JP2005069456A - Annular orifice and flow rate control valve or pressure control valve - Google Patents

Annular orifice and flow rate control valve or pressure control valve Download PDF

Info

Publication number
JP2005069456A
JP2005069456A JP2003304035A JP2003304035A JP2005069456A JP 2005069456 A JP2005069456 A JP 2005069456A JP 2003304035 A JP2003304035 A JP 2003304035A JP 2003304035 A JP2003304035 A JP 2003304035A JP 2005069456 A JP2005069456 A JP 2005069456A
Authority
JP
Japan
Prior art keywords
control valve
sectional area
orifice
poppet
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003304035A
Other languages
Japanese (ja)
Inventor
Tomio Yamashita
富雄 山下
Yoshio Kubota
喜夫 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuroda Precision Industries Ltd
Original Assignee
Kuroda Precision Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuroda Precision Industries Ltd filed Critical Kuroda Precision Industries Ltd
Priority to JP2003304035A priority Critical patent/JP2005069456A/en
Publication of JP2005069456A publication Critical patent/JP2005069456A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an annular orifice capable of being simply manufactured with high precision even when cross sectional area is comparatively small or large depth is required and to provide a flow rate control valve or a pressure control valve using the annular orifice. <P>SOLUTION: This annular orifice formed in an inside flow passage of fluid equipment is composed of a through hole having larger cross sectional area than required cross sectional area of the orifice and a rod inserted into the through hole and adjusted in such a way that its cross sectional area becomes the cross sectional area of the orifice requiring difference between the cross sectional area of the orifice and the cross sectional area of the through hole. The flow rate control valve incorporates one or more poppet valve mechanisms adopting the annular orifice. The flow rate control valve or the pressure control valve incorporates two or more poppet valve mechanisms adopting the annular orifice. Cross sectional areas of the annular orifices are the same or cross sectional areas of a part or all of the annular orifices differ from each other. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、圧力流体を制御するための弁および圧力流体によって作動するアクチュエータなどの流体機器、特に小断面積(例えば、内径φ1未満の穴に相当する断面積)のオリフィス、および断面積に比較して深さのある(例えば、アスペクト比(=穴の深さ/穴の内径)が5を超える深さ)オリフィスを有する流体機器に関するものである。
流体機器の内部には、流体が通る1以上の流路が形成され、その流路の途中に1以上のオリフィスを形成することが一般的である。このオリフィスの形状・大きさは、流体機器の流量特性を決定する重要な要素である。流体機器が小形化・精密化するにともない、小断面積のオリフィスを高精度に製作することが必要となった。
The present invention is compared to a fluid device such as a valve for controlling a pressure fluid and an actuator operated by the pressure fluid, particularly an orifice having a small cross-sectional area (for example, a cross-sectional area corresponding to a hole having an inner diameter of less than φ1), and a cross-sectional area. Thus, the present invention relates to a fluid device having an orifice with a depth (for example, an aspect ratio (= depth of hole / inner diameter of hole) exceeding 5).
Generally, one or more flow paths through which a fluid passes are formed inside the fluid device, and one or more orifices are formed in the middle of the flow path. The shape and size of the orifice is an important factor that determines the flow characteristics of the fluid device. As fluidic devices have become smaller and more precise, it has become necessary to manufacture orifices with a small cross-sectional area with high precision.

従来、流体によって作動する機器の作動速度をデジタル的に調整するため、流体作動機器を制御するための流体を吐出する電磁弁マニホールドと、流体作動機器とをつなぐ流路の途中に、断面積の異なる複数のオリフィスを備えたオリフィスブロックを、回転可能な方法で設置した流体作動機器の速度調整装置が知られている(例えば、特許文献1参照)。この流体作動機器の速度調整装置では、所望の作動速度を得るために、オリフィスブロックを回転させ、適切な断面積のオリフィスを選択することができる。
特開2000−9240号公報
Conventionally, in order to digitally adjust the operation speed of a device operated by a fluid, a cross-sectional area of the solenoid valve manifold that discharges the fluid for controlling the fluid operation device and a flow path connecting the fluid operation device is changed. 2. Description of the Related Art There is known a fluid regulator speed adjusting device in which orifice blocks having different orifices are installed in a rotatable manner (see, for example, Patent Document 1). In the fluid regulator speed adjusting device, the orifice block can be rotated and an orifice having an appropriate cross-sectional area can be selected in order to obtain a desired operating speed.
Japanese Patent Laid-Open No. 2000-9240

しかしながら、特許文献1では、適切な間隔で作動速度をデジタル的な変化させるためには、オリフィスブロックに備える複数のオリフィスそれぞれの断面積を、適切に変化させなければならない。例えば、4つのオリフィスを設ける場合、それぞれの内径を必要流量から表1のように決定する。決定した内径のオリフィスを高精度に加工することは、ドリルなどの機械加工では相当に困難である。特に、内径φ1未満の穴加工や、アスペクト比が5を超える穴加工を必要とする場合に著しい。そのような場合、加工に時間と手間を要し、コストも上昇する。   However, in Patent Document 1, in order to digitally change the operation speed at an appropriate interval, it is necessary to appropriately change the cross-sectional areas of the plurality of orifices provided in the orifice block. For example, when four orifices are provided, each inner diameter is determined as shown in Table 1 from the required flow rate. It is very difficult to machine an orifice having a determined inner diameter with high accuracy by machining such as a drill. In particular, it is remarkable when drilling with an inner diameter of less than φ1 or drilling with an aspect ratio exceeding 5 is required. In such a case, processing takes time and labor, and the cost increases.

オリフィスの内径を決定するためには、通常、表1の手順に続き、試作を行い、ねらった流量が得られるか否かを確認する。実用に耐えないほどの誤差が出た場合には、試行錯誤を繰返すことになる。また、流体機器のユーザにおいて、流体機器を搭載した装置を改造することが少なくない。この改造によって必要流量が変更になることもある。いずれの場合も、穴加工だけで製作したオリフィスでは、その断面積を簡単に変更することはできない。   In order to determine the inner diameter of the orifice, normally, following the procedure shown in Table 1, a prototype is made, and it is confirmed whether a desired flow rate can be obtained. If an error that can not be put to practical use occurs, trial and error are repeated. In addition, users of fluidic devices often modify the device on which the fluidic device is mounted. This modification may change the required flow rate. In either case, the cross-sectional area cannot be easily changed with an orifice manufactured only by drilling.

Figure 2005069456
本発明は斯かる従来の問題点を解決するために為されたもので、その目的は、比較的断面積が小さい、または深さを必要とする場合であっても、高精度かつ簡便に製作できる環状オリフィスを提供することにある。
Figure 2005069456
The present invention has been made to solve such a conventional problem, and its purpose is to produce a highly accurate and simple even if the cross-sectional area is relatively small or a depth is required. It is to provide an annular orifice that can be made.

また、本発明の別の目的は、この環状オリフィスを用いた流量制御弁または圧力制御弁を提供することにある。   Another object of the present invention is to provide a flow control valve or a pressure control valve using this annular orifice.

請求項1に係る発明は、流体機器の内部流路に形成される環状オリフィスにおいて、必要とされるオリフィスの断面積よりも大きな断面積を有する貫通孔と、この貫通孔内に挿入されるとともにその断面積が前記貫通孔の断面積との差が必要とされるオリフィスの断面積となるように調整されているロッドとで構成されていることを特徴とする。
請求項2に係る発明は、ポペットによって主弁を開閉する流体制御弁において、請求項1記載の環状オリフィスを採用したポペット弁機構を1以上内蔵したことを特徴とする。
The invention according to claim 1 is the annular orifice formed in the internal flow path of the fluid device, and is inserted into the through-hole having a cross-sectional area larger than the required cross-sectional area of the orifice and the through-hole. The cross-sectional area is constituted by a rod that is adjusted so as to be a cross-sectional area of an orifice that requires a difference from the cross-sectional area of the through hole.
The invention according to claim 2 is characterized in that in the fluid control valve for opening and closing the main valve by the poppet, one or more poppet valve mechanisms adopting the annular orifice according to claim 1 are incorporated.

請求項3に係る発明は、ポペットによって主弁を開閉する流体制御弁または圧力制御弁において、請求項1記載の環状オリフィスを採用したポペット弁機構を2以上内蔵し、前記環状オリフィスの断面積がいずれも同一であることを特徴とする。
請求項4に係る発明は、ポペットによって主弁を開閉する流体制御弁または圧力制御弁において、請求項1の環状オリフィスを採用したポペット弁機構を2以上内蔵し、前記環状オリフィスの一部または全部の断面積が互いに異なることを特徴とする。
According to a third aspect of the present invention, in the fluid control valve or pressure control valve that opens and closes the main valve by a poppet, two or more poppet valve mechanisms employing the annular orifice according to claim 1 are incorporated, and the sectional area of the annular orifice is Both are the same.
According to a fourth aspect of the present invention, in the fluid control valve or pressure control valve that opens and closes the main valve by a poppet, two or more poppet valve mechanisms employing the annular orifice of claim 1 are incorporated, and a part or all of the annular orifice is incorporated. Are different from each other in cross-sectional area.

請求項1に係る発明によれば、ロッド外径を調整することによって、環状オリフィスの断面積を設定できるので、設定された断面積が高精度に設定できる。しかも、穴加工だけで製作する従来のオリフィスに比し、加工が容易でコストも削減できる。特に、内径φ1未満の穴に相当する断面積を有するオリフィス、またはアスペクト比が5を超えるオリフィスを製作する場合に極めて有効である。   According to the first aspect of the present invention, since the cross-sectional area of the annular orifice can be set by adjusting the rod outer diameter, the set cross-sectional area can be set with high accuracy. In addition, the machining is easier and the cost can be reduced as compared with the conventional orifice manufactured only by the hole machining. In particular, it is extremely effective when manufacturing an orifice having a cross-sectional area corresponding to a hole having an inner diameter of less than φ1 or an aspect ratio exceeding 5.

また、ロッドを交換することによって、オリフィスの断面積を容易に変更できるので、流量調整・変更を必要とする場合に有効である。
請求項1に係る環状オリフィスを1以上設けることによって、請求項2に係る流体制御弁または請求項3,4に係る流体制御弁または圧力制御弁を簡単に構成できる。
また、請求項1に係る環状オリフィスによれば、過剰な速度がでないように、シリンダなどの流体用アクチュエータの給排気ポート内に設ける固定オリフィスの形成も容易にできる。
Moreover, since the cross-sectional area of the orifice can be easily changed by exchanging the rod, it is effective when the flow rate adjustment / change is required.
By providing one or more annular orifices according to claim 1, the fluid control valve according to claim 2 or the fluid control valve or pressure control valve according to claims 3 and 4 can be simply configured.
In addition, according to the annular orifice of the first aspect, it is possible to easily form the fixed orifice provided in the supply / exhaust port of the fluid actuator such as the cylinder so that the excessive speed is not generated.

以下、本発明の実施の形態を図面に従って説明する。
(第一実施形態)
図1は、本発明の環状オリフィスを採用した1つのポペット弁機構で構成した流体制御弁を示す(請求項1、2に対応)。
本実施形態に係る流体制御弁Aは、貫通孔100を穿設したオリフィスプレート2を、上部カバー1と下部カバー4との間に密封状態で固定し、上部カバー1とオリフィスプレート2との間に上部空気室3を形成し、下部カバー4とオリフィスプレート2との間に下部空気室5を形成し、貫通孔100を介して上部空位室3および下部空気室5とに跨るポペット弁機構20を内蔵している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 shows a fluid control valve constituted by one poppet valve mechanism employing an annular orifice of the present invention (corresponding to claims 1 and 2).
In the fluid control valve A according to the present embodiment, the orifice plate 2 having the through hole 100 is fixed in a sealed state between the upper cover 1 and the lower cover 4, and between the upper cover 1 and the orifice plate 2. The upper air chamber 3 is formed in the upper portion, the lower air chamber 5 is formed between the lower cover 4 and the orifice plate 2, and the poppet valve mechanism 20 spans the upper empty chamber 3 and the lower air chamber 5 through the through hole 100. Built in.

ここで、上部カバー1の側面には、上部空気室3と連通する流体入口6が設けられている。また、下部カバー4の側面には、下部空気室5と連通する流体出口7が設けられている。さらに、貫通孔100の上部空気室3側の口元には、弁座101が形成されている。
ポペット弁機構20は、軸心を貫通孔100の軸心と略一致させるとともに、弁座101に当接することができるように上部空気室3に配した円板状のポペット102と、上部空気室3内において上部カバー1とポペット102との間に設置されたばね103と、軸心を貫通孔100の軸心と略一致させて下部空気室5内に配置された駆動装置105と、貫通孔100内に挿通されポペット102と駆動装置105との間に配置された円筒状のロッド106とによって構成されている。
Here, a fluid inlet 6 communicating with the upper air chamber 3 is provided on the side surface of the upper cover 1. A fluid outlet 7 communicating with the lower air chamber 5 is provided on the side surface of the lower cover 4. Further, a valve seat 101 is formed at the mouth of the through hole 100 on the upper air chamber 3 side.
The poppet valve mechanism 20 has a disk-shaped poppet 102 disposed in the upper air chamber 3 so that the shaft center is substantially coincident with the shaft center of the through hole 100 and can contact the valve seat 101, and the upper air chamber. 3, a spring 103 installed between the upper cover 1 and the poppet 102, a driving device 105 disposed in the lower air chamber 5 with its axis substantially coincident with the axis of the through hole 100, and the through hole 100 The cylindrical rod 106 is inserted between the poppet 102 and the driving device 105.

ポペット102には、弁座101とのシールのため、弁座101との接触面にシール材104が設けてある。
ポペット102を駆動するための駆動手段105は、その軸心を貫通孔100の軸心と略一致するように設置されている。すなわち、駆動手段105の軸心は、ポペット102の軸心とも略一致する。ポペット102と駆動手段105との間には、それぞれに当接する円筒状のロッド106が配置されている。なお、駆動手段105は、ソレノイド、圧電素子、押しボタンなど、一般に流体制御弁の駆動手段に採用される手段を使用できる。特に、高速に自動制御しようという場合には、駆動手段として高速応答が可能なソレノイドや圧電素子を使用する。
The poppet 102 is provided with a sealing material 104 on the contact surface with the valve seat 101 for sealing with the valve seat 101.
The driving means 105 for driving the poppet 102 is installed so that its axis is substantially coincident with the axis of the through hole 100. That is, the axis of the driving means 105 substantially coincides with the axis of the poppet 102. Between the poppet 102 and the driving means 105, a cylindrical rod 106 that abuts each other is disposed. The drive means 105 may be a means generally employed as a drive means for a fluid control valve, such as a solenoid, a piezoelectric element, or a push button. In particular, when automatic control is to be performed at high speed, a solenoid or piezoelectric element capable of high-speed response is used as a driving means.

貫通孔100の内径と円筒状のロッド106の外径との差が、上部空気室3と下部空気室5とをつなぐ流路(以下、環状オリフィス10という)となる。貫通孔100の内径を一定とし、円筒状のロッド106の外径を調整することによって、流体出口7から流出する流体の流量を所望の大きさとする環状オリフィス10の断面積を設定している。
次に、斯くして構成された本実施形態に係る流体制御弁Aの作用を説明する。
The difference between the inner diameter of the through hole 100 and the outer diameter of the cylindrical rod 106 becomes a flow path (hereinafter referred to as an annular orifice 10) that connects the upper air chamber 3 and the lower air chamber 5. By adjusting the outer diameter of the cylindrical rod 106 while keeping the inner diameter of the through hole 100 constant, the cross-sectional area of the annular orifice 10 that sets the flow rate of the fluid flowing out from the fluid outlet 7 to a desired size is set.
Next, the operation of the fluid control valve A according to this embodiment configured as described above will be described.

流体は、空気源(図示せず)のあるP方向から流体入口6を通って、上部空気室3に流入する。ここで、駆動手段105を駆動して(出力状態となり)、ポペット102に向かう力が発生すると、この力は、円筒状のロッド106を介してポペット102に伝わり、上部空気室3内の流体の圧力およびばね103の張力に抗して、ポペット102を弁座101から離間させる。このとき、流体が、上部空気室3から環状オリフィス10を通って、下部空気室5に流入し、流体出口7を通ってX方向(下流側)に流出し、下流側に設けられた流体圧シリンダなど(図示せず)に供給される。   The fluid flows into the upper air chamber 3 through the fluid inlet 6 from the P direction with an air source (not shown). Here, when the driving means 105 is driven (output state) and a force directed to the poppet 102 is generated, this force is transmitted to the poppet 102 via the cylindrical rod 106 and the fluid in the upper air chamber 3 is transferred. The poppet 102 is separated from the valve seat 101 against the pressure and tension of the spring 103. At this time, the fluid flows from the upper air chamber 3 through the annular orifice 10 to the lower air chamber 5, flows out through the fluid outlet 7 in the X direction (downstream side), and the fluid pressure provided on the downstream side. It is supplied to a cylinder or the like (not shown).

一方、駆動手段105からの出力を停止すると、上部空気室3内の流体の圧力およびばね103の張力とによって、再び、ポペット102が弁座101に押圧され、上部空気室3に流入した流体が環状オリフィス10を通って下部空気室5に流入するのを遮断する。
以上のように、本実施形態によれば、流体の吐出、遮断の切り換えを確実に行うことができる。
On the other hand, when the output from the driving means 105 is stopped, the poppet 102 is again pressed against the valve seat 101 by the pressure of the fluid in the upper air chamber 3 and the tension of the spring 103, and the fluid flowing into the upper air chamber 3 is The flow into the lower air chamber 5 through the annular orifice 10 is blocked.
As described above, according to the present embodiment, it is possible to reliably switch between discharging and blocking the fluid.

本実施形態によれば、環状オリフィス10が、貫通孔100の内径と円筒状のロッド106の外径との差によって形成しているので、貫通孔100の内径を一定とし、円筒状のロッド106の外径を調整することによって、流体出口7から流出する流体の流量を所望の大きさとする環状オリフィス10の断面積を設定することができる。すなわち、環状オリフィス10の断面積を高精度に設定する必要があっても、高精度の加工が困難な穴加工は、比較的精度が出せる大きさの内径のもの(例えば、内径φ2以上の穴)までとし、高精度加工がたやすくできるロッドの外径加工によって、必要とする環状オリフィス10の断面積の精度を確保しているので、従来の穴加工によって形成されている環状オリフィスに比し必要とする環状オリフィス10の断面積の精度を確保することができる。勿論、環状オリフィス10の内径と比較して深さがある(例えば、アスペクト比が5を超える)場合でも、同様に必要とする環状オリフィス10の断面積の精度を確保できる。環状オリフィス10の断面積を変更する必要が生じても、円筒状のロッド106を外径の異なるロッドに交換するだけで良い。   According to the present embodiment, since the annular orifice 10 is formed by the difference between the inner diameter of the through hole 100 and the outer diameter of the cylindrical rod 106, the inner diameter of the through hole 100 is constant, and the cylindrical rod 106. By adjusting the outer diameter, the cross-sectional area of the annular orifice 10 that sets the flow rate of the fluid flowing out from the fluid outlet 7 to a desired size can be set. That is, even if it is necessary to set the cross-sectional area of the annular orifice 10 with high accuracy, hole processing that is difficult to perform with high accuracy is performed with an inner diameter that is relatively accurate (for example, a hole with an inner diameter of φ2 or more). The accuracy of the required cross-sectional area of the annular orifice 10 is ensured by the outer diameter machining of the rod, which allows easy high-precision machining, compared to the conventional annular orifice formed by drilling. The required accuracy of the cross-sectional area of the annular orifice 10 can be ensured. Of course, even when the depth is larger than the inner diameter of the annular orifice 10 (for example, the aspect ratio exceeds 5), the required accuracy of the cross-sectional area of the annular orifice 10 can be ensured. Even if it is necessary to change the cross-sectional area of the annular orifice 10, it is only necessary to replace the cylindrical rod 106 with a rod having a different outer diameter.

なお、本実施形態に係る流体制御弁Aは、流体の吐出、遮断の切り換えだけではなく、流体の流量制御にも適用できる。その場合、流体出口7付近に検出手段52を設置し、流出する流体の流量を検知し、その値を、駆動手段105を制御する電子回路などの機構(図示せず)にフィードバックし、制御機構からの指令によってポペット弁機構20を断続的に開閉することで、流体の流量を制御することができる。一方、P方向の流体の圧力変動が激しい場合には、流体入口6付近に検知手段51を設置し、流入する流体の圧力を検知して、その値も駆動手段105を制御する機構(図示せず)にフィードバックすると、より精密な流量制御が可能である。さらに、検出手段52によって、圧力の検知を行い、その値を、駆動手段105を制御する機構にフィードバックし、制御機構からの指令によってポペット弁機構20を断続的に開閉することで、圧力制御も可能となる。
(第二実施形態)
図2は、第一実施形態で説明したポペット弁機構を4つ内蔵したデジタル流量制御(または圧力制御弁)Bを示す(請求項3に対応)。
The fluid control valve A according to the present embodiment can be applied not only to switching between discharging and blocking of fluid but also to controlling the flow rate of fluid. In that case, the detection means 52 is installed in the vicinity of the fluid outlet 7, the flow rate of the fluid flowing out is detected, and the value is fed back to a mechanism (not shown) such as an electronic circuit that controls the drive means 105, and the control mechanism The flow rate of the fluid can be controlled by intermittently opening and closing the poppet valve mechanism 20 in response to a command from. On the other hand, when the pressure fluctuation of the fluid in the P direction is severe, a detection unit 51 is installed in the vicinity of the fluid inlet 6 to detect the pressure of the inflowing fluid, and the value also controls the drive unit 105 (not shown). )), More precise flow rate control is possible. Furthermore, the pressure is detected by the detection means 52, the value is fed back to the mechanism that controls the drive means 105, and the poppet valve mechanism 20 is opened and closed intermittently by a command from the control mechanism, thereby controlling the pressure. It becomes possible.
(Second embodiment)
FIG. 2 shows a digital flow rate control (or pressure control valve) B incorporating four poppet valve mechanisms described in the first embodiment (corresponding to claim 3).

本実施形態に係るデジタル流量制御(または圧力制御弁)Bは、ポペット弁機構を4つ内蔵していることを除けば、第一実施形態と同様の構成である。個々のポペット弁機構についても、第一実施形態のポペット弁機構と同様に貫通孔(100)、弁座(101)、円板状のポペット(102)、ばね(103)、シール材(104)、駆動手段(105)および円筒状のロッド(106)によって構成されている。1つのポペット弁機構を、以下ではポペット弁ユニットという。また、4つのポペット弁ユニットのそれぞれを識別するために、部品番号に添え字(a,b,c,d)を付す。   The digital flow control (or pressure control valve) B according to the present embodiment has the same configuration as that of the first embodiment except that four poppet valve mechanisms are incorporated. As for the individual poppet valve mechanisms, similarly to the poppet valve mechanism of the first embodiment, the through hole (100), the valve seat (101), the disc-shaped poppet (102), the spring (103), and the sealing material (104) The driving means (105) and the cylindrical rod (106) are configured. One poppet valve mechanism is hereinafter referred to as a poppet valve unit. Further, in order to identify each of the four poppet valve units, subscripts (a, b, c, d) are added to the part numbers.

図2では、4つのポペット弁ユニットととも、貫通孔(100a,100b,100c,100d)の内径は同一である。円筒状のロッド(106a,106b,106c,106d)の外径も同一である。従って、環状オリフィス10の断面積も同一である。環状オリフィス10の断面積を変更する場合には、円筒状のロッド(106a,106b,106c,106d)を外径の異なるものに変更するだけで良い。   In FIG. 2, the inner diameters of the through holes (100a, 100b, 100c, 100d) are the same with the four poppet valve units. The outer diameters of the cylindrical rods (106a, 106b, 106c, 106d) are also the same. Therefore, the sectional area of the annular orifice 10 is also the same. When changing the cross-sectional area of the annular orifice 10, it is only necessary to change the cylindrical rods (106a, 106b, 106c, 106d) to those having different outer diameters.

個々のポペット弁ユニットの動作は、第一実施形態と同様であり、添え字aのものを代表として説明する。
上部空気室3には、円板状のポペット102aを、その軸心が貫通穴100aの軸心と略一致するとともに、弁座101aに当接するように配置する。さらに、弁座101aとポペット102aとのシールのため、円板状のポペット102aにおける弁座101aとの接触面にシール材104aを設ける。このシールは、上部空気室3に流入する流体の圧力と、上部カバー1と円板状のポペット102aとの間に設置されたばね103aの張力によって、円板状のポペット102aが弁座101aに押圧されることで確実なものとなり、上部空気室3に流入した流体が貫通孔100aを通って下部空気室5に流入するのを遮断することができる。
The operation of each poppet valve unit is the same as that of the first embodiment, and the one with the subscript a will be described as a representative.
In the upper air chamber 3, a disc-shaped poppet 102 a is arranged so that its axis substantially coincides with the axis of the through hole 100 a and abuts against the valve seat 101 a. Further, in order to seal the valve seat 101a and the poppet 102a, a sealing material 104a is provided on the contact surface of the disc-shaped poppet 102a with the valve seat 101a. This seal is pressed by the disc-shaped poppet 102a against the valve seat 101a by the pressure of the fluid flowing into the upper air chamber 3 and the tension of the spring 103a installed between the upper cover 1 and the disc-shaped poppet 102a. By doing so, it becomes reliable, and the fluid flowing into the upper air chamber 3 can be blocked from flowing into the lower air chamber 5 through the through hole 100a.

下部空気室5には、円板状のポペット102aを駆動するための駆動手段105aを、その軸心が貫通孔100aの軸心と略一致するように設置する。すなわち、駆動手段105aの軸心は、円板状のポペット102aの軸心とも略一致する。円板状のポペット102aと駆動手段105aとの間には、それぞれに当接する円筒状のロッド106aを配置する。駆動手段105aを駆動して(出力状態となり)、円板状のポペット102a向かう力が発生すると、この力は、円筒状のロッド106aを介して円板状のポペット102aに伝わり、上部空気室3内の流体の圧力およびばね103aの張力に抗して、円板状のポペット102aを弁座101aから離間させる。このとき、流体が、上部空気室3から貫通孔101aを通って、下部空気室5に流入する。一方、駆動手段105aの駆動を停止すると、上部空気室3内の流体の圧力およびばね103aの張力とによって、再び、円筒状のポペット102aが弁座101aに押圧され、上部空気室3に流入した流体が貫通孔100aを通って下部空気室5に流入するのを遮断する。   In the lower air chamber 5, driving means 105a for driving the disc-shaped poppet 102a is installed so that its axis is substantially coincident with the axis of the through hole 100a. That is, the axis of the driving means 105a substantially coincides with the axis of the disc-shaped poppet 102a. Between the disc-shaped poppet 102a and the driving means 105a, a cylindrical rod 106a that is in contact with each other is disposed. When the driving means 105a is driven (becomes an output state) and a force directed to the disk-shaped poppet 102a is generated, this force is transmitted to the disk-shaped poppet 102a via the cylindrical rod 106a, and the upper air chamber 3 The disc-shaped poppet 102a is separated from the valve seat 101a against the pressure of the fluid inside and the tension of the spring 103a. At this time, the fluid flows from the upper air chamber 3 into the lower air chamber 5 through the through hole 101a. On the other hand, when the driving of the driving means 105a is stopped, the cylindrical poppet 102a is again pressed against the valve seat 101a by the pressure of the fluid in the upper air chamber 3 and the tension of the spring 103a, and flows into the upper air chamber 3. The fluid is blocked from flowing into the lower air chamber 5 through the through hole 100a.

上記のとおり、添え字b,c,dを付した部品で構成するポペット弁ユニットも、添え字aを付した部品で構成するポペット弁ユニットと同様の機構で動作する。
本実施形態では、4つのポペット弁ユニットの内1つだけを開いた場合、2つ開いた場合、3つ開いた場合、すべて開いた場合を比較すると、環状オリフィス10の断面積の和が順次増加し、それにともない流体の流量も順次増加する。すなわち、ポペット弁機構を開く個数を変化させることによって、4つのポペット弁機構がすべて開いたときを最大値とするステップ動作が可能となる。このステップ動作を加味することによって、第一実施形態の場合と比較して、より精密な流量制御(または圧力制御)が可能となる。
(第三実施形態)
図3は、第二実施形態と同様に4つのポペット弁ユニットを内蔵したデジタル流量制御弁(または圧力制御弁)Cを示す(請求項4に対応)。
As described above, the poppet valve unit composed of the parts with the subscripts b, c, d operates by the same mechanism as the poppet valve unit composed of the parts with the subscript a.
In the present embodiment, when only one of the four poppet valve units is opened, when two are opened, when three are opened, and when all are opened, the sum of the cross-sectional areas of the annular orifice 10 is sequentially increased. As the flow rate increases, the flow rate of the fluid gradually increases. That is, by changing the number of opening the poppet valve mechanism, a step operation with the maximum value when all four poppet valve mechanisms are open is possible. By taking this step operation into consideration, more precise flow rate control (or pressure control) is possible compared to the case of the first embodiment.
(Third embodiment)
FIG. 3 shows a digital flow control valve (or pressure control valve) C having four poppet valve units built therein as in the second embodiment (corresponding to claim 4).

本実施形態に係るデジタル流量制御弁(または圧力制御弁)Cは、ポペット弁ユニットの貫通孔(200a,200b,200c,200d)の内径が、第二実施形態と同様に同一である。しかし、円筒状のロッド(206a,206b,206c,206d)は、それぞれ外径を違えている。すなわち、環状オリフィス10a,10b,10c,10dの断面積が、4つとも異なる(図4)。このような断面積の異なる環状オリフィス10a,10b,10c,10dも、円筒状のロッド(206a,206b,206c,206d)の外径を変えるだけで容易に製作できる。また、環状オリフィス10a,10b,10c,10dの断面積が異なっても、貫通孔(200a,200b,200c,200d)は同一内径であり、それを加工する場合、同一の工具を使える。この点でも製作の上での容易化が図れる。   In the digital flow control valve (or pressure control valve) C according to this embodiment, the inner diameters of the through holes (200a, 200b, 200c, 200d) of the poppet valve unit are the same as in the second embodiment. However, the cylindrical rods (206a, 206b, 206c, 206d) have different outer diameters. That is, the cross-sectional areas of the annular orifices 10a, 10b, 10c, and 10d are different from each other (FIG. 4). Such annular orifices 10a, 10b, 10c, and 10d having different cross-sectional areas can be easily manufactured only by changing the outer diameter of the cylindrical rods (206a, 206b, 206c, and 206d). Moreover, even if the sectional areas of the annular orifices 10a, 10b, 10c, and 10d are different, the through holes (200a, 200b, 200c, and 200d) have the same inner diameter, and the same tool can be used when processing the through holes. This also facilitates the manufacturing process.

本実施形態に係るデジタル流量制御弁(または圧力制御弁)Cの動作は、第二実施形態と同様であり、ステップ動作を行えることも同様である。ただし、開状態にするポペット弁ユニットの個数だけではなく、同一個数を開状態とするにしても、どのポペット弁ユニット同士を組み合わせるかによって、開状態の環状オリフィス10a,10b,10c,10dの断面積の和が異なるため、第二実施形態と比較してステップ数が増やせ、より精密な流量制御(または圧力制御)が可能となる。   The operation of the digital flow control valve (or pressure control valve) C according to this embodiment is the same as that of the second embodiment, and the step operation can be performed in the same manner. However, not only the number of poppet valve units to be opened, but the same number of poppet valve units to be opened, the open orifices 10a, 10b, 10c, and 10d are disconnected depending on which poppet valve units are combined. Since the sum of the areas is different, the number of steps can be increased compared to the second embodiment, and more precise flow control (or pressure control) is possible.

また、P方向の圧力の変動が大きい場合でも、その時々の圧力に適合した断面積となるように、開状態とする環状オリフィス10a,10b,10c,10dまたはその組み合わせをきめ細かく選択できることから、確実に制御できる。
なお、第一実施形態および第二実施形態の説明では、ポペット弁機構またはポペット弁ユニットを構成する円筒状のロッド106が常に円板状のポペット102および駆動手段105に当接する場合について説明したが、ポペット102側または駆動手段105側のいずれか一方と一体化あるいは固定し、他方とはフリー状態としても良い。また、駆動手段105がOFFの場合、フリー状態側のロッド端面が、円筒状のロッド106を固定しなかったポペット102ないしは駆動手段105とは当接している必要もない(ON時は当接を要す)。第三実施形態でも同様である。
In addition, even when the pressure fluctuation in the P direction is large, the annular orifices 10a, 10b, 10c, 10d to be opened or a combination thereof can be selected finely so that the cross-sectional area adapted to the pressure at that time can be obtained. Can be controlled.
In the description of the first embodiment and the second embodiment, the case where the cylindrical rod 106 constituting the poppet valve mechanism or the poppet valve unit is always in contact with the disc-shaped poppet 102 and the driving means 105 has been described. It may be integrated or fixed with either the poppet 102 side or the driving means 105 side, and the other may be in a free state. Further, when the driving means 105 is OFF, the rod end surface on the free state side does not need to be in contact with the poppet 102 or the driving means 105 that does not fix the cylindrical rod 106 (when ON, the contact is not made). I need it). The same applies to the third embodiment.

また、ポペット弁ユニットを構成するシール材104は、材質を選ばない。ゴムなどの弾性体以外に、硬質プラスチックや金属でも良い。
また、第二実施形態および第三実施形態では、複数のポペット弁ユニットを直線上に配置した場合について説明したが、これに替えて、例えば、図5に示すように、円周上に配置しても良いし、図6に示すように、千鳥状に配置しても良い。
Moreover, the material for the sealing material 104 constituting the poppet valve unit is not limited. In addition to elastic bodies such as rubber, hard plastic or metal may be used.
In the second embodiment and the third embodiment, the case where a plurality of poppet valve units are arranged on a straight line has been described. Instead, for example, as shown in FIG. 5, the poppet valve units are arranged on the circumference. Alternatively, as shown in FIG. 6, they may be arranged in a staggered manner.

本発明の第一実施形態に係る流体制御弁を示す断面図である。It is sectional drawing which shows the fluid control valve which concerns on 1st embodiment of this invention. 本発明の第二実施形態に係るデジタル流量制御(または圧力制御弁)を示す断面図である。It is sectional drawing which shows the digital flow control (or pressure control valve) which concerns on 2nd embodiment of this invention. 本発明の第三実施形態に係るデジタル流量制御(または圧力制御弁)を示す断面図である。It is sectional drawing which shows the digital flow control (or pressure control valve) which concerns on 3rd embodiment of this invention. 図3における環状オリフィス部の平面図である。It is a top view of the annular orifice part in FIG. 4つの環状オリフィスを円周上に配列した例を示す平面図である。It is a top view which shows the example which arranged four annular orifices on the circumference. 4つの環状オリフィスを千鳥状に配列した例を示す平面図である。It is a top view which shows the example which arranged four annular orifices in zigzag form.

符号の説明Explanation of symbols

A 流体制御弁
B,C デジタル流量制御弁(または圧力制御弁)
1 上部カバー
2 オリフィスプレート
3 上部空気室
4 下部カバー
5 下部空気室
6 上部カバー1の側面に流体入口
7 流体出口
10,10a,10b,10c,10d 環状オリフィス
20 ポペット弁機構
51 検知手段
52 検出手段
100,100a,100b,100c,100d 貫通孔
101,101a,101b,101c,101d 弁座
102,102a,102b,102c,102d ポペット
103,103a,103b,103c,103d ばね
104,104a,104b,104d,104d シール材
105,105a,105b,105c,105d 駆動手段
106,106a,106b,106c,106d ロッド
200a,200b,200c,200d ポペット弁ユニットの貫通孔
206a,206b,206c,206d ロッド
A Fluid control valve B, C Digital flow control valve (or pressure control valve)
DESCRIPTION OF SYMBOLS 1 Upper cover 2 Orifice plate 3 Upper air chamber 4 Lower cover 5 Lower air chamber 6 Fluid inlet 7 side surface of upper cover 1 Fluid outlet 10, 10a, 10b, 10c, 10d Annular orifice 20 Poppet valve mechanism 51 Detection means 52 Detection means 100, 100a, 100b, 100c, 100d Through-holes 101, 101a, 101b, 101c, 101d Valve seats 102, 102a, 102b, 102c, 102d Poppets 103, 103a, 103b, 103c, 103d Springs 104, 104a, 104b, 104d, 104d Sealing material 105, 105a, 105b, 105c, 105d Driving means 106, 106a, 106b, 106c, 106d Rods 200a, 200b, 200c, 200d Through holes 206a, 206b, 20 of the poppet valve unit 6c, 206d rod

Claims (4)

流体機器の内部流路に形成される環状オリフィスにおいて、
必要とされるオリフィスの断面積よりも大きな断面積を有する貫通孔と、
この貫通孔内に挿入されるとともにその断面積が前記貫通孔の断面積との差が必要とされるオリフィスの断面積となるように調整されているロッドと
で構成されていることを特徴とする環状オリフィス。
In the annular orifice formed in the internal flow path of the fluid device,
A through hole having a cross-sectional area larger than the required cross-sectional area of the orifice;
And a rod that is inserted into the through-hole and adjusted so that the cross-sectional area thereof is the cross-sectional area of the orifice that requires a difference from the cross-sectional area of the through-hole. An annular orifice.
ポペットによって主弁を開閉する流体制御弁において、
請求項1記載の環状オリフィスを採用したポペット弁機構を1以上内蔵した
ことを特徴とする流体制御弁。
In the fluid control valve that opens and closes the main valve with a poppet,
A fluid control valve comprising at least one poppet valve mechanism employing the annular orifice according to claim 1.
ポペットによって主弁を開閉する流体制御弁または圧力制御弁において、
請求項1記載の環状オリフィスを採用したポペット弁機構を2以上内蔵し、
前記環状オリフィスの断面積がいずれも同一である
ことを特徴とする流量制御弁または圧力制御弁。
In a fluid control valve or pressure control valve that opens and closes the main valve with a poppet,
Two or more poppet valve mechanisms employing the annular orifice according to claim 1 are incorporated,
A flow rate control valve or a pressure control valve characterized in that the annular orifices have the same cross-sectional area.
ポペットによって主弁を開閉する流体制御弁または圧力制御弁において、
請求項1記載の環状オリフィスを採用したポペット弁機構を2以上内蔵し、
前記環状オリフィスの一部又は全部の断面積が互いに異なる
ことを特徴とする流量制御弁または圧力制御弁。

In a fluid control valve or pressure control valve that opens and closes the main valve with a poppet,
Two or more poppet valve mechanisms employing the annular orifice according to claim 1 are incorporated,
A flow rate control valve or a pressure control valve characterized in that part or all of the annular orifices have different cross-sectional areas.

JP2003304035A 2003-08-28 2003-08-28 Annular orifice and flow rate control valve or pressure control valve Pending JP2005069456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003304035A JP2005069456A (en) 2003-08-28 2003-08-28 Annular orifice and flow rate control valve or pressure control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003304035A JP2005069456A (en) 2003-08-28 2003-08-28 Annular orifice and flow rate control valve or pressure control valve

Publications (1)

Publication Number Publication Date
JP2005069456A true JP2005069456A (en) 2005-03-17

Family

ID=34407834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003304035A Pending JP2005069456A (en) 2003-08-28 2003-08-28 Annular orifice and flow rate control valve or pressure control valve

Country Status (1)

Country Link
JP (1) JP2005069456A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130014555A (en) * 2010-03-18 2013-02-07 힙텍 게엠베하 Pressure regulators for feeding fuel, and fuel-supplying system comprising a regulating unit that consists of said pressure regulators

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130014555A (en) * 2010-03-18 2013-02-07 힙텍 게엠베하 Pressure regulators for feeding fuel, and fuel-supplying system comprising a regulating unit that consists of said pressure regulators
JP2013522528A (en) * 2010-03-18 2013-06-13 ヒプテック ゲーエムベーハー FUEL SUPPLEMENT SYSTEM HAVING PRESSURE CONTROL UNIT FOR SUPPLYING FUEL AND CONTROL UNIT HAVING THE PRESSURE CONTROL
US9880568B2 (en) 2010-03-18 2018-01-30 Hyptec Gmbh Pressure regulators for feeding fuel, and fuel-supplying system comprising a regulating unit that consists of said pressure regulators
KR101880241B1 (en) * 2010-03-18 2018-08-17 힙텍 게엠베하 Pressure regulators for feeding fuel, and fuel-supplying system comprising a regulating unit that consists of said pressure regulators

Similar Documents

Publication Publication Date Title
US8387659B2 (en) Pilot operated spool valve
JP5580195B2 (en) Three-way high-pressure air operation valve
JPH10153269A (en) Speed controller with pilot check valve
US6382585B1 (en) Valve control system
US6883774B2 (en) Microelectromechanical high pressure gas microvalve
JP2020522654A (en) Control plate for high conductance valves
JP2013537294A5 (en)
US20150008348A1 (en) Bullet valve for controlled fluid flows
US20050173009A1 (en) Valve system
JP2005003190A (en) Flow dividing valve and mixing valve
JP2005069456A (en) Annular orifice and flow rate control valve or pressure control valve
WO2005045257A1 (en) Actuator using fluid cylinder, method of controlling the actuator, and choke valve devices
US6164620A (en) Apparatus for adjusting operating speed of fluid-driven equipment
EP1848893B1 (en) Pneumatic device having a selectively variable orifice
KR102639971B1 (en) Control plates for high conductance valves
JPH11311349A (en) Hydraulic relief valve
US9435441B2 (en) Anti-cavitation throttle valve and method of operating the same
JP7352947B2 (en) Valve devices and diversion systems
WO2023281871A1 (en) Fluid control system and valve module
WO2023176142A1 (en) Valve device
JPH11248018A (en) Mixing valve device
JP2018194067A (en) Positioner
JP4376582B2 (en) Positioner
JP2003240138A (en) Flow rate controller
JP2001282362A (en) Throttle valve and switching valve using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060802

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061206

RD02 Notification of acceptance of power of attorney

Effective date: 20061207

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090618

A131 Notification of reasons for refusal

Effective date: 20090623

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A02 Decision of refusal

Effective date: 20100202

Free format text: JAPANESE INTERMEDIATE CODE: A02