JP2005068534A - Welded steel pipe suitable for hydroforming and barring and method for producing the same - Google Patents

Welded steel pipe suitable for hydroforming and barring and method for producing the same Download PDF

Info

Publication number
JP2005068534A
JP2005068534A JP2003304057A JP2003304057A JP2005068534A JP 2005068534 A JP2005068534 A JP 2005068534A JP 2003304057 A JP2003304057 A JP 2003304057A JP 2003304057 A JP2003304057 A JP 2003304057A JP 2005068534 A JP2005068534 A JP 2005068534A
Authority
JP
Japan
Prior art keywords
less
steel pipe
hydroforming
welded steel
burring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003304057A
Other languages
Japanese (ja)
Other versions
JP4244749B2 (en
Inventor
Motoaki Itaya
元晶 板谷
Yasue Koyama
康衛 小山
Nobuki Tanaka
伸樹 田中
Yoshikazu Kawabata
良和 河端
Yuji Hashimoto
裕二 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003304057A priority Critical patent/JP4244749B2/en
Publication of JP2005068534A publication Critical patent/JP2005068534A/en
Application granted granted Critical
Publication of JP4244749B2 publication Critical patent/JP4244749B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a welded steel pipe suited for hydroforming and barring and having a TS of at least 400 MPa and to provide a method for producing the same. <P>SOLUTION: The welded steel pipe has a composition containing 0.01 to less than 0.05% C, at most 1.5% Si, 0.2 to 3.5% Mn, less than 0.002% S, at most 0.1% Al, and at most 0.01% N, with the balance being Fe and unavoidable impurities, has a structure entirely comprising a bainitic-ferrite structure or comprising 1 to 40 vol.% polygonal ferrite structure and the balance of bainitic-ferrite structure and has a texture where the inverse strength ratio in the (110) face of ferrite in a cross section vertical to the longitudinal direction is 2.0 or larger or the inverse ratio of the (200) face of ferrite in a cross section vertical to the peripheral direction is 2.0 or larger. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、自動車の構造部材や足回り部材などの使途に好適な溶接鋼管に係り、とくにハイドロフォーミングにおける加工性(ハイドロフォーミング性)および穴あけ後その穴をポンチで拡げるバーリングにおける加工性(バーリング性)の改善に関する。   The present invention relates to a welded steel pipe suitable for use as a structural member or underbody member of an automobile, in particular, workability in hydroforming (hydroforming property) and workability in burring in which the hole is expanded by punching (burring property). ) Regarding improvements.

自動車用の構造部材として、種々の断面形状をもつ中空部材が使用されているが、従来、このような中空部材の製造方法としては、鋼板のプレス加工によって成形した部品同士をスポット溶接で接合して製造する方法が採用されてきた。   Hollow members having various cross-sectional shapes have been used as structural members for automobiles. Conventionally, as a method for producing such hollow members, parts formed by press working of steel plates are joined together by spot welding. The manufacturing method has been adopted.

しかし、最近、自動車の構造部材用中空部材には、衝突時のより高い衝撃吸収能を有することが要求され、一層高強度化された素材が使用されるようになっている。このため、従来のプレス成形による方法では、成形欠陥がなく、また形状・寸法精度に優れた部材を製造することが次第に困難になってきている。     However, recently, a hollow member for a structural member of an automobile is required to have a higher shock absorption capability at the time of a collision, and a material with higher strength has been used. For this reason, it is becoming increasingly difficult to produce a member having no molding defects and having excellent shape and dimensional accuracy by the conventional press molding method.

このような問題を解決するための新しい成形方法として、最近、ハイドロフォーミングが注目されている。ハイドロフォーミングは、鋼管の内部に高圧液体を注入して所望形状の部材に成形する成形方法であり、鋼管の断面寸法を拡管加工などにより変化させて、複雑な形状の部材を一体成形でき、強度・剛性を高めることができる優れた成形法である。   Recently, hydroforming has attracted attention as a new molding method for solving such problems. Hydroforming is a molding method in which a high-pressure liquid is injected into a steel pipe to form a member with a desired shape, and the cross-sectional dimension of the steel pipe can be changed by pipe expansion processing, etc. -An excellent molding method that can increase rigidity.

ところで、このハイドロフォーミングに供される鋼管としては、容易に強度が得られ、かつ安価であるC:0.10〜0.20質量%の低、中炭素鋼板からなる電縫鋼管が用いられることが多かった。しかしながら、このような低、中炭素鋼板からなる電縫鋼管にハイドロフォーミングを施すと、電縫鋼管自体の加工性がよくないために、十分な拡管を行うことができないという問題があった。   By the way, as a steel pipe used for this hydroforming, an ERW steel pipe made of a low and medium carbon steel sheet of C: 0.10 to 0.20 mass%, which is easily obtained and inexpensive, is often used. However, when hydroforming is performed on an electric resistance welded steel pipe made of such a low and medium carbon steel plate, there is a problem that sufficient pipe expansion cannot be performed due to poor workability of the electric resistance welded steel pipe itself.

このような問題点に対し、電縫鋼管の加工性を高めるために、素材として、炭素量を著しく低減した極低炭素鋼板を用いることが考えられる。しかし、極低炭素電縫鋼管の場合には、ハイドロフォーミング性はよいものの、鋼管製造時の溶接熱により、シーム部近傍の結晶粒が粗大化して軟化するため、拡管時の変形がシーム部近傍に局部的に集中して、素材が持つ高延性を十分に発揮できないという問題がある。このため、ハイドロフォーミングに十分耐えられる素材特性とシーム部品質を有する溶接鋼管が強く要望されている。   In order to improve the workability of the electric resistance welded steel pipe, it is conceivable to use an extremely low carbon steel sheet with a significantly reduced carbon content as a material. However, in the case of an ultra-low carbon ERW steel pipe, the hydroforming property is good, but the crystal grains in the vicinity of the seam are coarsened and softened by the welding heat at the time of manufacturing the steel pipe, so the deformation at the time of pipe expansion is near the seam. However, there is a problem that the high ductility of the material cannot be fully exhibited. For this reason, there is a strong demand for welded steel pipes having material characteristics and seam quality that can sufficiently withstand hydroforming.

この要望に応じて、特許文献1に、質量%で、C:0.05〜0.2 %、Si:1.0 %以下、Mn:1.5 %以下、P:0.1 %以下、S:0.01%以下、Al:0.1 %以下、N:0.01%以下を含み、あるいはさらに、A群および/またはB群(A群:Cr:0.1 %以下、Nb:0.05%以下、Ti:0.05%以下、Cu:1.0 %以下、Ni:1.0 %以下、Mo:1.0 %以下、B:0.01%以下のうちの1種または2種以上、B群:Ca:0.02%以下、REM :0.02%以下のうちの1種または2種)を含有し、残部Feおよび不可避的不純物からなる組成を有する溶接鋼管であって、引張強さ(以下、TSと記す。)が400MPa以上、n値とr値の積、n×rが0.22以上であることを特徴とするハイドロフォーミング性に優れた溶接鋼管が提案されている。この溶接鋼管は、前記組成の溶接鋼管を素材鋼管として、該素材鋼管に加熱処理または均熱処理を施したのち、累積縮径率:35%以上で、 圧延終了温度:500 〜900 ℃とする絞り圧延(好ましくはAr3変態点以下の温度域における累積縮径率が20%以上)を施すことにより製造される。
特開2003−49245号公報
In response to this request, Patent Document 1 states that in mass%, C: 0.05 to 0.2%, Si: 1.0% or less, Mn: 1.5% or less, P: 0.1% or less, S: 0.01% or less, Al: 0.1% Hereinafter, N: 0.01% or less, or further, Group A and / or B (Group A: Cr: 0.1% or less, Nb: 0.05% or less, Ti: 0.05% or less, Cu: 1.0% or less, Ni: 1.0% or less, Mo: 1.0% or less, B: One or more of 0.01% or less, Group B: Ca: 0.02% or less, REM: One or two of 0.02% or less) And a welded steel pipe having a composition composed of the remaining Fe and inevitable impurities, the tensile strength (hereinafter referred to as TS) is 400 MPa or more, the product of n value and r value, and n × r is 0.22 or more. A welded steel pipe excellent in hydroforming properties characterized by the above has been proposed. This welded steel pipe is a drawn steel pipe having the above composition as a raw steel pipe, and after subjecting the raw steel pipe to heat treatment or soaking, the cumulative diameter reduction ratio is 35% or more and the rolling finish temperature is 500 to 900 ° C. It is manufactured by rolling (preferably the cumulative diameter reduction rate in the temperature range below the Ar 3 transformation point is 20% or more).
JP 2003-49245 A

一方、近年、ハイドロフォーミング性のみならず、ハイドロフォーミング後に、バーリングと呼ばれる、穴あけ後その穴をポンチで拡げるという厳しい加工を受けても割れが発生しにくい特性すなわちバーリング性にも優れた溶接鋼管が要求されるようになってきた。しかし、前記特許文献1に記載された溶接鋼管は、ハイドロフォーミング性には優れるものの、バーリング性の点では不十分であった。 On the other hand, in recent years, not only hydroforming but also welded steel pipes, which are excellent in burring properties, such as burring, which is difficult to crack even after severe processing, such as burring, which is expanded after punching by punching. It has come to be required. However, although the welded steel pipe described in Patent Document 1 is excellent in hydroforming properties, it is insufficient in terms of burring properties.

そこで、本発明は、ハイドロフォーミング性に加えバーリング性にも優れるTS400MPa以上の溶接鋼管をその適切な製造方法とともに提供することを目的とする。   Accordingly, an object of the present invention is to provide a welded steel pipe of TS400 MPa or more that is excellent in burring property in addition to hydroforming property, together with its appropriate manufacturing method.

本発明者らは、前記目的を達成するために、前記特許文献1に記載された溶接鋼管をベースとして鋭意検討し、その結果、C、Sの低減と組織における第2相(:フェライト相以外の相)の分率の低減により局部伸びが増加して十分なバーリング性を確保でき、また、Cの低減による強度低下をMn、Siの増量により補償してTS≧400MPaを確保できることを見いだし、本発明をなした。   In order to achieve the above-mentioned object, the present inventors diligently studied on the basis of the welded steel pipe described in Patent Document 1, and as a result, reduced C and S and the second phase in the structure (: other than the ferrite phase) It has been found that the local elongation increases due to the reduction of the fraction of (phase) and sufficient burring property can be secured, and that the strength decrease due to the reduction of C can be compensated by increasing the amount of Mn and Si, and TS ≧ 400 MPa can be secured, Made the present invention.

すなわち、本発明は、質量%で、C:0.01%以上0.05%未満、Si:1.5%以下、Mn:0.2〜3.5%、S:0.002%未満、Al:0.1%以下、N:0.01%以下を含み、残部Feおよび不可避的不純物からなる組成を有し、組織が全部ベイニティックフェライト組織、または、ポリゴナルフェライト組織:1〜40体積%を含み残部がベイニティックフェライト組織からなり、かつ、長手方向に垂直な断面(C断面)でのフェライトの(110)面のインバース強度比が2.0以上、あるいはさらに円周方向に垂直な断面(L断面)でのフェライトの(200)面のインバース強度比が2.0以上の集合組織を有することを特徴とするハイドロフォーミング性およびバーリング性に優れた引張強さ400MPa以上の溶接鋼管である。   That is, the present invention provides, in mass%, C: 0.01% or more and less than 0.05%, Si: 1.5% or less, Mn: 0.2 to 3.5%, S: less than 0.002%, Al: 0.1% or less, N: 0.01% or less. And having a composition consisting of the remainder Fe and inevitable impurities, the entire structure is bainitic ferrite structure, or polygonal ferrite structure: 1 to 40% by volume, and the remainder consists of bainitic ferrite structure, and The inverse strength ratio of the ferrite (110) plane in the cross section perpendicular to the longitudinal direction (C cross section) is 2.0 or more, or the inverse strength of the ferrite (200) plane in the cross section perpendicular to the circumferential direction (L cross section). It is a welded steel pipe having a tensile strength of 400 MPa or more, excellent in hydroforming properties and burring properties, characterized by having a texture with a ratio of 2.0 or more.

本発明では、前記組成に加えてさらに、A群: Cr:0.1 %以下、Nb:0.05%以下、Ti:0.05%以下、Cu:1%以下、Ni:1%以下、Mo:1%以下、B:0.01%以下のうちの1種または2種以上、および/または、B群:Ca:0.02%以下、REM :0.02%以下のうちの1種または2種、を含有してもよい。   In the present invention, in addition to the above composition, Group A: Cr: 0.1% or less, Nb: 0.05% or less, Ti: 0.05% or less, Cu: 1% or less, Ni: 1% or less, Mo: 1% or less, B: One or more of 0.01% or less, and / or Group B: Ca: 0.02% or less, REM: One or two of 0.02% or less may be contained.

また、本発明は、質量%で、C:0.01%以上0.05%未満、Si:1.5%以下、Mn:0.2〜3.5%、P:0.1%以下、S:0.002%未満、Al:0.1%以下、N:0.01%以下を含み、あるいはさらに、A群: Cr:0.1 %以下、Nb:0.05%以下、Ti:0.05%以下、Cu:1%以下、Ni:1%以下、Mo:1%以下、B:0.01%以下のうちの1種または2種以上、および/または、B群:Ca:0.02%以下、REM :0.02%以下のうちの1種または2種、を含有する組成になる溶接鋼管を素材鋼管として、該素材鋼管に加熱処理または均熱処理を施したのち、累積縮径率:30%以上で、 圧延終了温度:650〜900℃とする絞り圧延を施すことを特徴とするハイドロフォーミング性およびバーリング性に優れた引張強さ400MPa以上の溶接鋼管の製造方法である。この製造方法では、絞り圧延後の鋼管を3℃/s以上の平均冷却速度で400℃以下まで冷却するのが好ましい。   Further, the present invention is, in mass%, C: 0.01% or more and less than 0.05%, Si: 1.5% or less, Mn: 0.2 to 3.5%, P: 0.1% or less, S: less than 0.002%, Al: 0.1% or less, N: 0.01% or less, or further, Group A: Cr: 0.1% or less, Nb: 0.05% or less, Ti: 0.05% or less, Cu: 1% or less, Ni: 1% or less, Mo: 1% or less, B: welded steel pipe having a composition containing one or more of 0.01% or less and / or group B: Ca: 0.02% or less, REM: one or two of 0.02% or less Hydroforming, characterized by subjecting the raw steel pipe to heat treatment or soaking, and then subjecting the raw steel pipe to drawing rolling with a cumulative diameter reduction ratio of 30% or more and a rolling end temperature of 650 to 900 ° C. This is a method for producing a welded steel pipe having a tensile strength of 400 MPa or more, which is excellent in heat resistance and burring properties. In this production method, it is preferable to cool the steel pipe after drawing to 400 ° C. or less at an average cooling rate of 3 ° C./s or more.

本発明によれば、適正な圧延集合組織を形成し、強度を落とすことなく、高r値化、高n値化、高延性化を達成できるので、優れたハイドロフォーミング性が得られ、かつ、第2相の分率が低減して局部伸びが向上するので、優れたバーリング性が得られる。   According to the present invention, an appropriate rolling texture can be formed, and high r value, high n value, and high ductility can be achieved without reducing the strength, so that excellent hydroforming properties can be obtained, and Since the fraction of the second phase is reduced and the local elongation is improved, excellent burring properties can be obtained.

まず、本発明で用いる鋼の組成を上記のように規定した理由について説明する。以下、組成に関する質量%は単に%と記す。   First, the reason why the composition of the steel used in the present invention is defined as described above will be described. Hereinafter, the mass% related to the composition is simply referred to as%.

C:0.01%以上0.05%未満
Cは、鋼の強度増加に寄与する元素であるが、0.05%以上含有すると第2相の分率が増加して局部伸びが低下し、バーリング性が悪化する。一方、0.01%未満の含有では、所望の引張強さを確保することが困難になる。このため、Cは0.01%以上0.05%未満の範囲とした。
C: 0.01% or more and less than 0.05% C is an element that contributes to an increase in the strength of the steel. However, if it is contained in an amount of 0.05% or more, the fraction of the second phase increases, the local elongation decreases, and the burring properties deteriorate. On the other hand, when the content is less than 0.01%, it is difficult to ensure a desired tensile strength. For this reason, C was made into the range of 0.01% or more and less than 0.05%.

Si:1.5%以下
Siは、鋼の強度を増加させる元素であり、所望の強度に応じて好ましくは0.01%以上含有させるが、過剰に含有すると、表面性状の顕著な悪化を招き、ハイドロフォーミング性が低下する。このため、本発明ではSiは1.5%以下とした。なお、好ましくは1%以下である。
Si: 1.5% or less
Si is an element that increases the strength of the steel, and is preferably contained in an amount of 0.01% or more depending on the desired strength. However, if excessively contained, the surface property is significantly deteriorated and the hydroforming property is lowered. Therefore, in the present invention, Si is set to 1.5% or less. In addition, Preferably it is 1% or less.

Mn:0.2〜3.5%
Mnは、表面性状および溶接性を低下させることなく、強度を向上させる元素であり、低C量の範囲で所望の強度を確保するために、0.2%以上とした。一方、3.5%を超えて含有すると、ハイドロフォーミング時の限界拡管率の低下を招き、ハイドロフォーミング性が低下する。このため、Mnは3.5%以下に限定した。なお、好ましくは、0.2〜2%である。
Mn: 0.2-3.5%
Mn is an element that improves the strength without deteriorating the surface properties and weldability, and is 0.2% or more in order to ensure a desired strength within a low C content range. On the other hand, if the content exceeds 3.5%, the critical expansion ratio at the time of hydroforming is lowered, and the hydroforming property is lowered. For this reason, Mn was limited to 3.5% or less. In addition, Preferably, it is 0.2 to 2%.

S:0.002%未満
Sは、鋼中で非金属介在物として存在し、この非金属介在物を起点としてハイドロフォーミング後のバーリング時に穴広げの歪が小さい段階で穴の周縁に亀裂が発生しやすいため、バーリング性を悪化させる。このバーリング性の悪化を防止するために、Sは0.002%未満に制限する必要がある。また、更なるバーリング性向上の観点から、Sは0.001%以下とすることが好ましい。なお、Sの非金属介在物は、ハイドロフォーミング時に鋼管が破断(バースト)する起点となってハイドロフォーミング性を低下させるため、それを防ぐべく特許文献1ではS量を0.01%以下としているが、より加工の厳しいバーリングに対しては本発明で規定する如くS量の上限を特許文献1よりも格段に低くする必要がある。
S: Less than 0.002% S is present in steel as a non-metallic inclusion, and cracks are likely to occur at the periphery of the hole when burring after hydroforming is small, starting from this non-metallic inclusion. Therefore, the burring property is deteriorated. In order to prevent the deterioration of the burring property, S needs to be limited to less than 0.002%. Further, from the viewpoint of further improving the burring property, S is preferably made 0.001% or less. In addition, since the non-metallic inclusion of S becomes a starting point at which the steel pipe breaks (bursts) at the time of hydroforming and lowers the hydroforming property, in Patent Document 1, the S amount is 0.01% or less in order to prevent this, For more severe burring, it is necessary to make the upper limit of the S amount much lower than that of Patent Document 1 as defined in the present invention.

Al:0.1%以下
Alは、脱酸剤として作用するとともに、結晶粒の粗大化を抑制する有用な元素であり、0.01%以上含有することが望ましい。しかし、0.1%を超えて含有すると、バーリング時の亀裂の発生起点となりやすい酸化物系介在物量が増加し、バーリング性が悪化するので、Alは0.1%以下とした。
Al: 0.1% or less
Al is a useful element that acts as a deoxidizer and suppresses coarsening of crystal grains, and is preferably contained in an amount of 0.01% or more. However, if the content exceeds 0.1%, the amount of oxide inclusions that tend to be the starting point of cracking during burring increases and burring properties deteriorate, so Al was made 0.1% or less.

本発明では、上記した素材鋼管に、まず、加熱処理または均熱処理が施される。素材鋼管に施す加熱処理の温度条件は、とくに限定されないが、700〜1100℃とすることが、後述する絞り圧延条件を満足するために好ましい。もっとも、素材鋼管の製造が温間または熱間で行われ、絞り圧延に際し、充分な温度を保有している場合には、管温度分布の均熱化のために均熱処理を施すのみで充分である。素材鋼管の保有する温度が低い場合には加熱処理を施すことはいうまでもない。   In the present invention, the material steel pipe is first subjected to heat treatment or soaking. The temperature condition of the heat treatment applied to the raw steel pipe is not particularly limited, but is preferably 700 to 1100 ° C. in order to satisfy the drawing rolling conditions described later. However, if the raw steel pipe is manufactured warmly or hotly and sufficient temperature is maintained during the drawing rolling, it is sufficient to perform soaking to equalize the pipe temperature distribution. is there. Needless to say, heat treatment is performed when the temperature of the material steel pipe is low.

N:0.01%以下
Nは、Alと結合して結晶粒を微細化する元素であり、このためには0.001 %以上含有することが望ましいが、0.01%を超えて含有すると、延性を劣化させる。このため、Nは0.01%以下とした。
N: 0.01% or less N is an element that combines with Al to refine crystal grains. For this purpose, N is preferably contained in an amount of 0.001% or more, but if contained over 0.01%, ductility is deteriorated. For this reason, N was made into 0.01% or less.

A群:Cr:0.1%以下、Nb:0.05%以下、Ti:0.05%以下、Cu:1%以下、Ni:1%以下、Mo:1%以下、B:0.01%以下のうちの1種または2種以上
Cr、Ti、Nb、Cu、Ni、Mo、Bは、いずれも延性を損なうことなく、強度を向上させることができる有用な元素であり、必要に応じ選択して含有できる。このような効果は、Cr、Ti、Nb、Cu、Ni、Moでは0.01%以上の含有で、Bでは0.0001%以上の含有で顕著に認められるが、Crで0.1%を、Ti、Nbで0.05%を、Cu、Ni、Moで1%を、Bで0.01%を超えて含有してもその効果が飽和し、含有量に見合う効果が期待できず、経済的に不利になるほか、かえって、延性、溶接性や鋼の熱間加工性および冷間加工性を低下させる。このため、Cr:0.1%以下、Nb:0.05%以下、Ti:0.05%以下、Cu:1%以下、Ni:1%以下、Mo:1%以下、B:0.01%以下とすることが好ましい。
Group A: Cr: 0.1% or less, Nb: 0.05% or less, Ti: 0.05% or less, Cu: 1% or less, Ni: 1% or less, Mo: 1% or less, B: 0.01% or less 2 or more types
Cr, Ti, Nb, Cu, Ni, Mo, and B are useful elements that can improve strength without impairing ductility, and can be selected and contained as necessary. Such an effect is noticeable when the content of Cr, Ti, Nb, Cu, Ni, and Mo is 0.01% or more, and when B is 0.0001% or more, 0.1% for Cr and 0.05% for Ti and Nb. %, Cu, Ni, Mo 1%, B exceeding 0.01%, the effect is saturated, the effect commensurate with the content can not be expected, economically disadvantageous, Reduces ductility, weldability, hot workability and cold workability of steel. Therefore, Cr: 0.1% or less, Nb: 0.05% or less, Ti: 0.05% or less, Cu: 1% or less, Ni: 1% or less, Mo: 1% or less, and B: 0.01% or less are preferable.

B群:Ca:0.02%以下、REM :0.02%以下のうちの1種または2種
Ca、REM は、いずれも非金属介在物の形態を球状とし、ハイドロフォーミング性を向上させる作用を有する元素であり、必要に応じ選択して含有できる。このような効果は、Ca、REM ともに0.0020%以上の含有で顕著となる。一方、0.02%を超えて含有すると、介在物量が多くなりすぎて清浄度が低下する。このため、Ca、REM ともに0.02%以下とすることが好ましい。なお、Ca、REM の両者を併用する場合には合計量で0.03%以下とすることが好ましい。
Group B: Ca: 0.02% or less, REM: One or two of 0.02% or less
Ca and REM are elements that have a function of improving the hydroforming property by making the form of non-metallic inclusions spherical, and can be selected and contained as necessary. Such an effect becomes remarkable when both Ca and REM are contained in an amount of 0.0020% or more. On the other hand, if the content exceeds 0.02%, the amount of inclusions becomes excessive and the cleanliness is lowered. For this reason, it is preferable that both Ca and REM be 0.02% or less. When both Ca and REM are used in combination, the total amount is preferably 0.03% or less.

上記した成分以外の残部はFeおよび不可避的不純物である。不可避的不純物のうち、Pは0.05%以下、Oは0.01%以下が許容される。   The balance other than the above components is Fe and inevitable impurities. Among inevitable impurities, P is allowed to be 0.05% or less, and O is allowed to be 0.01% or less.

次に、本発明の溶接鋼管は、組織の全部がベイニティックフェライト組織、または、その体積率1〜40%の部分がポリゴナルフェライト組織で置き換わった組織となっているものである。この組織とすることで、第2相分率が低減し、局部伸びが向上してバーリング性に優れたものとなる。なお、強度と延性のバランスの観点から、ポリゴナルフェライト組織の平均結晶粒径は5μm以下であることが好ましい。ここで、鋼管の組織は、長手方向に垂直な断面(C断面)をナイタールで腐食して現出させた組織を光学顕微鏡で観察して標準組織と比較することにより同定され、該同定された組織に係る体積率や平均結晶粒径は画像解析装置を用いて測定される。   Next, in the welded steel pipe of the present invention, the whole structure is a bainitic ferrite structure, or a structure in which a portion having a volume ratio of 1 to 40% is replaced with a polygonal ferrite structure. By adopting this structure, the second phase fraction is reduced, the local elongation is improved, and the burring property is excellent. From the viewpoint of balance between strength and ductility, the average crystal grain size of the polygonal ferrite structure is preferably 5 μm or less. Here, the structure of the steel pipe was identified by observing, with an optical microscope, a structure obtained by corroding a section perpendicular to the longitudinal direction (C section) with nital, and comparing it with a standard structure. The volume ratio and the average crystal grain size related to the tissue are measured using an image analyzer.

また、本発明の溶接鋼管は、高r値化、高n値化の観点から、長手方向に垂直な断面でのフェライトの(110)面のインバース強度比が2.0以上、あるいはさらに円周方向に垂直な断面でのフェライトの(200)面のインバース強度比が2.0以上の集合組織を有するものとした。これにより、優れたハイドロフォーミング性が得られる。ここで、インバース強度比は、測定試料にX線を照射し、得られた各結晶面からの回折強度を測定し、結晶方位がランダムな試料の回折強度との比をとることにより求められる。   Further, in the welded steel pipe of the present invention, from the viewpoint of increasing the r value and the n value, the inverse strength ratio of the ferrite (110) plane in the cross section perpendicular to the longitudinal direction is 2.0 or more, or further in the circumferential direction. The ferrite had a texture with an inverse strength ratio of 2.0 or more on the (200) plane of ferrite in a vertical section. Thereby, the outstanding hydroforming property is obtained. Here, the inverse intensity ratio is obtained by irradiating the measurement sample with X-rays, measuring the diffraction intensity from each crystal plane obtained, and taking the ratio with the diffraction intensity of the sample with a random crystal orientation.

上記の組成、組織および集合組織を有する本発明の溶接鋼管は、TS400MPa以上の高強度を有し、ハイドロフォーミング性とバーリング性に優れる。ハイドロフォーミング性は、ハイドロフォーミング加工装置(例えば特許文献1の図2に示されたもの)を用いて軸方向圧縮を付与した自由バルジ試験を行って限界拡管率を測定し、その値で評価される。ここで、限界拡管率=(dmax−d0)/d0(×100%);dmax:バースト(破断)時の最大外径(=バースト部分の周長/円周率)、d0:試験前の外径、である。一方、バーリング性は、図1に示すような穴拡げ試験により評価される。すなわち、ハイドロフォーミング後の管から切り出して平板化した試験片1に初期径Φ0=10mmの穴2を打ち抜き、この穴2にポンチ3を下方から押し込んで穴径を拡げていき、穴2の周縁に生じた亀裂が板厚を貫通した時点でポンチ3の押し込みを停止して、拡がった穴2の径Φを測定し、式:(Φ−Φ0)/Φ0(×100%)で穴拡げ率を算出し、その値で評価される。   The welded steel pipe of the present invention having the above composition, structure and texture has a high strength of TS400 MPa or more and is excellent in hydroforming properties and burring properties. The hydroforming property is evaluated by measuring the limit tube expansion rate by performing a free bulge test with axial compression using a hydroforming machine (for example, one shown in FIG. 2 of Patent Document 1), and evaluating the value. The Here, limit tube expansion rate = (dmax−d0) / d0 (× 100%); dmax: maximum outer diameter at burst (rupture) (= periphery length of burst portion / circumference ratio), d0: outside before test Diameter. On the other hand, the burring property is evaluated by a hole expansion test as shown in FIG. That is, a hole 2 having an initial diameter Φ 0 = 10 mm is punched into a test piece 1 cut out from a tube after hydroforming and flattened, and a punch 3 is pushed into the hole 2 from below to expand the hole diameter. When the crack generated in the hole penetrates the plate thickness, the push-in of the punch 3 is stopped, the diameter Φ of the expanded hole 2 is measured, and the hole expansion rate is expressed by the formula: (Φ−Φ0) / Φ0 (× 100%) Is calculated and evaluated with that value.

次に、本発明溶接鋼管の製造方法について説明する。   Next, the manufacturing method of this invention welded steel pipe is demonstrated.

本発明では、上記した組成を有する溶接鋼管を素材鋼管として用いるが、この素材鋼管の製造手段はとくに限定されない。帯鋼を、冷間あるいは温間または熱間でロール成形あるいは曲げ加工してオープン管とし、該オープン管の両エッジ部を、誘導加熱を利用し融点以上に加熱しスクイズロールで衝合溶接する電気抵抗溶接法、あるいは、前記オープン管の両エッジ部を、誘導加熱を利用し融点未満の固相圧接温度域に加熱しスクイズロールで衝合圧接する固相圧接法、あるいは鍛接法、などがいずれも好適に用いることができる。なお、素材鋼管の製造に使用する帯鋼は、上記した組成の鋼を溶製した後、連続鋳造法あるいは造塊−分塊法によりスラブとし、該スラブを、熱間圧延により熱延鋼板とするか、さらに冷間圧延−焼鈍により冷延鋼板とした、熱間圧延鋼板、あるいは冷間圧延鋼板が好適に利用できる。   In the present invention, a welded steel pipe having the above-described composition is used as a raw steel pipe, but the means for manufacturing the raw steel pipe is not particularly limited. The steel strip is cold or warm or hot rolled or bent to form an open tube, and both edges of the open tube are heated to the melting point or higher by induction heating and squeeze-rolled into a squeeze roll. Electric resistance welding, or both edges of the open pipe are heated to a solid pressure welding temperature range below the melting point using induction heating and subjected to abutting pressure welding with a squeeze roll, or a forge welding method, etc. Either can be used suitably. The steel strip used for the production of the raw steel pipe is a slab formed by continuous casting or ingot-bundling after melting the steel having the above composition, and the slab is formed into a hot-rolled steel sheet by hot rolling. In addition, a hot-rolled steel sheet or a cold-rolled steel sheet that is a cold-rolled steel sheet by cold rolling-annealing can be suitably used.

さらに、上記の加熱処理または均熱処理に次いで、累積縮径率:30%以上で、 圧延終了温度:650〜900℃とする絞り圧延が施される。   Further, after the above heat treatment or soaking, drawing rolling is performed at a cumulative diameter reduction ratio of 30% or more and a rolling end temperature of 650 to 900 ° C.

この絞り圧延において、累積縮径率が30%に満たないと、所望の組織および集合組織が得られず、ハイドロフォーミング性、バーリング性が低下してしまうので、累積縮径率は30%以上とした。累積縮径率の上限については、特に限定されないが、偏肉の低減や生産性の観点から95%程度とするのがよい。   In this drawing rolling, if the cumulative diameter reduction ratio is less than 30%, the desired structure and texture cannot be obtained, and hydroforming properties and burring properties are deteriorated. Therefore, the cumulative diameter reduction ratio is 30% or more. did. The upper limit of the cumulative diameter reduction rate is not particularly limited, but is preferably about 95% from the viewpoint of reducing uneven thickness and productivity.

また、圧延終了温度が650℃未満の場合、または900℃を超える場合も、所望の組織および集合組織が得られず、ハイドロフォーミング性、バーリング性が低下してしまうので、圧延終了温度は、650〜900℃とした。   In addition, when the rolling end temperature is less than 650 ° C. or exceeds 900 ° C., the desired structure and texture cannot be obtained, and the hydroforming property and burring property are deteriorated. ˜900 ° C.

上記の絞り圧延は、レデューサと称される、複数の孔型圧延機をタンデムに配列した絞り圧延装置を用いることにより、効率良く実施することができる。   The above-described drawing rolling can be efficiently performed by using a drawing rolling device called a reducer in which a plurality of perforated rolling mills are arranged in tandem.

さらに、本発明では、組織を微細化して強度、延性をより向上させる観点から、絞り圧延後の鋼管を3℃/s以上の平均冷却速度で400℃以下の温度域に設けた冷却停止温度まで冷却するのが好ましい。ここでいう平均冷却速度は、圧延終了温度から上記冷却停止温度までの間の平均冷却速度である。このような圧延後冷却は、上記レデューサの出側に水スプレーやミストを吹き付ける装置を配置し、適宜の条件に設定して稼動させることにより、容易に実施することができる。   Furthermore, in the present invention, from the viewpoint of further improving the strength and ductility by refining the structure, the steel pipe after drawing and rolling is cooled to a cooling stop temperature provided at a temperature range of 400 ° C. or lower at an average cooling rate of 3 ° C./s or higher. Cooling is preferred. The average cooling rate here is an average cooling rate between the rolling end temperature and the cooling stop temperature. Such post-rolling cooling can be easily carried out by disposing a device for spraying water spray or mist on the exit side of the reducer, and setting and operating under appropriate conditions.

表1に示す組成の鋼板(熱延鋼板または焼鈍済み冷間圧延鋼板)を、表2に示す条件でオープン管状にロール成形した後、管周方向の両端を誘導加熱により加熱し衝合接合して、溶接鋼管とした。   A steel plate (hot rolled steel plate or annealed cold-rolled steel plate) having the composition shown in Table 1 is roll-formed into an open tube under the conditions shown in Table 2, and then both ends in the pipe circumferential direction are heated by induction heating and subjected to butt joining. Thus, a welded steel pipe was obtained.

これら溶接鋼管を素材鋼管(素管)として表2に示す条件で絞り圧延を行い、表2に示すサイズの製品鋼管(製品管)を得た。得られた製品鋼管について、以下の調査を行った。   These welded steel pipes were subjected to drawing rolling under the conditions shown in Table 2 as raw steel pipes (elementary pipes) to obtain product steel pipes (product pipes) having the sizes shown in Table 2. The following investigation was conducted on the obtained product steel pipe.

・JIS 11号引張試験片実質を採取し、引張試験を行って降伏強さYS、引張強さTS、伸びElを測定した。   -A JIS No. 11 tensile test specimen was collected and subjected to a tensile test to measure the yield strength YS, tensile strength TS, and elongation El.

・JIS 12号A引張試験片を採取し(試験方向は長手方向に平行)、引張試験を行って次式によりn値、r値を測定した。   -JIS No. 12 A tensile test specimens were collected (the test direction was parallel to the longitudinal direction), the tensile test was performed, and the n value and the r value were measured by the following equations.

n=ln(σ10/σ5)/ln(ε10/ε5)
ここで、σ,εは真応力,真歪、下付添字は測定段階での公称歪の%値である。
n = ln (σ 10 / σ 5 ) / ln (ε 10 / ε 5 )
Here, σ and ε are the true stress and true strain, and the subscript is the% value of the nominal strain at the measurement stage.

r=ln(W0/W)/ln(t0/t)≒ln(W0/W)/ln(L/(L00))
ここで、t,W,Lは板厚、板幅、ゲージ長、下付添字は測定段階での公称歪の%値であり、x=6〜7%、L0=2mmとした。
r = ln (W 0 / W x ) / ln (t 0 / t x ) ≈ln (W 0 / W x ) / ln (L x W x / (L 0 W 0 ))
Here, t, W, and L are the plate thickness, plate width, gauge length, and subscript are the% values of the nominal strain at the measurement stage, and x = 6 to 7% and L 0 = 2 mm.

・前述のハイドロフォーミング加工装置を用いて軸方向圧縮を付与した自由バルジ試験を行って限界拡管率を測定した。   -A free bulge test with axial compression was performed using the hydroforming machine described above, and the critical tube expansion rate was measured.

・拡管率40%までハイドロフォーミングした後、前述の穴拡げ試験を行って穴拡げ率を測定した。   ・ After hydroforming to a pipe expansion ratio of 40%, the hole expansion ratio was measured by performing the hole expansion test described above.

・前述の方法で組織および集合組織を調査した。   -The organization and texture were investigated by the method described above.

上記調査により得られた結果を表3に示す。なお、表3にはYR(=YS/TS)も示した。   Table 3 shows the results obtained from the above investigation. Table 3 also shows YR (= YS / TS).

Figure 2005068534
Figure 2005068534

Figure 2005068534
Figure 2005068534

Figure 2005068534
Figure 2005068534

本発明例は、いずれも所望の組織および集合組織が得られ、TSが400MPaであって、優れたハイドロフォーミング性およびバーリング性を具備するものとなっている。なお、本発明例の溶接鋼管の組織は、例えば図2に示すように、比較例よりも微細でかつ第2相の分率が低かった。   In all of the examples of the present invention, desired structures and textures are obtained, TS is 400 MPa, and excellent hydroforming properties and burring properties are provided. In addition, the structure of the welded steel pipe of the present invention example was finer than the comparative example and the fraction of the second phase was lower as shown in FIG.

穴広げ試験の概要を示す説明図である。It is explanatory drawing which shows the outline | summary of a hole expansion test. (a)は本発明例No.1、(b)は比較例No.13の溶接鋼管の組織を示す光学顕微鏡写真の複写図である。(a) is a copy of an optical micrograph showing the structure of a welded steel pipe of Invention Example No. 1 and (b) of Comparative Example No. 13.

符号の説明Explanation of symbols

1 試験片
2 穴
3 ポンチ
1 Specimen 2 Hole 3 Punch

Claims (4)

質量%で、C:0.01%以上0.05%未満、Si:1.5%以下、Mn:0.2〜3.5%、S:0.002%未満、Al:0.1%以下、N:0.01%以下を含み、残部Feおよび不可避的不純物からなる組成を有し、組織が全部ベイニティックフェライト組織、または、ポリゴナルフェライト組織:1〜40体積%を含み残部がベイニティックフェライト組織からなり、かつ、長手方向に垂直な断面でのフェライトの(110)面のインバース強度比が2.0以上、あるいはさらに円周方向に垂直な断面でのフェライトの(200)面のインバース強度比が2.0以上の集合組織を有することを特徴とするハイドロフォーミング性およびバーリング性に優れた引張強さ400MPa以上の溶接鋼管。   In mass%, C: 0.01% or more and less than 0.05%, Si: 1.5% or less, Mn: 0.2 to 3.5%, S: less than 0.002%, Al: 0.1% or less, N: 0.01% or less, the remainder Fe and inevitable A cross section perpendicular to the longitudinal direction, having a composition composed of mechanical impurities, the entire structure being bainitic ferrite structure or polygonal ferrite structure: 1 to 40% by volume and the remainder being bainitic ferrite structure It has a texture in which the (110) plane inverse strength ratio of ferrite is 2.0 or more, or the ferrite (200) plane inverse strength ratio is 2.0 or more in a cross section perpendicular to the circumferential direction. A welded steel pipe with a tensile strength of 400 MPa or more with excellent hydroforming and burring properties. 前記組成に加えてさらに、A群: Cr:0.1 %以下、Nb:0.05%以下、Ti:0.05%以下、Cu:1%以下、Ni:1%以下、Mo:1%以下、B:0.01%以下のうちの1種または2種以上、および/または、B群:Ca:0.02%以下、REM :0.02%以下のうちの1種または2種、を含有することを特徴とする請求項1記載のハイドロフォーミング性およびバーリング性に優れた引張強さ400MPa以上の溶接鋼管。   In addition to the above composition, Group A: Cr: 0.1% or less, Nb: 0.05% or less, Ti: 0.05% or less, Cu: 1% or less, Ni: 1% or less, Mo: 1% or less, B: 0.01% 2. One or more of the following and / or Group B: Ca: 0.02% or less, REM: One or two of 0.02% or less, A welded steel pipe with a tensile strength of 400 MPa or more with excellent hydroforming and burring properties. 質量%で、C:0.01%以上0.05%未満、Si:1.5%以下、Mn:0.2〜3.5%、P:0.1%以下、S:0.002%未満、Al:0.1%以下、N:0.01%以下を含み、あるいはさらに、A群: Cr:0.1 %以下、Nb:0.05%以下、Ti:0.05%以下、Cu:1%以下、Ni:1%以下、Mo:1%以下、B:0.01%以下のうちの1種または2種以上、および/または、B群:Ca:0.02%以下、REM :0.02%以下のうちの1種または2種、を含有する組成になる溶接鋼管を素材鋼管として、該素材鋼管に加熱処理または均熱処理を施したのち、累積縮径率:30%以上で、 圧延終了温度:650〜900℃とする絞り圧延を施すことを特徴とするハイドロフォーミング性およびバーリング性に優れた引張強さ400MPa以上の溶接鋼管の製造方法。   In mass%, C: 0.01% or more and less than 0.05%, Si: 1.5% or less, Mn: 0.2 to 3.5%, P: 0.1% or less, S: less than 0.002%, Al: 0.1% or less, N: 0.01% or less Including or in addition, Group A: Cr: 0.1% or less, Nb: 0.05% or less, Ti: 0.05% or less, Cu: 1% or less, Ni: 1% or less, Mo: 1% or less, B: 0.01% or less A welded steel pipe having a composition containing one or more of them and / or group B: Ca: 0.02% or less, REM: 0.02% or less, as a material steel pipe, It is excellent in hydroforming and burring characteristics, characterized by subjecting the steel tube to heat treatment or soaking, and then subjecting it to drawing rolling with a cumulative diameter reduction ratio of 30% or more and a rolling end temperature of 650 to 900 ° C. A method for manufacturing welded steel pipes with a tensile strength of 400 MPa or more. 絞り圧延後の鋼管を3℃/s以上の平均冷却速度で400℃以下まで冷却することを特徴とする請求項3記載のハイドロフォーミング性およびバーリング性に優れた引張強さ400MPa以上の溶接鋼管の製造方法。   The steel pipe after drawing rolling is cooled to 400 ° C or less at an average cooling rate of 3 ° C / s or more, and the welded steel pipe having a tensile strength of 400 MPa or more excellent in hydroforming properties and burring properties. Production method.
JP2003304057A 2003-08-28 2003-08-28 Welded steel pipe excellent in hydroforming property and burring property and manufacturing method thereof Expired - Fee Related JP4244749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003304057A JP4244749B2 (en) 2003-08-28 2003-08-28 Welded steel pipe excellent in hydroforming property and burring property and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003304057A JP4244749B2 (en) 2003-08-28 2003-08-28 Welded steel pipe excellent in hydroforming property and burring property and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005068534A true JP2005068534A (en) 2005-03-17
JP4244749B2 JP4244749B2 (en) 2009-03-25

Family

ID=34407847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003304057A Expired - Fee Related JP4244749B2 (en) 2003-08-28 2003-08-28 Welded steel pipe excellent in hydroforming property and burring property and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4244749B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8487141B2 (en) 2008-09-09 2013-07-16 Asahi Glass Company, Limited Method for producing a perfluoro compound having hydroxyl groups
WO2020094684A1 (en) * 2018-11-06 2020-05-14 Salzgitter Flachstahl Gmbh Interior high pressure-formed component made of steel, use of a steel for precursors for producing an interior high pressure-formed component, and precursor therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8487141B2 (en) 2008-09-09 2013-07-16 Asahi Glass Company, Limited Method for producing a perfluoro compound having hydroxyl groups
WO2020094684A1 (en) * 2018-11-06 2020-05-14 Salzgitter Flachstahl Gmbh Interior high pressure-formed component made of steel, use of a steel for precursors for producing an interior high pressure-formed component, and precursor therefor
CN113423854A (en) * 2018-11-06 2021-09-21 萨尔茨吉特液压成型有限責任兩合公司 Steel inner high-pressure profiled part and use of steel in a semi-finished product for producing an inner high-pressure profiled part, and semi-finished product therefor

Also Published As

Publication number Publication date
JP4244749B2 (en) 2009-03-25

Similar Documents

Publication Publication Date Title
JP4833835B2 (en) Steel pipe with small expression of bauschinger effect and manufacturing method thereof
JP5176271B2 (en) Method for producing high-strength steel sheet for line pipe with tensile strength of 760 MPa or higher with suppressed increase in yield strength after heating by coating treatment, and method for producing high-strength steel pipe for line pipe using the same
JP5142141B2 (en) Hot-rolled steel sheets for hydroforming, steel pipes for hydroforming, and methods for producing them
JP4853082B2 (en) Steel plate for hydroforming, steel pipe for hydroforming, and production method thereof
KR100878731B1 (en) Welded steel pipe having excellent hydroformability and method for making the same
JP5811591B2 (en) High strength line pipe excellent in crush resistance and weld heat-affected zone toughness and method for producing the same
JP5348383B2 (en) High toughness welded steel pipe with excellent crushing strength and manufacturing method thereof
JP4957854B1 (en) High-strength ERW steel pipe and manufacturing method thereof
JP6874913B2 (en) Square steel pipe and its manufacturing method and building structure
WO2001096624A1 (en) High carbon steel pipe excellent in cold formability and high frequency hardenability and method for producing the same
CN114599812B (en) Electric resistance welded steel pipe, method for producing same, line pipe, and building structure
JP5803270B2 (en) High strength sour line pipe excellent in crush resistance and manufacturing method thereof
JP5732999B2 (en) High-strength ERW steel pipe and manufacturing method thereof
JP2009242858A (en) High-strength steel pipe and manufacturing method therefor
JP3975852B2 (en) Steel pipe excellent in workability and manufacturing method thereof
JP2002038242A (en) Stainless steel tube for structural member of automobile excellent in secondary working property
WO2015045373A1 (en) Process for manufacturing high-carbon electric resistance welded steel pipe, and automobile part
JP5640792B2 (en) High toughness UOE steel pipe excellent in crushing strength and manufacturing method thereof
JP5020690B2 (en) High strength steel pipe for machine structure and manufacturing method thereof
JP4244749B2 (en) Welded steel pipe excellent in hydroforming property and burring property and manufacturing method thereof
KR100884515B1 (en) Welded steel pipe having excellent hydroformability and method for making the same
JP2006152341A (en) High strength hot rolled sheet steel and its production method
JP3965563B2 (en) Welded steel pipe excellent in hydroforming property and manufacturing method thereof
JP4126950B2 (en) Welded steel pipe excellent in hydroforming property and manufacturing method thereof
JP4474728B2 (en) Structural electric resistance welded steel pipe having excellent hydroforming property and precipitation strengthening ability, method for producing the same, and method for producing hydroformed members

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081229

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees