JP2005069275A - Cage rotating speed measuring method for roller bearing, mounting structure of displacement sensor, and operating method of mechanical equipment using cage of roller bearing - Google Patents

Cage rotating speed measuring method for roller bearing, mounting structure of displacement sensor, and operating method of mechanical equipment using cage of roller bearing Download PDF

Info

Publication number
JP2005069275A
JP2005069275A JP2003209317A JP2003209317A JP2005069275A JP 2005069275 A JP2005069275 A JP 2005069275A JP 2003209317 A JP2003209317 A JP 2003209317A JP 2003209317 A JP2003209317 A JP 2003209317A JP 2005069275 A JP2005069275 A JP 2005069275A
Authority
JP
Japan
Prior art keywords
cage
displacement sensor
roller bearing
side plate
rotational speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003209317A
Other languages
Japanese (ja)
Inventor
Yoshihiko Shirosaki
喜彦 城崎
Yukio Sato
幸夫 佐藤
Masaji Shibata
正司 柴田
Satoshi Oshima
智 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Nippon Steel Corp
Original Assignee
NSK Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd, Nippon Steel Corp filed Critical NSK Ltd
Priority to JP2003209317A priority Critical patent/JP2005069275A/en
Publication of JP2005069275A publication Critical patent/JP2005069275A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/52Cages for rollers or needles with no part entering between, or touching, the bearing surfaces of the rollers
    • F16C33/523Cages for rollers or needles with no part entering between, or touching, the bearing surfaces of the rollers with pins extending into holes or bores on the axis of the rollers
    • F16C33/526Cages for rollers or needles with no part entering between, or touching, the bearing surfaces of the rollers with pins extending into holes or bores on the axis of the rollers extending through the rollers and joining two lateral cage parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • F16C19/383Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • F16C19/385Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings
    • F16C19/386Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily measure a cage rotating speed for a roller bearing with the large pin-type cage, with high accuracy at low cost without performing any processing on the cage. <P>SOLUTION: In this method of measuring the cage rotating speed of the roller bearing with the pin-type cage, a gap between a flat part 18a of a cage side plate 18 and a welding projecting part 20 is detected by a displacement sensor 30 having a measurement range of 8 mm or more, its detection signal is converted into the cage rotating speed, and the axial movement of the cage movable in the direction separating from the sensor 30 within the measurement range, and the axial movement of the cage movable in the direction close to the sensor 30 within a range not bringing the cage 17 into contact with the sensor 30 from a standard gap position S are respectively determined to be 2.5-3 mm. An operating speed of the mechanical equipment is decelerated or the mechanical equipment is stopped on the basis of the determined measured value. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ころ軸受の保持器、特にピン形保持器の回転速度を測定する方法及び該方法に用いる変位センサの取付構造に関し、また、このようにして求められる測定値を用いて、機械設備の運転速度を減速あるいは停止させる、ころ軸受用保持器を用いた機械設備の運転方法に関する。
【0002】
【従来の技術】
ピン形保持器が組み込まれるころ軸受は、一般に40mm以上の径のころが用いられるが、このような大型のころ軸受を回転支持部に用いる機械設備では、軸受の交換が非常に面倒なことから、軸受損傷を回避するため、運転中に機械設備のころ軸受の保持器回転速度を計測する必要がある。このような軸受損傷の例としては、ころに公転滑りが生じて軸受損傷を引き起こす場合や、或いは急加減速の頻度が多いサイジングプレス等の場合に、保持器回転速度が大きく変化してころと保持器が大きな力で頻繁に衝突して保持器破損を引き起こす場合などがある。
【0003】
従来、ころ軸受の保持器回転速度を測定する方法としては、例えば図3及び図4に示すように、内輪1と外輪2との間に配設された複数のころ3を周方向に転動可能に保持する保持器4の側板5の平面部5aに深さ1〜2mmの凹部6を周方向に等間隔で複数箇所設けてその対向面に取り付けた変位センサ8によってセンサ先端からの保持器側板5の平面部5aと凹部6とのギャップを回転パルス信号として検出して該回転パルス信号を保持器回転速度に変換したり、或いは図5及び図6に示すように、前記保持器4の側板5の平面部5aに厚さ1〜2mmの金属板7を周方向に等間隔で複数箇所設けてその対向面に取り付けた変位センサ8によってセンサ先端からの保持器側板5の平面部5aと金属板7とのギャップを回転パルス信号として検出して該回転パルス信号を保持器回転速度に変換するようにしたものがある(例えば、特許文献1参照。)。
【0004】
これらの測定方法は比較的小型のころ軸受に適用しており、保持器側板5の平面部5aの変位センサ8に対する基準ギャップ位置S(図7参照)からの保持器4の軸方向動き量が1mm以下と小さいことや、測定レンジが大きいとセンサ径も大きくなって内輪1と外輪2との間に変位センサ8を取り付けられなくなること等から、変位センサ8の測定レンジは5mm程度としている。
【0005】
保持器4の軸方向動き量が1mm以下であれば、保持器側板5の平面部5aに厚さ2mmの金属片7を設けた場合でも、図7に示すように、変位センサ8を保持器側板5の平面部5aから3.5mm(基準ギャップ)離してセットすれば、変位センサ8の測定レンジから外れることなく、しかも変位センサ8が金属片7に接触することなく測定が可能である。
【0006】
即ち、保持器4が変位センサ8に対して基準ギャップ位置Sから離れる方向に1mm移動した場合、保持器側板5の平面部5aと変位センサ8とのギャップは4.5mmで測定レンジの5mm以内を確保することができ、一方、保持器4が基準ギャップ位置Sから変位センサ8に近づく方向に1mm移動した場合、変位センサ8と保持器側板5の平面部5aに取り付けた金属片7とのギャップは0.5mmであり、変位センサ8が金属片7に接触することはない。
【0007】
なお、保持器側板5の平面部5aに深さ2mmの凹部6を設けた場合は、変位センサ8を該平面部5aから1.5mm(基準ギャップ)離してセットすれば、保持器8の軸方向動き量が1mm以下であれば、上記同様に、変位センサ8の測定レンジから外れることなく、しかも変位センサ8が保持器側板5の平面部5aに接触することなく測定が可能である。
【0008】
【特許文献1】
特開平10−239186号公報
【0009】
【発明が解決しようとする課題】
しかしながら、従来のころ軸受用保持器の回転速度測定方法においては、保持器4の軸方向動き量が1mm以下の比較的小型のころ軸受には適用できるが、保持器軸方向動き量が2mm以上の大型のピン型保持器付ころ軸受では、保持器4が軸方向に動くことで、変位センサ8が保持器側板5の平面部5aに設けた金属板7に接触したり、保持器4が変位センサ8から離れすぎて測定レンジを越えてしまい、測定不能になるという不都合がある。
【0010】
また、保持器側板5の平面部5aに回転パルス信号を検出するための金属片7を取り付けたり、凹部6を加工する必要があるため、その分コストがかかるという不都合がある。
本発明はこのような不都合を解消するためになされたものであり、大型のピン型保持器付ころ軸受の保持器回転速度を保持器に何等加工せずに低コストで精度良く簡単に測定することができる、ころ軸受用保持器の回転速度測定方法及び変位センサの取付構造並びにそのころ軸受用保持器を用いた機械設備の運転方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するために、請求項1に係る発明は、転動体としてのころの両端面に対向して一対の円環状の保持器側板を配設し、前記ころの中心軸線に沿って形成されたピン穴にピンを挿入して該ピンの少なくとも一方の端部を前記保持器側板に溶接接合して該保持器側板の前記ころと離間する側の面に溶接凸部を形成した保持器を組み込んだころ軸受の前記保持器の回転速度を測定する方法において、
前記保持器側板の平面部と前記溶接凸部とのギャップを測定レンジが8mm以上の変位センサで検出して該検出信号を前記保持器の回転速度に変換し、且つ前記保持器側板の平面部の前記変位センサに対する基準ギャップ位置から前記保持器が前記測定レンジ内で該変位センサから離れる方向に移動可能な保持器軸方向動き量及び前記基準ギャップ位置から前記保持器が前記変位センサに接触しない範囲で該変位センサに近づく方向に移動可能な保持器軸方向動き量をそれぞれ2.5〜3mmとしたことを特徴とする。
【0012】
請求項2に係る発明は、請求項1記載のころ軸受用保持器の回転速度測定方法に用いる変位センサの取付構造であって、
軸受箱の軸線に直交する加工面を有する端部平面又は段部平面に前記変位センサを装着したセンサホルダを取り付けて該変位センサと前記保持器側板の平面部との間の基準ギャップを設定し、且つ前記センサホルダを前記軸受箱の内径面に沿って軸方向に移動可能に配置したことを特徴とする。
【0013】
請求項3に係る発明は、ころ軸受用保持器を用いた機械設備の運転方法において、請求項1に記載のころ軸受用保持器の回転速度測定方法を用いて測定した測定値と、予め設定された機械設備の回転速度パターンとを比較して、これらの間の偏差が設定された閾値を越えた時点で、機械設備の運転速度を減速あるいは停止させることを特徴とする、ころ軸受用保持器を用いた機械設備の運転方法である。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態の一例を図を参照して説明する。図1は本発明の実施の形態の一例である円錐ころ軸受用のピン型保持器の回転速度測定方法を実施するための設備例を示す要部断面図、図2は保持器と変位センサとの位置関係を説明するための説明図である。
図1において符号10は減速機の歯車軸11を回転可能に支持する複列の円錐ころ軸受であり、この円錐ころ軸受10は、歯車軸11に外嵌された内輪12と軸受箱13に外筒14を介して内嵌された外輪15との間に二列のころ16がそれぞれピン型保持器17を介して周方向に転動可能に複数配設されている。
【0015】
ピン型保持器17は、図1及び図2を参照して、ころ16の両端面に対向して一対の円環状の保持器側板18を配設し、ころ16の中心軸線に沿って形成されたピン穴16aにピン19を挿入して該ピン19の少なくとも一方の端部(この実施の形態では、外端部)を保持器側板18に溶接接合して該保持器側板18のころ16と離間する側の面に溶接凸部20を形成したものである。この溶接凸部20は保持器側板18の平面部18aからの最大出っ張り量が2mmとされている。なお、図1において、符号21、22はそれぞれ内輪間座、23は外輪15の左側の端面を軸方向に押える外輪押えである。
【0016】
ここで、この実施の形態では.保持器側板18の平面部18aと溶接凸部20とのギャップを測定レンジが8mm以上の変位センサ30で検出して該検出信号を保持器17の回転速度に変換し、且つ保持器側板18の平面部18aの変位センサ30に対する基準ギャップ位置S(図2参照)から保持器17が前記測定レンジ内で該変位センサ30から離れる方向に移動可能な保持器軸方向動き量及び前記基準ギャップ位置Sから保持器17が変位センサ30に接触しない範囲で該変位センサ30に近づく方向に移動可能な保持器軸方向動き量をそれぞれ2.5〜3mmとしている。
【0017】
図2を参照して、変位センサ30の測定レンジを8mm、溶接凸部20の保持器側板18の平面部18aからの出っ張り量を2mm、保持器側板18の平面部18aと変位センサ30との間の基準ギャップを5mm、保持器軸方向動き量を2.5mmとした場合の保持器17の挙動を説明する。
図2から、保持器17が基準ギャップ位置Sから変位センサ30に対して離れる方向に2.5mm移動した場合、保持器側板18の平面部18aと変位センサ30とのギャップは7.5mmとなり、測定レンジの8mm以内を維持でき、一方、保持器17が基準ギャップ位置Sから変位センサ30に近づく方向に2.5mm移動した場合、溶接凸部20と変位センサ30とのギャップは0.5mmとなり、変位センサ30が保持器側板18の溶接凸部20に接触することはなく測定が可能となる。
【0018】
また、図1の右側の変位センサ30を装着したセンサホルダ40a及び左側の変位センサ30を装着したセンサホルダ40bは、それぞれ必ず機械加工が施される軸受箱の端部平面41及び外輪押え23の段部平面42を基準にボルト等を介して取り付けられており、かかる取付状態において、変位センサ30と保持器側板18の平面部18aとの基準ギャップが設定されるようになっている。
【0019】
また、センサホルダ40a及び40bはそれぞれ軸受外径面が嵌合される内径面と同心で加工された軸受箱フランジ内径面51及び外輪押え23の内径面52に合わせた曲率の取付面を有しており、センサホルダ40a及び40bをそれぞれ内径面51及び52に沿ってスライドさせることにより、変位センサ30と保持器側板18の平面部18aとのギャップを確認できるようになっている。
【0020】
上記の説明から明らかなように、この実施の形態では、ピン型保持器17の溶接凸部20を回転パルス信号の検出に用いているので、保持器側板18の平面部18aに金属片を取り付けたり、凹部を加工する必要がなく、低コストで簡単に保持器回転速度を測定することができる。
また、保持器17の軸方向動き量が2.5mm以上であっても、変位センサ30の測定レンジから外れることなく、しかも変位センサ30が保持器側板18の溶接凸部20に接触することなく測定できるので、確実に回転パルスを検出することができる。
【0021】
更に、変位センサ30を装着したセンサホルダ40a及び40bを、それぞれ軸受箱の端部平面41及び外輪押え23の段部平面42を基準にボルト等を介して取り付けることで、変位センサ30と保持器側板18の平面部18aとの基準ギャップが設定できるので、該基準ギャップの設定を簡単に行うことができると共に、センサホルダ40a及び40bの取り付けも簡単に行うことができる。
【0022】
更に、センサホルダ40a及び40bをそれぞれ内径面51及び52に沿ってスライドさせることにより、変位センサ30と保持器側板18の平面部18aとのギャップを確認できるので、該ギャップの確認を簡単に行うことができる。
なお、本発明は上記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。
例えば、上記実施の形態では、複列の円錐ころ軸受に組み込まれるピン型保持器の回転速度を測定する場合を例に採ったが、これ限定されず、円筒ころ軸受やその他のころ軸受に組み込まれるピン型保持器の回転速度の測定に本発明を適用してもよいのは勿論である。
【0023】
さらに、この変位センサを監視し測定したパルス信号から前記保持器の回転速度を求めるための演算装置50に接続するとともに、事前に求めておいた各運転パターン別の前記保持器回転速度をメモリー51から導出し、これらの値を比較することで機械装置の設備監視が可能となる。具体的にはこの測定値から算出された前記保持器の回転速度が設定された閾値、たとえば安全率αと補正係数kを基準として許容強度に1/α×kを乗じるなどした値以上に成った場合には保持器に重大な損傷が発生している恐れがあるため、運転速度指令を減少させて設備監視のための警報装置52からアラームを報じるなどの処置が必要である。また、kの値を数種類設定することで、さらに深刻な設備破損が予測される場合には機械装置を緊急停止させることで未然に機械装置の破損を防止することができる。
【0024】
【発明の効果】
上記の説明から明らかなように、請求項1の発明によれば、大型のピン型保持器付ころ軸受の保持器回転速度を保持器に何等加工せずに低コストで精度良く簡単に測定することができるという効果が得られる。
請求項2の発明では、変位センサと保持器側板の平面部との基準ギャップの設定を簡単に行うことができると共に、該ギャップの確認を簡単に行うことができるという効果が得られる。
請求項3の発明では、請求項1および2の発明に加えて、有効に設備監視を行うことができ、設備破損を未然に防止してトラブルを回避させて多大なコストを発生させることなく安定的に設備稼働を維持監視できる効果がある。
【図面の簡単な説明】
【図1】本発明の実施の形態の一例である複列円錐ころ軸受用のピン型保持器の回転速度測定方法を実施するための設備例を示す要部断面図である。
【図2】保持器と変位センサとの位置関係を説明するための説明図である。
【図3】従来のころ軸受用保持器の回転速度測定方法を説明するための説明図である。
【図4】保持器の縦断面図である。
【図5】従来のころ軸受用保持器の回転速度測定方法を説明するための説明図である。
【図6】保持器の断面図である。
【図7】保持器と変位センサとの位置関係を説明するための説明図である。
【図8】設備監視を行うための演算装置と設備機器との関連を示した図である。
【符号の説明】
10…複列円錐ころ軸受
16…ころ
16a…ピン穴
17…保持器
18…保持器側板
18a…平面部
19…ピン
20…溶接凸部
30…変位センサ
40a,40b…センサホルダ
41…軸受箱の端部平面
42…軸受箱の段部平面
50…演算装置
51…メモリ装置
52…警報装置
S…基準ギャップ位置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for measuring the rotational speed of a roller bearing cage, in particular, a pin-type cage, and a displacement sensor mounting structure used in the method. The present invention relates to a method for operating machine equipment using a roller bearing retainer that reduces or stops the operation speed of the roller bearing.
[0002]
[Prior art]
In general, roller bearings with a diameter of 40 mm or more are used as roller bearings in which pin type cages are incorporated. However, in machinery and equipment using such large roller bearings as rotation support parts, it is very troublesome to replace the bearings. In order to avoid bearing damage, it is necessary to measure the cage rotation speed of the roller bearing of the mechanical equipment during operation. As an example of such bearing damage, in the case of revolving slip on the roller and causing bearing damage, or in the case of a sizing press or the like where the frequency of sudden acceleration / deceleration is high, the rotational speed of the cage changes greatly. There are cases where the cage frequently collides with a large force and causes the cage to break.
[0003]
Conventionally, as a method for measuring the cage rotational speed of a roller bearing, for example, as shown in FIGS. 3 and 4, a plurality of rollers 3 disposed between an inner ring 1 and an outer ring 2 are rolled in the circumferential direction. A retainer from the front end of the sensor is provided by a displacement sensor 8 having a plurality of recesses 6 having a depth of 1 to 2 mm provided at equal intervals in the circumferential direction on the flat portion 5a of the side plate 5 of the retainer 4 that can be held and attached to the opposing surface. The gap between the flat portion 5a of the side plate 5 and the recess 6 is detected as a rotation pulse signal, and the rotation pulse signal is converted into a rotation speed of the cage, or as shown in FIGS. The flat plate portion 5a of the side plate 5 is provided with a plurality of metal plates 7 having a thickness of 1 to 2 mm at equal intervals in the circumferential direction, and the displacement sensor 8 is attached to the opposite surface of the flat plate portion 5a of the cage side plate 5 from the sensor tip. The gap with the metal plate 7 is the rotation pulse signal It detected and there is that so as to convert the cage speed the rotation pulse signal (for example, see Patent Document 1.).
[0004]
These measuring methods are applied to relatively small roller bearings, and the amount of axial movement of the cage 4 from the reference gap position S (see FIG. 7) with respect to the displacement sensor 8 of the flat portion 5a of the cage side plate 5 is determined. The measurement range of the displacement sensor 8 is set to about 5 mm because it is as small as 1 mm or less, and when the measurement range is large, the sensor diameter becomes large and the displacement sensor 8 cannot be attached between the inner ring 1 and the outer ring 2.
[0005]
If the amount of movement of the cage 4 in the axial direction is 1 mm or less, even when the metal piece 7 having a thickness of 2 mm is provided on the flat portion 5a of the cage side plate 5, the displacement sensor 8 is placed in the cage as shown in FIG. If it is set at a distance of 3.5 mm (reference gap) from the flat surface portion 5 a of the side plate 5, measurement can be performed without deviating from the measurement range of the displacement sensor 8 and without the displacement sensor 8 coming into contact with the metal piece 7.
[0006]
That is, when the cage 4 moves 1 mm away from the reference gap position S with respect to the displacement sensor 8, the gap between the flat portion 5 a of the cage side plate 5 and the displacement sensor 8 is 4.5 mm and within 5 mm of the measurement range. On the other hand, when the cage 4 moves 1 mm in the direction approaching the displacement sensor 8 from the reference gap position S, the displacement sensor 8 and the metal piece 7 attached to the flat portion 5a of the cage side plate 5 The gap is 0.5 mm, and the displacement sensor 8 does not contact the metal piece 7.
[0007]
When the concave portion 6 having a depth of 2 mm is provided in the flat portion 5a of the cage side plate 5, if the displacement sensor 8 is set 1.5 mm (reference gap) away from the flat portion 5a, the axis of the cage 8 is set. If the amount of directional motion is 1 mm or less, as described above, measurement can be performed without deviating from the measurement range of the displacement sensor 8 and without the displacement sensor 8 coming into contact with the flat portion 5 a of the cage side plate 5.
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-239186
[Problems to be solved by the invention]
However, the conventional method for measuring the rotational speed of a cage for roller bearings can be applied to a relatively small roller bearing in which the amount of axial movement of the cage 4 is 1 mm or less, but the amount of axial movement of the cage is 2 mm or more. In the large roller bearing with pin type cage, the displacement sensor 8 comes into contact with the metal plate 7 provided on the flat portion 5a of the cage side plate 5 or the cage 4 is moved by moving the cage 4 in the axial direction. There is an inconvenience that the measurement becomes impossible because it is too far from the displacement sensor 8 and exceeds the measurement range.
[0010]
Moreover, since it is necessary to attach the metal piece 7 for detecting a rotation pulse signal to the plane part 5a of the cage side plate 5 or to process the concave part 6, there is a disadvantage that the cost increases accordingly.
The present invention has been made to eliminate such inconveniences, and easily measures the rotational speed of a large roller bearing with a pin-type cage at a low cost without any processing on the cage. An object of the present invention is to provide a method for measuring the rotational speed of a cage for roller bearings, a mounting structure for a displacement sensor, and a method for operating mechanical equipment using the roller bearing cage.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 is formed along a central axis of the roller by disposing a pair of annular retainer side plates facing both end faces of the roller as a rolling element. A cage in which a pin is inserted into the formed pin hole, and at least one end of the pin is welded and joined to the cage side plate, and a weld convex portion is formed on the surface of the cage side plate that is separated from the roller. In the method for measuring the rotational speed of the cage of the roller bearing incorporating
A gap between the flat portion of the cage side plate and the welding convex portion is detected by a displacement sensor having a measurement range of 8 mm or more, and the detection signal is converted into a rotation speed of the cage, and the plane portion of the cage side plate The cage is movable in the direction away from the displacement sensor within the measurement range from the reference gap position with respect to the displacement sensor, and the cage does not contact the displacement sensor from the reference gap position. The amount of movement in the axial direction of the cage that is movable in the direction approaching the displacement sensor in the range is set to 2.5 to 3 mm, respectively.
[0012]
The invention according to claim 2 is a displacement sensor mounting structure used in the method for measuring the rotational speed of the roller bearing retainer according to claim 1,
A sensor holder equipped with the displacement sensor is attached to an end plane or a step plane having a machining surface perpendicular to the axis of the bearing box, and a reference gap is set between the displacement sensor and the plane portion of the cage side plate. The sensor holder is arranged so as to be movable in the axial direction along the inner diameter surface of the bearing housing.
[0013]
According to a third aspect of the present invention, in a method for operating mechanical equipment using a roller bearing retainer, a measurement value measured using the rotational speed measuring method of the roller bearing retainer according to claim 1 and a preset value are set. Roller bearing retainer, characterized in that the operation speed of the mechanical equipment is decelerated or stopped when the deviation between them exceeds the set threshold value by comparing with the rotational speed pattern of the machine equipment This is a method of operating a mechanical facility using a vessel.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view of an essential part showing an example of equipment for carrying out a method for measuring the rotational speed of a pin type cage for a tapered roller bearing, which is an example of an embodiment of the present invention. FIG. It is explanatory drawing for demonstrating these positional relationships.
In FIG. 1, reference numeral 10 denotes a double-row tapered roller bearing that rotatably supports a gear shaft 11 of a reduction gear. The tapered roller bearing 10 is attached to an inner ring 12 and a bearing box 13 that are externally fitted to the gear shaft 11. A plurality of two rows of rollers 16 are arranged between the outer ring 15 fitted through the cylinder 14 so as to be able to roll in the circumferential direction via the pin type cage 17.
[0015]
The pin type cage 17 is formed along the central axis of the roller 16 with a pair of annular cage side plates 18 disposed opposite to both end surfaces of the roller 16 with reference to FIGS. 1 and 2. The pin 19 is inserted into the pin hole 16a, and at least one end portion (in this embodiment, the outer end portion) of the pin 19 is welded to the cage side plate 18 to be joined to the roller 16 of the cage side plate 18. The welding convex part 20 is formed in the surface on the side to separate. The welding protrusion 20 has a maximum protruding amount of 2 mm from the flat portion 18a of the cage side plate 18. In FIG. 1, reference numerals 21 and 22 denote inner ring spacers, and 23 denotes an outer ring presser that presses the left end face of the outer ring 15 in the axial direction.
[0016]
Here, in this embodiment. The gap between the flat surface portion 18a of the cage side plate 18 and the welding convex portion 20 is detected by a displacement sensor 30 having a measurement range of 8 mm or more, and the detection signal is converted into the rotational speed of the cage 17, and the cage side plate 18 The amount of axial movement of the cage and the reference gap position S in which the cage 17 can move in the direction away from the displacement sensor 30 within the measurement range from the reference gap position S (see FIG. 2) with respect to the displacement sensor 30 of the flat surface 18a. In the range where the cage 17 does not come into contact with the displacement sensor 30, the axial movement amount of the cage that can move in the direction approaching the displacement sensor 30 is set to 2.5 to 3 mm.
[0017]
Referring to FIG. 2, the measurement range of the displacement sensor 30 is 8 mm, the amount of protrusion of the welding convex portion 20 from the flat portion 18 a of the cage side plate 18 is 2 mm, and the flat portion 18 a of the cage side plate 18 and the displacement sensor 30 The behavior of the cage 17 when the reference gap between them is 5 mm and the amount of movement in the cage axial direction is 2.5 mm will be described.
From FIG. 2, when the cage 17 moves 2.5 mm away from the reference gap position S with respect to the displacement sensor 30, the gap between the flat portion 18a of the cage side plate 18 and the displacement sensor 30 is 7.5 mm. While the measurement range can be maintained within 8 mm, on the other hand, when the cage 17 moves 2.5 mm in the direction approaching the displacement sensor 30 from the reference gap position S, the gap between the welding convex portion 20 and the displacement sensor 30 becomes 0.5 mm. The displacement sensor 30 does not come into contact with the welding convex portion 20 of the cage side plate 18 and measurement is possible.
[0018]
Further, the sensor holder 40a fitted with the right displacement sensor 30 and the sensor holder 40b fitted with the left displacement sensor 30 in FIG. It is attached via a bolt or the like with the stepped portion plane 42 as a reference, and in this attached state, a reference gap between the displacement sensor 30 and the flat portion 18a of the cage side plate 18 is set.
[0019]
Each of the sensor holders 40a and 40b has a mounting surface with a curvature matching the inner diameter surface 51 of the bearing housing flange and the inner diameter surface 52 of the outer ring retainer 23 which are processed concentrically with the inner diameter surface to which the outer diameter surface of the bearing is fitted. The gap between the displacement sensor 30 and the flat portion 18a of the cage side plate 18 can be confirmed by sliding the sensor holders 40a and 40b along the inner diameter surfaces 51 and 52, respectively.
[0020]
As is apparent from the above description, in this embodiment, the welding convex portion 20 of the pin type cage 17 is used for detecting the rotation pulse signal, so that a metal piece is attached to the flat portion 18a of the cage side plate 18. There is no need to process the recess, and the cage rotation speed can be easily measured at low cost.
Further, even when the axial movement amount of the cage 17 is 2.5 mm or more, the displacement sensor 30 does not deviate from the measurement range of the displacement sensor 30, and the displacement sensor 30 does not contact the welding convex portion 20 of the cage side plate 18. Since it can measure, a rotation pulse can be detected reliably.
[0021]
Further, the sensor holders 40a and 40b equipped with the displacement sensor 30 are attached via bolts or the like with reference to the end plane 41 of the bearing box and the stepped plane 42 of the outer ring retainer 23, respectively. Since the reference gap with the flat portion 18a of the side plate 18 can be set, the reference gap can be easily set and the sensor holders 40a and 40b can be easily attached.
[0022]
Further, by sliding the sensor holders 40a and 40b along the inner diameter surfaces 51 and 52, respectively, the gap between the displacement sensor 30 and the flat portion 18a of the cage side plate 18 can be confirmed, so that the gap is easily confirmed. be able to.
In addition, this invention is not limited to the said embodiment, In the range which does not deviate from the summary of this invention, it can change suitably.
For example, in the above embodiment, the case where the rotational speed of the pin type cage incorporated in the double row tapered roller bearing is measured is taken as an example. However, the present invention is not limited to this, and incorporated in the cylindrical roller bearing or other roller bearings. Of course, the present invention may be applied to the measurement of the rotational speed of the pin-type cage.
[0023]
Further, the displacement sensor is connected to a calculation device 50 for obtaining the rotational speed of the cage from the pulse signal measured and measured, and the cage rotational speed for each operation pattern obtained in advance is stored in the memory 51. It is possible to monitor the equipment of the machine by deriving from the above and comparing these values. Specifically, the rotational speed of the cage calculated from the measured value is equal to or greater than a set threshold, for example, a value obtained by multiplying the permissible strength by 1 / α × k with reference to the safety factor α and the correction coefficient k. In such a case, since the cage may be seriously damaged, it is necessary to take measures such as reducing the operation speed command and reporting an alarm from the alarm device 52 for equipment monitoring. In addition, by setting several values of k, if a more serious equipment damage is predicted, the machine apparatus can be prevented from being damaged by emergency stop.
[0024]
【The invention's effect】
As apparent from the above description, according to the invention of claim 1, the cage rotation speed of the large roller bearing with a pin type cage can be easily and accurately measured at low cost without any processing on the cage. The effect that it can be obtained.
According to the second aspect of the invention, it is possible to easily set the reference gap between the displacement sensor and the flat portion of the cage side plate, and to obtain an effect that the gap can be easily confirmed.
According to the invention of claim 3, in addition to the inventions of claims 1 and 2, the equipment can be monitored effectively, and the equipment can be prevented from being damaged in advance and trouble can be avoided, so that it is stable without generating a great cost. It is effective to maintain and monitor equipment operation.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an essential part showing an example of equipment for carrying out a rotational speed measuring method of a pin type cage for a double row tapered roller bearing which is an example of an embodiment of the present invention.
FIG. 2 is an explanatory diagram for explaining a positional relationship between a cage and a displacement sensor.
FIG. 3 is an explanatory diagram for explaining a method for measuring the rotational speed of a conventional roller bearing retainer.
FIG. 4 is a longitudinal sectional view of a cage.
FIG. 5 is an explanatory diagram for explaining a conventional method for measuring the rotational speed of a roller bearing retainer.
FIG. 6 is a cross-sectional view of a cage.
FIG. 7 is an explanatory diagram for explaining a positional relationship between a cage and a displacement sensor.
FIG. 8 is a diagram showing a relationship between an arithmetic unit for equipment monitoring and equipment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Double row tapered roller bearing 16 ... Roller 16a ... Pin hole 17 ... Cage 18 ... Cage side plate 18a ... Planar part 19 ... Pin 20 ... Welding convex part 30 ... Displacement sensor 40a, 40b ... Sensor holder 41 ... End plane 42 ... Bearing box step plane 50 ... Arithmetic device 51 ... Memory device 52 ... Alarm device S ... Reference gap position

Claims (3)

転動体としてのころの両端面に対向して一対の円環状の保持器側板を配設し、前記ころの中心軸線に沿って形成されたピン穴にピンを挿入して該ピンの少なくとも一方の端部を前記保持器側板に溶接接合して該保持器側板の前記ころと離間する側の面に溶接凸部を形成した保持器を組み込んだころ軸受の前記保持器の回転速度を測定する方法において、
前記保持器側板の平面部と前記溶接凸部とのギャップを測定レンジが8mm以上の変位センサで検出して該検出信号を前記保持器の回転速度に変換し、且つ前記保持器側板の平面部の前記変位センサに対する基準ギャップ位置から前記保持器が前記測定レンジ内で該変位センサから離れる方向に移動可能な保持器軸方向動き量及び前記基準ギャップ位置から前記保持器が前記変位センサに接触しない範囲で該変位センサに近づく方向に移動可能な保持器軸方向動き量をそれぞれ2.5〜3mmとしたことを特徴とする、ころ軸受用保持器の回転速度測定方法。
A pair of annular retainer side plates are arranged opposite to both end faces of the roller as a rolling element, and a pin is inserted into a pin hole formed along the central axis of the roller, so that at least one of the pins A method of measuring the rotational speed of the cage of a roller bearing incorporating a cage in which an end portion is welded to the cage side plate and a weld convex portion is formed on a surface of the cage side plate that is separated from the roller. In
A gap between the flat portion of the cage side plate and the welding convex portion is detected by a displacement sensor having a measurement range of 8 mm or more, and the detection signal is converted into a rotation speed of the cage, and the plane portion of the cage side plate The cage is movable in the direction away from the displacement sensor within the measurement range from the reference gap position with respect to the displacement sensor, and the cage does not contact the displacement sensor from the reference gap position. A method for measuring the rotational speed of a roller bearing retainer, wherein the axial movement amount of the retainer that is movable in a direction approaching the displacement sensor is 2.5 to 3 mm.
請求項1記載のころ軸受用保持器の回転速度測定方法に用いる変位センサの取付構造であって、
軸受箱の軸線に直交する加工面を有する端部平面又は段部平面に前記変位センサを装着したセンサホルダを取り付けて該変位センサと前記保持器側板の平面部との間の基準ギャップを設定し、且つ前記センサホルダを前記軸受箱の内径面に沿って軸方向に移動可能に配置したことを特徴とする変位センサの取付構造。
A displacement sensor mounting structure for use in the rotational speed measuring method of the roller bearing cage according to claim 1,
A sensor holder equipped with the displacement sensor is attached to an end plane or a step plane having a machining surface perpendicular to the axis of the bearing box, and a reference gap is set between the displacement sensor and the plane portion of the cage side plate. And the mounting structure of the displacement sensor characterized by arrange | positioning the said sensor holder so that it can move to an axial direction along the internal-diameter surface of the said bearing housing.
ころ軸受用保持器を用いた機械設備の運転方法において、請求項1に記載のころ軸受用保持器の回転速度測定方法を用いて測定した測定値と、予め設定された機械設備の回転速度パターンとを比較して、これらの間の偏差が設定された閾値を越えた時点で、機械設備の運転速度を減速あるいは停止させることを特徴とする、ころ軸受用保持器を用いた機械設備の運転方法。In the operation method of the mechanical equipment using the roller bearing cage, the measured value measured by using the rotational speed measuring method of the roller bearing cage according to claim 1, and a preset rotational speed pattern of the mechanical equipment. When the deviation between them exceeds a set threshold, the operation speed of the machine equipment is reduced or stopped, and the operation of the machine equipment using the roller bearing cage is characterized. Method.
JP2003209317A 2003-08-28 2003-08-28 Cage rotating speed measuring method for roller bearing, mounting structure of displacement sensor, and operating method of mechanical equipment using cage of roller bearing Pending JP2005069275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003209317A JP2005069275A (en) 2003-08-28 2003-08-28 Cage rotating speed measuring method for roller bearing, mounting structure of displacement sensor, and operating method of mechanical equipment using cage of roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003209317A JP2005069275A (en) 2003-08-28 2003-08-28 Cage rotating speed measuring method for roller bearing, mounting structure of displacement sensor, and operating method of mechanical equipment using cage of roller bearing

Publications (1)

Publication Number Publication Date
JP2005069275A true JP2005069275A (en) 2005-03-17

Family

ID=34402298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003209317A Pending JP2005069275A (en) 2003-08-28 2003-08-28 Cage rotating speed measuring method for roller bearing, mounting structure of displacement sensor, and operating method of mechanical equipment using cage of roller bearing

Country Status (1)

Country Link
JP (1) JP2005069275A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2354578A3 (en) * 2010-01-25 2016-05-25 Jtekt Corporation Load detecting device for roller bearing and roller bearing apparatus
CN106481657A (en) * 2015-08-28 2017-03-08 斯凯孚公司 There is the bearing of senor roll body
CN113399585A (en) * 2021-07-05 2021-09-17 新昌浙江工业大学科学技术研究院 Conical bearing shrinkage process and device for online detection of radial play amount of retainer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2354578A3 (en) * 2010-01-25 2016-05-25 Jtekt Corporation Load detecting device for roller bearing and roller bearing apparatus
CN106481657A (en) * 2015-08-28 2017-03-08 斯凯孚公司 There is the bearing of senor roll body
CN113399585A (en) * 2021-07-05 2021-09-17 新昌浙江工业大学科学技术研究院 Conical bearing shrinkage process and device for online detection of radial play amount of retainer
CN113399585B (en) * 2021-07-05 2024-05-07 新昌浙江工业大学科学技术研究院 Conical bearing shrinkage process and device for online detection of radial play amount of retainer

Similar Documents

Publication Publication Date Title
US10464113B2 (en) Monitoring device
JP2009270913A (en) Bearing clearance measurement device
US5597965A (en) Method and apparatus for measuring the preload gap of a double row rolling bearing
JP2007298080A (en) Double row roller bearing with displacement sensor and abnormality diagnostic method for double row roller bearing
JP5736762B2 (en) Bearing unit with sensor for continuous casting equipment roll neck
JP2005069275A (en) Cage rotating speed measuring method for roller bearing, mounting structure of displacement sensor, and operating method of mechanical equipment using cage of roller bearing
US4342233A (en) Load detecting probe
JP2006250726A (en) Arrangement of bearing
JPH0415510A (en) Method and device for detecting roll rotation and measuring roll interval
CN117266300A (en) System for determining wear of a bearing and related method
JP5831338B2 (en) Apparatus and method for measuring induced axial load
JPH0531523A (en) Roll guide device for rolling mill which can measure number of revolution and clearance of roll
JP2004219160A (en) Instrument and method for measuring load of axle bearing of rolling stock
JP5640999B2 (en) Abnormality diagnosis method, apparatus and program for bearing of low-speed rotating machine
JPWO2019138711A1 (en) Method and apparatus for manufacturing hub unit bearing, and method for manufacturing vehicle
JP7227365B2 (en) Apparatus and method for determining roll attitude and/or position in rolling stand
JPH112239A (en) Device to measure various property of rolling bearing
JPS6131324B2 (en)
RU2818199C1 (en) Hydrostatic bearing operating conditions monitoring system
CN110639964A (en) Detection element main body structure for acquiring gap information between rolling mill housing and bearing seat in real time
JP7480256B1 (en) Bearing device with strain sensor and spindle device for machine tool
JP2024508612A (en) Monitoring system for monitoring parameters representing the operating conditions of oil film bearings
JP7497706B2 (en) Rolling equipment, spindle support device, spindle monitoring method, and method for attaching and detaching roll and spindle
JP2018025295A (en) Method of diagnosing feed screw of feed screw device
KR102559051B1 (en) Method and Apparatus for Measuring Press Die Parallelism and Press Apparatus Monitoring Method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106