) Emission spectrum measuring device
JP2004128509A (en) Prober for testing substrate at low temperature
CN108209854A (en) Subjective formula optometry equipment
JP7137422B2 (en) microscope equipment
JP2005140546A (en) Low-temperature diffuse reflection measuring apparatus, sample holder used for the same, and low-temperature diffuse reflection spectrum measuring method
JP6865919B2 (en) Light exposure method and light exposure device
JPH11326206A (en) Optical measuring instrument for molten metal in furnace
JP2614374B2 (en) Equipment for analyzing the energy distribution of a power laser beam
US7550114B2 (en) Cell observation apparatus
JP2006250836A (en) Spectrophotometer
JP3218740U (en) Blast furnace tuyere monitoring device
JP4993871B2 (en) Inspection device
JP2021081362A (en) Radiated light detector
TW202124939A (en) Atomic Absorption Spectrophotometer
EP2165181A2 (en) Method, apparatus and kit for measuring optical properties of materials
JP2008070198A (en) Apparatus and method for measuring light radiation pattern of light-emitting body
JP2008082861A (en) Thermal analysis device