JP2005069015A - Gallery type heating power generation facility and method for executing work - Google Patents

Gallery type heating power generation facility and method for executing work Download PDF

Info

Publication number
JP2005069015A
JP2005069015A JP2003208564A JP2003208564A JP2005069015A JP 2005069015 A JP2005069015 A JP 2005069015A JP 2003208564 A JP2003208564 A JP 2003208564A JP 2003208564 A JP2003208564 A JP 2003208564A JP 2005069015 A JP2005069015 A JP 2005069015A
Authority
JP
Japan
Prior art keywords
tunnel
power generation
mine
wind power
open
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003208564A
Other languages
Japanese (ja)
Inventor
Katsuhiko Unemoto
勝彦 畝本
Tadashi Shibata
忠 柴田
Masataka Hamada
正孝 濱田
Takanori Maeda
高徳 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okumura Corp
Original Assignee
Okumura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okumura Corp filed Critical Okumura Corp
Priority to JP2003208564A priority Critical patent/JP2005069015A/en
Publication of JP2005069015A publication Critical patent/JP2005069015A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gallery type heating power generation facility improving power generation efficiency by reinforcing driving power of a generator by wind power accelerated by heating and difference of height, securing stable strength of the facility against typhoon, earthquake and the like and maintaining landscape, and a method for executing a work. <P>SOLUTION: The gallery type heating power generation facility 1 is composed of an open gallery 4 composed of a horizontal gallery formed in natural ground and a pit 3 having at least one end of an inclined part including a vertical part continuing the same opening at ground surface, an operation pit 11 communicating to the horizontal gallery 2 of the open gallery 4 at one end thereof and forming in an inclined shape including a vertical part in natural ground, an auxiliary gallery 12 communicating to the open gallery 4 at one end 9 and communicating to the operation pit 11 at another end 10, a heated wind power device 5 arranged at a suitable location in the open gallery and a wind power generator 6 driven by wind power from a heated wind power device 5. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、坑道式加熱発電施設とその施工法に関し、特に、発電施設の強度の確保と景観の維持が図りながら施行効率と施行コストを改善できる坑道式加熱発電施設とその施工法に関する。
【0002】
【従来の技術】
昨今の情勢から、電力を確保する手段は、火力発電から水力発電や原子力発電に移行しているが、一方では、設置場所の難点等から太陽熱、地熱、風力、潮流及び波力等の自然エネルギーを利用する発電方式が実用化を目指している。
【0003】
地上の気圧は、100m高くなると12mb低くなっており、温度は、100mで0.65℃低くなることから、空気は、気圧の高いところから低いところへ移動し、暖かい空気は、温度の低い上方に上昇している。
【0004】
このために、高さ数100mに及ぶテーパー状の筒柱を地表に垂直に設置して、その上端部にタービン発電機を取り付ける形態が提案されている。本提案では、筒柱の根部に空気の流入口を設け、その上方には内壁を鏡面状に仕上げた球面状の集熱装置を設けることで、集熱装置に反射された太陽光線を、ガラス窓を透過させながら筒柱の内側に照射するようにしており、これによって筒柱中の自然流である上昇気流を加速することで上端部に設置したタービン発電機の発電効率を向上させている。(例えば、特許文献1を参照)
【0005】
しかしながら、これらの風力発電装置は、気象条件の影響を完全に免れるものでなく、自然風の風力が小さいときは、垂直筒体内に十分な上昇気流を生じないし、太陽照射が不十分なときは、その上昇気流を加速できないために安定した発電量を確保することが困難であった。
【0006】
そこで、これを改善する目的から、産業廃棄物や生活廃棄物の燃焼熱によって数100mに及ぶ垂直筒体の上昇気流を加熱させて強制的に加速させることで、これによる吸引気流を風力発電機に作用させて安定した発電量を経済的に確保する提案もなされている。(例えば、特許文献2を参照)
【0007】
本提案の風力発電装置は、地中に埋設した横置筒体の一端を地面に設置した吸引開口に接続すると共に、その他端を地上に設立した垂直筒体の下端と接続してL型の通気路を形成しており、横置筒体内に複数台の発電機用プロペラを直列設置して各風力発電機に接続している。
【0008】
又、複教基の廃棄物燃料燃焼炉の燃焼室が、垂直筒体の外方に設置されて加熱室と火炎誘導路で接続されており、垂直筒体の下側部外周に囲繞形成される加熱室は、その覆体が煙道を介して煙突に接続している。
【0009】
一方、垂直筒体の下側部内方には複数本の加熱管が等間隔に縦設されており、各加熱管の上下端は加熱室に接続開口することで、廃棄物燃料燃焼炉の燃焼室で発生する燃焼熱によって垂直筒体の上昇気流を加熱させて強制的に加速させように構成されている。
【0010】
さらに、図7に示すように、下方に設けた気体流入口から流入した気体を、加熱炉内の温度及びイオン濃度を上昇させることで、上昇渦気流に形成して通路内を上昇させて通路内に設け軸流ファンに供給する発電システムも提案されている。(例えば、特許文献3を参照)
【0011】
本発電システム50は、下に気体流入口51があって上に気体流出口52がある筒状の通路53が、内径約3m、高さ約300mの縦向きに形成されており、その途中にイオンバーナー54を備えた加熱炉55を設けている。通路53内には軸流ファン56を設けると共に、通路53の外に軸流ファン56と連動する発電機57を設けている。
【0012】
そして、本発電システム50では、イオンバーナー54によって加熱炉55内の温度及びイオン濃度を上昇させることで、気体流入口51から流入した気体が、上昇渦気流58となって通路53内を上昇しながら、この上昇渦気流によって軸流ファン56を回転させており、その回転によって発電機57を駆動しながら発電している。
【0013】
しかるに、上記の各提案による発電方式は、何れの場合も筒状の通路が高層建造物を形成されていることから、用地費を含めた建設費や周辺への安全配慮や騒音・振動対策等に費用が嵩高になり、高層建造物内に上記風力発電所を設けることは、筒状の通路から多量の空気を流入、吐出することで高層建造物周辺に発生するビル風を増長して風害の原因になると同時に、地震、台風時に在っては強度や安全性の面で電力の安定供給が困難になるという問題点を抱えていた。
【0014】
さらに、上昇気流を発生させる筒状の通路を高層建物内に構築するにはその長さに限度があることから、発電装置の設置箇所や設置条件に制限を生じ、その為に一つの筒状の通路から得られる発電量も多くは期待できないという問題も抱えている。
【0015】
例えば、特許文献1に例示されるような場合には、垂直な筒状通路の下端部に集熱器があるために筒状通路の上端部に発電装置を設けなければ成らず、又、特許文献2に例示されるような場合には、水平な筒状通路を設けているが、垂直な筒状通路の中間部には加熱器が設けられているために、発電装置は、地下の水平な筒状通路か筒状通路の上端部に設けることになり、発電機の設置場所に制限がある。
【0016】
さらに、特許文献3に例示されるような場合には、垂直な筒状通路の長さを長くして、その間に複数個の発電装置を設けるようにしているが、筒状通路を高層建造物内に形成する限りその長さに限度があるだけでなく、長くすればするほど建物の強度や規模を強化しなければならず、それに伴い建設費用は増大し、屋外に長大な筒状の構造物を設けることは、景観面においても問題を有している。
【0017】
【特許文献1】
特開昭61−85588号公報(第1頁、右欄第10行〜第2頁、右欄第8行、図1)
【特許文献2】
特公平7−122426号公報(段落符号「0003」〜段落符号「0005」末行、図1)
【特許文献3】
再公表特許第WO01/014703号公報(第8頁、第4行〜第9頁、第10行、図1)
【0018】
【発明が解決しようとする課題】
本発明は、上記の従来の発電方式が抱えていた問題点に鑑みてその改善のために提案するものであり、発電施設を山岳地山の坑道に形成することで加熱によって加速された風力で発電機の駆動力を増強して、発電効率の向上と発電量の増大を図ると同時に、台風、地震等に対しても施設の安定した強度を確保すると共に景観も維持できる坑道式加熱発電施設とその施工法を提供している。
【0019】
【課題を解決するための手段】
請求項1に記載の発明である坑道式加熱発電施設は、地山に形成した水平部と水平部に継続する垂直を含む傾斜部から成り少なくとも一端が地表面に開口される開放坑道、開放坑道の水平部に一端を連通して地山に垂直を含む傾斜状に形成する管理坑、開放坑道に一端を連通し他端を管理坑に連通する補助坑道、開放坑道の適宜位置に設置される加熱風力装置及び加熱風力装置からの風力で稼働する風力発電機から構成しており、加熱で加速された風力で発電機の駆動力を増強して発電効率向上させると同時に、屋外の高層建築物内に上昇気流用通路を形成する場合のような通路長さの制限なくして長大な上昇気流用の通路を確保しながら管理坑と補助坑道を短く形成でき、発電装置の設置場所や設置個数に制限をなくしているので、一つの上昇気流用の通路から得られる発電量を大幅に増大できる。さらに、地山に形成した坑道を上昇気流用の通路とするので台風、地震等に対しても施設の安定した強度を確保すると共に、通路が地山に埋設されて地表部に現れるのが開放坑道の少なくとも一端の開口だけであることから、施設の大半が屋外に露出することがなく現状の景観を維持できるだけでなく、高層建物周辺に発生するビル風等の環境問題の解消も兼ね備えている。
【0020】
請求項2に記載の発明である坑道式加熱発電施設は、地山に形成した垂直を含む一方の傾斜部と傾斜部に継続する垂直を含む管理兼用傾斜部から成る開放坑道、開放坑道の一方の傾斜部に一端を連通し他端を管理兼用傾斜部に連通する補助坑道、開放坑道の適宜位置に設置される加熱風力装置及び加熱風力装置からの風力で稼働する風力発電機から構成しており、地山に設けて長大な垂直を含む傾斜部とこれに継続する管理兼用傾斜部とから成る開放坑道に補助坑道を連ねることで、長大な上昇気流用の通路を確保しながら補助坑道を短く形成でき、発電装置の設置場所や設置個数に制限をなくしているので、一つの上昇気流用の通路から得られる発電量を大幅に増大できる。さらに、地山に形成した坑道を上昇気流用の通路とするので台風、地震等に対しても施設の安定した強度を確保すると共に、通路が地山に埋設されて地表部に現れるのが開放坑道の少なくとも一端の開口だけであることから施設の大半が屋外に露出することがなく現状の景観を維持できるだけでなく、高層建物周辺に発生するビル風等の環境問題の解消も兼ね備えている。
【0021】
又、本発明による坑道式加熱発電施設の施工法は、上記坑道式風力発電施設の施工法であって、地山に少なくとも垂直を含む傾斜部から成る傾斜坑道を形成し、次いで傾斜坑道から垂直を含む傾斜状に管理坑を形成して置き、傾斜坑道を含む地中空間に一端を連通して他端を管理坑に連通する補助坑道を地山に形成し、しかる後に地中空間に加熱風力装置と風力発電機を設置することを基本して、垂直を含む傾斜坑道を全方位TBMによる連続施工によって掘削することを特徴としており、地山に少なくとも垂直を含む傾斜坑道を全方位TBMによる連続施工によって掘削して形成すると共に、坑道を含む地中空間と地中空間に連通して管理坑に結合される補助坑道を地山に形成することで、垂直を含む傾斜坑道を連続施工で簡易に掘削してコストを低減させながら、地震等に対する強度を確保して坑道式加熱発電施設を安定化させている。
【0022】
【発明の実施の形態】
本発明による第1の坑道式加熱発電施設は、地山に形成した水平部と水平部に継続する垂直を含む傾斜部から成る開放坑道と、開放坑道の水平部に一端を連通して地山に垂直を含む傾斜状に形成する管理坑と、開放坑道に一端を連通し他端を管理坑に連通する補助坑道と、開放坑道の適宜位置に設置される加熱風力装置及び加熱風力装置からの風力で稼働する風力発電機から構成している。
以下に、本発明による第1の坑道式加熱発電施設の実施の形態を図面に基づいて詳細に説明する。
【0023】
図1は、本発明の第1の坑道式加熱発電施設を山岳地域の地山に形成した実施の形態の概要断面図であり、坑道式加熱発電施設1は、横坑2と縦坑3とから成るL型坑道4の中に加熱風力装置5及び風力発電機6から構成されている。本実施の形態の横坑2の開口は、山岳の斜面に位置させて形成しており、縦坑3の開口は、山頂部の横坑2の開口より高い位置に形成されている。そして、7は空気圧送機であり、加熱風力装置5に供給する空気量を多くして加熱風力装置5の出力を増大させるのに貢献している。
【0024】
尚、本実施の形態ではL型坑道4を横坑2と縦坑3とから成るL型に形成しているが、本発明の坑道式加熱発電施設における坑道は、この形態に限定されるものでなく、縦坑の傾斜角設定、縦坑の湾曲形態及び縦坑を補足的に追随させる等の他の形態も随意に選択できるものである。
【0025】
風力発電機6は、本実施例では横坑2と縦坑3の両側に設置されているが、一方側に設置されても良く、加熱風力装置5は、坑道内に上昇気流を発生させる都合上、縦孔3内の空気を直接加熱するよう構成しているが、縦坑3内の空気を縦坑3以外の坑道等に設けた加熱風力装置5によって間接的に加熱してもよい。
又、L型坑道4の上端部を山岳の頂上部或いは山岳の斜面に位置させるように地山から突出する筒状通路を形成しておくと、山頂部を吹き抜ける風或いは山の斜面に沿って吹き上げ・吹き下ろす風の作用によって坑道内の空気を屋外に吸引する力が発生し、加熱によって発生した上昇気流を増速させる相乗効果も期待できる。
【0026】
さらに、縦坑3の加熱風力装置5と風力発電機6が設置されている開放坑道部8には、一端9を開放坑道部8に連通して他端10を管理坑11に開放している補助坑道12を備えている。管理坑11は、山岳の斜面形状等を考慮しながら、横坑2の任意の位置に設定しており、その位置から上方に掘削して行くことで容易に形成できるものであって、後述するように補助坑道12の他端10と結合している。
【0027】
従って、本実施の形態では、山岳の斜面に道路を設けて補助坑道12に資材を運搬する方法に比較して、補助坑道12と管理坑11とを地中設けることで、構築に要する多大の費用と労力等の問題を解消している。
【0028】
又、補助坑道12は、横坑2の任意の位置から掘削して形成している管理坑11から開放坑道部8に向けて連続的に掘削形成しているので、その他端10は山岳の斜面にまで延長させる必要が無くて済むことから、補助坑道12の長さを短くして施設の設置作業や坑道式加熱発電施設1の施工コストを低減し、そのメンテナンスも容易にしている。
【0029】
横坑2と縦坑3を稼動させる場合には、管理坑11もしくは管理坑11と結合している補助坑道12の他端10を閉鎖するものであり、横坑2と管理坑11を互いに隔離することで空気圧送機7による吸引作動等を良好にしている。
【0030】
そして、風力発電機6は、複数個を設置することで発電量の増強を図っているが、この風力発電機6に替えて加熱風力装置5を設ける場合には、上昇気流を増長させて風力発電機6の発電効率向上させることも可能である。
【0031】
以上のように、補助坑道12は、横坑2の任意の位置から掘削して形成している管理坑11から開放坑道部8に向けて連続的に掘削形成できるので、建物内に上昇気流を発生させる筒状通路を設ける場合に比べて、風力発電機6や加熱風力装置5の設置位置を任意に設定できる等の自由度が高い。
【0032】
従って、本発明による第1の坑道式加熱発電施設は、山岳地域の地山に形成したL型坑道中に構築することで、加熱によって加速される風力で発電機の駆動力を増強して発電効率の向上と発電量の増大を図ると同時に、台風、地震等に対しても施設の安定した強度を確保すると共に、環境問題の解消と景観維持を図っている。
【0033】
さらに、本発明による第1の坑道式加熱発電施設は、実施の形態の説明で明らかなように、開放坑道部8に向けて管理坑11から連続的に掘削している補助坑道12を山岳の斜面まで掘削する必要をなくしているので、山岳が緩やかな斜面の場合に適しており、山岳の形状等の条件に合わせて最も有利な配置と施行の容易性を選択して、施工とメンテナンスのコスト低減を図れるものである。
【0034】
本実施の形態における加熱風力装置5と風力発電機6は、再公表特許第WO01/014703号公報に記載されている発電システムである。
同公報に記載されている本発電システム20は、立て坑21の中部に、イオンバーナー22と放電電極23と粒子加速器24を備えている加熱炉25を加熱風力装置5として装着している。
【0035】
加熱炉25の下端には、気体流入口26が形成されており、その内部に風力発電機6を構成する軸流ファン27が配備されている。又、加熱炉25の上端には、気体流出口28が形成されており、所定の間隔をおいて同様の風力発電機6が配備されている。軸流ファン27の回転軸29には、発電機30、31の回転軸32が夫々連結されている。
【0036】
加熱炉25では、イオンバーナー22と放電電極23及び粒子加速器24の全部又は一部を作動させることで、内部の温度及びイオン濃度を上昇させて人工的な上昇渦気流を発生させている。この上昇渦気流によって、下端内部の軸流ファン27と加熱炉25から上方に配置されている風力発電機6、6、6を回転させており、その回転力によって軸流ファンに連結されている発電機30、31を駆動して発電を行っている。
【0037】
本実施の形態でのイオンバーナー22は、約100万KCの発熱量を形成しており、耐火性骨材とアルミナセメント又はリン酸等の水硬剤を混合して構成する耐火材を使用した加熱炉25の周壁に等間隔で3基設置している。
【0038】
3基のイオンバーナー22は、供給される燃料を高速の空気と約15Kの高圧空気で0.01μ以下の微粒子状に煙霧化して、これをイオン火炎13にして加熱炉25内に噴射している。イオンバーナー22の先端は、加熱炉25の中心に向けて配置しており、各イオンバーナー22から発生するイオン火炎13から5m/sの爆発的な燃焼によって発生する高燃焼音を互いに衝突させることで、音波の打ち消し作用や音波の衝突によって生じるドップラー効果によって減音している。
【0039】
又、イオン火炎は、光活性物質に磁性体を配合した組成物を酸化雰囲気中で結晶化させて製造した火炎接触電離材に炭化水素火炎を触れさせることで、 炭素イオン、本素イオン、鉄イオン等の陽イオンと酸素イオンの陰イオンとを多数含んでいるが、内部のイオンを振動させると共に陽イオンと陰イオンを加速することで、他の粒子に弾性衝突させながら陽イ才ン及び陰イオンの数を更に増大させている。
【0040】
従って、本実施の形態で示す坑道式加熱発電施設では、従来の火力発電施設に比べると少ない燃料で充分な電力を発電しながら、二酸化炭素の発生量も抑制している。又、原子力発電施設のように放射能等の危険物質が漏洩する危険性が無く、使用済み燃料の処理問題も発生せず、水力発電施設のようにダムの建設も必要ない効能を発揮している。
【0041】
尚、加熱風力装置5は、上記実施の形態で説明した本発電システムに限定されるものでなく、この他にも火力タービンやコ・ゼネレーション等に代表されるような加熱気流を発生できる装置であれば、適宜に採用できるものである。
【0042】
次に、本発明による第2の坑道式加熱発電施設について説明する。
本発明による第2の坑道式加熱発電施設は、地山に形成した垂直を含む一方の傾斜部と傾斜部に継続する垂直を含む管理兼用傾斜部から成り少なくとも一端が地表面に開口される開放坑道、開放坑道の一方の傾斜部に一端を連通し他端を管理兼用傾斜部に連通する補助坑道、開放坑道の適宜位置に設置される加熱風力装置及び加熱風力装置からの風力で稼働する風力発電機から構成している。
以下に、本発明による第2の坑道式加熱発電施設の実施の形態を図面に基づいて詳細に説明するが、上記第1の発明と同一の部位については同一の符号で表示すると共に、その説明も重複しないように適宜に省略している。
【0043】
図2は、本発明の第2の坑道式加熱発電施設を山岳地域の地山に形成した実施の形態の概要断面図であり、坑道式加熱発電施設100を構成している短い横坑102と縦坑3及び横坑102に継続する管理兼用傾斜部111とはU型坑道104を形成しており、縦坑3の中には、加熱風力装置5と風力発電機6とが配置されている。そして、空気圧送機7が、加熱風力装置5に供給する空気量を多くして加熱風力装置5の出力を増大させるのに貢献している点は、上記第1の発明と同様である。但し、横坑102と縦坑3及び横坑102に継続する管理兼用傾斜部111とを稼動させる場合には、管理兼用傾斜部111と結合している補助坑道12の他端10を閉鎖することによって、管理兼用傾斜部111の管理坑としての機能を停止することは必須であり、空気圧送機7による吸引作動を良好に確立している。
【0044】
尚、本実施の形態では、管理兼用傾斜部111を傾斜状に構成しているが、管理兼用傾斜部111は垂直であっても良いとか、横坑102を想像線で表示しているように水平部として形成して管理兼用傾斜部111は実質的に管理機能を強化するという具合に、本発明の坑道式加熱発電施設における坑道は、図示の実施の形態に限定されるものでなく、縦坑3の傾斜角設定、管理兼用傾斜部111の湾曲形態及び横坑102の追随形態等は、随意に選択できるものである。
【0045】
加熱風力装置5と風力発電機6等の配置は、上記第1の発明と同一に構成しており、縦坑3内の空気を縦坑3以外の坑道等に設けた加熱風力装置5によって間接的に加熱することも同様である。
【0046】
又、横坑102を想像線で表示しているように水平部として形成しながら、U型坑道104における縦坑3の上端部を山岳の頂上部或いは山岳の斜面に位置させるように地山から突出する筒状通路を形成しておく場合には、山頂部を吹き抜ける風或いは山の斜面に沿って吹き上げ・吹き下ろす風の作用によって坑道内の空気を屋外に吸引する力が発生し、加熱によって発生した上昇気流を増速させる相乗効果も期待できるものである。
【0047】
さらに、縦坑3の加熱風力装置5と風力発電機6が設置されている開放坑道部8には、一端9を開放坑道部8に連通して他端10を管理兼用傾斜部111に開放している補助坑道12を備えているので、補助坑道12は、その他端10を山岳の斜面にまで延長させる必要が無くて済み、補助坑道12の長さを短くして施設の設置作業や坑道式加熱発電施設1の施工コストを低減し、そのメンテナンスも容易にしている。
【0048】
風力発電機6は、複数個を設置することで発電量の増強を図っているが、この風力発電機6に替えて加熱風力装置5を設ける場合には、上昇気流を増長させて風力発電機6の発電効率向上させることも可能である。
【0049】
そして、補助坑道12は、横坑2、縦坑3及び管理兼用傾斜部111と任意の形態で適宜に掘削しているU型坑道104における縦坑3もしくは管理兼用傾斜部111から管理兼用傾斜部111もしくは開放坑道部8側に向けて連続的に掘削形成できるものであり、補助坑道12を山岳の斜面まで掘削する必要をなくして施工とメンテナンスのコスト低減を図れるものである。
【0050】
本実施の形態は、山岳の表面が平面の場合や急峻な斜面の場合に適していることから、山岳の形状等の条件に合わせて最も有利な配置と施行の容易性を選択して、坑道式加熱発電施設を設置できるものであり、建物内に上昇気流を発生させる筒状通路を設ける場合に比べて、風力発電機6や加熱風力装置5の設置位置を任意に設定できる等の自由度が高い。
【0051】
さらに、本発明による第2の坑道式加熱発電施設は、山岳地域の地山に形成したU型坑道中に構築することで、加熱によって加速される風力によって発電機の駆動力を増強しながら発電効率の向上と発電量の増大を図ると同時に、台風、地震等に対しても施設の安定した強度を確保すると共に、環境問題の解消と景観維持を図っている。
【0052】
尚、本実施の形態における加熱風力装置5と風力発電機6及びその他の各構成は、本発明による第1の坑道式加熱発電施設におけるものと同様であることから、その説明はこれを省略する。
【0053】
以上のように、本発明による第2の坑道式加熱発電施設は、地山に形成した開放坑道中に構築されるので、加熱によって加速された風力で発電機の駆動力を増強して発電効率を向上させると同時に、長さに制限のない長大な坑道を上昇気流の通路に適用し、この通路に多数の発電装置6又は加熱風力装置5を設けることによって発電量の増大を図り、また、施設の主要部を地中に構築することで、台風、地震等に対しても施設の安定した強度を確保すると共に環境問題の解消と景観維持を図っている。
【0054】
次に、本発明による坑道式加熱発電施設の施工法について説明する。
本発明の坑道式加熱発電施設の施工法は、本発明による坑道式加熱発電施設の施工法は、上記坑道式風力発電施設の施工法であって、地山に少なくとも垂直を含む傾斜部から成る傾斜坑道を形成し、次いで傾斜坑道から垂直を含む傾斜状に管理坑を形成して置き、傾斜坑道を含む地中空間に一端を連通して他端を管理坑に連通する補助坑道を地山に形成し、しかる後に地中空間に加熱風力装置と風力発電機を設置することを基本して、垂直を含む傾斜坑道を全方位TBMによる連続施工によって掘削することを特徴としている。
【0055】
これによって、本発明の坑道式加熱発電施設の施工法は、垂直を含む傾斜坑道を始めとして管理兼用傾斜部、管理坑及び補助坑道のように、掘削中の坑道からこの坑道に対して急角度で以て垂直を含む任意の方向に傾斜する他の坑道を、連続施工で簡易に掘削することを可能にしているので、コストを低減させながら施行を容易にすると共に地震等に対する強度を確保して施設を安定化させている。以下に、本発明による坑道式加熱発電施設の施工法に関する実施の形態を図面に基づいて詳細に説明する。
【0056】
本発明の坑道式加熱発電施設を施工するためには、坑道を掘削する通常の工法で掘削することが可能である。しかしながら、本発明の坑道式加熱発電施設のように垂直を含む傾斜坑道を掘削する場合には、以下に説明する全方位TBMが最適である。
【0057】
本全方位TBMは、本件出願人が既に出願している特願2002−46848号に添付している明細書に詳細に記載されているものであり、下記の実施の形態で示すように構成されている。
【0058】
本実施の形態に採用する全方位TBMは、図3〜6においてその基本構造と稼働状態を説明している。
【0059】
本実施の形態に採用する全方位TBM33は、図3に示すように後続台34と掘削機本体35とから構成されている。
掘削機本体35は、角筒状胴体36の中間部外周面に内周面を円形面に形成した矩形枠体37を一体に固着しており、この矩形枠体37の外周四方の平坦面に装着される複数本のジャッキ38A、38Bによって径方向に伸縮するグリッパ39を配設すると共に角筒状胴体36の先端側にカッタヘッド40を回転自在に配設している。
【0060】
グリッパは、掘削機本体1の軸心に直交する軸回りに回動自在に装着される一組のグリッパ39Aと掘削機本体1の直径方向に対向する一組のグリッパ39Bから成り、矩形枠体37の互いに平行な面にそれぞれ回動不能に装着されている。
【0061】
ジャッキ38Aは、その伸長によって掘削機本体35を掘進させるものであり、ジャッキ38Bは、その伸長によってグリッパ39を掘削壁面に圧着させることで掘削機本体1が必要以上に下動するのを阻止するように構成している。
【0062】
尚、グリッパ39は、その外周面を凸円弧状に形成させて掘削壁面に全面的に圧着できるように構成すると共に、掘削機本体1を垂直状態から水平状態にまで回動させる際にカッタヘッド40との衝突を避けるように、掘削機本体35が向きを変える側の一部を取外し可能な干渉部を形成している。
【0063】
又、カッタヘッド40は、外周端に向かって後方に傾斜した逆載頭円錐形状に形成されると共に掘削面に多数のローラピツト41を突設してあり、周方向に所定間隔のズリ取込み開口部42を設けると共に、ズリ取込み開口部42の回転方向に面している側端縁に掘削ズリを機内に取り込むためのスクレーパ43を取付けている。
【0064】
後続台34は、掘削機本体35と切り離し可能に連結してあり、その中心部に角筒状胴体36と同様の筒状支柱体を一体に設けていて、機内に取り込まれた掘削ズリを角筒状胴体36に内蔵されたバケットコンベア等によって上方に搬出している。
【0065】
後続台34は、その高さを坑道の掘削径より短い長さ、高さに形成されており、掘削壁面に覆工コンクリートを施工するための設備と各種の油圧設備及びロックボルト打設装置、覆工コンクリート吹付装置等が配設することで、掘削壁面への一次覆工等の作業を実施できるように構成されている。
【0066】
次ぎに示す図4は、本実施の形態に採用する全方位TBM33によって、立坑と横坑を掘削していく工程を説明している。
本工程では、掘削機本体35の四方に配設しているグリッパ39をジャッキ38A、39Bによって掘削壁面に圧着させることによって掘削壁面に推進反力をとると共に、全方位TBM33と後続台34とを支持させ、矩形枠体37から斜め上方に傾斜しているジャッキ38Aを伸長させることによって、トンネル掘削機Aを垂直方向の下方に推進させながら、カッタヘッド40の回転によって切羽の岩盤を掘削する。
【0067】
後続台34と一体の全方位TBM33が、下方に掘進して所定の深さまで立坑3を掘削するためには、所定の深さに達する手前の位置で、図示のように後続台34を掘削壁面或いは地上のクレーンにワイヤロープ44によって吊り下げた状態で支持し、しかる後に、全方位TBM33を所定深さまで掘進させることによって後続台34を掘削機本体35から切り離すと共に、掘削機本体35のジャッキ38Bを伸長させることによって僅かに後退させることで切羽面から離間させる。
【0068】
図5は、掘削機本体の方向を転換して水平方向に90度向きを変える作動状態を説明するためのものである。
本作動状態は、一方組のグリッパ39Aを掘削壁面に圧着させながら、他方組のグリツパ39Bをジャッキ38A、38Bを最大限まで縮径させて、カツタヘツド40を回転させると共にグリッパ39Aを支点にして回動させて、掘削機本体35を垂直状態から一側方に徐々に向きを変えながらカツタヘツド40で立坑3の掘削側壁面を切り崩して行き、掘削機本体35が90度向きを変えるという、図示を省略した工程を経ている。
【0069】
この状態では、収縮している他方組のグリツパ39Bが掘削機本体35と一体にその向きを変えて次に掘削する横坑2の掘削壁面の周方向に向けた状態になるが、図示していない立坑2の底部掘削壁面に圧着している一方組のグリッパ39Aは、掘削機本体35が水平方向に向きを変えても立坑3の掘削に適した状態を保持する。
【0070】
次いで、これらのグリッパ39Aを元の形状に復旧した後に、グリッパ39Aを掘削壁面に均一を押し付けた状態で、カッタヘッド40を回転させながらジャッキ38A、38Bを作動させることによって全方位TBM33を水平方向に掘進させて横坑2を掘削する。
【0071】
図6は、立坑から横坑に全方位TBMを方向転換させてから横坑を掘削していく状態を示している。
横坑2が、20〜30m程度掘削された後に横坑2の内底面にレール45を敷設してから、立坑3の掘削壁面に吊り下げ支持しておいた後続台34を適宜に分割してレール45上に走行自在に順次配設し、掘削機本体35に直列状に接続する。後続台車34には、油圧機器や覆工用設備等の各種設備を配設しており、これらを使用しながら全方位TBM33を掘進させて所定長さの横坑2を掘削する。
【0072】
以上の実施の形態においては、立坑3から横坑2に至る屈曲部の連続掘削方法について説明したが、本実施の形態における全方位TBMは、立坑3や横坑2に適用する形態に限らず、管理兼用傾斜部、管理坑及び補助坑道のように、掘削中の坑道からこの坑道に対して急角度で以て垂直を含む任意の方向に傾斜する他の坑道を連続掘削する場合においても実施し得るものであるから、工期を従来工法に比べて工期を短縮することや施工に要する総合コストを低減することを可能にしている。
【0073】
以上のように、本実施の形態における全方位TBMは、上記坑道式加熱発電施設に適した坑道を低コストで効率良く容易に掘削できるものであり、必要な場合には、主たる坑道に連通して管理坑に結合している補助坑道をも施工できるものである。これによって、坑道と補助坑道とが結合している位置には、地中空間を任意に形成することが可能であり、上述したように立て坑3に一端9を連通させて他端10を管理坑11や管理兼用傾斜部111に結合している補助坑道12をも地山に形成できると共に、開放坑道部8の構築も容易である。
【0074】
従って、本発明による坑道式加熱発電施設の施工法は、上記実施の形態で詳細に説明した、地山に少なくとも垂直を含む傾斜坑道を全方位TBMによる連続施工によって掘削して形成すると共に、坑道を含む地中空間と地中空間に連通して管理坑に結合している補助坑道を地山に形成することで、垂直を含む傾斜坑道を始めとして管理兼用傾斜部、管理坑及び補助坑道のように、掘削中の坑道からこの坑道に対して急角度で以て垂直を含む任意の方向に傾斜する他の坑道を、連続施工で簡易に掘削することを可能にしているので、コストを低減させながら施行を容易にすると共に地震等に対する強度を確保して施設を安定化させている。
【0075】
以上、本発明を実施の形態に基づいて詳細に説明してきたが、本発明による坑道式加熱発電施設とその施工法は、上記実施の形態に何ら限定されるものでなく、坑道の形状や傾斜角、加熱風力装置及び風力発電機等の具体的な形態において、本発明の趣旨を逸脱しない範囲において出願時における既に公知のものを適用することで種々の変更が可能であることは、当然のことである。
【0076】
【発明の効果】
請求項1に記載の発明である坑道式加熱発電施設は、地山に形成した水平部と水平部に継続する垂直を含む傾斜部から成る開放坑道、開放坑道の水平部に一端を連通して地山に垂直を含む傾斜状に形成する管理坑、開放坑道に一端を連通し他端を管理坑に連通する補助坑道、開放坑道の適宜位置に設置される加熱風力装置及び加熱風力装置からの風力で稼働する風力発電機から構成しているので、加熱で加速された風力で発電機の駆動力を増強して発電効率向上させると同時に、屋外の高層建築物内に上昇気流用通路を形成する場合のような通路長さの制限なくして長大な上昇気流用の通路を確保しながら管理坑と補助坑道を短く形成でき、発電装置の設置場所や設置個数に制限をなくしていることから、一つの上昇気流用の通路から得られる発電量を大幅に増大できる。さらに、地山に形成した坑道を上昇気流用の通路とするので台風、地震等に対しても施設の安定した強度を確保すると共に、通路が地山に埋設されることから施設の大半が屋外に露出することがなく現状の景観を維持できるだけでなく、高層建物周辺に発生するビル風等の環境問題の解消も兼ね備える効果を発揮している。
【0077】
請求項2に記載の発明である坑道式加熱発電施設は、地山に形成した垂直を含む一方の傾斜部と傾斜部に継続する垂直を含む管理兼用傾斜部から成る開放坑道、開放坑道の一方の傾斜部に一端を連通し他端を管理兼用傾斜部に連通する補助坑道、開放坑道の適宜位置に設置される加熱風力装置及び加熱風力装置からの風力で稼働する風力発電機から構成しているので、地山に設けて長大な垂直を含む傾斜部とこれに継続する管理兼用傾斜部とから成る開放坑道に補助坑道を連ねることで、長大な上昇気流用の通路を確保しながら補助坑道を短く形成でき、発電装置の設置場所や設置個数に制限をなくしながら、一つの上昇気流用の通路から得られる発電量を大幅に増大できる。さらに、地山に形成した坑道を上昇気流用の通路とするので台風、地震等に対しても施設の安定した強度を確保すると共に、通路が地山に埋設されることから施設の大半が屋外に露出することがなく現状の景観を維持できるだけでなく、高層建物周辺に発生するビル風等の環境問題の解消も兼ね備える効果を発揮している。
【0078】
又、本発明による坑道式加熱発電施設の施工法は、上記坑道式風力発電施設の施工法であって、地山に少なくとも垂直を含む傾斜部から成る傾斜坑道を形成し、次いで該傾斜坑道から垂直を含む傾斜状に管理坑を形成して置き、該傾斜坑道を含む地中空間に一端を連通して他端を該管理坑に連通する補助坑道を地山に形成し、しかる後に該地中空間に加熱風力装置と風力発電機を設置することを基本して、垂直を含む傾斜坑道を全方位TBMによる連続施工によって掘削することを特徴としているので、地山に少なくとも垂直を含む傾斜坑道を全方位TBMによる連続施工によって掘削して形成すると共に、坑道を含む地中空間と地中空間に連通して外部に開放される補助坑道を地山に形成することで、垂直を含む傾斜坑道を始めとして管理兼用傾斜部、管理坑及び補助坑道のように、掘削中の坑道からこの坑道に対して急角度で以て垂直を含む任意の方向に傾斜する他の坑道を、連続施工で簡易に掘削することを可能にしているので、コストを低減させながら施行を容易にすると共に地震等に対する強度を確保して施設を安定化させる効果を発揮している。
【図面の簡単な説明】
【図1】本発明の第1の坑道式加熱発電施設を山岳地域の地山に形成した実施形態の概要断面図
【図2】本発明の第2の坑道式加熱発電施設を山岳地域の地山に形成した実施形態の概要断面図
【図3】本発明の坑道式加熱発電施設の施工法に採用する全方位TBMの実施の形態を示す断面図
【図4】全方位TBMの方向変換を説明する実施の形態を示す断面図
【図5】全方位TBMの方向変換を説明する実施の形態を示す断面図
【図6】全方位TBMの方向変換を説明する工程の実施の形態を示す断面図
【図7】従来の加熱発電システム
【符号の説明】
1、100 坑道式加熱発電施設、 2、102 横坑、 3 立坑、
4 L型坑道、 5 加熱風力装置、 6 風力発電機、 7 空気圧送機、
8 開放坑道部、 9 一端、 10 他端、 11 管理坑、
12 補助坑道、 13 イオン火災、 20 発電システム、
21 立て坑、 22 イオンバーナー、 23 放電電極、
24 粒子加速器、 25 加熱炉、 26 気体流入口、
27 軸流ファン、 28 気体流出口、 29 回転軸、
30、31 発電機、 32 回転軸、 33 全方位TBM、
34 後続台、 35 掘削機本体、 36 角筒状胴体、 37 矩形枠体、38A、B ジャッキ、 39A、Bグリッパ、 40 カッタヘッド、
41 ローラピット、 42 ズリ取り込み開口部、 43 スクレーパ、
44 ワイヤロープ、 45 レール、 50 発電システム、
51 気体流入口、 52 気体流出口、 53 通路、
54 イオンバーナー、 55 加熱炉、 56 軸流ファン、
57 発電機、 58 上昇渦気流、 104 U型坑道、
111 管理兼用傾斜部
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a tunnel heating power generation facility and its construction method, and more particularly, to a tunnel heating power generation facility and its construction method capable of improving the efficiency and cost of implementation while ensuring the strength of the power generation facility and maintaining the landscape.
[0002]
[Prior art]
Due to the current situation, the means of securing electric power has shifted from thermal power generation to hydroelectric power generation and nuclear power generation, but on the other hand, natural energy such as solar heat, geothermal power, wind power, tidal current and wave power due to the difficulty of the installation location. A power generation system that uses power is aimed at practical application.
[0003]
The air pressure on the ground is 12 mb lower when the height is 100 m higher, and the temperature is 0.65 ° C. lower at 100 m. Therefore, the air moves from the high pressure to the low pressure, and the warm air is above the low temperature. Is rising.
[0004]
For this purpose, a configuration has been proposed in which a tapered cylindrical column having a height of several hundreds of meters is installed perpendicular to the ground surface, and a turbine generator is attached to the upper end portion thereof. In this proposal, an air inflow port is provided at the root of the cylindrical column, and a spherical heat collecting device with a mirror-finished inner wall is provided above it, so that the solar rays reflected by the heat collecting device are converted into glass. It is designed to irradiate the inside of the cylindrical column while passing through the window, thereby improving the power generation efficiency of the turbine generator installed at the upper end by accelerating the updraft that is the natural flow in the cylindrical column . (For example, see Patent Document 1)
[0005]
However, these wind power generators are not completely immune from the influence of weather conditions, and when the wind of natural wind is small, there is not enough updraft in the vertical cylinder, and when solar irradiation is insufficient Since the updraft cannot be accelerated, it is difficult to secure a stable power generation amount.
[0006]
Therefore, for the purpose of improving this, the ascending airflow of several hundreds of meters is heated and forcedly accelerated by the combustion heat of industrial waste and domestic waste, and the suction airflow generated thereby is converted into a wind power generator. Proposals have also been made to ensure a stable amount of power generation economically. (For example, see Patent Document 2)
[0007]
In the proposed wind turbine generator, one end of a horizontal cylinder embedded in the ground is connected to a suction opening installed on the ground, and the other end is connected to the lower end of a vertical cylinder established on the ground to form an L-shaped A ventilation path is formed, and a plurality of generator propellers are installed in series in a horizontal cylinder and connected to each wind power generator.
[0008]
In addition, the combustion chamber of the bifaculty waste fuel combustion furnace is installed outside the vertical cylinder and is connected to the heating chamber by a flame guide path, and is surrounded by a lower outer periphery of the vertical cylinder. The heating chamber has a cover connected to the chimney through a flue.
[0009]
On the other hand, a plurality of heating tubes are vertically arranged at the inner side of the lower side of the vertical cylinder, and the upper and lower ends of each heating tube are connected to the heating chamber so that the combustion of the waste fuel combustion furnace The ascending air current of the vertical cylinder is heated by the combustion heat generated in the chamber and is forcibly accelerated.
[0010]
Furthermore, as shown in FIG. 7, the gas flowing in from the gas inlet provided below is raised in the temperature and ion concentration in the heating furnace to form an ascending vortex to raise the inside of the passage and There has also been proposed a power generation system that is provided inside and supplies an axial fan. (For example, see Patent Document 3)
[0011]
In this power generation system 50, a cylindrical passage 53 having a gas inlet 51 at the bottom and a gas outlet 52 at the top is formed in a vertical direction with an inner diameter of about 3 m and a height of about 300 m. A heating furnace 55 provided with an ion burner 54 is provided. An axial fan 56 is provided in the passage 53, and a generator 57 that interlocks with the axial fan 56 is provided outside the passage 53.
[0012]
In the power generation system 50, the temperature and ion concentration in the heating furnace 55 are increased by the ion burner 54, whereby the gas flowing in from the gas inlet 51 becomes the rising vortex 58 and rises in the passage 53. However, the axial fan 56 is rotated by the rising vortex air current, and the generator 57 is driven by the rotation to generate electric power.
[0013]
However, in each case, the power generation methods proposed above have a high-rise building with a cylindrical passage, so construction costs including land costs, safety considerations for the surroundings, noise and vibration measures, etc. The installation of the wind power plant in a high-rise building increases the building wind generated around the high-rise building by injecting and discharging a large amount of air from the cylindrical passage. At the same time, in the event of an earthquake or typhoon, there was a problem that it was difficult to stably supply power in terms of strength and safety.
[0014]
In addition, since there is a limit to the length of a cylindrical passage that can generate an updraft in a high-rise building, there are limitations on the installation location and installation conditions of the power generator. There is also a problem that the amount of power generated from this passage cannot be expected.
[0015]
For example, in the case illustrated in Patent Document 1, a power collector must be provided at the upper end portion of the cylindrical passage because there is a heat collector at the lower end portion of the vertical cylindrical passage. In the case illustrated in Document 2, a horizontal cylindrical passage is provided, but a heater is provided in the middle of the vertical cylindrical passage, so that the power generation device It is provided at the upper end portion of the cylindrical passage or the cylindrical passage, and there is a restriction on the place where the generator is installed.
[0016]
Furthermore, in the case as exemplified in Patent Document 3, the length of the vertical cylindrical passage is lengthened and a plurality of power generators are provided between them. Not only is the length limited as long as it is formed in the interior, but the longer the length, the stronger the strength and scale of the building, which increases the construction cost, and a long cylindrical structure outdoors. Providing objects also has problems in terms of landscape.
[0017]
[Patent Document 1]
JP-A-61-85588 (first page, right column, line 10 to page 2, right column, eighth line, FIG. 1)
[Patent Document 2]
Japanese Examined Patent Publication No. 7-122426 (paragraph code “0003” to paragraph code “0005” last line, FIG. 1)
[Patent Document 3]
Republished Patent No. WO01 / 014703 (Page 8, Line 4 to Page 9, Line 10, FIG. 1)
[0018]
[Problems to be solved by the invention]
The present invention is proposed for the improvement in view of the problems of the conventional power generation method described above, and is a wind power accelerated by heating by forming a power generation facility in a mountainous tunnel. A tunnel-type heating power generation facility that enhances the driving force of the generator to improve the power generation efficiency and increase the amount of power generation, and at the same time secures the facility's stable strength against typhoons and earthquakes and maintains the landscape And its construction method.
[0019]
[Means for Solving the Problems]
The gallery-type heating and power generation facility according to claim 1 is an open mine shaft, an open mine shaft comprising an inclined portion including a horizontal portion formed in a natural ground and a vertical portion continuing to the horizontal portion, at least one end being opened to the ground surface. A management mine that has one end communicating with the horizontal part of the ground and is formed in an inclined shape including vertical to the natural ground, an auxiliary mine that communicates one end with the open mineway, and the other end with the management mine, and is installed at an appropriate position of the open mine It consists of a wind power generator that operates with the wind power from the heated wind power device and the heated wind power device. The wind power accelerated by the heating increases the driving force of the generator to improve the power generation efficiency, and at the same time, the outdoor high-rise building The control mine and the auxiliary mine can be shortened while securing a long passage for the updraft without restricting the length of the passage as in the case of forming the passage for the updraft inside. Since the restriction is removed, one The power generation amount obtained from the passage for raising the air flow can be greatly increased. Furthermore, since the tunnel formed in the natural ground is used as a passage for upward airflow, it ensures the stable strength of the facility against typhoons, earthquakes, etc., and it is open that the passage is buried in the natural ground and appears on the surface. Since it is only an opening at one end of the tunnel, most of the facilities are not exposed to the outdoors and can not only maintain the current scenery, but also solve environmental problems such as building wind that occurs around high-rise buildings. .
[0020]
The tunnel-type heating and power generation facility according to claim 2 is one of an open shaft and an open shaft composed of one inclined portion including a vertical formed in a natural ground and a management combined inclined portion including a vertical continuing to the inclined portion. It consists of an auxiliary tunnel that connects one end to the sloped part of this and the other end that communicates with the management and inclined part, a heated wind turbine installed at an appropriate position in the open tunnel, and a wind power generator that operates with wind power from the heated wind turbine In addition, by connecting an auxiliary mineway to an open mineway that consists of an inclined part including a long vertical and a management and inclined part that is provided on a natural mountain, the auxiliary mineway is secured while securing a long passage for updraft. Since it can be formed short and there are no restrictions on the installation location and number of power generation devices, the amount of power generation obtained from one updraft passage can be greatly increased. Furthermore, since the tunnel formed in the natural ground is used as a passage for upward airflow, it ensures the stable strength of the facility against typhoons, earthquakes, etc., and it is open that the passage is buried in the natural ground and appears on the surface. Since it is only an opening at one end of the tunnel, most of the facilities are not exposed to the outdoors and the current landscape can be maintained, and it also solves environmental problems such as building wind generated around high-rise buildings.
[0021]
Further, the construction method of the tunnel type heating power generation facility according to the present invention is a construction method of the above-described tunnel type wind power generation facility, which forms an inclined tunnel composed of an inclined portion including at least perpendicular to the natural ground, and then vertical from the inclined tunnel. A control mine is formed and placed in a slanted shape, and an auxiliary mineway is formed in the ground where one end communicates with the ground hollow including the slanted tunnel and the other end communicates with the control mine. Based on the installation of a wind power device and a wind power generator, it is characterized by excavating an inclined tunnel including a vertical by continuous construction using an omnidirectional TBM. In addition to excavation and formation by continuous construction, by forming an auxiliary tunnel in the ground that communicates between the underground space including the tunnel and the underground hollow and is connected to the management mine, the inclined tunnel including the vertical can be continuously constructed. Simply drilling While reducing the strike so as to ensure the strength to stabilize the tunnel-type heating power generation facilities for the earthquake or the like.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
A first tunnel type heating and power generation facility according to the present invention includes an open tunnel composed of a horizontal portion formed in a natural ground and an inclined portion including a vertical continuing to the horizontal portion, and one end of the open tunnel connected to the horizontal portion of the open tunnel. From a management pit that is formed in a slanted shape including a vertical, an auxiliary mine that communicates with one end of the open mine shaft and communicates with the other end of the management mine, a heating wind turbine installed at an appropriate position of the open tunnel, and a heating wind turbine It consists of wind power generators that run on wind power.
Hereinafter, an embodiment of a first tunnel-type heating power generation facility according to the present invention will be described in detail with reference to the drawings.
[0023]
FIG. 1 is a schematic cross-sectional view of an embodiment in which the first gallery-type heating power generation facility of the present invention is formed on a natural mountain in a mountainous region. The gallery-type heating power generation facility 1 includes a horizontal shaft 2, a vertical shaft 3, An L-shaped mine shaft 4 is composed of a heating wind power device 5 and a wind power generator 6. The opening of the horizontal shaft 2 according to the present embodiment is formed so as to be located on a mountain slope, and the opening of the vertical shaft 3 is formed at a position higher than the opening of the horizontal shaft 2 at the top of the mountain. Reference numeral 7 denotes a pneumatic feeder that contributes to increasing the amount of air supplied to the heated wind power device 5 and increasing the output of the heated wind power device 5.
[0024]
In the present embodiment, the L-shaped mine shaft 4 is formed in an L-shape composed of the horizontal shaft 2 and the vertical shaft 3, but the mine shaft in the tunnel-type heating power generation facility of the present invention is limited to this configuration. In addition, other forms such as setting of the inclination angle of the vertical shaft, the curved form of the vertical shaft, and the vertical shaft following the shaft can be arbitrarily selected.
[0025]
Although the wind power generator 6 is installed on both sides of the horizontal shaft 2 and the vertical shaft 3 in this embodiment, the wind power generator 5 may be installed on one side, and the heating wind power device 5 is convenient for generating an updraft in the tunnel. In addition, the air in the vertical hole 3 is directly heated, but the air in the vertical shaft 3 may be indirectly heated by a heating wind power device 5 provided in a tunnel other than the vertical shaft 3.
In addition, if a cylindrical passage projecting from the natural ground is formed so that the upper end of the L-shaped mine shaft 4 is located on the top of the mountain or the slope of the mountain, the wind blows through the mountain top or along the slope of the mountain. Due to the action of the wind that blows up and down, a force that sucks the air in the mineway to the outside is generated, and a synergistic effect that accelerates the updraft generated by heating can also be expected.
[0026]
Furthermore, in the open tunnel portion 8 in which the heating wind power device 5 and the wind power generator 6 of the vertical shaft 3 are installed, one end 9 is communicated with the open tunnel portion 8 and the other end 10 is opened to the management shaft 11. An auxiliary mine shaft 12 is provided. The management pit 11 is set at an arbitrary position of the horizontal pit 2 in consideration of the mountain slope shape and the like, and can be easily formed by excavating upward from that position, which will be described later. Thus, the other end 10 of the auxiliary mine shaft 12 is coupled.
[0027]
Therefore, in this embodiment, compared to the method of providing a road on a mountain slope and transporting materials to the auxiliary mine shaft 12, by providing the auxiliary mine shaft 12 and the management mine 11 underground, a large amount of construction is required. The problem of cost and labor is solved.
[0028]
Further, since the auxiliary mine shaft 12 is continuously excavated from the management pit 11 formed by digging from an arbitrary position of the horizontal pit 2 toward the open mine shaft portion 8, the other end 10 is a mountain slope. Therefore, the length of the auxiliary tunnel 12 is shortened to reduce the installation cost of the facility and the construction cost of the tunnel-type heating power generation facility 1, and the maintenance thereof is also facilitated.
[0029]
When the horizontal shaft 2 and the vertical shaft 3 are operated, the other end 10 of the control shaft 11 or the auxiliary shaft 12 coupled to the control shaft 11 is closed, and the horizontal shaft 2 and the control shaft 11 are isolated from each other. As a result, the suction operation by the pneumatic feeder 7 is improved.
[0030]
And although the wind power generator 6 is aiming at the increase in electric power generation amount by installing two or more, when providing the heating wind power device 5 instead of this wind power generator 6, an updraft is increased and wind power is increased. It is also possible to improve the power generation efficiency of the generator 6.
[0031]
As described above, the auxiliary mine shaft 12 can be continuously excavated from the management pit 11 formed by digging from an arbitrary position of the horizontal shaft 2 toward the open mine shaft portion 8, so that an updraft is generated in the building. Compared with the case where the cylindrical passage to be generated is provided, the degree of freedom that the installation position of the wind power generator 6 and the heating wind power device 5 can be arbitrarily set is high.
[0032]
Accordingly, the first gallery-type heating power generation facility according to the present invention is constructed in an L-shaped mine shaft formed in a natural mountain in a mountainous region, thereby enhancing the driving force of the generator with wind power accelerated by heating to generate power. At the same time as improving efficiency and increasing the amount of power generation, the plant also ensures stable strength against typhoons and earthquakes, as well as solving environmental problems and maintaining the landscape.
[0033]
Further, as is apparent from the description of the embodiment, the first gallery-type heating and power generation facility according to the present invention is configured such that the auxiliary mine shaft 12 continuously excavated from the management mine 11 toward the open mine portion 8 is in a mountainous state. Since it eliminates the need to dig up to the slope, it is suitable for the case where the mountain is a gentle slope, and the most advantageous arrangement and ease of implementation are selected according to the conditions such as the mountain shape, etc. Cost reduction can be achieved.
[0034]
The heating wind power device 5 and the wind power generator 6 in the present embodiment are a power generation system described in the republished patent No. WO01 / 014703.
In the power generation system 20 described in the publication, a heating furnace 25 including an ion burner 22, a discharge electrode 23, and a particle accelerator 24 is mounted as a heating wind power device 5 in the middle of a shaft 21.
[0035]
A gas inlet 26 is formed at the lower end of the heating furnace 25, and an axial fan 27 constituting the wind power generator 6 is disposed therein. Further, a gas outlet 28 is formed at the upper end of the heating furnace 25, and a similar wind power generator 6 is provided at a predetermined interval. The rotating shafts 29 of the generators 30 and 31 are connected to the rotating shaft 29 of the axial fan 27, respectively.
[0036]
In the heating furnace 25, all or part of the ion burner 22, the discharge electrode 23, and the particle accelerator 24 are operated to increase the internal temperature and ion concentration to generate an artificial ascending vortex. The rising vortex airflow rotates the axial flow fan 27 inside the lower end and the wind power generators 6, 6, 6 disposed above the heating furnace 25, and is connected to the axial flow fan by the rotational force. The generators 30 and 31 are driven to generate power.
[0037]
The ion burner 22 in the present embodiment forms a calorific value of about 1 million KC, and uses a refractory material composed of a mixture of a refractory aggregate and a hydraulic agent such as alumina cement or phosphoric acid. Three units are installed at equal intervals on the peripheral wall of the heating furnace 25.
[0038]
The three ion burners 22 atomize the supplied fuel into fine particles of 0.01 μm or less with high-speed air and high-pressure air of about 15 K, and use this as the ion flame 13 to inject it into the heating furnace 25. Yes. The tip of the ion burner 22 is arranged toward the center of the heating furnace 25, and the high combustion sound generated by the explosive combustion of 5 m / s from the ion flame 13 generated from each ion burner 22 collides with each other. Therefore, the sound is reduced by the canceling action of the sound wave and the Doppler effect caused by the collision of the sound wave.
[0039]
In addition, an ion flame is produced by bringing a hydrocarbon flame into contact with a flame contact ionization material produced by crystallizing a composition containing a magnetic substance in a photoactive substance in an oxidizing atmosphere, so that carbon ions, elementary ions, iron It contains many cations such as ions and anions of oxygen ions. By oscillating the internal ions and accelerating the cations and anions, the particles can be elastically collided with other particles. The number of anions is further increased.
[0040]
Therefore, in the gallery-type heating power generation facility shown in the present embodiment, the amount of carbon dioxide generated is suppressed while generating sufficient electric power with less fuel than the conventional thermal power generation facility. In addition, there is no risk of radioactive materials and other dangerous substances leaking, unlike nuclear power generation facilities, and there is no problem with disposal of spent fuel, and dam construction is not required like hydroelectric power generation facilities. Yes.
[0041]
The heated wind power device 5 is not limited to the power generation system described in the above embodiment, but can also generate a heated airflow as represented by a thermal power turbine, co-generation, and the like. If it is, it can employ | adopt suitably.
[0042]
Next, the 2nd tunnel type heating power generation facility by this invention is demonstrated.
The second tunnel type heating and power generation facility according to the present invention is composed of one inclined portion including a vertical formed in a natural ground and a management combined inclined portion including a vertical continuing to the inclined portion, at least one end being opened to the ground surface. A wind tunnel that operates with wind power from an auxiliary tunnel, one end connected to one slope of the tunnel and the open tunnel, and the other tunnel to the management and slope section, a heating wind turbine installed at an appropriate position in the open tunnel, and the heating wind turbine It consists of a generator.
In the following, an embodiment of the second tunnel type heating power generation facility according to the present invention will be described in detail with reference to the drawings. The same parts as those in the first invention are indicated by the same reference numerals and the description thereof is made. Are omitted as appropriate so as not to overlap.
[0043]
FIG. 2 is a schematic cross-sectional view of an embodiment in which the second tunnel heating and power generation facility of the present invention is formed in a natural mountain in a mountainous region, and a short horizontal shaft 102 constituting the tunnel heating and power generation facility 100 and The management and combined inclined portion 111 continuing to the vertical shaft 3 and the horizontal shaft 102 forms a U-shaped tunnel 104, and the heating wind power device 5 and the wind power generator 6 are arranged in the vertical shaft 3. . The point that the pneumatic feeder 7 contributes to increasing the amount of air supplied to the heated wind power device 5 and increasing the output of the heated wind power device 5 is the same as in the first invention. However, when operating the horizontal shaft 102 and the management and slope portion 111 continuing to the vertical shaft 3 and the horizontal shaft 102, the other end 10 of the auxiliary tunnel 12 coupled to the management and slope portion 111 is closed. Therefore, it is indispensable to stop the function of the management-use inclined portion 111 as the management well, and the suction operation by the pneumatic feeder 7 is well established.
[0044]
In the present embodiment, the management and use inclined portion 111 is configured in an inclined shape, but the management and use inclined portion 111 may be vertical or the horizontal shaft 102 is indicated by an imaginary line. The tunnel in the tunnel heating and power generation facility of the present invention is not limited to the illustrated embodiment, and is formed as a horizontal portion and the management-use inclined portion 111 substantially enhances the management function. The inclination angle setting of the pit 3, the curved form of the management-use inclined part 111, the following form of the horizontal pit 102, and the like can be arbitrarily selected.
[0045]
The arrangement of the heating wind power device 5 and the wind power generator 6 and the like is the same as that of the first invention, and the air in the vertical shaft 3 is indirectly provided by the heating wind power device 5 provided in a tunnel other than the vertical shaft 3. The same applies to heating.
[0046]
Further, while forming the horizontal shaft 102 as a horizontal portion as indicated by an imaginary line, the upper end of the vertical shaft 3 in the U-shaped tunnel 104 is located on the top of the mountain or on the slope of the mountain from the natural ground. In the case of forming a protruding cylindrical passage, the force of sucking the air in the mine tunnel outdoors is generated by the action of the wind blowing through the top of the mountain or the wind blowing up and down along the slope of the mountain. A synergistic effect of accelerating the generated updraft can also be expected.
[0047]
Furthermore, in the open tunnel portion 8 in which the heating wind power device 5 and the wind power generator 6 of the vertical shaft 3 are installed, one end 9 is communicated with the open tunnel portion 8 and the other end 10 is opened to the management and inclined portion 111. The auxiliary mine shaft 12 is not required to extend the other end 10 to the slope of the mountain, and the length of the auxiliary mine shaft 12 is shortened so that the installation work or the mine type The construction cost of the heating power generation facility 1 is reduced and its maintenance is also facilitated.
[0048]
A plurality of wind power generators 6 are installed to increase the amount of power generation. However, when a heating wind power device 5 is provided instead of the wind power generator 6, the wind power generator is increased by increasing the updraft. It is also possible to improve the power generation efficiency of 6.
[0049]
And the auxiliary mine shaft 12 is the management / inclination portion from the vertical pit 3 or the management / inclination portion 111 in the U-shaped shaft 104 that is appropriately excavated in any form with the horizontal shaft 2, the vertical shaft 3 and the management / inclination portion 111. 111 or the open mine part 8 side can be continuously excavated and formed, and the cost of construction and maintenance can be reduced by eliminating the need to excavate the auxiliary mine shaft 12 to a mountain slope.
[0050]
Since this embodiment is suitable for the case where the surface of the mountain is a flat surface or a steep slope, the most advantageous arrangement and ease of implementation are selected according to the conditions such as the shape of the mountain, and the tunnel The degree of freedom that the installation position of the wind power generator 6 and the heating wind power device 5 can be arbitrarily set as compared with the case where a cylindrical passage that generates an updraft is provided in the building. Is expensive.
[0051]
Furthermore, the second tunnel heating power generation facility according to the present invention is constructed in a U-shaped tunnel formed in a natural mountain in a mountainous region, thereby generating power while enhancing the driving force of the generator by wind power accelerated by heating. At the same time as improving efficiency and increasing the amount of power generation, the plant also ensures stable strength against typhoons and earthquakes, as well as solving environmental problems and maintaining the landscape.
[0052]
In addition, since the heating wind power unit 5 and the wind power generator 6 in this Embodiment and each other structure are the same as that in the 1st gallery type heating power generation facility by this invention, the description is abbreviate | omitted. .
[0053]
As described above, since the second gallery-type heating power generation facility according to the present invention is constructed in an open mine shaft formed in a natural ground, the power generation efficiency is increased by enhancing the driving force of the generator with wind power accelerated by heating. In addition, a long tunnel with no length limitation is applied to the passage of the updraft, and a large number of power generation devices 6 or heating wind power devices 5 are provided in the passage to increase the amount of power generation. By constructing the main part of the facility in the ground, it is possible to secure the stable strength of the facility against typhoons, earthquakes, etc., and to solve environmental problems and maintain the landscape.
[0054]
Next, the construction method of the tunnel type heating power generation facility by this invention is demonstrated.
The construction method of the tunnel type heating power generation facility according to the present invention is the construction method of the tunnel type thermal power generation facility according to the present invention, which is a construction method of the above-described tunnel type wind power generation facility, and includes an inclined portion including at least perpendicular to the natural ground. An inclined mine is formed, and then a management mine is formed in an inclined shape including vertical from the inclined mine, and an auxiliary mine that connects one end between the hollows including the inclined mine shaft and the other end communicates with the management mine. It is characterized by excavating an inclined tunnel including a vertical by continuous construction using an omnidirectional TBM.
[0055]
As a result, the construction method of the tunnel-type heating power generation facility according to the present invention has a steep angle with respect to this tunnel from the tunnel being excavated, such as an inclined tunnel including a vertical, a management / inclined slope, a management tunnel, and an auxiliary tunnel. Therefore, it is possible to easily excavate other tunnels inclined in any direction including vertical, by continuous construction, so that the implementation is easy while reducing the cost and the strength against earthquakes etc. is secured. To stabilize the facility. DESCRIPTION OF EMBODIMENTS Hereinafter, an embodiment relating to a construction method for a gallery type heating power generation facility according to the present invention will be described in detail based on the drawings.
[0056]
In order to construct the tunnel-type heating power generation facility of the present invention, it is possible to excavate by a normal method for excavating a tunnel. However, the omnidirectional TBM described below is optimal when excavating an inclined mine shaft including the vertical as in the gallery-type heating power generation facility of the present invention.
[0057]
This omnidirectional TBM is described in detail in the specification attached to Japanese Patent Application No. 2002-46848 filed by the present applicant, and is configured as shown in the following embodiment. ing.
[0058]
The omnidirectional TBM employed in the present embodiment is described with reference to its basic structure and operating state in FIGS.
[0059]
The omnidirectional TBM 33 employed in the present embodiment is composed of a subsequent stage 34 and an excavator body 35 as shown in FIG.
The excavator main body 35 is integrally fixed to a rectangular frame 37 having a circular inner surface on the outer peripheral surface of the intermediate portion of the rectangular tube-shaped body 36, and the rectangular frame 37 has flat surfaces on all four sides of the outer periphery. A gripper 39 that expands and contracts in the radial direction is disposed by a plurality of mounted jacks 38A and 38B, and a cutter head 40 is rotatably disposed on the distal end side of the rectangular tubular body 36.
[0060]
The gripper includes a pair of grippers 39A that are rotatably mounted around an axis orthogonal to the axis of the excavator body 1 and a pair of grippers 39B that face the diameter direction of the excavator body 1 and are rectangular frame bodies. 37 are mounted on the mutually parallel surfaces so as not to rotate.
[0061]
The jack 38A extends the excavator body 35 by its extension, and the jack 38B prevents the excavator body 1 from moving down more than necessary by crimping the gripper 39 to the excavation wall surface by the extension. It is configured as follows.
[0062]
The gripper 39 is formed so that its outer peripheral surface is formed in a convex arc shape so that it can be fully crimped to the excavation wall surface, and when the excavator body 1 is rotated from the vertical state to the horizontal state, the cutter head In order to avoid a collision with 40, an excavator body 35 is formed with an interference part that can be removed on the side where the orientation of the excavator body 35 changes direction.
[0063]
Further, the cutter head 40 is formed in a reverse headed cone shape inclined rearward toward the outer peripheral end, and has a large number of roller pits 41 projecting from the excavation surface. 42, and a scraper 43 for taking the excavation gap into the machine is attached to the side edge facing the rotational direction of the slot taking-in opening 42.
[0064]
The succeeding platform 34 is detachably connected to the excavator main body 35, and a cylindrical columnar body similar to the rectangular cylindrical body 36 is integrally provided at the center thereof, and the excavation slip taken into the machine is squared. It is carried out upward by a bucket conveyor or the like built in the cylindrical body 36.
[0065]
The succeeding platform 34 is formed to have a height and a length shorter than the excavation diameter of the tunnel, equipment for constructing lining concrete on the excavation wall surface, various hydraulic equipment, and a rock bolt driving device, By arranging the lining concrete spraying device, etc., it is configured so that operations such as primary lining on the excavation wall surface can be performed.
[0066]
Next, FIG. 4 illustrates a process of excavating a vertical shaft and a horizontal shaft with the omnidirectional TBM 33 employed in the present embodiment.
In this step, the gripper 39 disposed on the four sides of the excavator main body 35 is pressed against the excavation wall surface by jacks 38A and 39B, thereby taking a propulsion reaction force on the excavation wall surface. By supporting and extending the jack 38A inclined obliquely upward from the rectangular frame body 37, the face rock is excavated by the rotation of the cutter head 40 while propelling the tunnel excavator A downward in the vertical direction.
[0067]
In order for the omnidirectional TBM 33 integrated with the succeeding platform 34 to dig downward and excavate the shaft 3 to a predetermined depth, the succeeding platform 34 is drilled at a position before reaching the predetermined depth as shown in the figure. Or it supports in the state suspended by the wire rope 44 to the ground crane, and after that, by excavating the omnidirectional TBM 33 to a predetermined depth, the succeeding base 34 is separated from the excavator body 35 and the jack 38B of the excavator body 35 is provided. It is made to move away from the face by slightly retreating by extending.
[0068]
FIG. 5 is a view for explaining an operating state in which the direction of the excavator body is changed and the direction is changed by 90 degrees in the horizontal direction.
In this operation state, one set of grippers 39A is crimped to the excavation wall surface, while the other set of grippers 39B is reduced in diameter to the jacks 38A and 38B, the cutter head 40 is rotated and the gripper 39A is rotated as a fulcrum. The figure shows that the excavator body 35 changes its direction 90 degrees by cutting the excavator side wall surface of the shaft 3 with the cutter head 40 while gradually changing the direction of the excavator body 35 from the vertical state to one side. It has gone through the omitted process.
[0069]
In this state, the other pair of shrinking grippers 39B change their direction integrally with the excavator main body 35 and turn to the circumferential direction of the excavation wall surface of the horizontal shaft 2 to be excavated next, but are shown in the figure. One set of grippers 39A that are crimped to the bottom excavation wall surface of the vertical shaft 2 that remains unsuitable for excavation of the vertical shaft 3 is maintained even when the excavator body 35 changes its direction in the horizontal direction.
[0070]
Next, after these grippers 39A are restored to their original shapes, the omnidirectional TBM 33 is moved in the horizontal direction by operating the jacks 38A and 38B while rotating the cutter head 40 in a state where the grippers 39A are uniformly pressed against the excavation wall surface. The side pit 2 is excavated.
[0071]
FIG. 6 shows a state in which the horizontal shaft is excavated after changing the omnidirectional TBM from the vertical shaft to the horizontal shaft.
After the horizontal shaft 2 is excavated about 20 to 30 m, the rail 45 is laid on the inner bottom surface of the horizontal shaft 2, and then the subsequent platform 34 suspended and supported on the excavation wall surface of the vertical shaft 3 is appropriately divided. It arrange | positions sequentially on the rail 45 so that driving | running | working is possible, and it connects with the excavator main body 35 in series. The trailing carriage 34 is provided with various equipment such as hydraulic equipment and lining equipment, and while using these, the omnidirectional TBM 33 is advanced to excavate the horizontal shaft 2 having a predetermined length.
[0072]
In the above embodiment, although the continuous excavation method of the bending part from the vertical shaft 3 to the horizontal shaft 2 was demonstrated, the omnidirectional TBM in this Embodiment is not restricted to the form applied to the vertical shaft 3 or the horizontal shaft 2. , Even when continuously excavating other tunnels that are inclined in an arbitrary direction including perpendicular to the tunnel from the tunnel that is being excavated, such as a management-use slope, a management tunnel, and an auxiliary tunnel Therefore, the construction period can be shortened compared with the conventional construction method, and the total cost required for construction can be reduced.
[0073]
As described above, the omnidirectional TBM in the present embodiment is capable of easily and efficiently excavating a tunnel suitable for the above-described tunnel-type heating power generation facility at low cost, and communicates with the main tunnel when necessary. It is also possible to construct an auxiliary mine shaft connected to the management mine. As a result, an underground space can be arbitrarily formed at the position where the mine shaft and the auxiliary mine shaft are combined, and the other end 10 is managed by communicating the one end 9 with the shaft 3 as described above. The auxiliary mine shaft 12 coupled to the mine 11 and the management-use inclined portion 111 can be formed in the natural ground, and the open mine shaft portion 8 can be easily constructed.
[0074]
Therefore, the construction method of the tunnel type heating power generation facility according to the present invention is formed by excavating and forming an inclined tunnel including at least perpendicular to the natural ground, which has been described in detail in the above embodiment, by continuous construction using an omnidirectional TBM. By forming an auxiliary mine shaft in the ground that communicates between the underground space including the earth and the hollow, and is connected to the management mine, it is possible to manage the slopes including the vertical and the slopes for management, the management mine, and the auxiliary mine shaft. As described above, it is possible to easily excavate other tunnels that are inclined in an arbitrary direction including perpendicular to the tunnel from the tunnel being excavated, so that the cost can be reduced. In addition, the facility is stabilized by ensuring the strength against earthquakes while facilitating the implementation.
[0075]
As described above, the present invention has been described in detail based on the embodiment. However, the tunnel heating power generation facility and the construction method thereof according to the present invention are not limited to the above embodiment, and the shape and inclination of the tunnel are not limited. It is obvious that various modifications can be made by applying the already known ones at the time of filing in a specific form such as a corner, a heated wind power device and a wind power generator without departing from the gist of the present invention. That is.
[0076]
【The invention's effect】
The tunnel-type heating and power generation facility according to the first aspect of the present invention includes an open tunnel composed of a horizontal portion formed in a natural ground and an inclined portion including a vertical continuing to the horizontal portion, and one end thereof is connected to the horizontal portion of the open tunnel. From the management mine that is formed in an inclined shape including the vertical to the natural ground, the auxiliary mine that connects one end to the open mine shaft and the other end to the management mine, the heating wind turbine installed at an appropriate position of the open tunnel, and the heating wind turbine Since it is composed of wind power generators that operate on wind power, the wind power accelerated by heating enhances the driving force of the generator to improve power generation efficiency, and at the same time, forms a passage for updrafts in outdoor high-rise buildings Because there is no restriction on the length of the passage as in the case of securing a long passage for ascending airflow, the management mine and auxiliary mine can be shortened, and there are no restrictions on the installation location and number of installed power generators, Obtained from one updraft passage The amount of power generation can be greatly increased. In addition, since the tunnel formed in the natural ground is used as a passage for the updraft, the facility is stable against typhoons, earthquakes, etc., and most of the facilities are outdoors because the passage is buried in the natural ground. In addition to maintaining the current landscape without being exposed to light, it also has the effect of solving environmental problems such as building wind that occurs around high-rise buildings.
[0077]
The tunnel-type heating and power generation facility according to claim 2 is one of an open shaft and an open shaft composed of one inclined portion including a vertical formed in a natural ground and a management combined inclined portion including a vertical continuing to the inclined portion. It consists of an auxiliary tunnel that connects one end to the sloped part of this and the other end that communicates with the management and inclined part, a heated wind turbine installed at an appropriate position in the open tunnel, and a wind power generator that operates with wind power from the heated wind turbine Therefore, by connecting the auxiliary mineway to an open mine that consists of an inclined part including a long vertical and a management-use inclined part that is provided on the ground, an auxiliary mineway is secured while securing a passage for a long updraft. The power generation amount obtained from one updraft passage can be greatly increased while there is no limitation on the installation location and number of power generation devices. In addition, since the tunnel formed in the natural ground is used as a passage for the updraft, the facility is stable against typhoons, earthquakes, etc., and most of the facilities are outdoors because the passage is buried in the natural ground. In addition to maintaining the current landscape without being exposed to light, it also has the effect of solving environmental problems such as building wind that occurs around high-rise buildings.
[0078]
Further, the construction method of the tunnel type heating power generation facility according to the present invention is a construction method of the above-described tunnel type wind power generation facility, wherein an inclined tunnel comprising an inclined portion including at least perpendicular to the natural ground is formed, and then from the inclined tunnel A management mine is formed and placed in an inclined shape including a vertical, and an auxiliary mine shaft is formed in the ground where one end communicates between the hollows including the inclined mine shaft and the other end communicates with the management mine. Since it is characterized by excavating an inclined tunnel including a vertical by continuous construction using an omnidirectional TBM based on the installation of a heated wind power device and a wind generator between hollows, an inclined tunnel including at least a vertical in a natural ground Is formed by excavation by continuous construction using all-direction TBM, and an auxiliary tunnel that communicates between the underground space including the tunnel and the underground hollow and is opened to the outside is formed in the ground, so that the inclined tunnel including the vertical And other management To easily excavate other tunnels that are inclined in an arbitrary direction including perpendicular to the tunnel from the tunnel that is being excavated, such as an inclined section, a management tunnel, and an auxiliary tunnel. Therefore, it is easy to implement while reducing costs, and also has the effect of stabilizing the facilities by securing the strength against earthquakes.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of an embodiment in which the first gallery-type heating power generation facility of the present invention is formed in a natural mountain in a mountainous area.
FIG. 2 is a schematic cross-sectional view of an embodiment in which the second tunnel-type heating power generation facility of the present invention is formed in a natural mountain in a mountainous area.
FIG. 3 is a cross-sectional view showing an embodiment of an omnidirectional TBM employed in a construction method for a tunnel-type heating power generation facility according to the present invention.
FIG. 4 is a cross-sectional view showing an embodiment for explaining direction conversion of an omnidirectional TBM.
FIG. 5 is a cross-sectional view showing an embodiment for explaining direction conversion of an omnidirectional TBM.
FIG. 6 is a cross-sectional view showing an embodiment of a process for explaining direction conversion of an omnidirectional TBM.
FIG. 7 shows a conventional heating power generation system.
[Explanation of symbols]
1,100 tunnel-type heating power generation facilities, 2,102 horizontal shafts, 3 shafts,
4 L-type tunnels, 5 Heating wind turbines, 6 Wind generators, 7 Pneumatic feeders,
8 open tunnel, 9 one end, 10 other end, 11 management mine,
12 auxiliary tunnels, 13 ion fires, 20 power generation systems,
21 shafts, 22 ion burners, 23 discharge electrodes,
24 particle accelerator, 25 heating furnace, 26 gas inlet,
27 axial fan, 28 gas outlet, 29 rotating shaft,
30, 31 generator, 32 rotation axis, 33 omnidirectional TBM,
34 Subsequent stand, 35 Excavator main body, 36 Square tubular body, 37 Rectangular frame, 38A, B jack, 39A, B gripper, 40 Cutter head,
41 Roller pits, 42 Slitting intake opening, 43 Scraper,
44 wire rope, 45 rail, 50 power generation system,
51 gas inlet, 52 gas outlet, 53 passageway,
54 ion burner, 55 heating furnace, 56 axial fan,
57 generator, 58 ascending vortex, 104 U-shaped tunnel,
111 Inclined part for management

Claims (4)

地山に形成した水平部と該水平部に継続する垂直を含む傾斜部から成り少なくとも一端が地表面に開口される開放坑道、該開放坑道の水平部に一端を連通して地山に垂直を含む傾斜状に形成する管理坑、該開放坑道に一端を連通し他端を該管理坑に連通する補助坑道、該開放坑道の適宜位置に設置される加熱風力装置及び該加熱風力装置からの風力で稼働する風力発電機から構成される坑道式加熱発電施設。An open tunnel consisting of a horizontal part formed in a natural ground and an inclined part including a vertical part continuing to the horizontal part, at least one end of which is open to the ground surface, and one end is connected to the horizontal part of the open tunnel to be perpendicular to the natural ground A management pit formed in an inclined shape, an auxiliary mine shaft having one end connected to the open shaft and the other end connected to the control shaft, a heating wind turbine installed at an appropriate position of the open tunnel, and wind power from the heating wind turbine Tunnel-type heating power generation facility consisting of wind power generators operating in 地山に形成した垂直を含む一方の傾斜部と該傾斜部に継続する垂直を含む管理兼用傾斜部から成り少なくとも一端が地表面に開口される開放坑道、該開放坑道の一方の傾斜部に一端を連通し他端を管理兼用傾斜部に連通する補助坑道、該開放坑道の適宜位置に設置される加熱風力装置及び該加熱風力装置からの風力で稼働する風力発電機から構成される坑道式加熱発電施設。An open tunnel that includes a slope including a vertical formed in a natural ground and a management-slope that includes a vertical that continues to the slope. At least one end is open to the ground surface, and one end is provided on one slope of the open tunnel. Tunnel heating composed of an auxiliary tunnel that communicates the other end with the management and inclined portion, a heating wind turbine installed at an appropriate position of the open tunnel, and a wind power generator that operates with wind power from the heating wind turbine Power generation facility. 請求項1又は2に記載の坑道式風力発電施設の施工法であって、地山に少なくとも垂直を含む傾斜部から成る傾斜坑道を形成し、次いで該傾斜坑道から垂直を含む傾斜状に管理坑を形成して置き、該傾斜坑道を含む地中空間に一端を連通して他端を該管理坑に連通する補助坑道を地山に形成し、しかる後に該地中空間に加熱風力装置と風力発電機を設置する坑道式加熱発電施設の施工法。3. A construction method for a mine-wind-type wind power generation facility according to claim 1 or 2, wherein an inclined mine shaft including an inclined portion including at least perpendicular to a natural ground is formed, and then the management mine is formed in an inclined shape including the vertical from the inclined mine shaft. An auxiliary mine tunnel is formed in the ground where one end communicates between the earth hollow including the inclined mine tunnel and the other end communicates with the management mine. Construction method for tunnel-type heating power generation facilities where generators are installed. 垂直を含む傾斜坑道が、全方位TBMによる連続施工によって掘削されることを特徴とする請求項3に記載の坑道式加熱発電施設の施工法。4. The construction method for a tunnel-type heating power generation facility according to claim 3, wherein the inclined tunnel including the vertical is excavated by continuous construction using an omnidirectional TBM.
JP2003208564A 2003-08-25 2003-08-25 Gallery type heating power generation facility and method for executing work Pending JP2005069015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003208564A JP2005069015A (en) 2003-08-25 2003-08-25 Gallery type heating power generation facility and method for executing work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003208564A JP2005069015A (en) 2003-08-25 2003-08-25 Gallery type heating power generation facility and method for executing work

Publications (1)

Publication Number Publication Date
JP2005069015A true JP2005069015A (en) 2005-03-17

Family

ID=34401797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003208564A Pending JP2005069015A (en) 2003-08-25 2003-08-25 Gallery type heating power generation facility and method for executing work

Country Status (1)

Country Link
JP (1) JP2005069015A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100769675B1 (en) * 2006-04-05 2007-10-23 (주)성풍건설 the construction method excavating underground plaza
CN102913249A (en) * 2012-10-30 2013-02-06 中铁十九局集团有限公司 Inclined shaft transverse-through positive hole single horn lifting construction method
KR101237301B1 (en) * 2010-11-09 2013-02-27 이경균 Generation System using a Underground Tunnel
CN104675407A (en) * 2015-01-14 2015-06-03 中铁第四勘察设计院集团有限公司 Treatment method of single-line mining method subway tunnel inclined shaft top-hole displacement

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100769675B1 (en) * 2006-04-05 2007-10-23 (주)성풍건설 the construction method excavating underground plaza
KR101237301B1 (en) * 2010-11-09 2013-02-27 이경균 Generation System using a Underground Tunnel
CN102913249A (en) * 2012-10-30 2013-02-06 中铁十九局集团有限公司 Inclined shaft transverse-through positive hole single horn lifting construction method
CN102913249B (en) * 2012-10-30 2014-08-27 中铁十九局集团有限公司 Inclined shaft transverse-through positive hole single horn lifting construction method
CN104675407A (en) * 2015-01-14 2015-06-03 中铁第四勘察设计院集团有限公司 Treatment method of single-line mining method subway tunnel inclined shaft top-hole displacement

Similar Documents

Publication Publication Date Title
US8875511B2 (en) Geothermal wind system
US20090120090A1 (en) Geothermal power generation system and method for adapting to mine shafts
CN202450809U (en) Hotairpower generating device
KR100796441B1 (en) Wind force generator
JP2005069015A (en) Gallery type heating power generation facility and method for executing work
JP2009121451A (en) Wind power generation device
JP2005002850A (en) Tunnel-type heating power-station and its construction method
JP2005248821A (en) Wind power generation facility of tunnel type
CN206458316U (en) A kind of automatic steady fixed pattern electric pole mounting hole drills through device
CN219942246U (en) Far-emission magnetized water mist dust remover for coal mine underground mining
AU2009213058A1 (en) Wind turbine
JPH0688565A (en) Wind power takeout device
JP2000161013A (en) Thermal power plant
WO2011007965A2 (en) Wind generator
CN101368543B (en) Upward flowing air energy power generation apparatus
CN213653575U (en) Automated equipment that rock foundation dug
CN107905792A (en) A kind of embedded shaft excavation construction technology
JP2022122995A (en) Wind power generator excluding propeller mechanism
CN210239910U (en) Airflow wind energy self-generating system device applied to high-rise building
CN1540161A (en) Man-made tornado-atosphere power generation system
CN1165247A (en) Wind energy-thermal power generating method and its special wind tower
CN202900555U (en) Solar airflow power generation assembly
CN107976130B (en) quick and soundless rock breaking method
CN207032216U (en) A kind of denitration ground base enforcement device
CN208472721U (en) A kind of anchor pole constructed in loose media stratum using hand air drill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090203