JP2005068207A - Method of transferring polyolefin granule - Google Patents

Method of transferring polyolefin granule Download PDF

Info

Publication number
JP2005068207A
JP2005068207A JP2003209256A JP2003209256A JP2005068207A JP 2005068207 A JP2005068207 A JP 2005068207A JP 2003209256 A JP2003209256 A JP 2003209256A JP 2003209256 A JP2003209256 A JP 2003209256A JP 2005068207 A JP2005068207 A JP 2005068207A
Authority
JP
Japan
Prior art keywords
gas
polymerization tank
phase polymerization
transfer
polyolefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003209256A
Other languages
Japanese (ja)
Inventor
Koichi Ogino
耕一 荻野
Shinya Shoji
伸也 庄司
Kojiro Matsui
幸次郎 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2003209256A priority Critical patent/JP2005068207A/en
Publication of JP2005068207A publication Critical patent/JP2005068207A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transfer method which prevents clogging of transfer piping without providing specific equipment for a gas for cleaning the transfer piping and can efficiently transfer even polyolefin granules of a low melting point random copolymer, a high impact-resistant block copolymer or the like which are hard to be transferred. <P>SOLUTION: The method of transferring polyolefin granules through transfer piping between vapor phase polymerization tanks in a polyolefin manufacturing plant having a plurality of the vapor phase polymerization tanks comprises a first step of opening or closing a draw valve of a vapor phase polymerization tank at the high pressure side to transfer the polyolefin granules to a vapor phase polymerization tank at the low pressure side, a second step of opening or closing a feed valve for a cleaning gas to allow the cleaning gas to flow into the transfer piping to clean it, and a third step of opening or closing a dispensing valve for a circulating gas of the vapor phase polymerization tank to allow the gas to flow into the transfer piping to clean it. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、複数の気相重合槽を有するポリオレフィン製造プラントにおいて、気相重合槽間の移送配管を通じてポリオレフィン粉粒体の移送を行う方法に関するものである。
【0002】
【従来の技術】
複数の気相重合槽を有するポリオレフィンの製造プラントにおいては、重合されたポリオレフィンを複数の気相重合槽間を、重合槽と次工程の重合槽との間に十分な圧力差をもたせ、移送配管中に配置された開閉弁を開閉操作を行うことにより、重合槽間の圧力差を利用して粉粒体を間欠的に移送させる方法が知られている。しかし、プロピレンと他のオレフィン、例えばエチレン、1−ブテン等α−オレフィンとの共重合などで、融点が高くないプロピレン系重合体、低融点ランダムコポリマーや高耐衝撃ブロックコポリマー等の場合には、移送配管の内壁面に付着し易く、配管の閉塞を起こすおそれがある。また、反応性を未だ持っている粉粒体が配管内に滞留し、そこで反応が進行して閉塞状態をつくることもある。一旦閉塞してしまうと、閉塞部を起点として閉塞状態が進行し、閉塞状態は更に悪化する。かかる状態では、移送配管を取り外し、閉塞物を取り除く必要が生じることもあり、その結果、減産や重合槽の運転の中止を余儀なくされることがある。
【0003】
このような問題に対して、従来、ポリオレフィン粉粒体の移送速度を高速とすることで、移送配管の閉塞防止を図っているが、それでもなお輸送配管は閉塞を起こし易いので、移送中断中に、別個に設けた洗浄ガス供給源から洗浄ガスとしてプロピレンを移送配管に導入して、移送配管内の滞留粉粒体を次工程の重合槽へ押し流して、移送配管の閉塞防止を図っている(特許文献1参照)。上記方法では、移送配管内に送り込む洗浄ガスの流量や流速を抑制する必要があったので、本発明者は、前記特許文献1記載の発明をさらに改良して、特別な洗浄ガス源を設けずに気相重合槽の循環ガスを取り出し昇圧して、洗浄ガスとして用いる方法を提案した(特許文献2参照)。しかし、この方法によっても、循環ガスの昇圧設備が必要であることや洗浄ガスの圧力によっては移送配管の洗浄が十分に行われないことがある等、さらに改良が望まれていた。
【0004】
【特許文献1】
特開平7−163856号公報
【特許文献2】
特願2002−091737明細書
【0005】
【発明が解決しようとする課題】
かかる実情に鑑み、本発明の目的は、移送配管の洗浄用ガスの特別な設備を設けることなく、移送配管の閉塞を防止し、低融点ランダムコポリマーや高耐衝撃ブロックコポリマー等の移送しにくいポリオレフィン粉粒体でも効率良く移送することのできる移送方法を提供することにある。
【0006】
【課題を解決するための手段】
請求項1に係る発明は、複数の気相重合槽を有するポリオレフィン製造プラントにおいて、気相重合槽間の移送配管を通じてポリオレフィン粉粒体の移送を行うに際し、下記工程を含むことを特徴とするポリオレフィン粉粒体の移送方法である。
第1工程:高圧側の気相重合槽の抜出弁を開閉し、ポリオレフィン粉粒体を低圧側の気相重合槽へ移送する工程
第2工程:洗浄ガスの供給弁を開閉し、前記移送配管へ流入させて移送配管を洗浄する工程
第3工程:気相重合槽の循環ガスの分取弁を開閉し、前記移送配管へ流入させて移送配管を洗浄する工程
請求項2に係る発明は、前記第1工程、第2工程、第3工程を順次繰り返して、間欠的に連続してポリオレフィン粉粒体の移送を行うことを特徴とするポリオレフィン粉粒体の移送方法である。
これらの粉粒体の移送方法では、高圧側の気相重合槽内の圧力は、低圧側の気相重合槽の圧力より150KPa〜3000KPa高く保たれていることが好ましく、また、洗浄ガスおよび分取された循環ガスの圧力は、低圧側の気相重合槽内の圧力に比し少なくとも200KPa高く設定されていることが好ましい。
【0007】
【発明の実施の形態】
以下、図面を参照して本発明の好適な実施形態について詳細に説明する。
【0008】
図1は、本発明が適用されたポリプロピレン製造プラントの構成を概略的に示している。
【0009】
第1重合槽11はいわゆる流動層式であり、その内部では、プロピレンモノマーを含む気体とポリプロピレン粉粒体との混合相が形成され、この重合槽11の下部に取り付けられたガス分散板13の下方からの循環ガスによって流動化される。第1重合槽11は、一般的に、当該重合槽11の下方部分にて流動層が形成され、上方部分にガス相が形成される。ガスの循環は、第1重合槽11のトップからボトムにループ状に接続された循環ガス配管の途中に設けられた循環ガスコンプレッサー41により循環される。循環ガス配管65には、循環ガスから同伴した細かい粉体を分離するためのサイクロン21と、循環ガスを冷却するための循環ガスクーラー32、33が配置されている。第1重合槽11内の混合相が流動化された状況下で、原料としてのプロピレンモノマー及び触媒がそれぞれ、配管61及び配管62を通して、第1重合槽11内に供給されると、触媒の存在により重合反応が進行し、ポリプロピレンが粉粒体として製造される。このようにして製造された第1重合槽11中のポリプロピレン粉粒体は、第1重合槽11の流動層部分から移送配管64を通して第2重合槽12に移送される。
【0010】
ポリプロピレン粉粒体の移送は、高圧側の第1重合槽11と低圧側の第2重合槽12との間の圧力差により行われる。この圧力差は、第1重合槽11の方が第2重合槽12より150kPa以上高く保たれているのが好適である。圧力差が150kPaよりも小さいと、粉粒体の移送速度が不十分となり、また、圧力差が3000kPaより大きいと配管64に振動が生じ、配管強度等への安全上の問題がある。尚、より好ましい圧力差の範囲は、300〜1500kPaである。
【0011】
移送配管64には、第1重合槽11の近傍位置に、抜出弁53が取り付けられている。通常、ポリプロピレン粉粒体の移送は、抜出弁53の開閉により間欠的に行われる。
【0012】
第2重合槽12の構成は実質的に第1重合槽11と同様な流動層式である。すなわち、第2重合槽12内では、ポリプロピレン粉粒体は、循環ガスコンプレッサー42により循環ガス配管を通して循環されるガスによって、流動化される。循環ガス配管66には、循環ガスから同伴した細かい粉体を分離するためのサイクロン22と、循環ガスを冷却するための循環ガスクーラー34とが配置されている。また、第2重合槽12内のポリプロピレンは、配管63により供給された原料により重合反応が更に進行して、ポリプロピレン粉粒体が製造される。ポリプロピレン粉粒体は、第2重合槽12から適当な後処理のための次工程に移送される。
【0013】
第1重合槽11及び第2重合槽12の内部にはそれぞれ圧力センサ81、82が取り付けられており、重合槽11、12の内部圧力は制御装置91によって常時観察されている。圧力センサ81、82からの信号に基づいて制御装置91が重合槽11、12の内部圧力の変動を検出した場合、制御装置91は、原料供給弁51、52を制御し、原料の流量を調節して重合槽11、12の内部圧力を一定に維持する。
【0014】
図示の実施形態では、移送配管61内での閉塞物の形成の防止或は閉塞物の除去のための洗浄ガスを移送配管に導入するための洗浄ガス供給源71と洗浄ガス供給弁55が設けられている。一方、第1重合槽11(高圧側の気相重合槽)の循環ガスを洗浄ガスとして、循環ガス分取弁54を通じて分取し、移送配管64へ送り込み、洗浄ガス供給源71からのガスの他に循環ガスから分取した循環ガスを併用して移送配管64の洗浄を行うことができるようになっている。これらの抜出弁53、循環ガス分取弁54、洗浄ガス供給弁55は、シーケンサ92のような制御手段によって、一定時間毎に開閉制御するようになっている。
【0015】
次に、上述したような構成において適用される本発明の粉粒体移送方法について説明する。ポリプロピレンの製造中において第1重合槽11から第2重合槽12にポリプロピレン粉粒体を移送する場合、まず、第1工程として、循環ガス配管65、循環ガスコンプレッサー41を作動させたままの状態で、第1重合槽11の抜出弁53を開き、一定時間第1重合槽の圧力でポリプロピレン粉粒体を第2重合槽へ移送したのち、抜出弁53を閉とする。次いで、第2工程として、洗浄ガス供給弁55を開き、一定時間洗浄ガスを第2重合槽へ送り、移送配管64中の残留粉粒体を洗浄し、洗浄ガス供給弁55を閉じる。次に、第3工程として、循環ガス分取弁54を開き、第2重合槽へ分取した循環ガスを送り込みながら、移送配管64中の洗浄を行い、次の第1工程、第2工程、第3工程の操作を繰り返す。
【0016】
洗浄ガス供給源71のガスは、主要原料ガスと共通のガス供給源にするのが経済的である。洗浄ガス供給源71のガスは、通常第1重合槽の重合圧よりも高く設計されており、移送配管の洗浄に用いるに際して、昇圧等の操作は必要ないが、短時間に大量のガスを移送配管64へ供給すると、その供給能力(例えばプロピレン気化器等の能力)を超える恐れがある。そこで、移送配管64中の残留粉粒体を移送配管64内で閉塞物を形成する恐れのない程度に第2重合槽へ送った後は、洗浄ガス供給弁55を閉とし、循環ガス分取弁54を開いて、第2重合槽へ循環ガスを送り込むようにするのである。このように操作することにより、洗浄ガス供給源71のガスよりは低い圧力であるが、次の第1工程に移るまでの間に移送配管64内で閉塞物等が形成されるのを防ぐことができる。
【0017】
図示の実施形態では、この洗浄用に用いる循環ガスは、第1重合槽の循環ガスから分取しているが、第2重合槽12の循環ガスから分取することもできるが、その場合には昇圧用のコンプレッサーを設ける等の対策が必要である。第1重合槽から取り出されたガスは、全体のガス量に比しわずかであるので、第2重合槽12に対するガスの流出量及び流入量、或いはガスの成分は洗浄中においても実質的に変動しない。従って、第1重合槽11、第2重合槽12でのモノマーバランスに不都合が生じることはない。
【0018】
以上の第1工程、第2工程、第3工程を繰り返しながら、ポリオレフィン粉粒体の移送を間欠的に連続して行う。各工程の設定時間は、製造条件によって適宜決めることができる。通常、第2工程で使用する高圧の洗浄ガスの使用量を必要最小限にとどめ、第1工程、第3工程の設定時間を調整して製造条件に適した設定にすることにより、移送配管64の洗浄を十分に行うとともに、プロピレン気化器等の洗浄ガス供給源の負荷を増加させずに、移送配管内の洗浄効果を達成することができる。
【0019】
【実施例】
本発明を実施例に基づいて、より具体的に説明するが、もとより本発明はこれら実施例に限定されるものではない。
実施例1
図1に示した装置を用いて、プロピレン−1−ブテン共重合体を重合した。
第1重合槽は、圧力1200kPaG、温度65℃、第2重合槽は、圧力650kPaG、温度60℃、第1重合槽と第2重合槽の間を長さ8m、配管径89.1mmの移送配管で接続した。
第1工程の抜出弁の開時間を3秒、第2工程の洗浄用プロピレン供給弁の開時間を5秒、洗浄用循環ガスの分取弁を40秒の条件で運転を行ったところ、移送配管の閉塞等の問題はなく、長時間の運転を行うことができた。
【0020】
【発明の効果】
本発明により、移送配管の洗浄用ガスの特別な設備を設けることなく、移送配管の閉塞を防止し、低融点ランダムコポリマーや高耐衝撃ブロックコポリマー等の移送しにくいポリオレフィン粉粒体でも効率良く移送することのできる移送方法の提供が可能になった。
【図面の簡単な説明】
【図1】本発明の一実施形態の図であり、ポリプロピレン製造プラントの概略構成を示す図である。
【符号の説明】
11…第1重合槽、12…第2重合槽、21…サイクロン、22…サイクロン、31…循環ガスクーラー、32……循環ガスクーラー、33…循環ガスクーラー、34…循環ガスクーラー、41…循環ガスコンプレッサー、42…循環ガスコンプレッサー、51…原料供給弁、52…原料供給弁、53…抜出弁、54…循環ガス分取弁、55…洗浄ガス供給弁、61…配管、62…配管、63…配管、64…移送配管、65…循環ガス配管、66…循環ガス配管、67…循環ガス分取配管、68…洗浄ガス配管、71…洗浄ガス供給源、81…圧力センサー、82…圧力センサー、91…制御装置、92…シーケンサー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for transferring polyolefin particles through a transfer pipe between gas phase polymerization tanks in a polyolefin production plant having a plurality of gas phase polymerization tanks.
[0002]
[Prior art]
In a polyolefin production plant having a plurality of gas phase polymerization tanks, transfer the polymerized polyolefin between a plurality of gas phase polymerization tanks with a sufficient pressure difference between the polymerization tank and the next process polymerization tank. A method is known in which a granular material is intermittently transferred using a pressure difference between polymerization tanks by opening and closing a switching valve disposed therein. However, in the case of a propylene polymer having a low melting point, such as a copolymer of propylene and another olefin such as ethylene or α-olefin such as 1-butene, a low melting point random copolymer, a high impact block copolymer and the like, It tends to adhere to the inner wall surface of the transfer pipe and may cause the pipe to be blocked. Moreover, the granular material which still has the reactivity may stay in the piping, and the reaction may proceed there to create a closed state. Once occluded, the occluded state progresses starting from the occluded portion, and the occluded state further deteriorates. In such a state, it may be necessary to remove the transfer pipe and remove the obstruction, and as a result, it may be necessary to reduce production or stop the operation of the polymerization tank.
[0003]
For such problems, conventionally, the transfer speed of the polyolefin particles has been increased to prevent clogging of the transfer pipe. However, since the transfer pipe still tends to clog, In this case, propylene is introduced into the transfer pipe as a cleaning gas from a separately provided cleaning gas supply source, and the staying granular material in the transfer pipe is washed away to the polymerization tank in the next step to prevent the transfer pipe from being blocked ( Patent Document 1). In the above method, since it was necessary to suppress the flow rate and flow rate of the cleaning gas fed into the transfer pipe, the present inventor further improved the invention described in Patent Document 1 and provided no special cleaning gas source. A method was proposed in which the circulating gas in the gas phase polymerization tank was taken out and pressurized and used as a cleaning gas (see Patent Document 2). However, even with this method, further improvement has been desired, such as the need for a circulating gas pressure boosting facility, and the cleaning of the transfer pipe may not be sufficiently performed depending on the pressure of the cleaning gas.
[0004]
[Patent Document 1]
JP-A-7-163856 [Patent Document 2]
Japanese Patent Application No. 2002-091737 Specification
[Problems to be solved by the invention]
In view of such circumstances, the object of the present invention is to prevent clogging of the transfer pipe without providing special equipment for cleaning gas for the transfer pipe, and to prevent the transfer of a low melting point random copolymer, a high impact resistant block copolymer or the like. An object of the present invention is to provide a transfer method that can efficiently transfer even powder particles.
[0006]
[Means for Solving the Problems]
The invention according to claim 1 is a polyolefin production plant having a plurality of gas phase polymerization tanks, and includes the following steps when transferring the polyolefin particles through transfer piping between the gas phase polymerization tanks: This is a method for transferring powder particles.
1st process: Opening and closing the extraction valve of the gas phase polymerization tank on the high pressure side and transferring the polyolefin powder to the gas phase polymerization tank on the low pressure side 2nd process: Opening and closing the supply valve for the cleaning gas and the transfer A process of cleaning the transfer pipe by flowing into the pipe Third process: opening and closing the circulating gas separation valve of the gas phase polymerization tank and flowing into the transfer pipe to clean the transfer pipe. The method for transferring a polyolefin granular material is characterized by repeating the first step, the second step, and the third step in order to transfer the polyolefin granular material intermittently and continuously.
In these methods of transferring particles, the pressure in the gas phase polymerization tank on the high pressure side is preferably maintained 150 KPa to 3000 KPa higher than the pressure in the gas phase polymerization tank on the low pressure side. The pressure of the circulated gas taken is preferably set at least 200 KPa higher than the pressure in the gas phase polymerization tank on the low pressure side.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
[0008]
FIG. 1 schematically shows the configuration of a polypropylene production plant to which the present invention is applied.
[0009]
The first polymerization tank 11 is a so-called fluidized bed type, in which a mixed phase of a gas containing propylene monomer and polypropylene powder is formed, and a gas dispersion plate 13 attached to the lower part of the polymerization tank 11 is formed. Fluidized by circulating gas from below. In the first polymerization tank 11, generally, a fluidized bed is formed in a lower part of the polymerization tank 11, and a gas phase is formed in an upper part. The gas is circulated by a circulation gas compressor 41 provided in the middle of a circulation gas pipe connected in a loop from the top to the bottom of the first polymerization tank 11. The circulation gas pipe 65 is provided with a cyclone 21 for separating fine powder entrained from the circulation gas, and circulation gas coolers 32 and 33 for cooling the circulation gas. When the mixed phase in the first polymerization tank 11 is fluidized, the propylene monomer and the catalyst as raw materials are supplied into the first polymerization tank 11 through the pipe 61 and the pipe 62, respectively. The polymerization reaction proceeds, and polypropylene is produced as a granular material. The polypropylene particles in the first polymerization tank 11 thus manufactured are transferred from the fluidized bed portion of the first polymerization tank 11 to the second polymerization tank 12 through the transfer pipe 64.
[0010]
The polypropylene particles are transferred by a pressure difference between the first polymerization tank 11 on the high pressure side and the second polymerization tank 12 on the low pressure side. The pressure difference is preferably maintained at 150 kPa or more higher in the first polymerization tank 11 than in the second polymerization tank 12. When the pressure difference is smaller than 150 kPa, the transfer rate of the powder particles becomes insufficient, and when the pressure difference is larger than 3000 kPa, the pipe 64 vibrates, which causes a safety problem on the pipe strength and the like. In addition, the range of a more preferable pressure difference is 300-1500 kPa.
[0011]
An extraction valve 53 is attached to the transfer pipe 64 at a position in the vicinity of the first polymerization tank 11. Usually, the transfer of the polypropylene particles is performed intermittently by opening and closing the extraction valve 53.
[0012]
The configuration of the second polymerization tank 12 is a fluidized bed type substantially the same as that of the first polymerization tank 11. That is, in the second polymerization tank 12, the polypropylene powder is fluidized by the gas circulated through the circulation gas pipe by the circulation gas compressor 42. The circulating gas pipe 66 is provided with a cyclone 22 for separating fine powder entrained from the circulating gas and a circulating gas cooler 34 for cooling the circulating gas. In addition, the polypropylene in the second polymerization tank 12 is further subjected to a polymerization reaction by the raw material supplied through the pipe 63 to produce polypropylene powder particles. The polypropylene particles are transferred from the second polymerization tank 12 to the next step for appropriate post-treatment.
[0013]
Pressure sensors 81 and 82 are respectively mounted inside the first polymerization tank 11 and the second polymerization tank 12, and the internal pressures of the polymerization tanks 11 and 12 are constantly observed by the control device 91. When the control device 91 detects a change in the internal pressure of the polymerization tanks 11 and 12 based on the signals from the pressure sensors 81 and 82, the control device 91 controls the raw material supply valves 51 and 52 to adjust the flow rate of the raw material. Thus, the internal pressure of the polymerization tanks 11 and 12 is kept constant.
[0014]
In the illustrated embodiment, a cleaning gas supply source 71 and a cleaning gas supply valve 55 are provided for introducing a cleaning gas into the transfer pipe to prevent or remove the plug in the transfer pipe 61. It has been. On the other hand, the circulating gas in the first polymerization tank 11 (the gas phase polymerization tank on the high pressure side) is taken as the cleaning gas through the circulating gas fractionation valve 54 and sent to the transfer pipe 64 where the gas from the cleaning gas supply source 71 is supplied. In addition, the transfer pipe 64 can be cleaned using a circulating gas separated from the circulating gas. The extraction valve 53, the circulating gas fractionation valve 54, and the cleaning gas supply valve 55 are controlled to be opened and closed at regular intervals by a control means such as a sequencer 92.
[0015]
Next, the granular material transfer method of the present invention applied in the configuration as described above will be described. When polypropylene particles are transferred from the first polymerization tank 11 to the second polymerization tank 12 during the production of polypropylene, first, as the first step, the circulating gas pipe 65 and the circulating gas compressor 41 are kept in operation. The extraction valve 53 of the first polymerization tank 11 is opened, the polypropylene particles are transferred to the second polymerization tank with the pressure of the first polymerization tank for a certain time, and then the extraction valve 53 is closed. Next, as a second step, the cleaning gas supply valve 55 is opened, the cleaning gas is sent to the second polymerization tank for a certain period of time, the residual granular material in the transfer pipe 64 is cleaned, and the cleaning gas supply valve 55 is closed. Next, as the third step, the circulating gas separation valve 54 is opened, and the transfer pipe 64 is cleaned while feeding the circulating gas separated into the second polymerization tank, and the following first step, second step, The operation of the third step is repeated.
[0016]
It is economical to use the gas of the cleaning gas supply source 71 as a common gas supply source with the main raw material gas. The gas of the cleaning gas supply source 71 is usually designed to be higher than the polymerization pressure of the first polymerization tank, and when used for cleaning the transfer pipe, no operation such as pressure increase is required, but a large amount of gas is transferred in a short time. If it supplies to the piping 64, there exists a possibility of exceeding the supply capability (for example, capability, such as a propylene vaporizer). Therefore, after the residual granular material in the transfer pipe 64 is sent to the second polymerization tank to such an extent that no clogging is formed in the transfer pipe 64, the cleaning gas supply valve 55 is closed and the circulating gas fractionation is performed. The valve 54 is opened so that the circulating gas is fed into the second polymerization tank. By operating in this way, the pressure is lower than that of the gas of the cleaning gas supply source 71, but it is possible to prevent the formation of a blockage or the like in the transfer pipe 64 before moving to the next first step. Can do.
[0017]
In the illustrated embodiment, the circulating gas used for the cleaning is separated from the circulating gas in the first polymerization tank, but can be separated from the circulating gas in the second polymerization tank 12, but in that case Therefore, it is necessary to take measures such as installing a compressor for boosting. Since the amount of gas taken out from the first polymerization tank is small compared to the total gas amount, the outflow and inflow of gas to the second polymerization tank 12 or the gas components substantially fluctuate even during cleaning. do not do. Therefore, there is no inconvenience in monomer balance in the first polymerization tank 11 and the second polymerization tank 12.
[0018]
While repeating the above first step, second step, and third step, the polyolefin granular material is transferred intermittently and continuously. The set time for each step can be appropriately determined depending on the manufacturing conditions. Usually, the amount of the high-pressure cleaning gas used in the second step is kept to the minimum necessary, and the setting time for the first step and the third step is adjusted to a setting suitable for the manufacturing conditions, whereby the transfer pipe 64 In addition, the cleaning effect in the transfer pipe can be achieved without increasing the load of the cleaning gas supply source such as the propylene vaporizer.
[0019]
【Example】
The present invention will be described more specifically based on examples, but the present invention is not limited to these examples.
Example 1
The propylene-1-butene copolymer was polymerized using the apparatus shown in FIG.
The first polymerization tank has a pressure of 1200 kPaG and a temperature of 65 ° C., the second polymerization tank has a pressure of 650 kPaG and a temperature of 60 ° C., a length of 8 m between the first polymerization tank and the second polymerization tank, and a transfer pipe having a pipe diameter of 89.1 mm. Connected with.
When the opening time of the extraction valve in the first step was 3 seconds, the opening time of the cleaning propylene supply valve in the second step was 5 seconds, and the cleaning circulation gas fractionation valve was operated for 40 seconds, There was no problem such as blockage of the transfer pipe, and it was possible to operate for a long time.
[0020]
【The invention's effect】
The present invention prevents clogging of the transfer pipe without providing special equipment for cleaning gas for the transfer pipe, and efficiently transports polyolefin particles that are difficult to transfer, such as a low melting point random copolymer and a high impact block copolymer. It has become possible to provide a transfer method that can be used.
[Brief description of the drawings]
FIG. 1 is a diagram of an embodiment of the present invention, and is a diagram showing a schematic configuration of a polypropylene production plant.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... 1st polymerization tank, 12 ... 2nd polymerization tank, 21 ... Cyclone, 22 ... Cyclone, 31 ... Circulation gas cooler, 32 ... Circulation gas cooler, 33 ... Circulation gas cooler, 34 ... Circulation gas cooler, 41 ... Circulation Gas compressor, 42 ... Circulating gas compressor, 51 ... Raw material supply valve, 52 ... Raw material supply valve, 53 ... Extraction valve, 54 ... Circulating gas fractionation valve, 55 ... Cleaning gas supply valve, 61 ... Piping, 62 ... Piping, 63 ... Piping, 64 ... Transfer piping, 65 ... Circulating gas piping, 66 ... Circulating gas piping, 67 ... Circulating gas preparatory piping, 68 ... Cleaning gas piping, 71 ... Cleaning gas supply source, 81 ... Pressure sensor, 82 ... Pressure Sensor, 91 ... Control device, 92 ... Sequencer

Claims (4)

複数の気相重合槽を有するポリオレフィン製造プラントにおいて、気相重合槽間の移送配管を通じてポリオレフィン粉粒体の移送を行うに際し、下記工程を含むことを特徴とするポリオレフィン粉粒体の移送方法。
第1工程:高圧側の気相重合槽の抜出弁を開閉し、ポリオレフィン粉粒体を低圧側の気相重合槽へ移送する工程
第2工程:洗浄ガスの供給弁を開閉し、前記移送配管へ流入させて移送配管を洗浄する工程
第3工程:気相重合槽の循環ガスの分取弁を開閉し、前記移送配管へ流入させて移送配管を洗浄する工程
In a polyolefin production plant having a plurality of gas phase polymerization tanks, a method for transferring polyolefin particles, which comprises the following steps when transferring polyolefin powder particles through a transfer pipe between gas phase polymerization tanks.
1st process: Opening and closing the extraction valve of the gas phase polymerization tank on the high pressure side and transferring the polyolefin powder to the gas phase polymerization tank on the low pressure side 2nd process: Opening and closing the supply valve for the cleaning gas and the transfer Step of cleaning the transfer pipe by flowing into the pipe Third step: opening and closing the circulating gas separation valve of the gas phase polymerization tank and flowing into the transfer pipe to clean the transfer pipe
請求項1記載の第1工程、第2工程、第3工程を順次繰り返して、間欠的に連続してポリオレフィン粉粒体の移送を行うことを特徴とする請求項1に記載のポリオレフィン粉粒体の移送方法。The polyolefin granular material according to claim 1, wherein the polyolefin granular material is transferred intermittently and continuously by repeating the first step, the second step, and the third step according to claim 1. Transport method. 前記高圧側の気相重合槽内の圧力は、前記低圧側の気相重合槽の圧力より150KPa〜3000KPa高く保たれていることを特徴とする請求項1または2に記載のポリオレフィン粉粒体移送方法。3. The polyolefin granular material transfer according to claim 1, wherein the pressure in the gas phase polymerization tank on the high pressure side is maintained 150 KPa to 3000 KPa higher than the pressure in the gas phase polymerization tank on the low pressure side. Method. 洗浄ガスおよび分取された循環ガスの圧力は、低圧側の気相重合槽内の圧力に比し少なくとも200KPa高く設定されていることを特徴とする請求項1から3のいずれかに記載のポリオレフィン粉粒体移送方法。4. The polyolefin according to claim 1, wherein the pressure of the cleaning gas and the separated circulating gas is set to be at least 200 KPa higher than the pressure in the gas phase polymerization tank on the low pressure side. Powder and particle transfer method.
JP2003209256A 2003-08-28 2003-08-28 Method of transferring polyolefin granule Pending JP2005068207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003209256A JP2005068207A (en) 2003-08-28 2003-08-28 Method of transferring polyolefin granule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003209256A JP2005068207A (en) 2003-08-28 2003-08-28 Method of transferring polyolefin granule

Publications (1)

Publication Number Publication Date
JP2005068207A true JP2005068207A (en) 2005-03-17

Family

ID=34402255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003209256A Pending JP2005068207A (en) 2003-08-28 2003-08-28 Method of transferring polyolefin granule

Country Status (1)

Country Link
JP (1) JP2005068207A (en)

Similar Documents

Publication Publication Date Title
US5558472A (en) Method and apparatus for transporting particles
FI119644B (en) Apparatus and method for polymerizing an olefin in a gas phase
JPH06206926A (en) Removal of unpolymerized gaseous monomer from olefin polymer
JP5055816B2 (en) Polyolefin powder transfer apparatus and method
CN103747863B (en) Reclaim method and the device thereof of polymer
JP2003277412A (en) Method for continuously polymerizing olefin in vapor phase
CN107075133A (en) The preparation method of soft copolymer particle
JP2005068207A (en) Method of transferring polyolefin granule
EP0830892B1 (en) Equipment and process for gas-phase olefin polymerisation
US9745389B2 (en) Polymerisation process and polymerisation unit comprising a degassing section
JP3373673B2 (en) Method and apparatus for transferring granular material
JP2003285928A (en) Powdery and granular material transfer method and its device
US20200369806A1 (en) A method for withdrawing agglomerates from a fluidised bed reactor
EP0870539A2 (en) Gas-phase polymerization apparatus
JP3862443B2 (en) Powder extraction method in gas phase polymerization reactor
JP7411090B2 (en) System for producing polyolefins and method for recovering polymerization products from gas phase reactors
WO2023091854A1 (en) Reactor vent control to avoid vent column breakthrough
JP5034423B2 (en) Method for producing polyolefin
JP2006117712A (en) Method for producing polyolefin
JP2006052387A (en) Continuous polymerization apparatus for olefin, method for transferring polymer granule and method for polymerizing olefin
JP2010202701A (en) Transfer method for powder, method for manufacturing olefin polymer, transfer piping, and manufacturing apparatus
JP2010195952A (en) Manufacturing method of olefin polymer
JP2008074949A (en) Polymerization system of propylene-based resin