JP2006052387A - Continuous polymerization apparatus for olefin, method for transferring polymer granule and method for polymerizing olefin - Google Patents

Continuous polymerization apparatus for olefin, method for transferring polymer granule and method for polymerizing olefin Download PDF

Info

Publication number
JP2006052387A
JP2006052387A JP2005201210A JP2005201210A JP2006052387A JP 2006052387 A JP2006052387 A JP 2006052387A JP 2005201210 A JP2005201210 A JP 2005201210A JP 2005201210 A JP2005201210 A JP 2005201210A JP 2006052387 A JP2006052387 A JP 2006052387A
Authority
JP
Japan
Prior art keywords
gas
tank
polymerization
polymerization tank
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005201210A
Other languages
Japanese (ja)
Other versions
JP4760173B2 (en
Inventor
Kazuyuki Takemura
和幸 武村
Yoichi Konno
容一 今野
Wake Wakamatsu
和気 若松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2005201210A priority Critical patent/JP4760173B2/en
Publication of JP2006052387A publication Critical patent/JP2006052387A/en
Application granted granted Critical
Publication of JP4760173B2 publication Critical patent/JP4760173B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polymerisation Methods In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous polymerization apparatus for olefins in which a reactive gas accompanying polymer granules pulled out from an upstream vapor phase polymerization tank can readily be substituted in an arbitrary ratio with other gas and transferred to a downstream vapor phase polymerization tank and continuous vapor phase polymerization of olefin is advantageously practiced thereby, in continuous polymerization for olefins using the apparatus in which a plurality of vapor phase polymerization tanks are serially arranged. <P>SOLUTION: The continuous polymerization apparatus for olefins uses a plurality of vapor phase polymerization tanks having a specific structure (see the figure) serially arranged. The figure exhibits one example of the relationship between a gas substitution tank and the vapor phase polymerization tank arranged in the upstream of the gas substitution tank. A fluidized bed is arranged in the interior of the upstream polymerization tank 1 and the gas substitution tank 2 is connected through a first transfer pipe 4 composed of a pulling-up nozzle 4a and connecting piping 4b to the lower part. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、複数の気相重合槽を直列に配置させたオレフィンの連続重合装置であって、上流重合槽で生成したポリマー粉粒体に同伴する反応ガスを他のガスに置換した後にポリマー粉粒体を下流重合槽に間欠的または連続的に移送することができる連続重合装置、および当該装置を使用するポリマー粉粒体の移送方法とオレフィン重合方法に関するものである。   The present invention relates to an olefin continuous polymerization apparatus in which a plurality of gas phase polymerization tanks are arranged in series, and after the reaction gas accompanying the polymer particles produced in the upstream polymerization tank is replaced with another gas, the polymer powder The present invention relates to a continuous polymerization apparatus capable of intermittently or continuously transferring particles to a downstream polymerization tank, and a method for transferring polymer particles and an olefin polymerization method using the apparatus.

オレフィンの流動床型気相重合槽の内部では、反応ガスによりポリマー粉粒体が流動する流動層が形成されている。このポリマー粉粒体を重合槽から抜き出せば必然的に、共存する反応ガスが同伴する。反応ガスは主として原料オレフィンガスからなるが、他に、重合槽内で所望の重合反応を起こすに必要な副原料ガスが含まれる。場合によっては、この副原料ガスが、後の工程にとっては不都合な場合がある。例えば、複数の重合槽を有する多段重合装置において、分子量調整剤である水素を副原料ガスとして用いる場合、後段の反応に必要とする量以上の水素が、前段からの同伴ガスに含まれると、後段の重合では所望の分子量のポリマーの生成が困難となり、製造しうるポリマーの組成の範囲が制限されることになる。このような問題を解決するために、従来、重合槽から抜き出すポリマー粉粒体に同伴する副原料ガスをできるだけ分離する方法が考案されている。   Inside the fluidized bed gas phase polymerization tank of olefin, a fluidized bed is formed in which the polymer particles flow by the reaction gas. If this polymer granular material is extracted from the polymerization tank, the coexisting reaction gas is necessarily accompanied. The reaction gas is mainly composed of a raw material olefin gas, but additionally contains a secondary raw material gas necessary for causing a desired polymerization reaction in the polymerization tank. In some cases, this auxiliary material gas may be inconvenient for later processes. For example, in a multistage polymerization apparatus having a plurality of polymerization tanks, when hydrogen as a molecular weight regulator is used as a secondary raw material gas, if more hydrogen than the amount required for the subsequent reaction is contained in the entrained gas from the previous stage, In the subsequent polymerization, it becomes difficult to produce a polymer having a desired molecular weight, and the range of the polymer composition that can be produced is limited. In order to solve such a problem, conventionally, a method of separating as much as possible the auxiliary raw material gas accompanying the polymer particles extracted from the polymerization tank has been devised.

例えば、特許文献1には、気相重合槽の後にポリマー沈降槽を並列に二槽設けて交互に次工程へ移送する方法、及び気相重合槽の後に直列にポリマー沈降槽を二槽設けて第一の槽でポリマーを分離して、第二の槽へ移送した後に分離されたポリマーを次工程へ移送する方法が開示されている。特許文献2には、上記の直列に二槽を設けた場合に、第一槽でのポリマーの分離性を良くするために、第一槽のポリマー受入配管の口径を大きくする方法が開示されている。特許文献3には、沈降槽に均圧ラインを設けて、沈降したポリマー粒子を間欠的に次工程へ粒子及び少量のガスと共に排出する方法が開示されている。特許文献4には、気相重合槽からの抜取導管を下方向の一定角度に規定する方法が開示されている。しかし、これらの方法では、ポリマー沈降槽を2槽必要とし、連続的な操作が困難であったり、ガス置換率を任意に変更することが困難であった。   For example, in Patent Document 1, a method in which two polymer sedimentation tanks are provided in parallel after the gas phase polymerization tank and are alternately transferred to the next process, and two polymer sedimentation tanks are provided in series after the gas phase polymerization tank. A method is disclosed in which a polymer is separated in a first tank and transferred to a second tank, and then the separated polymer is transferred to the next step. Patent Document 2 discloses a method of increasing the diameter of the polymer receiving pipe in the first tank in order to improve the separability of the polymer in the first tank when two tanks are provided in series. Yes. Patent Document 3 discloses a method in which a pressure equalizing line is provided in a settling tank, and the precipitated polymer particles are intermittently discharged together with the particles and a small amount of gas to the next step. Patent Document 4 discloses a method of defining the extraction conduit from the gas phase polymerization tank at a constant angle in the downward direction. However, these methods require two polymer sedimentation tanks, making it difficult to operate continuously or changing the gas replacement rate arbitrarily.

米国特許第4621952号明細書US Pat. No. 4,621,952 特開2000−53707号公報JP 2000-53707 A 特開平3−153708号公報JP-A-3-153708 米国特許第5928612号明細書U.S. Pat. No. 5,928,612

本発明は、複数の気相重合槽を直列に配置させたオレフィンの連続重合装置であって、上流の気相重合槽から抜出されるポリマー粉粒体に同伴するガスを容易に、かつ任意の割合に別のガス(例えば、フレッシュオレフィンガス)と置換することができる装置、および上流の気相重合槽からのポリマー粉粒体に同伴したガスを容易に、かつ任意の置換率で置換してから、下流の気相重合槽へポリマー粉粒体を移送する方法、ならびにこれを利用したオレフィン連続重合方法を提供することを目的とする。   The present invention is an olefin continuous polymerization apparatus in which a plurality of gas phase polymerization tanks are arranged in series, and the gas accompanying the polymer particles extracted from the upstream gas phase polymerization tank can be easily and arbitrarily added. A device that can be replaced with another gas (eg, fresh olefin gas) in a proportion, and the gas entrained in the polymer particles from the upstream gas phase polymerization tank can be replaced easily and at any replacement rate Another object of the present invention is to provide a method for transferring polymer particles to a downstream gas phase polymerization tank and a continuous olefin polymerization method using the method.

本発明は、その一つの側面において、オレフィンの連続重合装置であって、
該装置は、
直列に配置された複数の気相重合槽(該複数の重合槽は、1槽のガス置換槽を介して隣接する上流重合槽と下流重合槽の組合せを含んでおり、前記上流重合槽は、前記下流重合槽の上流に配置されており、前記ガス置換槽は、前記上流重合槽とは第1の移送管で連結され、前記下流重合槽とは第2の移送管で連結されている)を有し、
前記ガス置換槽は、その内部に配置されたガス分散板(該ガス分散板によって、前記ガス置換槽内は上部領域と下部領域とに仕切られている)を有し、
前記上部領域は、
入口(これは、前記第1の移送管の開口であり、前記上流重合槽で生成したポリマー粉粒体が、前記上流重合槽から第1のガスを同伴してそこを通って前記ガス置換槽に移送される);
ガス置換室(ここで、前記上流重合槽から移送されたポリマー粉粒体は一時的に蓄えられ、該ポリマー粉粒体に同伴して前記上流重合槽から導入されて前記ポリマー粉粒体中に存在する前記第1のガスの少なくとも一部は、前記ガス置換槽に供給される第2のガスによって置換される);および
出口(これは、前記第2の移送管の開口であり、前記ポリマー粉粒体を前記ガス置換室から前記下流重合槽に向けて排出する)
を有し、
前記下部領域は、前記第2のガスを導入するためのガス吹込口を有することを特徴とする装置に係るものである。
The present invention, in one aspect thereof, is a continuous polymerization apparatus for olefins,
The device
A plurality of gas phase polymerization tanks arranged in series (the plurality of polymerization tanks include a combination of an upstream polymerization tank and a downstream polymerization tank that are adjacent to each other via one gas replacement tank, (It is arranged upstream of the downstream polymerization tank, and the gas replacement tank is connected to the upstream polymerization tank by a first transfer pipe and to the downstream polymerization tank by a second transfer pipe) Have
The gas replacement tank has a gas dispersion plate disposed therein (the gas dispersion tank is partitioned into an upper region and a lower region by the gas dispersion plate),
The upper region is
Inlet (this is the opening of the first transfer pipe, and the polymer particles produced in the upstream polymerization tank are accompanied by the first gas from the upstream polymerization tank and pass through the gas replacement tank. Transferred to)
Gas replacement chamber (here, the polymer particles transferred from the upstream polymerization tank are temporarily stored and introduced from the upstream polymerization tank along with the polymer particles into the polymer particles. At least a portion of the first gas present is replaced by a second gas supplied to the gas replacement tank; and an outlet (which is an opening in the second transfer tube, and the polymer (Powder is discharged from the gas replacement chamber toward the downstream polymerization tank)
Have
The lower region relates to a device characterized by having a gas inlet for introducing the second gas.

本発明は、第2の側面において、直列に配置された複数の気相重合槽を有する連続重合装置中の各気相重合槽において触媒の存在下にオレフィンを重合するオレフィンの連続重合方法であって、前記連続重合装置は、本発明の第1の側面に係る装置であり、下記の工程を有することを特徴とする方法に係るものである。
前記上流重合槽で生成したポリマー粉粒体を、前記上流重合槽中の第1のガスの少なくとも一部と共に、前記第1の移送管を経由して前記ガス置換槽のガス置換室に導入する工程;
前記ガス吹込口から第2のガスを前記下部領域内に供給し、更に前記ガス分散板を通して前記ガス置換室に導入し、これにより、前記ガス置換室内にある前記ポリマー粉粒体中の前記第1のガスの少なくとも一部を前記第2のガスで置換する工程;および
前記ポリマー粉粒体をその内部に存在するガスと共に間欠的に前記ガス置換室から前記第2の移送管を通って前記下流重合槽に移送する工程。
The present invention, in a second aspect, is a continuous olefin polymerization method in which an olefin is polymerized in the presence of a catalyst in each gas phase polymerization tank in a continuous polymerization apparatus having a plurality of gas phase polymerization tanks arranged in series. The continuous polymerization apparatus is an apparatus according to the first aspect of the present invention, and relates to a method having the following steps.
The polymer particles produced in the upstream polymerization tank are introduced into the gas replacement chamber of the gas replacement tank through the first transfer pipe together with at least a part of the first gas in the upstream polymerization tank. Process;
A second gas is supplied from the gas inlet into the lower region, and is further introduced into the gas replacement chamber through the gas dispersion plate, whereby the polymer particles in the polymer powder in the gas replacement chamber are introduced. Replacing at least a portion of one gas with the second gas; and intermittently passing the polymer powder together with the gas present therein from the gas replacement chamber through the second transfer pipe. The process of transferring to a downstream polymerization tank.

本発明は、第3の側面において、直列に配置された複数の気相重合槽を有する連続重合装置において、より典型的には該装置を用いるオレフィンの連続重合プロセスにおいて行われるポリマー粉粒体の移送方法であって、前記連続重合装置は、本発明の第1の側面に係る装置であり、下記の工程を有することを特徴とする方法に係るものである。
前記上流重合槽で生成したポリマー粉粒体を、前記上流重合槽中の第1のガスの少なくとも一部と共に、前記第1の移送管を経由して前記ガス置換槽のガス置換室に導入する工程;
前記ガス吹込口から第2のガスを前記下部領域内に供給し、更に前記ガス分散板を通して前記ガス置換室に導入し、これにより、前記ガス置換室内にある前記ポリマー粉粒体中の前記第1のガスの少なくとも一部を前記第2のガスで置換する工程;および
前記ポリマー粉粒体をその内部に存在するガスと共に間欠的に前記ガス置換室から前記第2の移送管を通って前記下流重合槽に移送する工程。
In a third aspect, the present invention relates to a continuous polymerization apparatus having a plurality of gas phase polymerization tanks arranged in series, more typically of a polymer granule which is performed in a continuous polymerization process of olefins using the apparatus. It is a transfer method, The said continuous polymerization apparatus is an apparatus which concerns on the 1st side surface of this invention, It concerns on the method characterized by having the following processes.
The polymer particles produced in the upstream polymerization tank are introduced into the gas replacement chamber of the gas replacement tank through the first transfer pipe together with at least a part of the first gas in the upstream polymerization tank. Process;
A second gas is supplied from the gas inlet into the lower region, and is further introduced into the gas replacement chamber through the gas dispersion plate, whereby the polymer particles in the polymer powder in the gas replacement chamber are introduced. Replacing at least a portion of one gas with the second gas; and intermittently passing the polymer powder together with the gas present therein from the gas replacement chamber through the second transfer pipe. The process of transferring to a downstream polymerization tank.

本発明によれば、複数の気相重合槽が直列に配置された装置を用いるオレフィンの連続重合において、上流の気相重合槽から抜出されるポリマー粉粒体に同伴するガスを容易に、かつ任意の割合に別のガス(典型的には、フレッシュオレフィンガス)と置換して下流の気相重合槽に移送することができ、これにより、有利にオレフィンの連続気相重合を実施することができる。   According to the present invention, in the continuous polymerization of olefins using an apparatus in which a plurality of gas phase polymerization tanks are arranged in series, the gas accompanying the polymer particles extracted from the upstream gas phase polymerization tank can be easily and It can be replaced with another gas (typically fresh olefin gas) in any proportion and transferred to a downstream gas phase polymerization vessel, which advantageously allows continuous gas phase polymerization of olefins to be carried out. it can.

以下、図面を参照して本発明を詳細に説明する。図1は、本発明に係る装置におけるガス置換槽とその上流に配置された気相重合槽との関係の一例を示す図である。上流重合槽1の内部にはガス分散板1aが配置され、下部には、抜出ノズル4aと接続配管4bとからなる第1の移送管4を介してガス置換槽2が接続されている。ガス置換槽とその下流に設置された下流重合槽3とは、第2の移送管5を介して接続されている。この例では、第2の移送管には移送制御弁5aが設けられている。ガス置換槽は、典型的には上部壁、縦側壁および底部壁とを有し、その内部はガス分散板2dによって上部領域21と下部領域22とに仕切られている。ガス置換槽の上部領域は、
入口2a(これは、前記第1の移送管4の開口であり、前記上流重合槽1で生成したポリマー粉粒体が、前記上流重合槽から第1のガスを同伴してそこを通って前記ガス置換槽2に移送される);
ガス置換室2b(ここで、前記上流重合槽1から移送されたポリマー粉粒体は一時的に蓄えられ、該ポリマー粉粒体に同伴して前記上流重合槽から導入されて前記ポリマー粉粒体中に存在する前記第1のガスの少なくとも一部は、前記ガス置換槽2に供給される第2のガスによって置換される);および
出口2c(これは、前記第2の移送管5の開口であり、前記ポリマー粉粒体を前記ガス置換室2bから前記下流重合槽3に向けて排出する)
を有している。
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram showing an example of a relationship between a gas replacement tank and a gas phase polymerization tank disposed upstream thereof in the apparatus according to the present invention. A gas dispersion plate 1a is arranged inside the upstream polymerization tank 1, and a gas replacement tank 2 is connected to the lower part via a first transfer pipe 4 comprising an extraction nozzle 4a and a connection pipe 4b. The gas replacement tank and the downstream polymerization tank 3 installed downstream thereof are connected via a second transfer pipe 5. In this example, a transfer control valve 5a is provided in the second transfer pipe. The gas replacement tank typically has an upper wall, a vertical side wall, and a bottom wall, and the inside thereof is partitioned into an upper region 21 and a lower region 22 by a gas dispersion plate 2d. The upper area of the gas replacement tank is
Inlet 2a (this is the opening of the first transfer pipe 4, and the polymer particles produced in the upstream polymerization tank 1 are accompanied by a first gas from the upstream polymerization tank and pass through the first gas. Transferred to the gas replacement tank 2);
Gas replacement chamber 2b (Here, the polymer particles transferred from the upstream polymerization tank 1 are temporarily stored and introduced from the upstream polymerization tank along with the polymer particles to the polymer powder particles. At least a portion of the first gas present therein is replaced by a second gas supplied to the gas replacement tank 2; and an outlet 2c (which is an opening of the second transfer pipe 5). And the polymer powder is discharged from the gas replacement chamber 2b toward the downstream polymerization tank 3).
have.

前記ガス置換槽2の下部領域22には、前記第2のガスを導入するためのガス吹込口2eが設けられている。供給ライン10を経てガス吹込口から下部領域に導入された第2のガス(典型的にはオレフィンガス)は、ガス分散板2dを通じてガス置換室2bに吹き込まれる。前記上流重合槽1から前記第1の移送管4に排出されたポリマー粉粒体は、前記上流重合槽から第1のガスを同伴して前記ガス置換槽に入り、ガス置換室に一時的に蓄えられる。ポリマー粉粒体に同伴し、該ポリマー粉粒体中に存在する第1のガスは、ガス置換室において、前記ガス分散板を通って吹き込まれた第2のガスによって置換される。所定時間だけガス置換を行った後、ポリマー粉粒体は、移送制御弁5aを備えた前記第2の移送管5を通って、下流重合槽3へ移送される。   A gas blowing port 2 e for introducing the second gas is provided in the lower region 22 of the gas replacement tank 2. The second gas (typically olefin gas) introduced into the lower region from the gas inlet through the supply line 10 is blown into the gas replacement chamber 2b through the gas dispersion plate 2d. The polymer powder discharged from the upstream polymerization tank 1 to the first transfer pipe 4 enters the gas replacement tank accompanied by the first gas from the upstream polymerization tank, and temporarily enters the gas replacement chamber. Stored. The first gas entrained in the polymer particles and present in the polymer particles is replaced by the second gas blown through the gas dispersion plate in the gas replacement chamber. After the gas replacement is performed for a predetermined time, the polymer particles are transferred to the downstream polymerization tank 3 through the second transfer pipe 5 having the transfer control valve 5a.

触媒、オレフィン、水素等の副原料がそれぞれ触媒供給ライン6、オレフィン供給ライン7、副原料供給ライン8から上流重合槽1に投入され、そこでオレフィンが重合されてポリマー粉粒体となる。ポリマー粉粒体は循環ガスライン9から投入される循環ガスにより重合槽内で流動化される。前記上流重合槽内で生成した前記ポリマー粉粒体は、前記第1の移送管4を通ってガス置換槽2に抜き出される。ポリマー粉粒体に同伴する第1のガス(オレフィンと副原料が混合したガス)は、ガス分散板2dを通って吹き込まれる第2のガス(典型的にはオレフィンガス)によって置換され、第1の移送管4を通って上流重合槽1へ逆送される。   Auxiliary raw materials such as a catalyst, olefin, and hydrogen are charged into the upstream polymerization tank 1 from the catalyst supply line 6, the olefin supply line 7, and the auxiliary raw material supply line 8, respectively, where the olefin is polymerized into polymer particles. The polymer particles are fluidized in the polymerization tank by the circulating gas introduced from the circulating gas line 9. The polymer particles produced in the upstream polymerization tank are extracted into the gas replacement tank 2 through the first transfer pipe 4. The first gas (gas mixed with the olefin and the auxiliary material) entrained in the polymer powder is replaced by the second gas (typically olefin gas) blown through the gas dispersion plate 2d, and the first gas Is fed back to the upstream polymerization tank 1 through the transfer pipe 4.

ガス置換槽2のガス置換室2bでは、ガス吹込口2eから導入され、ガス分散板2dで分散された第2のガスによって、ポリマー粉粒体に同伴して上流重合槽1から流れ込みポリマー粉粒体層中の空隙に存在する第1のガスが置換される。裏側から供給されたガスを表側の全面から均一に吹き出すことができる構造のガス分散板を設けたことにより、注入する第2のガス量の多少にかかわらず、第2のガスをポリマー粉粒体と均一に効率良く接触させることができる。ガス分散板としては、典型的には、多貫通孔板や焼結金属板などの多孔質構造の板を使用するが、ガス置換槽の半径方向の均一なガス分散のための差圧特性と、粉体がガス分散板を通り抜け落ちない構造を有する物が好適に用いられる。   In the gas replacement chamber 2b of the gas replacement tank 2, the second gas introduced from the gas inlet 2e and dispersed by the gas dispersion plate 2d flows into the polymer powder from the upstream polymerization tank 1 and flows into the polymer powder. The first gas present in the voids in the body layer is replaced. Regardless of the amount of the second gas to be injected, the second gas is introduced into the polymer powder by providing a gas dispersion plate having a structure capable of uniformly blowing the gas supplied from the back side from the entire front side. Can be contacted uniformly and efficiently. As the gas dispersion plate, a plate having a porous structure such as a multi-through-hole plate or a sintered metal plate is typically used. However, the differential pressure characteristic for uniform gas dispersion in the radial direction of the gas replacement tank is used. A material having a structure in which the powder does not fall through the gas dispersion plate is preferably used.

ガス吹込口2eからガス置換槽2に導入する第2のガスは、典型的には、フレッシュなオレフィンガスであるが、その導入量は、前記上流重合槽1で反応により消費される全原料量の範囲に収めることが望ましい。重合条件によっては反応ガスをパージする必要が生じ、この場合、パージしたガスは廃棄または回収することになる。ガス置換槽から抜き出すポリマー粉粒体に同伴するガス量は、ガス置換槽2と下流重合槽3との圧力差、第2の移送管5の径や長さ、ポリマー粉粒体やガスの種類により決まるが、この同伴ガス量に対して導入する第2のガス量の比率を調節することにより、同伴ガスの置換率を任意に制御することが可能である。同伴ガスの置換率を任意に制御することにより、生成するポリマーの分子量等、必要とする物性の制御が可能となり、同時にパージする反応ガスの損失を防ぐことができる。   The second gas introduced into the gas replacement tank 2 from the gas inlet 2e is typically a fresh olefin gas, but the amount introduced is the total amount of raw material consumed by the reaction in the upstream polymerization tank 1 It is desirable to be within the range. Depending on the polymerization conditions, it is necessary to purge the reaction gas. In this case, the purged gas is discarded or recovered. The amount of gas entrained in the polymer powder extracted from the gas replacement tank is the pressure difference between the gas replacement tank 2 and the downstream polymerization tank 3, the diameter and length of the second transfer pipe 5, and the type of polymer powder and gas. However, it is possible to arbitrarily control the replacement rate of the accompanying gas by adjusting the ratio of the second gas amount to be introduced to the accompanying gas amount. By arbitrarily controlling the replacement rate of the entrained gas, it is possible to control necessary physical properties such as the molecular weight of the polymer to be produced, and at the same time, it is possible to prevent the loss of the purged reaction gas.

ガス置換したポリマー粉粒体は、ガス置換槽2のガス置換室2bの下部から、取り付けた下流重合槽3への第2の移送管5に設けた移送制御弁5aの開閉により、ガス置換槽と下流重合槽との圧力差を利用して直接下流重合槽に抜き出される。抜き出しによりガス置換槽内のポリマー粉粒体層の粉面が下がり、上流重合槽1からポリマー粉粒体が重力落下により継続的にガス置換槽へ流入する。   The polymer particles subjected to gas replacement are opened and closed by opening and closing a transfer control valve 5a provided in the second transfer pipe 5 from the lower part of the gas replacement chamber 2b of the gas replacement tank 2 to the attached downstream polymerization tank 3. And the downstream polymerization tank are directly extracted into the downstream polymerization tank using a pressure difference between them. The powder surface of the polymer granular material layer in the gas replacement tank is lowered by the extraction, and the polymer granular material continuously flows from the upstream polymerization tank 1 into the gas replacement tank due to gravity drop.

図2に、本発明の重合装置の一例における上流重合槽1、ガス置換槽2、および両者を繋ぐ第1の移送管4の関係を示す。この例において、前記上流重合槽は、前記第1の移送管が開口している縦側壁1bを有している。図2において、S1 は、前記第1の移送管と前記上流重合槽の縦側壁との接合部下端1cにおいて前記第1の移送管の内底部の勾配線4cが水平線と成す角の角度(°)である。点1cにおいて、第1の移送管の内底部が上流重合槽の縦側壁から直線を成して延びている場合には、第1の移送管の内底部の勾配線は、第1の移送管の内底部が成すその直線である。一方、点1cにおいて、第1の移送管の内底部が上流重合槽の縦側壁から曲線を成して延びている場合には、第1の移送管の内底部の勾配線は、第1の移送管の内底部が成すその曲線の、その点1cにおける接線である。S2は、前記第1の移送管が下向きに屈曲または湾曲している部分における前記第1の移送管の内底面の接線4dであって前記第1の移送管と前記上流重合槽の縦側壁との接合部上端1dを通る線が水平線と成す角の角度(°)である。dは第1の移送管4の内径を示す。上流重合槽から第1の移送管を経由し、ポリマー粉粒体をガス置換槽内に、圧力差などによらず重力落下のみにより円滑に流入させるためには、S1およびS2を、下記式(1)および(2)を満足するように決定すればよい。
0°≦S1≦90° (1)
Ar≦S2≦90° (2)
ここで、Arは、前記上流重合槽内で生成したポリマー粉粒体の安息角(°)である。本発明におけるポリマー粉粒体の安息角は、“Reinhold Chemical Engineering Series”(ニューヨークのReinhold社刊(1960年))の第85〜88頁のF.A.Zenz,D.F.Othmer共著“Fluidization and Fluid−Particle Systems”に定義されている安息角を指す。
In FIG. 2, the relationship of the 1st transfer pipe 4 which connects the upstream polymerization tank 1, the gas replacement tank 2, and both in an example of the superposition | polymerization apparatus of this invention is shown. In this example, the upstream polymerization tank has a vertical side wall 1b in which the first transfer pipe is open. In FIG. 2, S 1 is an angle of an angle formed by a slope line 4c of the inner bottom portion of the first transfer pipe with a horizontal line at the lower end 1c of the joint portion between the first transfer pipe and the vertical side wall of the upstream polymerization tank ( °). At the point 1c, when the inner bottom portion of the first transfer pipe extends straight from the vertical side wall of the upstream polymerization tank, the gradient line of the inner bottom portion of the first transfer pipe is the first transfer pipe. It is the straight line formed by the inner bottom part. On the other hand, when the inner bottom portion of the first transfer pipe extends in a curved line from the vertical side wall of the upstream polymerization tank at the point 1c, the gradient line of the inner bottom portion of the first transfer pipe is the first It is the tangent at the point 1c of the curve formed by the inner bottom of the transfer tube. S 2 is the longitudinal side walls of the first transfer tube the upstream polymerization reactor and the first transfer pipe a tangent 4d of the inner bottom surface of the first transfer tube in bent or curved to have portions downwardly Is the angle (°) of the angle formed by the line passing through the joint upper end 1d with the horizontal line. d indicates the inner diameter of the first transfer pipe 4. In order to smoothly flow polymer particles into the gas replacement tank from the upstream polymerization tank via the first transfer pipe only by gravity drop regardless of the pressure difference, S 1 and S 2 are as follows: What is necessary is just to determine so that Formula (1) and (2) may be satisfied.
0 ° ≦ S 1 ≦ 90 ° (1)
Ar ≦ S 2 ≦ 90 ° (2)
Here, Ar is the angle of repose (°) of the polymer particles produced in the upstream polymerization tank. The angle of repose of the polymer granular material in the present invention is described in F. on pages 85 to 88 of “Reinhold Chemical Engineering Series” (published by Reinhold, New York (1960)). A. Zenz, D.M. F. It refers to the angle of repose defined in “Fluidization and Fluid-Particle Systems” co-authored by Othmer.

好ましいS2は、たとえ第1の移送管4の上流重合槽1の縦側壁1bとの接合部における勾配、第1の移送管の内底部が下向きに屈曲または湾曲する位置、および屈曲または湾曲の角度が固定されていても、第1の移送管の内径dの大きさによって変動する。しかしながら、上記式(1)、(2)を満足するS1およびS2に応じてdを決定すれば、ポリマー粉粒体を良好に流動させることができる。S1=0の場合は、第1の移送管が上流重合槽の縦側壁に対して水平に突き出していることを意味しているが、この場合でもS2が式(2)を満足するように第1の移送管の内径dと第1の移送管の内底部が下向きに屈曲または湾曲する位置とを定めればポリマー粉粒体を重力落下により円滑に流入させることができる。 Preferable S 2 is the gradient at the joint between the first transfer pipe 4 and the vertical side wall 1b of the upstream polymerization tank 1, the position where the inner bottom of the first transfer pipe is bent or curved downward, and the bent or curved shape. Even if the angle is fixed, it varies depending on the size of the inner diameter d of the first transfer pipe. However, if d is determined according to S 1 and S 2 that satisfy the above formulas (1) and (2), the polymer particles can be flowed satisfactorily. In the case of S 1 = 0, it means that the first transfer pipe protrudes horizontally with respect to the vertical side wall of the upstream polymerization tank, but even in this case, S 2 satisfies the expression (2). If the inner diameter d of the first transfer pipe and the position where the inner bottom portion of the first transfer pipe bends or curves downward are determined, the polymer particles can be smoothly introduced by gravity drop.

ガス置換槽2のガス置換室2bの容量は、下流重合槽3へのポリマー粉粒体の間欠的な1回の移送によって移送されるのポリマー粉粒体の見掛け体積(すなわちポリマー粉粒体の実体積と該ポリマー粉粒体中に存在するガスの体積との合計)以上であることが好ましい。ガス置換槽からポリマー粉粒体を間欠的に移送する際に、ポリマー粉粒体中に残留する第1のガスの量は、ガス置換室2bの容積を十分大きく取ることにより抑制することができる。ガス置換室ではポリマー粉粒体と第2のガスが連続的に接触しているが、ガス置換槽における第1の移送管の開口2aと第2の移送管の開口2cとの距離が短い場合や、ポリマー粉粒体と第2のガスとの接触時間が短か過ぎる場合には、第1のガスが直接第2の移送管5に流入したり、ポリマー粉粒体中の第1のガスの第2のガスによる置換が不十分になり、下流重合槽3に流入する第1のガスの量が増加する。ガス置換室2bの容積をガス置換槽2からのポリマー粉粒体の1回の間欠的な移送動作で第2の移送管5に抜き出すポリマー粉粒体の量以上にすることによって、上記の望ましくない現象を防止することができる。   The capacity of the gas replacement chamber 2b of the gas replacement tank 2 is determined by the apparent volume of the polymer powder (that is, the polymer powder volume of the polymer powder transferred by the intermittent single transfer of the polymer powder to the downstream polymerization tank 3). The total volume of the actual volume and the volume of the gas present in the polymer powder is preferably not less than. When the polymer particles are intermittently transferred from the gas replacement tank, the amount of the first gas remaining in the polymer particles can be suppressed by taking a sufficiently large volume of the gas replacement chamber 2b. . In the gas replacement chamber, the polymer particles and the second gas are in continuous contact, but the distance between the opening 2a of the first transfer pipe and the opening 2c of the second transfer pipe in the gas replacement tank is short. If the contact time between the polymer particles and the second gas is too short, the first gas flows directly into the second transfer pipe 5 or the first gas in the polymer particles. The replacement with the second gas becomes insufficient, and the amount of the first gas flowing into the downstream polymerization tank 3 increases. By setting the volume of the gas replacement chamber 2b to be equal to or greater than the amount of the polymer powder extracted to the second transfer pipe 5 by one intermittent transfer operation of the polymer powder from the gas replacement tank 2, the above-mentioned desirable No phenomenon can be prevented.

ガス置換槽2に設置するガス分散板2dは、該装置の稼動時に該ガス分散板による圧力損失が0.2kPa以上となるものを選択することが好ましい。ガス分散板を適切に選択することにより、少量の第2のガスを供給した場合でも、ガス置換槽の断面全体にわたって第2のガスを均一に分散させることができる。   The gas dispersion plate 2d installed in the gas replacement tank 2 is preferably selected to have a pressure loss due to the gas dispersion plate of 0.2 kPa or more during operation of the apparatus. By appropriately selecting the gas dispersion plate, even when a small amount of the second gas is supplied, the second gas can be uniformly dispersed over the entire cross section of the gas replacement tank.

本発明は、その第1の側面において、上述のとおりのオレフィンの連続重合装置を提供するが、第2の側面においては、上記の連続重合装置を使用してオレフィンの連続重合方法を提供し、また、第3の側面において、そのようなオレフィンの連続重合プロセスにおいて行われる、上流重合槽から下流重合槽へのポリマー粉粒体の移送方法を提供する。   In the first aspect, the present invention provides a continuous polymerization apparatus for olefins as described above. In the second aspect, the present invention provides a continuous polymerization process for olefins using the continuous polymerization apparatus, Moreover, in the 3rd side surface, the transfer method of the polymer granular material from an upstream polymerization tank to a downstream polymerization tank performed in the continuous polymerization process of such an olefin is provided.

本発明の第2の側面に係るオレフィンの連続重合方法は、直列に配置された複数の気相重合槽を有する連続重合装置中の各気相重合槽において触媒の存在下にオレフィンを重合するオレフィンの連続重合方法であって、前記連続重合装置は、上で詳細に説明した装置であり、下記の工程を有することを特徴とする方法である。
前記上流重合槽で生成したポリマー粉粒体を、前記上流重合槽中の第1のガスの少なくとも一部と共に、前記第1の移送管を経由して前記ガス置換槽のガス置換室に導入する工程;
前記ガス吹込口から第2のガスを前記下部領域内に供給し、更に前記ガス分散板を通して前記ガス置換室に導入し、これにより、前記ガス置換室内にある前記ポリマー粉粒体中の前記第1のガスの少なくとも一部を前記第2のガスで置換する工程;および
前記ポリマー粉粒体をその内部に存在するガスと共に間欠的に前記ガス置換室から前記第2の移送管を通って前記下流重合槽に移送する工程。
The method for continuously polymerizing olefins according to the second aspect of the present invention is an olefin for polymerizing olefins in the presence of a catalyst in each gas phase polymerization tank in a continuous polymerization apparatus having a plurality of gas phase polymerization tanks arranged in series. In the continuous polymerization method, the continuous polymerization apparatus is the apparatus described in detail above, and has the following steps.
The polymer particles produced in the upstream polymerization tank are introduced into the gas replacement chamber of the gas replacement tank through the first transfer pipe together with at least a part of the first gas in the upstream polymerization tank. Process;
A second gas is supplied from the gas inlet into the lower region, and is further introduced into the gas replacement chamber through the gas dispersion plate, whereby the polymer particles in the polymer powder in the gas replacement chamber are introduced. Replacing at least a portion of one gas with the second gas; and intermittently passing the polymer powder together with the gas present therein from the gas replacement chamber through the second transfer pipe. The process of transferring to a downstream polymerization tank.

本発明の第3の側面に係るポリマー粉粒体の移送方法は、直列に配置された複数の気相重合槽を有する連続重合装置におけるオレフィンの連続重合プロセスにおいて行われるポリマー粉粒体の移送方法であって、前記連続重合装置は、上で詳細に説明した装置であり、下記の工程を有することを特徴とする方法である。
前記上流重合槽で生成したポリマー粉粒体を、前記上流重合槽中の第1のガスの少なくとも一部と共に、前記第1の移送管を経由して前記ガス置換槽のガス置換室に導入する工程;
前記ガス吹込口から第2のガスを前記下部領域内に供給し、更に前記ガス分散板を通して前記ガス置換室に導入し、これにより、前記ガス置換室内にある前記ポリマー粉粒体中の前記第1のガスの少なくとも一部を前記第2のガスで置換する工程;および
前記ポリマー粉粒体をその内部に存在するガスと共に間欠的に前記ガス置換室から前記第2の移送管を通って前記下流重合槽に移送する工程。
The method for transferring polymer particles according to the third aspect of the present invention is a method for transferring polymer particles performed in a continuous polymerization process of olefins in a continuous polymerization apparatus having a plurality of gas phase polymerization tanks arranged in series. And the said continuous polymerization apparatus is an apparatus demonstrated in detail above, It is a method characterized by having the following processes.
The polymer particles produced in the upstream polymerization tank are introduced into the gas replacement chamber of the gas replacement tank through the first transfer pipe together with at least a part of the first gas in the upstream polymerization tank. Process;
A second gas is supplied from the gas inlet into the lower region, and is further introduced into the gas replacement chamber through the gas dispersion plate, whereby the polymer particles in the polymer powder in the gas replacement chamber are introduced. Replacing at least a portion of one gas with the second gas; and intermittently passing the polymer powder together with the gas present therein from the gas replacement chamber through the second transfer pipe. The process of transferring to a downstream polymerization tank.

前記ガス吹込口2eから導入する前記第2のガスの単位時間当たりの重量の、前記ガス置換槽2から前記下流重合槽3に移送する前記ポリマー粉粒体の単位時間当たりの重量に対する比率を調節することにより、前記ポリマー粉粒体中の前記第1のガスの前記第2のガスによる置換率を制御することが容易である。前記ポリマー粉粒体中の前記第1のガスの前記第2のガスによる置換率を制御することにより、下流重合槽中のガス中の副原料濃度などを調節し、目的に応じた有用なポリマーを得ることができる。   The ratio of the weight per unit time of the second gas introduced from the gas inlet 2e to the weight per unit time of the polymer particles transferred from the gas replacement tank 2 to the downstream polymerization tank 3 is adjusted. By doing so, it is easy to control the substitution rate of the first gas in the polymer granular material by the second gas. By controlling the substitution rate of the first gas with the second gas in the polymer granular material, the concentration of the auxiliary material in the gas in the downstream polymerization tank is adjusted, and a useful polymer according to the purpose. Can be obtained.

上流重合槽1の重合圧力は、下流重合槽3の重合圧力よりも0.2MPaから1.0MPaだけ高い圧力に保持することは好ましい。本発明においては、ガス置換槽2に供給した第2のガス(典型的には、オレフィンガス)を主成分としたガスとともにポリマー粉粒体を、ガス置換槽と下流重合槽との圧力差を利用した気力輸送により移送するが、この移送能力は、圧力差、移送管サイズ、取り扱うポリマーやガスの性質等により決まる。上流重合槽と下流重合槽との圧力差は、ポリマー粉粒体移送のし易さの観点からは大きいほど好ましいが、余り大きいとこれらの両重合槽の重合条件差が大きくなりすぎるので、上流重合槽の重合圧力は、下流重合槽の重合圧力よりも0.2MPaから1.0MPaだけ高い圧力に保持することが好ましい。下流重合槽3へのポリマー粉粒体の間欠的な1回の移送によって移送するのポリマー粉粒体の見掛け体積(すなわちポリマー粉粒体の実体積と該ポリマー粉粒体中に存在するガスの体積との合計)は、ガス置換槽2のガス置換室2bの容量未満とすることが好ましい。また、ガス置換槽への第2のガスの供給は、ガス分散板2dによる圧力損失が0.2kPa以上となるような速度で行うことが好ましい。さらに、間欠的な移送動作のインターバルにおけるポリマー粉粒体移送の停止時に、第2のガスとの接触時間を十分確保することが有効である。   The polymerization pressure in the upstream polymerization tank 1 is preferably maintained at a pressure higher by 0.2 MPa to 1.0 MPa than the polymerization pressure in the downstream polymerization tank 3. In the present invention, the polymer granular material together with the gas mainly composed of the second gas (typically olefin gas) supplied to the gas replacement tank 2 is subjected to a pressure difference between the gas replacement tank and the downstream polymerization tank. The transfer is performed by pneumatic transportation, which is determined by the pressure difference, the transfer pipe size, the properties of the polymer and gas to be handled, and the like. The pressure difference between the upstream polymerization tank and the downstream polymerization tank is preferably as large as possible from the viewpoint of easy transfer of polymer particles, but if too large, the difference in polymerization conditions between these two polymerization tanks becomes too large. The polymerization pressure in the polymerization tank is preferably maintained at a pressure higher by 0.2 MPa to 1.0 MPa than the polymerization pressure in the downstream polymerization tank. The apparent volume of the polymer particles to be transferred by the intermittent single transfer of the polymer particles to the downstream polymerization tank 3 (that is, the actual volume of the polymer particles and the gas present in the polymer particles). The total volume) is preferably less than the capacity of the gas replacement chamber 2b of the gas replacement tank 2. Moreover, it is preferable to supply the second gas to the gas replacement tank at such a speed that the pressure loss due to the gas dispersion plate 2d is 0.2 kPa or more. Furthermore, it is effective to ensure a sufficient contact time with the second gas at the time of stopping the polymer granular material transfer in the interval of the intermittent transfer operation.

本発明は、オレフィンの連続重合に関する技術を提供し、本発明に適用可能なオレフィンは触媒の作用により重合可能なオレフィンであれば特に制限されないが、好ましくはC2〜C10、特に好ましくはC2〜C8のオレフィン、例えば、エチレン、プロピレン、またはエチレンと1種以上のC3〜C10、特に好ましくはC3〜C8のオレフィン(例えば、プロピレン、1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、1−オクテン)との混合物などが用いられる。各重合槽においては、適宜選択されたオレフィン重合触媒の存在下に、必要に応じて水素ガスなどの分子量調節剤や窒素などの不活性ガスなどの副原料の共存下に気相重合を行う。触媒としては、例えば、各種のメタロセン触媒や、Ziegler-Natta触媒などが挙げられる。重合圧力、重合時間、重合温度、副原料の種類や量などの重合条件は、当業者の常識に基づいて適宜設定すればよい。なお、上で詳述したガス置換槽を挟む上流重合槽および下流重合槽以外の1槽以上の追加の気相重合槽を有する連続重合装置において、該追加の気相重合槽の構造は、前記上流重合槽の構造と基本的には同じであるが、その容量、原料供給ラインの数、撹拌様式などの仕様は、適宜選択可能である。 The present invention provides a technique related to continuous polymerization of olefin, and the olefin applicable to the present invention is not particularly limited as long as it is an olefin that can be polymerized by the action of a catalyst, but preferably C 2 to C 10 , particularly preferably C 2 to C 8 olefins such as ethylene, propylene, or ethylene and one or more C 3 to C 10 , particularly preferably C 3 to C 8 olefins such as propylene, 1-butene, 1-hexene, 4 -Methyl-1-pentene, 1-octene) and the like are used. In each polymerization tank, gas phase polymerization is performed in the presence of an appropriately selected olefin polymerization catalyst in the presence of a secondary material such as a molecular weight regulator such as hydrogen gas or an inert gas such as nitrogen as necessary. Examples of the catalyst include various metallocene catalysts and Ziegler-Natta catalysts. The polymerization conditions such as the polymerization pressure, the polymerization time, the polymerization temperature, and the types and amounts of the auxiliary materials may be appropriately set based on common knowledge of those skilled in the art. In addition, in the continuous polymerization apparatus having one or more additional gas phase polymerization tanks other than the upstream polymerization tank and the downstream polymerization tank sandwiching the gas replacement tank described in detail above, the structure of the additional gas phase polymerization tank is as described above. Although the structure is basically the same as the structure of the upstream polymerization tank, the specifications such as the capacity, the number of raw material supply lines, and the stirring mode can be selected as appropriate.

次に、本発明を実施例により。さらに詳しく説明するが、本発明はこれらの例によって何ら限定されるものではない。   Next, the present invention will be described by examples. As will be described in more detail, the present invention is not limited to these examples.

実施例1
上流重合槽、ガス置換槽および下流重合槽を、この順序で直列に配置した装置においてポリマー粉粒体の間欠的移送を行い、ポリマー粉粒体の移送状況およびガス置換状況を検討した。
ガス置換槽は、内径250mm、高さ1000mmの円筒型で、その内部は作動状態における圧力損失が0.25KPaのガス分散板により2室に分離した構造を有していた。ガス分散板より下方には置換ガスの吹込口、ガス分散板より上方には上流重合槽からのポリマー粉粒体の受け入れるための入口(内径8インチ)と、ガス置換槽から下流重合槽に向けての出口(1インチ内径)が設けられており、ガス分散板から前記入口までの容積は約25Lであった。
内容積1.2m3の同型の上流重合槽および下流重合槽を直列に配置し、上流重合槽の縦側壁から水平に延びる内径8インチの開口部の抜出ノズルとそれに続く内径8インチの水平な接続配管でガス置換槽を接続した。抜出ノズルと接続配管の合計配管長は250mmであった。上流重合槽と配管の角度は、S1=0°、S2=39°であった。
ガス置換槽と下流重合槽とは移送制御弁を備えた移送管により接続した。
上流重合槽内は、温度70℃、エチレンに対する水素のモルの比(以下、H2/C'2比と記す)=1/10のガスにて1.0MPaGに保持した。該上流重合槽内では、線速0.22m/秒のガス流により充分に流動化された、平均粒子径が1050μm、嵩比重が0.37g/cc、安息角35°のポリマー粒子を保持した。下流重合槽内では、温度70℃、圧力0.2MPaGで窒素ガスで流動状態を保持した。次いで、ガス置換槽のガス吹込口よりフレッシュエチレンを40kg/hの速度で供給しながら、上流重合槽からガス置換槽を経由し下流気相重合槽へのポリマー粒子を間欠的に移送した。ガス置換槽からのポリマー粉粒体の移送条件は、移送制御弁の開時間は3sec、移送間隔を30secとした。ポリマー粉粒体の間欠移送1回当たりの移送量は4.4kgであった。下流重合槽のガスの分析を行った結果、H2/C'2比は0.15/10であり、ガス置換槽での置換が十分に行われていたことが分かった。また、ポリマー粒子のガス置換槽への流出状況も良好であった。実験条件および下流重合槽のガス分析の結果を表1に示した。
この例では、S1=0°、S2=39°、Ar=35°であり、下記条件(1)、(2)は共に満たされていた。
Example 1
Polymer powder particles were intermittently transferred in an apparatus in which an upstream polymerization tank, a gas replacement tank, and a downstream polymerization tank were arranged in series in this order, and the transfer state of the polymer particles and the gas replacement state were examined.
The gas replacement tank had a cylindrical shape with an inner diameter of 250 mm and a height of 1000 mm, and the inside thereof had a structure separated into two chambers by a gas dispersion plate having a pressure loss of 0.25 KPa in the operating state. Below the gas dispersion plate is a substitution gas inlet, above the gas dispersion plate is an inlet (with an inner diameter of 8 inches) for receiving the polymer particles from the upstream polymerization tank, and from the gas substitution tank to the downstream polymerization tank All outlets (1 inch inner diameter) were provided, and the volume from the gas dispersion plate to the inlet was about 25L.
An upstream polymerization tank and a downstream polymerization tank of the same type with an internal volume of 1.2 m 3 are arranged in series, and an extraction nozzle with an opening having an inner diameter of 8 inches extending horizontally from the vertical side wall of the upstream polymerization tank, followed by a horizontal of 8 inches with an inner diameter. The gas replacement tank was connected with a simple connection pipe. The total pipe length of the extraction nozzle and the connection pipe was 250 mm. The angles between the upstream polymerization tank and the piping were S 1 = 0 ° and S 2 = 39 °.
The gas replacement tank and the downstream polymerization tank were connected by a transfer pipe equipped with a transfer control valve.
The inside of the upstream polymerization tank was maintained at 1.0 MPaG with a temperature of 70 ° C. and a ratio of mole of hydrogen to ethylene (hereinafter referred to as H 2 / C ′ 2 ratio) = 1/10. In the upstream polymerization tank, polymer particles having an average particle diameter of 1050 μm, a bulk specific gravity of 0.37 g / cc, and an angle of repose of 35 ° were sufficiently fluidized by a gas flow having a linear velocity of 0.22 m / sec. . In the downstream polymerization tank, the flow state was maintained with nitrogen gas at a temperature of 70 ° C. and a pressure of 0.2 MPaG. Next, while supplying fresh ethylene at a rate of 40 kg / h from the gas inlet of the gas replacement tank, the polymer particles were intermittently transferred from the upstream polymerization tank to the downstream gas phase polymerization tank via the gas replacement tank. As for the transfer conditions of the polymer particles from the gas replacement tank, the opening time of the transfer control valve was 3 sec, and the transfer interval was 30 sec. The amount of polymer powder particles transferred per intermittent transfer was 4.4 kg. As a result of analyzing the gas in the downstream polymerization tank, the H 2 / C ′ 2 ratio was 0.15 / 10, and it was found that the replacement in the gas replacement tank was sufficiently performed. Moreover, the outflow situation of the polymer particles to the gas replacement tank was also good. The experimental conditions and the results of gas analysis of the downstream polymerization tank are shown in Table 1.
In this example, S 1 = 0 °, S 2 = 39 °, Ar = 35 °, and both the following conditions (1) and (2) were satisfied.

0°≦S1≦90° (1)
Ar≦S2≦90° (2)
0 ° ≦ S 1 ≦ 90 ° (1)
Ar ≦ S 2 ≦ 90 ° (2)

実施例2〜6
表1に示すように条件を変更した以外は実施例1と同様にして実験を行った。実験条件および結果を表1に示した。
Examples 2-6
Experiments were performed in the same manner as in Example 1 except that the conditions were changed as shown in Table 1. The experimental conditions and results are shown in Table 1.

比較例1
ガス置換槽のガス吹込口からのエチレンを導入しなかった以外は実施例1と同様の条件でポリマー粒子の移送を行った結果、移送制御弁開1回当たりの移送量は5.0Kgであった。下流重合槽のガスの分析の結果、H2/C'2比は1/10であり、ポリマー粒子に同伴したガスの組成は上流重合槽と同じであった。尚、ポリマー粒子のガス置換槽への流出状況は良好であった。











Comparative Example 1
As a result of transferring the polymer particles under the same conditions as in Example 1 except that ethylene was not introduced from the gas blowing port of the gas replacement tank, the transfer amount per opening of the transfer control valve was 5.0 kg. It was. As a result of analysis of the gas in the downstream polymerization tank, the H 2 / C ′ 2 ratio was 1/10, and the composition of the gas accompanying the polymer particles was the same as that in the upstream polymerization tank. In addition, the outflow situation to the gas substitution tank of the polymer particles was good.











Figure 2006052387
Figure 2006052387

本発明に係る連続重合装置におけるガス置換槽と上流重合槽との関係の一例を示す図である。It is a figure which shows an example of the relationship between the gas substitution tank and upstream polymerization tank in the continuous polymerization apparatus which concerns on this invention. 本発明の連続重合装置の一例における上流重合槽、ガス置換槽、および両者を繋ぐ第1の移送管の関係を示す図である。It is a figure which shows the relationship of the 1st transfer pipe which connects the upstream superposition | polymerization tank, gas replacement tank, and both in an example of the continuous polymerization apparatus of this invention.

符号の説明Explanation of symbols

1:上流重合槽 1a:ガス分散板 1b:縦側壁 1c:第1の移送管と上流重合槽の縦側壁との接合部下端 1d:第1の移送管と上流重合槽の縦側壁との接合部上端 2:ガス置換槽 21:上部領域 22:下部領域 2a:入口 2b:ガス置換室 2c:出口 2d:ガス分散板 2e:ガス吹込口 3:下流重合槽 4:第1の移送管 4a:抜出ノズル 4b:接続配管 5:第2の移送管 5a:移送制御弁 6:触媒供給ライン 7:オレフィンガス供給ライン 8:副原料供給ライン 9:循環ガスライン 10:第2のガス供給ライン
1:第1の移送管と上流重合槽の縦側壁との接合部下端において該第1の移送管の内底部が水平線と成す角の角度
S2:第1の移送管が下向きに屈曲または湾曲している部分における該第1の移送管の内底面の接線であって該第1の移送管と上流重合槽の縦側壁との接合部上端を通る線が水平線と成す角の角度
d:第1の移送管の内径

1: Upstream polymerization tank 1a: Gas dispersion plate 1b: Longitudinal side wall 1c: Lower end of the junction of the first transfer pipe and the vertical side wall of the upstream polymerization tank 1d: Joining of the first transfer pipe and the vertical side wall of the upstream polymerization tank Upper end of part 2: Gas replacement tank 21: Upper region 22: Lower region 2a: Inlet 2b: Gas replacement chamber 2c: Outlet 2d: Gas dispersion plate 2e: Gas blowing port 3: Downstream polymerization tank 4: First transfer pipe 4a: Extraction nozzle 4b: Connection pipe 5: Second transfer pipe 5a: Transfer control valve 6: Catalyst supply line 7: Olefin gas supply line 8: Secondary raw material supply line 9: Circulating gas line 10: Second gas supply line S 1 : Angle at which the inner bottom of the first transfer pipe forms a horizontal line at the lower end of the joint between the first transfer pipe and the vertical side wall of the upstream polymerization tank S2: The first transfer pipe bends or curves downward The inner bottom surface of the first transfer pipe Angle d corners line passing through the joint upper ends of the vertical side wall of the transfer tube and the upstream polymerization reactor of the first A in forms with a horizontal line: the inside diameter of the first transfer pipe

Claims (9)

オレフィンの連続重合装置であって、
該装置は、
直列に配置された複数の気相重合槽(該複数の重合槽は、1槽のガス置換槽を介して隣接する上流重合槽と下流重合槽の組合せを含んでおり、前記上流重合槽は、前記下流重合槽の上流に配置されており、前記ガス置換槽は、前記上流重合槽とは第1の移送管で連結され、前記下流重合槽とは第2の移送管で連結されている)を有し、
前記ガス置換槽は、その内部に配置されたガス分散板(該ガス分散板によって、前記ガス置換槽内は上部領域と下部領域とに仕切られている)を有し、
前記上部領域は、
入口(これは、前記第1の移送管の開口であり、前記上流重合槽で生成したポリマー粉粒体が、前記上流重合槽から第1のガスを同伴してそこを通って前記ガス置換槽に移送される);
ガス置換室(ここで、前記上流重合槽から移送されたポリマー粉粒体は一時的に蓄えられ、該ポリマー粉粒体に同伴して前記上流重合槽から導入されて前記ポリマー粉粒体中に存在する前記第1のガスの少なくとも一部は、前記ガス置換槽に供給される第2のガスによって置換される);および
出口(これは、前記第2の移送管の開口であり、前記ポリマー粉粒体を前記ガス置換室から前記下流重合槽に向けて排出する)
を有し、
前記下部領域は、前記第2のガスを導入するためのガス吹込口を有することを特徴とする装置。
An olefin continuous polymerization apparatus comprising:
The device
A plurality of gas phase polymerization tanks arranged in series (the plurality of polymerization tanks include a combination of an upstream polymerization tank and a downstream polymerization tank that are adjacent to each other via one gas replacement tank, (It is arranged upstream of the downstream polymerization tank, and the gas replacement tank is connected to the upstream polymerization tank by a first transfer pipe and to the downstream polymerization tank by a second transfer pipe) Have
The gas replacement tank has a gas dispersion plate disposed therein (the gas dispersion tank is partitioned into an upper region and a lower region by the gas dispersion plate),
The upper region is
Inlet (this is the opening of the first transfer pipe, and the polymer particles produced in the upstream polymerization tank are accompanied by the first gas from the upstream polymerization tank and pass through the gas replacement tank. Transferred to)
Gas replacement chamber (here, the polymer particles transferred from the upstream polymerization tank are temporarily stored and introduced from the upstream polymerization tank along with the polymer particles into the polymer particles. At least a portion of the first gas present is replaced by a second gas supplied to the gas replacement tank; and an outlet (which is an opening in the second transfer tube, and the polymer (Powder is discharged from the gas replacement chamber toward the downstream polymerization tank)
Have
The lower region has a gas inlet for introducing the second gas.
前記上流重合槽は、前記第1の移送管が開口している縦側壁を有し、
前記第1の移送管は、その内底部が水平または下向きに前記上流重合槽の縦側壁から延びていることを特徴とする請求項1に記載の装置。
The upstream polymerization tank has a vertical side wall in which the first transfer pipe is open,
The apparatus according to claim 1, wherein an inner bottom portion of the first transfer pipe extends from a vertical side wall of the upstream polymerization tank in a horizontal or downward direction.
前記第1の移送管は、その内底部が途中で下向きに屈曲または湾曲し、
下記式(1)および式(2)が満たされていることを特徴とする請求項2に記載の装置。
0°≦S1≦90° (1)
Ar≦S2≦90° (2)
式(1)中、S1 は、前記第1の移送管と前記上流重合槽の縦側壁との接合部下端において前記第1の移送管の内底部が水平線と成す角の角度(°)であり、S2は、前記第1の移送管が下向きに屈曲または湾曲している部分における前記第1の移送管の内底面の接線であって前記第1の移送管と前記上流重合槽の縦側壁との接合部上端を通る線が水平線と成す角の角度(°)であり、Arは、前記上流重合槽内で生成したポリマー粉粒体の安息角(°)である。
The first transfer pipe has an inner bottom bent or curved downward in the middle,
The apparatus according to claim 2, wherein the following expressions (1) and (2) are satisfied.
0 ° ≦ S 1 ≦ 90 ° (1)
Ar ≦ S 2 ≦ 90 ° (2)
In the formula (1), S 1 is an angle (°) formed by the inner bottom portion of the first transfer pipe and a horizontal line at the lower end of the joint portion between the first transfer pipe and the vertical side wall of the upstream polymerization tank. S 2 is a tangent to the inner bottom surface of the first transfer pipe at a portion where the first transfer pipe is bent or curved downward, and is a vertical line between the first transfer pipe and the upstream polymerization tank. The angle (°) formed by the line passing through the upper end of the joint with the side wall and the horizontal line is Ar (°), and Ar is the angle of repose (°) of the polymer particles produced in the upstream polymerization tank.
直列に配置された複数の気相重合槽を有する連続重合装置において行われるポリマー粉粒体の移送方法であって、前記連続重合装置は、請求項1に記載の装置であり、下記の工程を有することを特徴とする方法:
前記上流重合槽で生成したポリマー粉粒体を、前記上流重合槽中の第1のガスの少なくとも一部と共に、前記第1の移送管を経由して前記ガス置換槽のガス置換室に導入する工程;
前記ガス吹込口から第2のガスを前記下部領域内に供給し、更に前記ガス分散板を通して前記ガス置換室に導入し、これにより、前記ガス置換室内にある前記ポリマー粉粒体中の前記第1のガスの少なくとも一部を前記第2のガスで置換する工程;および
前記ポリマー粉粒体をその内部に存在するガスと共に間欠的に前記ガス置換室から前記第2の移送管を通って前記下流重合槽に移送する工程。
A method for transferring polymer particles in a continuous polymerization apparatus having a plurality of gas phase polymerization tanks arranged in series, wherein the continuous polymerization apparatus is the apparatus according to claim 1, and the following steps are performed. A method characterized by comprising:
The polymer particles produced in the upstream polymerization tank are introduced into the gas replacement chamber of the gas replacement tank through the first transfer pipe together with at least a part of the first gas in the upstream polymerization tank. Process;
A second gas is supplied from the gas inlet into the lower region, and is further introduced into the gas replacement chamber through the gas dispersion plate, whereby the polymer particles in the polymer powder in the gas replacement chamber are introduced. Replacing at least a portion of one gas with the second gas; and the polymer particles together with the gas present therein intermittently from the gas replacement chamber and through the second transfer pipe. The process of transferring to a downstream polymerization tank.
直列に配置された複数の気相重合槽を有する連続重合装置中の各気相重合槽において触媒の存在下にオレフィンを重合するオレフィンの連続重合方法であって、前記連続重合装置は、請求項1に記載の装置であり、下記の工程を有することを特徴とする方法:
前記上流重合槽で生成したポリマー粉粒体を、前記上流重合槽中の第1のガスの少なくとも一部と共に、前記第1の移送管を経由して前記ガス置換槽のガス置換室に導入する工程;
前記ガス吹込口から第2のガスを前記下部領域内に供給し、更に前記ガス分散板を通して前記ガス置換室に導入し、これにより、前記ガス置換室内にある前記ポリマー粉粒体中の前記第1のガスの少なくとも一部を前記第2のガスで置換する工程;および
前記ポリマー粉粒体をその内部に存在するガスと共に間欠的に前記ガス置換室から前記第2の移送管を通って前記下流重合槽に移送する工程。
An olefin continuous polymerization method for polymerizing an olefin in the presence of a catalyst in each gas phase polymerization tank in a continuous polymerization apparatus having a plurality of gas phase polymerization tanks arranged in series, wherein the continuous polymerization apparatus comprises: A method according to claim 1, comprising the following steps:
The polymer particles produced in the upstream polymerization tank are introduced into the gas replacement chamber of the gas replacement tank through the first transfer pipe together with at least a part of the first gas in the upstream polymerization tank. Process;
A second gas is supplied from the gas inlet into the lower region, and is further introduced into the gas replacement chamber through the gas dispersion plate, whereby the polymer particles in the polymer powder in the gas replacement chamber are introduced. Replacing at least a portion of one gas with the second gas; and the polymer particles together with the gas present therein intermittently from the gas replacement chamber and through the second transfer pipe. The process of transferring to a downstream polymerization tank.
前記ガス吹込口から導入する前記第2のガスの単位時間当たりの重量の、前記ガス置換槽から前記下流重合槽に移送する前記ポリマー粉粒体の単位時間当たりの重量に対する比率を調節し、これにより前記ポリマー粉粒体中の前記第1のガスの前記第2のガスによる置換率を制御することを特徴とする請求項5記載の方法。 Adjusting the ratio of the weight per unit time of the second gas introduced from the gas inlet to the weight per unit time of the polymer particles transferred from the gas replacement tank to the downstream polymerization tank; The method according to claim 5, wherein the substitution rate of the first gas in the polymer granular material by the second gas is controlled. 前記上流重合槽中の重合圧力が、前記下流重合槽中の重合圧力よりも0.2MPa〜1.0MPaだけ高い圧力に保持されている請求項5に記載の方法。 The method according to claim 5, wherein the polymerization pressure in the upstream polymerization tank is maintained at a pressure higher by 0.2 MPa to 1.0 MPa than the polymerization pressure in the downstream polymerization tank. 前記ガス置換槽から前記下流重合槽への間欠的な移送1回当たりに移送されるポリマー粉粒体の見掛けの体積は、前記ガス置換槽の前記ガス置換室の容積以下であることを特徴とする請求項5に記載の方法。 The apparent volume of the polymer particles transferred per intermittent transfer from the gas replacement tank to the downstream polymerization tank is not more than the volume of the gas replacement chamber of the gas replacement tank, The method according to claim 5. 前記ガス分散板における圧力損失が0.2kPa以上である条件下に第2のガスを供給することを特徴とする請求項5に記載の方法。 The method according to claim 5, wherein the second gas is supplied under a condition that a pressure loss in the gas dispersion plate is 0.2 kPa or more.
JP2005201210A 2004-07-16 2005-07-11 Olefin continuous polymerization apparatus, polymer particle transfer method, and olefin polymerization method Expired - Fee Related JP4760173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005201210A JP4760173B2 (en) 2004-07-16 2005-07-11 Olefin continuous polymerization apparatus, polymer particle transfer method, and olefin polymerization method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004209763 2004-07-16
JP2004209763 2004-07-16
JP2005201210A JP4760173B2 (en) 2004-07-16 2005-07-11 Olefin continuous polymerization apparatus, polymer particle transfer method, and olefin polymerization method

Publications (2)

Publication Number Publication Date
JP2006052387A true JP2006052387A (en) 2006-02-23
JP4760173B2 JP4760173B2 (en) 2011-08-31

Family

ID=36030060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005201210A Expired - Fee Related JP4760173B2 (en) 2004-07-16 2005-07-11 Olefin continuous polymerization apparatus, polymer particle transfer method, and olefin polymerization method

Country Status (1)

Country Link
JP (1) JP4760173B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037391A (en) * 2008-08-01 2010-02-18 Sumitomo Chemical Co Ltd Gas phase polymerization apparatus and method for producing olefin polymer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166208A (en) * 1980-05-27 1981-12-21 Mitsui Petrochem Ind Ltd Gas-phase polymerization of olefin
JPH093103A (en) * 1995-02-24 1997-01-07 Bp Chem Internatl Ltd Apparatus and method for polymerizing olefin in gas phase
JP2000344804A (en) * 1999-03-31 2000-12-12 Mitsui Chemicals Inc Multi-stage gas-phase polymerization method and multi- stage gas-phase polymerization apparatus and apparatus to reduce the amount of entailed other components in polymer powder in multi-stage gas-phase polymerization apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166208A (en) * 1980-05-27 1981-12-21 Mitsui Petrochem Ind Ltd Gas-phase polymerization of olefin
JPH093103A (en) * 1995-02-24 1997-01-07 Bp Chem Internatl Ltd Apparatus and method for polymerizing olefin in gas phase
JP2000344804A (en) * 1999-03-31 2000-12-12 Mitsui Chemicals Inc Multi-stage gas-phase polymerization method and multi- stage gas-phase polymerization apparatus and apparatus to reduce the amount of entailed other components in polymer powder in multi-stage gas-phase polymerization apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037391A (en) * 2008-08-01 2010-02-18 Sumitomo Chemical Co Ltd Gas phase polymerization apparatus and method for producing olefin polymer
DE102009035608A1 (en) 2008-08-01 2010-03-04 Sumitomo Chemical Company, Ltd. Gas phase polymerization apparatus and process for producing olefin polymer

Also Published As

Publication number Publication date
JP4760173B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
EP1962996B1 (en) Gas-phase process and apparatus for the polymerization of olefins
JP5611361B2 (en) Method for producing polyolefin
US5929180A (en) Apparatus and process for polymerising olefin in gas phase
CN103354764B (en) Slurry phase equipment
KR20010089441A (en) Method and apparatus for discharging polymerization reactors
US5558472A (en) Method and apparatus for transporting particles
JPH10506432A (en) Method and apparatus for gas phase polymerization of α-olefins
JP2018523716A (en) Method and apparatus for polymerizing olefins in the gas phase
KR101462466B1 (en) Method for polymerization of olefin
US7021870B2 (en) Device for the transport of granular solid particles with a controlled flow rate
US20200123279A1 (en) A method, an arrangement and use of an arrangement of preparing polymer
US7807761B2 (en) Apparatus and process for the withdrawal of polymer from a gas-phase polymerization reactor
JPH0233030A (en) Discharge controller for ventilating pipe
JP4760173B2 (en) Olefin continuous polymerization apparatus, polymer particle transfer method, and olefin polymerization method
JP5420864B2 (en) Vapor phase polymerization apparatus and olefin polymerization method
JP2019043984A (en) Production method of polyolefin
EP0830892B1 (en) Equipment and process for gas-phase olefin polymerisation
EP1105212B1 (en) Process for introducing a solid catalyst into a fluidised or agitated vessel
CN110038490A (en) Interior overflow multiple stage fluidized-bed reactor
US11161699B2 (en) Solids conveying with multi-diameter piping circuit
JP4309568B2 (en) Regeneration of catalyst in continuous fluid catalytic cracking of hydrocarbons
CN116981508A (en) Method for controlling catalyst flow in a fluidized catalytic treatment system
MX2008008276A (en) Gas-phase process and apparatus for the polymerization of olefins
JP2006117712A (en) Method for producing polyolefin
JPH07289884A (en) Fluidized-bed catalystic reactor

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080131

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080514

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees