JP2005069590A - Ventilation system of high air-tight and high heat insulating residence - Google Patents

Ventilation system of high air-tight and high heat insulating residence Download PDF

Info

Publication number
JP2005069590A
JP2005069590A JP2003300988A JP2003300988A JP2005069590A JP 2005069590 A JP2005069590 A JP 2005069590A JP 2003300988 A JP2003300988 A JP 2003300988A JP 2003300988 A JP2003300988 A JP 2003300988A JP 2005069590 A JP2005069590 A JP 2005069590A
Authority
JP
Japan
Prior art keywords
air
duct
room
exhaust
ventilation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003300988A
Other languages
Japanese (ja)
Other versions
JP3525386B1 (en
Inventor
Masahiro Mikami
三上征宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003300988A priority Critical patent/JP3525386B1/en
Application granted granted Critical
Publication of JP3525386B1 publication Critical patent/JP3525386B1/en
Publication of JP2005069590A publication Critical patent/JP2005069590A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively provide a ventilation system for supplying a required amount of fresh air to each room regardless of seasons, weather, night or day, and a position of a room. <P>SOLUTION: Atmospheric air is supplied to an approximately center of a high air-tight and high heat insulating house by a air supplying fan 41, and the air in each room is exhausted to an air tank 61 through a duct with an inside diameter calculated from a required ventilation volume. The air in the air tank is exhausted to the outside through an air tank exhausting device 66 constituted by an always releasing duct and a duct opened or closed by the temperature of atmospheric air. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高気密高断熱住宅の換気を行う換気システムに関する。 The present invention relates to a ventilation system for ventilating a highly airtight and highly insulated house.

従来の、強制給気方式を用い、家の中央付近に吹出し口を持ち、給気ファンにより外気を室内に取り入れる換気システムにおいて、各部屋の空気の排気量をレジスタを有する通気装置(ルーバ)で制限し、各部屋の換気量を部屋の大きさ、使用目的等で調整するもの(例えば、特許文献1参照。)がある。 In a conventional ventilation system that uses a forced air supply system, has an outlet near the center of the house, and takes outside air into the room with an air supply fan. The ventilation system (louver) has a register for the amount of air discharged from each room. There is one that restricts and adjusts the ventilation amount of each room according to the size of the room, the purpose of use, and the like (for example, see Patent Document 1).

以下、図により従来例の換気システムについて説明する。ダクトファン220を有するダクト221が、建物の屋根裏空間211の下方に画成された屋内空間の概略中央部に位置する廊下に、外気を供給し、その供給された外気が各ドアのルーバ218やアンダーカット219を通って各部屋内へ流れ、これにより各部屋内の空気が、内壁203に設けられたルーバ225により、ダクトファン220での外気の供給量より少ない量に制限されつつ、外壁202と内壁203との間の通気層205に排出されて、夏場は外壁202で温められた通気層205内の上昇気流にのり、冬場はそれ自体の温かさによる上昇気流によって屋根裏空間211内へ運ばれる。そして屋内から屋根裏空間211内へ到達した空気は、妻壁に設けられた排気口226を通って屋外に排出される。通気装置としてのルーバは通気量を任意に調節し得るレジスタを有し、そのレジスタを適宜調節して、全てのルーバを合わせても屋内空間から通気層に排出する空気の量をダクトファン220による外気供給量よりも少なくするように通気量を制限する。これにより各部屋に適切な換気量を供給できる。 The following describes conventional ventilation system by FIG. A duct 221 having a duct fan 220 supplies outside air to a corridor located in the approximate center of the indoor space defined below the attic space 211 of the building, and the supplied outside air is supplied to the louvers 218 of each door. The air flows into the respective rooms through the undercuts 219, whereby the air in each room is restricted by the louver 225 provided on the inner wall 203 to an amount smaller than the supply amount of the external air from the duct fan 220, while the outer wall 202. In the summer season, it is discharged into the ventilation layer 205 heated by the outer wall 202, and in the winter season, it is carried into the attic space 211 by the updraft caused by its own warmth. . And the air which arrived in the attic space 211 from the indoor is discharged | emitted outdoors through the exhaust port 226 provided in the wife wall. The louver as a ventilation device has a register that can arbitrarily adjust the amount of ventilation, and the amount of air discharged from the indoor space to the ventilation layer is adjusted by the duct fan 220 even if all the louvers are adjusted by appropriately adjusting the register. The amount of air flow is limited to be less than the outside air supply amount. As a result, an appropriate amount of ventilation can be supplied to each room.

特願2000−138561(特開2001−317779)(図1)Japanese Patent Application No. 2000-138561 (Japanese Patent Laid-Open No. 2001-317779) (FIG. 1)

従来の、各部屋の空気の排気量をレジスタを有する通気装置(ルーバ)で制限し、各部屋の換気量を部屋の大きさ、使用目的等で調整する方法は各部屋の換気量が通気層と室内の温度差、通気層の気流の強さにより大きく変わるので、レジスタにより設定した換気量は季節、天候、昼夜等により大きく変わる。例えば冬、晴天の日、日射が当っている南側では通気層の温度は外気の温度よりかなり高く、その温度による上昇気流が強く、排気量が多くなる。しかし、日射が当たらない夜または雨天の日等では通気層の温度上昇は少なく排気量は多くならない。従って、レジスタを設定した季節と天候と異なった時は換気量は設定値と大きく異なる。 The conventional method of restricting the amount of air exhausted from each room with a ventilator (louver) having a register and adjusting the ventilation volume of each room according to the size of the room, the purpose of use, etc. is that the ventilation volume of each room is the ventilation layer Because the temperature varies greatly depending on the temperature difference in the room and the strength of the airflow in the ventilation layer, the ventilation volume set by the register varies greatly depending on the season, weather, day and night, etc. For example, in winter, on sunny days, and on the south side where the sun is shining, the temperature of the ventilation layer is considerably higher than the temperature of the outside air, the rising airflow due to that temperature is strong, and the displacement is large. However, the temperature rise of the ventilation layer is small and the displacement is not large at night when it is not exposed to sunlight or on rainy days. Therefore, when the register is set and the season and weather are different, the ventilation rate is greatly different from the set value.

更に、特許文献1は2階建てあるいはそれ以上の階層をもつものにも適用されると記述されているが、この方法を2階建ての家に適応するのは困難である。例えば、冬室内が暖房され、給気により室内の気圧が外部より高い場合、通気層と室内の気圧差は2階が大きく1階が小さいため2階の排気量が多くなり、1階の排気量が少なくなる。一方、夏室内が冷房され、給気により室内の気圧が外部より高い場合、通気層と室内の気圧差は2階が小さく1階が大きいため2階の排気量が少なくなり、1階の排気量が大きくなる。 Further, Patent Document 1 describes that the method is applied to a two-story or higher-level building, but it is difficult to apply this method to a two-story house. For example, if the winter room is heated and the air pressure inside the room is higher than the outside due to air supply, the air pressure difference between the ventilation layer and the room is large on the 2nd floor and small on the 1st floor, so the exhaust volume on the 2nd floor increases and the exhaust on the 1st floor The amount is reduced. On the other hand, if the summer room is cooled and the air pressure inside the room is higher than the outside due to air supply, the second floor is small and the first floor is large because the air pressure difference between the ventilation layer and the room is large, and the first floor exhaust is reduced. The amount increases.

本発明は前記従来例の不具合を解消し、各部屋に必要な量の外気を季節、天候、昼夜、部屋の位置にかかわらず供給する換気システムを安価に提供すること、無駄な換気による無駄な熱損失を減らすことを目的とする。 The present invention eliminates the problems of the conventional example, provides a low-cost ventilation system that supplies a necessary amount of outside air to each room regardless of the season, weather, day and night, and the position of the room. The purpose is to reduce heat loss.

請求項1記載の本発明によれば、排気装置が空気槽と、各部屋から前記空気槽に配管された部屋排気ダクトと、前記空気槽から家の外部に排気する空気槽排気装置から構成されている。前記空気槽内の空気の流れは小さいので前記空気槽内の気圧はほぼ均一であり、また各部屋内及び部屋間の風速は小さいので全部の部屋内の気圧はほぼ均一であり、更に高気密高断熱層の内部にある前記空気槽と前記部屋排気ダクトの気温はほぼ同じであるので前記各部屋排気ダクトの両端にかかる気圧はほぼ同じである。ダクトが円形でない場合は等価的に円形に換算できるのでダクトは全て円形とする。円形のダクトの風量は両端にかかる気圧と長さと内径と内壁の粗さに依存し、ダクトの長さは家のレイアウトに依存するので、前記部屋排気ダクトの内径により各部屋の排気量の割合を調整できる。従って、前記部屋排気ダクトの内径を適切に選択することにより季節、天候、昼夜、部屋の位置にかかわらず、必要な換気量を各部屋に供給できる。 According to the first aspect of the present invention, the exhaust device includes an air tank, a room exhaust duct piped from each room to the air tank, and an air tank exhaust device that exhausts air from the air tank to the outside of the house. ing. Since the air flow in the air tank is small, the air pressure in the air tank is almost uniform, and the air speed in each room and between the rooms is small, so the air pressure in all the rooms is almost uniform, and it is highly airtight. Since the temperature of the air tank and the room exhaust duct inside the high heat insulation layer is substantially the same, the air pressure applied to both ends of each room exhaust duct is substantially the same. If the duct is not circular, it can be equivalently converted to a circle, so all ducts are circular. The air volume of the circular duct depends on the pressure, length, inner diameter, and inner wall roughness applied to both ends, and the duct length depends on the layout of the house. Can be adjusted. Therefore, by appropriately selecting the inner diameter of the room exhaust duct, the necessary ventilation amount can be supplied to each room regardless of the season, weather, day and night, and the room position.

空気の気圧は空気の密度によって生じ、空気の密度は気温が高いほど小さいので、高気密高断熱住宅の内部と同じ水平線上の外部との気圧差は室内と外気の温度差によって生じる。夏、冷房されている室内の気圧は基礎コンクリートに近いほど同じ水平線上の外部より相対的に高くなり、家の上部に設置され外部に通じている前記空気槽排気装置の位置の室内の気圧は外部より圧力損失分だけ高いので、前記空気槽排気装置が排気している時は室内の気圧はどこでも外部の気圧より高い。一方、冬は、基礎コンクリートに近いほど外部より気圧が相対的に低くなるので、前記空気槽排気装置の圧力損失を大きくし、基礎コンクリート付近の気圧を外部の気圧より高くする。前記空気槽排気装置の圧力損失は空気の摩擦抵抗を大きくすることにより大きくできるので前記空気槽排気装置の空気の摩擦抵抗を調整して室内の気圧を外部より高くできる。 The air pressure is generated by the air density, and the air density is smaller as the air temperature is higher. Therefore, the pressure difference between the inside of the highly airtight and highly insulated house and the outside on the same horizontal line is caused by the temperature difference between the room and the outside air. In summer, the air pressure in the air-conditioned room is relatively higher than the outside on the same horizontal line as it is closer to the foundation concrete, and the air pressure in the room at the position of the air tank exhaust device installed at the top of the house and connected to the outside is Since the pressure loss is higher than the outside, the indoor air pressure is higher than the external air pressure everywhere when the air tank exhaust device is exhausting. On the other hand, in winter, the closer to the foundation concrete, the lower the pressure from the outside, so the pressure loss of the air tank exhaust device is increased, and the pressure near the foundation concrete is made higher than the outside pressure. Since the pressure loss of the air tank exhaust device can be increased by increasing the frictional resistance of air, the air pressure in the air tank exhaust device can be adjusted to increase the atmospheric pressure from the outside.

前記空気槽排気装置は高気密高断層を貫通した第一の排気ダクトと第二の排気ダクトと、前記第二の排気ダクトの一端または途中に配置され外気温度により開閉されるダンパーから構成されている。気密断熱層の漏洩の風量は室内の気圧が高いほど多い。漏洩は気密断熱層の全体に亘り不均一に分布し、各部屋の必要換気量に含められないので室内の気圧をできるだけ低く保つことにより無駄な換気を減らし、換気による熱損失を減らすことができる。前記第二の排気ダクトは内径が大きく空気の摩擦抵抗の小さいダクトを使い、前記第一の排気ダクトは内径が小さく空気の摩擦抵抗の大きいダクトを使う。夏、前記第二の排気ダクトを開けることにより室内の気圧をできるだけ低く保ち、冬、前記第二の排気ダクトを閉じることにより室内の気圧を高くし、基礎コンクリート付近の気圧を外部の気圧より高くする。前記第二の排気ダクトの開閉をすることにより室内の気圧を外部より高く保ち且室内の気圧を低く保つことができる。 The air tank exhaust device is composed of a first exhaust duct and a second exhaust duct that penetrate a high airtight high fault, and a damper that is arranged at one end or in the middle of the second exhaust duct and is opened and closed by an outside air temperature. Yes. The amount of air leaking from the airtight heat insulating layer increases as the atmospheric pressure increases. Leakage is unevenly distributed throughout the airtight insulation layer and cannot be included in the required ventilation volume of each room, so it is possible to reduce wasteful ventilation by keeping the indoor air pressure as low as possible and reduce heat loss due to ventilation. . The second exhaust duct uses a duct having a large inner diameter and a small air frictional resistance, and the first exhaust duct uses a duct having a small inner diameter and a large air frictional resistance. In summer, open the second exhaust duct to keep the indoor pressure as low as possible, and in winter, close the second exhaust duct to increase the indoor pressure, and raise the pressure near the foundation concrete higher than the external pressure. To do. By opening and closing the second exhaust duct, the indoor air pressure can be kept higher than the outside and the indoor air pressure can be kept low.

請求項記載の本発明によれば、各ダクトは2つの異なる内径のダクトとジョイントから構成されている。前記部屋排気ダクトの長さは家の構造やレイアウトにより決まり、換気量は各部屋の大きさと用途により決まるので前記部屋排気ダクトの内径はまちまちとなる。必要なダクトの内径と長さと同じ損失係数を持つダクトを、必要な内径より小さい内径を持つダクトと、必要な内径より大きい内径を持つダクトをジョイントで連結し、必要な長さを有するダクトを作成できる。これにより必要な内径と長さを持つダクトを販売されている2種類の内径のダクトとジョイントにより安価に作成できる。 According to the present invention described in claim 2, each duct is composed of the duct and the joint of the two different inner diameters. The length of the room exhaust duct is determined by the structure and layout of the house, and the amount of ventilation is determined by the size and use of each room, so the inner diameter of the room exhaust duct varies. A duct having the same loss factor as the inner diameter and length of the required duct is connected by a joint between a duct having an inner diameter smaller than the required inner diameter and a duct having an inner diameter larger than the required inner diameter. Can be created. As a result, a duct having the required inner diameter and length can be produced at low cost by using two types of inner diameter ducts and joints that are sold.

請求項記載の本発明によれば、短期間、局部的に排気する強制排気システムが配置された住宅において、前記給気ファンの給気量が、前記強制排気システムが駆動された時前記強制排気システムの排気量とほぼ同量だけ増加する。風呂や台所等で強制的に排気する時その排気量だけ給気量を増やすことにより、室内の気圧を外部の気圧より高く保つことができる。 According to the third aspect of the present invention, in a house in which a forced exhaust system that exhausts locally for a short period of time is arranged, the supply amount of the supply fan is set to the forced exhaust system when the forced exhaust system is driven. Increased by almost the same amount as the exhaust system. When the air is forcibly exhausted in a bath or a kitchen, the air pressure in the room can be kept higher than the external air pressure by increasing the air supply amount by that amount.

請求項記載の本発明によれば、前記給気ファンの給気量が前記給気ダクト内に設置された風量センサの出力と設定された風量によりコントロールされる。前記給気ファンが供給する給気量は前記給気ファンに供給する電圧でコントロールされるが、前記エアフィルタの目詰まり等により空気の摩擦抵抗が増えた場合、給気量は減少する。前記給気ダクト内に前記風量センサを設置し、前記風量センサの出力と風量の設定値により前記給気ファンに供給する電圧を調整することにより、設定された給気量を前記エアフィルタの目詰まり等にかかわらず正確に供給できる。また前記強制排気システムを駆動する時、風量の設定値を前記強制排気システムの排気量だけ増やすことにより前記給気ファンの給気量を排気量だけ増やすことができる。また居住者数が変わった時、居住者数に合せた給気量に調整できる。これにより給気量を適量に保ち、過剰な給気量による無駄な熱損失を減らし、冷暖房費を下げることができる。 According to the fourth aspect of the present invention, the air supply amount of the air supply fan is controlled by the output of the air amount sensor installed in the air supply duct and the set air amount. The amount of air supplied by the air supply fan is controlled by the voltage supplied to the air supply fan. However, when the air frictional resistance increases due to clogging of the air filter or the like, the air supply amount decreases. The air flow sensor is installed in the air supply duct, and the voltage supplied to the air supply fan is adjusted by the output of the air flow sensor and the set value of the air flow, so that the set air supply amount is adjusted to the value of the air filter. It can be supplied accurately regardless of clogging. Further, when the forced exhaust system is driven, the supply amount of the supply fan can be increased by the exhaust amount by increasing the set value of the air volume by the exhaust amount of the forced exhaust system. When the number of residents changes, the air supply amount can be adjusted to match the number of residents. As a result, the air supply amount can be kept at an appropriate amount, wasteful heat loss due to the excessive air supply amount can be reduced, and the heating and cooling costs can be reduced.

以上述べたように、本発明の高気密高断熱住宅の換気システムは、構造が簡単であることにより、各部屋に必要な量の新鮮な外気を季節、天候、昼夜、部屋の位置にかかわらず供給するシステムを安価に提供し、また室内の気圧を低く保ち、給気量を正確にコントロールし無駄な換気による無駄な熱損失を減らすことにより冷暖房費を削減する。 As described above, the ventilation system of the highly airtight and highly insulated house of the present invention has a simple structure, so that the amount of fresh outdoor air required for each room can be transferred regardless of the season, weather, day and night, and the position of the room. The supply system is provided at a low cost, and the air pressure is reduced by keeping the air pressure in the room low, accurately controlling the amount of air supply, and reducing wasteful heat loss due to wasteful ventilation .

以下、図面について本発明の実施の形態を詳細に説明する。図1は本発明の換気システムの1実施形態を示す断面図である。室内は、屋根15と外壁12と紙面に平行な妻壁の外壁12の内側に設けられた気密断熱層13と、基礎コンクリート11により囲まれた高気密高断熱の空間である。基礎コンクリート11は高気密であり、部屋Dと部屋Eの気温は基礎コンクリート11の気温より高いので床下空間Fの基礎コンクリート11付近の空気は断熱層としての機能も果たしている。室内は屋根裏空間Aと部屋Bと部屋Cと部屋Dと部屋Eと床下空間Fと内壁空間Gで構成されている。吹出し口42のある部屋Eと、部屋Bと部屋Cと部屋Dとの間には空気の流れによる圧力損失を少なくするために、それぞれすき間52とすき間53とすき間51を設けてある。また1階の床16、内壁14、壁20、壁21、壁22、2階の天井19は機密性と断熱性が低いので室内の温度はほぼ均一であり、室内の空気の流れによる圧力損失は少ない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view showing an embodiment of the ventilation system of the present invention. The interior of the room is a highly airtight and highly heat-insulated space surrounded by a foundation concrete 11 and an airtight heat insulating layer 13 provided inside the outer wall 12 of the wife wall parallel to the roof 15, the outer wall 12, and the paper surface. Since the foundation concrete 11 is highly airtight and the temperature in the room D and the room E is higher than the temperature of the foundation concrete 11, the air near the foundation concrete 11 in the underfloor space F also functions as a heat insulating layer. The room is composed of an attic space A, a room B, a room C, a room D, a room E, an underfloor space F, and an inner wall space G. A gap 52, a gap 53, and a gap 51 are provided between the room E having the air outlet 42, the room B, the room C, and the room D in order to reduce pressure loss due to the air flow. Further, the floor 16 on the first floor, the inner wall 14, the wall 20, the wall 21, the wall 22, and the ceiling 19 on the second floor are low in confidentiality and heat insulation, so that the room temperature is almost uniform, and the pressure loss due to the air flow in the room. There are few.

外気は給気ファン41により家の外部にある給気口43から、給気ダクト31を通して吹出し口42で室内の中央付近に取り入れられる。室内の気圧が外部より高い場合、吹出し口42に取り入れられた空気は気圧が相対的に低い外部に向けて流れる。例えば、吹出し口42付近の空気は1階の床16を通して床下空間Fに流れ、排気ダクト36を通して排出される。また吹出し口42付近の空気は2階の天井19を通して屋根裏空間Aに流れ、気密断熱層13の漏洩により外部に排出される。また吹出し口42付近の空気はすき間51を通して部屋Dに流れ、一部は内壁14を通して内壁空間Gに流れ、気密断熱層13の漏洩により外部に排出され、大部分は排気口62から排気ダクト32を通して空気槽61に流れ、空気槽排気装置66を通して家の外部に排出される。紙面に垂直に配置された空気槽排気装置66は、紙面と平行な妻壁の気密断熱層13を貫通しており、空気槽61の空気を家の外部に排出する。 Outside air is taken in from the air supply port 43 outside the house by the air supply fan 41 through the air supply duct 31 to the vicinity of the center of the room through the air outlet 42. When the atmospheric pressure in the room is higher than the outside, the air taken into the outlet 42 flows toward the outside where the atmospheric pressure is relatively low. For example, the air in the vicinity of the outlet 42 flows into the underfloor space F through the floor 16 on the first floor and is discharged through the exhaust duct 36. Air near the outlet 42 flows into the attic space A through the ceiling 19 on the second floor, and is discharged to the outside due to leakage of the airtight heat insulating layer 13. Air near the outlet 42 flows into the room D through the gap 51, partly flows into the inner wall space G through the inner wall 14, and is discharged to the outside due to leakage of the airtight heat insulating layer 13, and most of the air is discharged from the outlet 62 to the exhaust duct 32. The air flows to the air tank 61 through the air tank and is discharged to the outside of the house through the air tank exhaust device 66. The air tank exhaust device 66 arranged perpendicular to the paper surface passes through the airtight heat insulating layer 13 on the end wall parallel to the paper surface, and discharges the air in the air tank 61 to the outside of the house.

従って、室内の気圧が外部より高い場合、空気の流れは、室内の中央付近にある吹出し口42から外部に向いている。 Therefore, when the atmospheric pressure in the room is higher than the outside, the air flow is directed to the outside from the outlet 42 near the center of the room.

図2は各部屋の排気ダクトの内径を計算するための図である。室内の温度が均一である場合、ダクトを流れる風量はダクトの配置や垂直位置に無関係であるので、図2はダクトを平面的に表してある。気密断熱層13には漏洩があり、その漏洩を等価的に仮想排気ダクト37で表してある。実線は気密層を表し、破線は非気密層を表す。説明を簡単にするために、室内の各空間の間の空気の流れと空気槽61内の空気の流れによる圧力損失を無視する。ダクトによる圧力損失は直線のダクトの管の内壁と空気の流速との摩擦により発生する摩擦損失と、ジョイントやベントキャップ等により流速が急に変わるために発生する局部損失の合計である。局部損失はジョイントやベントキャップ等の形状により決まり、等価的にダクトの長さで表すことができる。ダクトの風量はダクトの実効長と内径と内壁の粗さと圧力損失から算出される。ここで実効長とはダクトの直線部分の長さと局部損失の等価的ダクトの長さの合計である。図2ではダクトは実効長の直線で表してある。 FIG. 2 is a diagram for calculating the inner diameter of the exhaust duct in each room. When the room temperature is uniform, the amount of air flowing through the duct is irrelevant to the arrangement and vertical position of the duct, so FIG. 2 shows the duct in a plan view. The airtight heat insulating layer 13 has a leak, and the leak is equivalently represented by a virtual exhaust duct 37. The solid line represents the hermetic layer and the broken line represents the non-hermetic layer. In order to simplify the explanation, the pressure loss due to the air flow between the indoor spaces and the air flow in the air tank 61 is ignored. The pressure loss due to the duct is the sum of the friction loss that occurs due to the friction between the inner wall of the straight duct tube and the air flow velocity, and the local loss that occurs because the flow velocity suddenly changes due to the joint, vent cap, or the like. The local loss is determined by the shape of the joint, vent cap, etc., and can be equivalently expressed by the length of the duct. The air volume of the duct is calculated from the effective length, inner diameter, roughness of the inner wall, and pressure loss. Here, the effective length is the sum of the length of the straight portion of the duct and the length of the equivalent duct of the local loss. In FIG. 2, the duct is represented by a straight line having an effective length.

給気ファン41により、風量Qtが室内に取り入れられ、室内の気圧が家の外部の気圧よりP高くなり、空気槽61内の気圧が外部の気圧よりP2高くなった場合、部屋排気ダクト32と部屋排気ダクト33と部屋排気ダクト34と部屋排気ダクト35の両端には同じ気圧(P−P2)がかかる。各部屋排気ダクトの長さは家のレイアウトにより決まるので各部屋排気ダクトの内径で各部屋の換気量の割合を調整できる。各部屋排気ダクトの内径は次のように決める。まず、漏洩の風量Qvを家の相当隙間面積(C値)と家の床面積と室内と外部の気圧差Pから算出し、合計の風量が、給気の風量Qtから漏洩の風量Qvを引いた風量に等しくなるように、風量Qfと風量Qbと風量Qcと風量Qdと風量Qeを設定する。空気槽排気装置66の風量Qaは風量Qbと風量Qcと風量Qdと風量Qeの合計に等しい。次に、各部屋排気ダクトの圧力損失と風量と実効長と内壁の粗さから内径を算出する。 When the air volume Qt is taken into the room by the air supply fan 41, the air pressure in the room becomes P higher than the air pressure outside the house, and the air pressure in the air tank 61 becomes P2 higher than the air pressure outside, the room exhaust duct 32 and The same air pressure (P-P2) is applied to both ends of the room exhaust duct 33, the room exhaust duct 34, and the room exhaust duct 35. Since the length of each room exhaust duct is determined by the layout of the house, the ratio of the ventilation amount of each room can be adjusted by the inner diameter of each room exhaust duct. The inner diameter of each room exhaust duct is determined as follows. First, the leakage air volume Qv is calculated from the equivalent gap area (C value) of the house, the floor area of the house, and the atmospheric pressure difference P between the room and the outside, and the total air volume subtracts the leakage air volume Qv from the supply air volume Qt. The air volume Qf, the air volume Qb, the air volume Qc, the air volume Qd, and the air volume Qe are set so as to be equal to the air volume. The air volume Qa of the air tank exhaust device 66 is equal to the sum of the air volume Qb, the air volume Qc, the air volume Qd, and the air volume Qe. Next, the inner diameter is calculated from the pressure loss, the air volume, the effective length, and the roughness of the inner wall of each room exhaust duct.

図3は室内の垂直位置と気圧の関係を示すグラフである。図3の(1)は気密断熱層13と基礎コンクリート11で囲まれた室内を示し、仮想ダクト81と仮想ダクト82は説明のための仮想的なダクトであり、同じ内径と長さと内壁の粗さを持つ。仮想ダクト81は室内の最上位部に配置され、仮想ダクト82は室内の最下位部に配置されている。暖房時、開閉可能な給気ダクト89が閉じている場合、空気の密度は温度が高くなるほど小さくなるため、室内の気圧Pは基礎コンクリート11に近いほど相対的に同じ水平位置の外部より気圧が低くなり、圧力特性71で表される。室内の下部の気圧は外部より低いため仮想ダクト82を通して外気が入り、室内の上部の気圧は外部より高いため仮想ダクト81を通して室内の空気が排出される。2階の床18付近の気圧が外部と同じ気圧になるのは仮想ダクト81と82が同じ内径と長さと内壁の粗さを持つためである。室内の温度は冷暖房装置96により常に一定かつ均一に保たれているとする。室内の気圧は、給気ダクト89を開け、給気ファン90を駆動し室内に空気を供給することにより圧力特性72で示したように外部の気圧より高くできる。家の高さが6mで、室内の温度が20度、外気の温度が零下10度の時P3は9.0パスカルである。 FIG. 3 is a graph showing the relationship between the vertical position in the room and the atmospheric pressure. (1) of FIG. 3 shows the room enclosed by the airtight heat insulation layer 13 and the foundation concrete 11, and the virtual duct 81 and the virtual duct 82 are virtual ducts for explanation, and have the same inner diameter, length, and rough inner wall. Have The virtual duct 81 is disposed at the uppermost portion in the room, and the virtual duct 82 is disposed at the lowermost portion in the room. When the air supply duct 89 that can be opened and closed is closed at the time of heating, the air density decreases as the temperature increases. Therefore, the pressure P in the room is relatively closer to the foundation concrete 11 than the outside at the same horizontal position. It becomes lower and is represented by the pressure characteristic 71. Since the air pressure in the lower part of the room is lower than the outside, the outside air enters through the virtual duct 82, and the air in the room is discharged through the virtual duct 81 because the air pressure in the upper part of the room is higher than the outside. The reason why the air pressure near the floor 18 on the second floor is the same as that of the outside is that the virtual ducts 81 and 82 have the same inner diameter, length, and roughness of the inner wall. It is assumed that the room temperature is always kept constant and uniform by the air conditioner 96. The air pressure inside the room can be made higher than the outside air pressure as shown by the pressure characteristic 72 by opening the air supply duct 89 and driving the air supply fan 90 to supply air into the room. When the house height is 6 m, the indoor temperature is 20 degrees, and the outside air temperature is 10 degrees below zero, P3 is 9.0 pascals.

一方、冷房時、給気ダクト89が閉じている場合、室内の気圧Pは基礎コンクリート11に近いほど相対的に同じ水平位置の外部より気圧が高くなり、圧力特性73で表される。室内の上部の気圧は外部より低いため仮想ダクト81を通して外気が入り、室内の下部の気圧は外部より高いため仮想ダクト82を通して室内の空気が排出される。室内の気圧Pは、給気ダクト89を開け、給気ファン90を駆動し室内に空気を供給することにより圧力特性74で示したように外部の気圧より高くできる。室内の温度が25度で、外気の温度が35度の時(P5−P4)は2.5パスカルである。暖房と冷房の切替が必要となるがその切替の頻度を切替にヒステリシス特性を持たせて、少なくするのが好ましい。そのために、P4は2.0パスカル程度に設定するのが好ましい。 On the other hand, when the air supply duct 89 is closed at the time of cooling, the atmospheric pressure P in the room becomes relatively higher than the outside at the same horizontal position as being closer to the foundation concrete 11, and is represented by the pressure characteristic 73. Since the atmospheric pressure in the upper part of the room is lower than the outside, outside air enters through the virtual duct 81, and the indoor air is discharged through the virtual duct 82 because the atmospheric pressure in the lower part of the room is higher than the outside. The air pressure P in the room can be made higher than the external air pressure as shown by the pressure characteristic 74 by opening the air supply duct 89 and driving the air supply fan 90 to supply air into the room. When the indoor temperature is 25 degrees and the outside air temperature is 35 degrees (P5-P4), it is 2.5 Pascals. Although switching between heating and cooling is required, it is preferable to reduce the frequency of the switching by giving hysteresis characteristics to the switching. Therefore, P4 is preferably set to about 2.0 Pascals.

室内の気圧が外部の気圧より下がった場合、外気が高気密高断層13の漏洩により室内に入る。 When the atmospheric pressure in the room falls below the outside atmospheric pressure, the outside air enters the room due to leakage of the highly airtight high fault 13 .

一方、室内の気圧を高くした場合、気密断熱層13の漏洩の風量が大きくなる。漏洩は気密断熱層13の全体に亘り不均一に分布し、各部屋の必要換気量に含められないので、無駄な換気である。従って、室内の気圧を外部より高く保ち、且できるだけ低く保つことが好ましい。 On the other hand, when the atmospheric pressure in the room is increased, the amount of air leaking from the airtight heat insulating layer 13 is increased. Leakage is unevenly distributed over the entire airtight heat insulating layer 13 and is not included in the necessary ventilation amount of each room, and is therefore useless ventilation. Therefore, it is preferable to keep the atmospheric pressure in the room higher than the outside and as low as possible.

図4は空気槽排気装置66の1実施例を示す。空気槽排気装置66は排気ダクト83と排気口84と排気ダクト85とダンパー86とダンパーコントローラ87と外気の温度を検出する温度センサ88から構成されている。ダンパー86は、ダンパーコントローラ87と温度センサ88により、外気温度が設定値1より高くなった場合に開き、外気温度が設定値2より低くなった場合に閉じる。ダンパー86の開閉の頻度を減らすためにヒステリシス特性を持たせ、設定値1を設定値2より数度高く設定するのが好ましい。ダンパー86が開いている時、空気槽61の空気は排気ダクト83と排気ダクト85を通して排出される。ダンパー86が閉じている時は、空気槽61の空気は全て排気ダクト83を通して排出され、排気ダクト83の排気量が大きくなるので排気ダクト83の圧力損失も大きくなる。従って、室内の気圧Pは、空気槽排気装置66の圧力損失と部屋排気ダクト32の圧力損失の合計であるので、ダンパー86の開閉により調整できる。排気ダクト83と排気ダクト85の内径と長さを、最も寒い時に室内の圧力が圧力特性72のようになり、最も暑い時に室内の圧力が圧力特性74のようになるように、設定する。 FIG. 4 shows an embodiment of the air tank exhaust device 66. The air tank exhaust device 66 includes an exhaust duct 83, an exhaust port 84, an exhaust duct 85, a damper 86, a damper controller 87, and a temperature sensor 88 that detects the temperature of the outside air. The damper 86 is opened when the outside air temperature becomes higher than the set value 1 by the damper controller 87 and the temperature sensor 88, and is closed when the outside air temperature becomes lower than the set value 2. In order to reduce the frequency of opening and closing the damper 86, it is preferable to provide a hysteresis characteristic and set the set value 1 to be several degrees higher than the set value 2. When the damper 86 is open, the air in the air tank 61 is exhausted through the exhaust duct 83 and the exhaust duct 85. When the damper 86 is closed, all the air in the air tank 61 is discharged through the exhaust duct 83, and the exhaust amount of the exhaust duct 83 increases, so that the pressure loss of the exhaust duct 83 also increases. Accordingly, the atmospheric pressure P in the room is the sum of the pressure loss of the air tank exhaust device 66 and the pressure loss of the room exhaust duct 32, and can be adjusted by opening and closing the damper 86. The inner diameters and lengths of the exhaust duct 83 and the exhaust duct 85 are set so that the indoor pressure becomes the pressure characteristic 72 when it is the coldest and the indoor pressure becomes the pressure characteristic 74 when it is the hottest.

例えば、排気ダクト83と排気ダクト85の内径と長さを、外気温度が設定値2以下の時、室内の最上部の気圧Pが同じ水平線上の外部より9.0パスカル高くなり、空気槽の気圧P2が同じ水平線上の外部より8.0パスカル高くなり、外気温度が設定値1以上の時、室内の最上部の気圧Pが同じ水平線上の外部より2.0パスカル高くなり、空気槽の気圧P2が同じ水平線上の外部より1.0パスカル高くなるように、設定する。この場合、外気温度が35度で室内の温度が25度の時、室内の最上部の気圧Pが同じ水平線上の外部より2.0パスカル高くなり、室内の最下部の気圧Pが同じ水平線上の外部より4.5パスカル高くなり、室内の平均気圧は外部より3.3パスカル高くなる。 For example, when the outside air temperature is less than or equal to the set value 2 and the inner diameter and length of the exhaust duct 83 and the exhaust duct 85, the atmospheric pressure P at the top of the room becomes 9.0 Pascals higher than the outside on the same horizontal line, When the atmospheric pressure P2 is 8.0 pascals higher than the outside on the same horizon, and the outside air temperature is a set value 1 or more, the uppermost atmospheric pressure P is 2.0 pascals higher than the outside on the same horizon, The pressure P2 is set to be 1.0 Pascal higher than the outside on the same horizontal line. In this case, when the outside air temperature is 35 degrees and the room temperature is 25 degrees, the atmospheric pressure P at the top of the room is 2.0 Pascals higher than the outside on the same horizontal line, and the atmospheric pressure P at the bottom of the room is on the same horizontal line. 4.5 Pascals higher than the outside, and the indoor average atmospheric pressure is 3.3 Pascals higher than the outside.

一方、空気槽排気装置66が図4の構成とは異なり、排気ダクト85が存在せず排気ダクト83のみの場合、外気温度が零下10度で室内の気圧を外気の気圧より高く保つためにP3を9.0パスカルに設定すると、夏、外気が35度で室内の気温が25度の時の室内の圧力は圧力特性75で示され、室内の平均気圧は外部より10.2パスカル高くなる。 On the other hand, when the air tank exhaust device 66 is different from the configuration of FIG. 4 and the exhaust duct 85 does not exist and only the exhaust duct 83 exists, P3 is used in order to keep the indoor air pressure higher than the outdoor air pressure when the outside air temperature is 10 degrees below zero. Is set to 9.0 Pascals, the indoor pressure when the outside air is 35 degrees and the room temperature is 25 degrees in summer is indicated by the pressure characteristic 75, and the average atmospheric pressure in the room is 10.2 Pascals higher than the outside.

従って、空気槽排気装置66に排気ダクト85とダンパー86を設けることにより、外気が35度の時、室内の平均気圧を68%下げ、気密断熱層13の漏洩の風量を43%少なくできる。図4に示された実施例ではダンパー86が閉じていて外気温度が設定値1の時に室内の平均気圧が最も高く、設定値1が15度、外気温度が15度、室内温度が20度とすると室内の平均気圧は外部より8.4パスカル高くなる。従って、排気ダクト85を開閉することにより最高の室内の平均気圧を18%下げることができる。 Therefore, by providing the air duct exhaust device 66 with the exhaust duct 85 and the damper 86, when the outside air is 35 degrees, the indoor average atmospheric pressure can be reduced by 68%, and the amount of air leaking from the airtight heat insulating layer 13 can be reduced by 43%. In the embodiment shown in FIG. 4, when the damper 86 is closed and the outside air temperature is the set value 1, the indoor average atmospheric pressure is the highest, the set value 1 is 15 degrees, the outside air temperature is 15 degrees, and the room temperature is 20 degrees. Then, the indoor average atmospheric pressure becomes 8.4 Pascals higher than the outside. Therefore, the highest indoor average atmospheric pressure can be lowered by 18% by opening and closing the exhaust duct 85.

図4の実施例では空気槽排気装置66の摩擦抵抗が外気温度により2段階に変わるが、空気槽排気装置66の摩擦抵抗を外気温度により3段階に変わるようにすることにより、更に、室内の気圧を外部より高く保ちつつ、最高の室内の平均気圧を下げることができる。 In the embodiment of FIG. 4, the friction resistance of the air tank exhaust device 66 changes in two stages depending on the outside air temperature. However, by changing the friction resistance of the air tank exhaust device 66 in three stages depending on the outside air temperature, further, The average indoor pressure can be lowered while keeping the pressure higher than the outside.

図5は同じ圧力損失特性を持つ2本の同じ長さのダクトを示す。例えば、部屋排気ダクト32の内径は部屋Dの必要換気量と部屋排気ダクト32の実効長と圧力損失と内壁の粗さから算出されるが販売されているダクトの内径は75mm、100mm、150mm等であり、必ずしも一致しない。ダクト91は要求されたダクトであり、合成ダクト95は販売されているダクトで合成したダクトである。ダクト92はダクト91より内径が大きい販売されているダクトであり、ダクト93はダクト91より内径が小さい販売されているダクトであり、ジョイント94はダクト92とダクト93を接続する部品である。ダクト93の長さを適切に選定することにより、ダクト95はダクト91と同じ圧力損失特性を持つようにできる。従って、要求された内径を持つダクトを販売されているダクトで作成できる。 FIG. 5 shows two equal length ducts with the same pressure loss characteristics. For example, the inner diameter of the room exhaust duct 32 is calculated from the necessary ventilation amount of the room D, the effective length of the room exhaust duct 32, the pressure loss, and the roughness of the inner wall, but the inner diameters of the ducts sold are 75 mm, 100 mm, 150 mm, etc. And do not necessarily match. The duct 91 is a requested duct, and the synthetic duct 95 is a duct synthesized with commercially available ducts. The duct 92 is a commercially available duct having an inner diameter larger than that of the duct 91, the duct 93 is a commercially available duct having an inner diameter smaller than that of the duct 91, and the joint 94 is a component that connects the duct 92 and the duct 93. By appropriately selecting the length of the duct 93, the duct 95 can have the same pressure loss characteristics as the duct 91. Therefore, a duct having a required inner diameter can be created from a commercially available duct.

は給気ファン41による給気量が台所や風呂場等に設置された強制排気システムと連動する1実施例を示す。強制排気システムはスイッチ115とコントローラ111と排気ダクト112と排気ファン113と排気ダンパー114で構成されている。コントローラ111は、スイッチ115の状態を定期的に読み、スイッチ115の状態がオンになった時、排気ダンパー114を開け、排気ファン113を駆動し部屋Dの空気を排出する。排気ファン113が駆動された時、給気ファン41に供給する電圧を高くして給気ファン41による給気量を排気ファン113の排気量だけ増加する。これにより排気ファン113が駆動された時、室内の気圧を外部の気圧より高く保つことができる。 FIG. 6 shows an embodiment in which the amount of air supplied by the air supply fan 41 is interlocked with a forced exhaust system installed in a kitchen or a bathroom. The forced exhaust system includes a switch 115, a controller 111, an exhaust duct 112, an exhaust fan 113, and an exhaust damper 114. The controller 111 periodically reads the state of the switch 115. When the state of the switch 115 is turned on, the controller 111 opens the exhaust damper 114, drives the exhaust fan 113, and exhausts the air in the room D. When the exhaust fan 113 is driven, the voltage supplied to the supply fan 41 is increased to increase the supply amount of the supply fan 41 by the exhaust amount of the exhaust fan 113. Thus, when the exhaust fan 113 is driven, the indoor atmospheric pressure can be kept higher than the external atmospheric pressure.

コントローラ111は給気ダクト31の内部に配置された風量センサ116の出力が給気量の設定値と異なる時、給気ファン41に供給する電圧を補正することにより給気量を設定値に常に合わせる。 When the output of the air volume sensor 116 arranged inside the air supply duct 31 is different from the set value of the supply air amount, the controller 111 always corrects the supply air amount to the set value by correcting the voltage supplied to the supply air fan 41. Match.

図8は給気ファン41の静圧ー風量特性と全圧力損失特性の1例を示す。静圧ー風量特性76は電圧V1が供給された給気ファン41の静圧ー風量特性を示し、静圧ー風量特性77は電圧V2が供給された給気ファン41の静圧ー風量特性を示す。全圧力損失特性78と全圧力損失特性79は家の全圧力損失特性を示し、家の全圧力損失特性は給気口43から吹出し口42までの給気の圧力損失特性と家の排気の圧力損失特性から得られる。給気ファン41に電圧V1が供給され、家の全圧力損失特性が全圧力損失特性78である時、静圧ー風量特性76と全圧力損失特性78の交点から給気量Qtと全圧力損失P6が得られる。 FIG. 8 shows an example of the static pressure-air volume characteristic and the total pressure loss characteristic of the air supply fan 41. The static pressure-air volume characteristic 76 indicates the static pressure-air volume characteristic of the air supply fan 41 supplied with the voltage V1, and the static pressure-air volume characteristic 77 indicates the static pressure-air volume characteristic of the air supply fan 41 supplied with the voltage V2. Show. The total pressure loss characteristic 78 and the total pressure loss characteristic 79 indicate the total pressure loss characteristic of the house, and the total pressure loss characteristic of the house includes the pressure loss characteristic of the supply air from the supply port 43 to the outlet 42 and the pressure of the exhaust of the house. Obtained from loss characteristics. When the voltage V1 is supplied to the air supply fan 41 and the total pressure loss characteristic of the house is the total pressure loss characteristic 78, the supply air amount Qt and the total pressure loss are calculated from the intersection of the static pressure-air volume characteristic 76 and the total pressure loss characteristic 78. P6 is obtained.

給気ファン41に常に同じ電圧が供給されている場合、エアフィルタ106が目詰まりを起こし、家の全圧力損失特性が全圧力損失特性79になった場合、給気量はQsとなり、給気量が減少する。一方、給気ダクト31の途中に配置された風量センサ116を使用して給気量をコントロールする場合、エアフィルタ106が目詰まりを起こし、家の全圧力損失特性が全圧力損失特性79になった場合、給気量は設定値Qtに保もたれ、給気ファン41に供給される電圧はV2となる。また空気槽排気装置66の摩擦抵抗を変えた時、家の全圧力損失特性が変わるが、給気量を設定値Qtに保つことができる。更に、強制排気システムを駆動した時、また居住者数が変わった時、給気量の設定値を変えることにより必要な給気量を正確に給気できる。 When the same voltage is always supplied to the air supply fan 41, the air filter 106 is clogged, and when the total pressure loss characteristic of the house becomes the total pressure loss characteristic 79, the air supply amount becomes Qs, and the air supply The amount decreases. On the other hand, when the air supply amount is controlled using the air volume sensor 116 disposed in the middle of the air supply duct 31, the air filter 106 is clogged, and the total pressure loss characteristic of the house becomes the total pressure loss characteristic 79. In this case, the air supply amount is maintained at the set value Qt, and the voltage supplied to the air supply fan 41 is V2. Further, when the frictional resistance of the air tank exhaust device 66 is changed, the total pressure loss characteristic of the house changes, but the supply amount can be kept at the set value Qt. Furthermore, when the forced exhaust system is driven or when the number of residents changes, the required air supply amount can be supplied accurately by changing the set value of the air supply amount.

以上、図示例に基づき説明したが、本発明は上述の例に限定されるものではなく、例えば、本発明の高気密高断熱住宅の換気システムは中気密中断熱住宅にも適用可能である。 As mentioned above, although demonstrated based on the example of illustration, this invention is not limited to the above-mentioned example, For example, the ventilation system of the high airtight highly insulated house of this invention is applicable also to a medium airtight intermediate insulated house.

図1 本発明の高気密高断熱住宅の換気システムの1実施形態を示す断面図である。
図2 各部屋の排気ダクトの内径を計算するための図である。
図3 室内の垂直位置と気圧の関係を示すグラフである。
図4 空気槽排気装置の1実施例である。
図5 同じ圧力損失特性を持つ2本のダクトを示す。
給気ファンが強制排気システムと連動する1実施例を示す。
給気ファンの静圧ー風量特性と全圧力損失特性の1例を示す。
従来例の換気システムを示す断面図である
FIG. 1 is a cross-sectional view showing an embodiment of a ventilation system for a highly airtight and highly insulated house of the present invention.
FIG. 2 is a diagram for calculating the inner diameter of the exhaust duct in each room.
3 is a graph showing the relationship between the vertical position in the room and the atmospheric pressure.
FIG. 4 is one embodiment of an air tank exhaust device.
FIG. 5 shows two ducts with the same pressure loss characteristics.
6 shows an embodiment in which the air supply fan is interlocked with the forced exhaust system.
FIG. 7 shows an example of static pressure-air volume characteristics and total pressure loss characteristics of the air supply fan.
8 is a cross-sectional view showing a conventional ventilation system

符号の説明Explanation of symbols

11 基礎コンクリート
12 外壁
13 気密断熱層
14 内壁
15 屋根
16 1階の床
17 1階の天井
18 2階の床
19 2階の天井
20、21、22 壁
23 吹抜
31 給気ダクト
32、33、34、35 部屋排気ダクト
36 排気ダクト
37 仮想排気ダクト
41 給気ファン
42 吹出し口
43 給気口
51、52、53 すき間
61 空気槽
62、63、64、65 排気口
66 空気槽排気装置
71、72、73、74、75 圧力特性
76、77 静圧ー風量特性
78、79 全圧力損失特性
81、82 仮想ダクト
83、85 排気ダクト
84 排気口
86 ダンパー
87 ダンパーコントローラ
88 温度センサ
89 給気ダクト
90 給気ファン
91、92、93 ダクト
94 ジョイント
95 合成ダクト
96 冷暖房装置
111 コントローラ
112 ダクト
113 排気ファン
114 排気ダンパー
115 スイッチ
116 風量センサ
202 外壁
203 内壁
204 気密断熱層
205 通気層
211 屋根裏空間
218 ルーバ
219 アンダーカット
220 ダクトファン
221 ダクト
225 ルーバ
226 排気口
A 屋根裏空間
B、C、D、E 部屋
F 床下空間
G 内壁空間
P 室内の気圧
P3、P4、P5、P6、P7 気圧
Qa、Qb、Qc、Qd、Qf、Qs、Qt、Qv 風量
DESCRIPTION OF SYMBOLS 11 Basic concrete 12 Outer wall 13 Airtight heat insulation layer 14 Inner wall 15 Roof 16 First floor 17 First floor ceiling 18 Second floor 19 Second floor ceiling 20, 21, 22 Wall 23 Vent 31 Air supply duct 32, 33, 34 35 Exhaust duct 36 Exhaust duct 37 Virtual exhaust duct 41 Air supply fan 42 Outlet port 43 Air supply port 51, 52, 53 Clearance 61 Air tank 62, 63, 64, 65 Exhaust port 66 Air tank exhaust device 71, 72, 73, 74, 75 Pressure characteristics 76, 77 Static pressure-air volume characteristics 78, 79 Total pressure loss characteristics 81, 82 Virtual ducts 83, 85 Exhaust duct 84 Exhaust port 86 Damper 87 Damper controller 88 Temperature sensor 89 Supply air duct 90 Supply air Fans 91, 92, 93 Duct 94 Joint 95 Synthetic duct 96 Air conditioning unit 111 Controller 112 Duct 1 3 Exhaust fan 114 Exhaust damper 115 Switch 116 Airflow sensor 202 Outer wall 203 Inner wall 204 Airtight heat insulating layer 205 Vent layer 211 Attic space 218 Louver 219 Undercut 220 Duct fan 221 Duct 225 Louver 226 Exhaust port A Attic space B, C, D, E Room F Underfloor space G Inner wall space P Air pressure P3, P4, P5, P6, P7 Air pressure Qa, Qb, Qc, Qd, Qf, Qs, Qt, Qv

Claims (6)

家の外部に配置された給気口を一端とし前記家の中央付近に配置された吹出し口を他の一端とする給気ダクトと、前記給気ダクトの途中に配置された給気ファンにより外気が室内に取り入れられ、前記家の各部屋の空気が排気装置により排出される高気密高断熱住宅の換気システムにおいて、前記排気装置が空気槽と、前記各部屋から前記空気槽に配管された部屋排気ダクトと、高気密高断層を貫通し前記空気槽から前記家の外部に排気する空気槽排気装置から構成されることを特徴とする高気密高断熱住宅の換気システム An air supply duct having an air supply port arranged outside the house as one end and an air outlet arranged near the center of the house as another end and an air supply fan arranged in the middle of the air supply duct In a highly airtight and highly insulated house ventilation system in which air in each room of the house is exhausted by an exhaust device, the exhaust device being an air tank and a room piped from each room to the air tank A ventilation system for a highly airtight and highly insulated house characterized by comprising an exhaust duct and an air tank exhaust device that passes through a high airtight high fault and exhausts air from the air tank to the outside of the house. 前記空気槽排気装置が前記高気密高断層を貫通した第一の排気ダクトと第二の排気ダクトと、前記第二の排気ダクトの一端または途中に配置され外気温度により開閉されるダンパーから構成される請求項1記載の高気密高断熱住宅の換気システム The air tank exhaust device is composed of a first exhaust duct and a second exhaust duct that penetrate the high airtight high fault, and a damper that is disposed at one end or in the middle of the second exhaust duct and is opened and closed by an outside air temperature. The ventilation system of the high airtight highly insulated house according to claim 1 前記部屋排気ダクトまたは前記第一の排気ダクトまたは前記第二の排気ダクトが第一のダクトと、前記第一のダクトと異なる内径を持つ第二のダクトと、前記第一のダクトと前記第二のダクトを連結するジョイントから構成される請求項2記載の高気密高断熱住宅の換気システム The room exhaust duct or the first exhaust duct or the second exhaust duct is a first duct, a second duct having an inner diameter different from that of the first duct, the first duct and the second duct. A ventilation system for a highly airtight and highly insulated house according to claim 2, wherein the ventilation system is composed of a joint for connecting the ducts. エアフィルタ、または暖房装置、または冷房装置、または加湿装置、または除湿装置、または除菌装置が前記給気ダクトの一端または途中に配置された請求項1記載の高気密高断熱住宅の換気システム The ventilation system of a highly airtight and highly insulated house according to claim 1, wherein an air filter, a heating device, a cooling device, a humidifying device, a dehumidifying device, or a sterilizing device is disposed at one end or in the middle of the air supply duct. 短期間、局部的に排気する強制排気システムが配置された高気密高断熱住宅において、前記給気ファンの給気量が、前記強制排気システムが駆動された時、前記強制排気システムの排気量とほぼ同量だけ増加する請求項1記載の高気密高断熱住宅の換気システム In a highly airtight and highly insulated house where a forced exhaust system that exhausts locally for a short period of time is arranged, when the forced exhaust system is driven, the supply amount of the supply fan is the same as the exhaust amount of the forced exhaust system. The ventilation system of a highly airtight and highly insulated house according to claim 1, wherein the ventilation system increases by substantially the same amount. 前記給気ファンが前記給気ダクト内に設置された風量センサの出力と設定された風量によりコントロールされる請求項1記載の高気密高断熱住宅の換気システム
The ventilation system of the high airtight and highly insulated house according to claim 1, wherein the air supply fan is controlled by an output of an air volume sensor installed in the air supply duct and a set air volume.
JP2003300988A 2003-08-26 2003-08-26 Ventilation system for highly airtight and highly insulated houses Expired - Fee Related JP3525386B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003300988A JP3525386B1 (en) 2003-08-26 2003-08-26 Ventilation system for highly airtight and highly insulated houses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003300988A JP3525386B1 (en) 2003-08-26 2003-08-26 Ventilation system for highly airtight and highly insulated houses

Publications (2)

Publication Number Publication Date
JP3525386B1 JP3525386B1 (en) 2004-05-10
JP2005069590A true JP2005069590A (en) 2005-03-17

Family

ID=32463753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003300988A Expired - Fee Related JP3525386B1 (en) 2003-08-26 2003-08-26 Ventilation system for highly airtight and highly insulated houses

Country Status (1)

Country Link
JP (1) JP3525386B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021032521A (en) * 2019-08-28 2021-03-01 三協立山株式会社 Ventilation system
JP2022113241A (en) * 2021-01-25 2022-08-04 パナソニックホームズ株式会社 Method for evaluating construction state of air blow passage, and method for manufacturing building

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021032521A (en) * 2019-08-28 2021-03-01 三協立山株式会社 Ventilation system
JP7448897B2 (en) 2019-08-28 2024-03-13 三協立山株式会社 ventilation system
JP2022113241A (en) * 2021-01-25 2022-08-04 パナソニックホームズ株式会社 Method for evaluating construction state of air blow passage, and method for manufacturing building
JP7265566B2 (en) 2021-01-25 2023-04-26 パナソニックホームズ株式会社 Method for evaluating construction condition of air flow passage and method for manufacturing building

Also Published As

Publication number Publication date
JP3525386B1 (en) 2004-05-10

Similar Documents

Publication Publication Date Title
US11781762B1 (en) Air cooling system for building structures with attic
US20140206278A1 (en) Automated fresh air cooling system
JP2005105732A (en) Curtain wall with ventilation function and building provided with the same
Alexander et al. Design considerations for active chilled beams
WO2015139430A1 (en) Floor air-conditioning system
US5722483A (en) Air exchange apparatus and method
JP5784654B2 (en) Air conditioning system and air conditioning method
CA2288050C (en) High-efficiency air-conditioning system with high-volume air distribution
KR101256781B1 (en) Hybrid air condition system with indirectness load control mode
JPH01300135A (en) Ventilation and circulating type air cooling and heating facility
KR20210106836A (en) Building ventilation system
CN207584951U (en) All-fresh air ceiling type air conditioner system
KR101650811B1 (en) Energy saving envelope ventilation structure in renovation building
JP5926711B2 (en) Heating system
JP2005009840A (en) Ventilation system of building
JP2004232999A (en) Ventilation system for airtight residence
JP2008038497A (en) Ventilation system
KR200435724Y1 (en) System for elevating an exhaust efficiency of waste gas in chimney
KR20050111144A (en) Regulated by pressure for ventilation system
JP2005069590A (en) Ventilation system of high air-tight and high heat insulating residence
JP3082061B2 (en) Air conditioning method for heating or heating and cooling
JPH10176851A (en) Ventilator for residence
JP4334887B2 (en) Ventilated housing and method for forming cold pool
CN104963435A (en) Internal-circulation double-layer respiration type energy-saving curtain wall
KR101139908B1 (en) Air conditioning system for cavity of double skin facade

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees