JP2005066484A - Reaction device for organic substance, or the like, by supercritical fluid or subcritical fluid - Google Patents

Reaction device for organic substance, or the like, by supercritical fluid or subcritical fluid Download PDF

Info

Publication number
JP2005066484A
JP2005066484A JP2003300447A JP2003300447A JP2005066484A JP 2005066484 A JP2005066484 A JP 2005066484A JP 2003300447 A JP2003300447 A JP 2003300447A JP 2003300447 A JP2003300447 A JP 2003300447A JP 2005066484 A JP2005066484 A JP 2005066484A
Authority
JP
Japan
Prior art keywords
pressure
cylinder
plunger
fluid
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003300447A
Other languages
Japanese (ja)
Other versions
JP4296060B2 (en
Inventor
Yoshihiro Amarigome
喜裕 余米
Ken Kawabe
研 川辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2003300447A priority Critical patent/JP4296060B2/en
Publication of JP2005066484A publication Critical patent/JP2005066484A/en
Application granted granted Critical
Publication of JP4296060B2 publication Critical patent/JP4296060B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Reciprocating Pumps (AREA)
  • Details Of Reciprocating Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reaction device for an organic substance, or the like, by a supercritical fluid, or the like, capable of certainly the sealing supercritical fluid of a high pressure or a subcritical fluid in a cylinder in a reaction engine. <P>SOLUTION: In the reaction engine 2, compression fluid vapor with the substance to be reacted introduced into the cylinder is compressed by operating a compression plunger 4, and after a chemical reaction of the compressed reaction substance to be reacted is completed, the compression plunger 4 is operated in a reverse direction to reduce the temperature and pressure of the fluid vapor, and an intake/exhaust stroke is periodically carried out by removing out the fluid containing the product from the cylinder 3 and blowing-in the fluid vapor into the cylinder. Seal members 15, or the like, are provided on a lower part of a slide surface of the cylinder 3 and the compression plunger 4, and a liquid is poured to a border part 3b formed by the slide surface of the cylinder 3, an outer periphery of the plunger 4 and the both seal members 15, or the like. A liquid press-feed pump 19 for enhancing sealing property and inhibiting abrasion of the slide surface of the cylinder 3 and the sealing member 15, or the like, to a low degree is also provided to the reaction engine 2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、超臨界流体又は亜臨界流体による有機物質等の反応装置に関するものである。具体的には、バイオマスなどの有機物質等を被反応物質として、この被反応物質を超臨界流体又は亜臨界流体により分解処理やガス化処理等を行うための反応装置に関するものである。   The present invention relates to a reaction apparatus for an organic substance or the like using a supercritical fluid or a subcritical fluid. Specifically, the present invention relates to a reaction apparatus for performing decomposition processing, gasification processing, or the like on an organic substance such as biomass using a supercritical fluid or subcritical fluid as a reaction substance.

バイオマスなどの有機物質等の被反応物質に対する処理方法としては、かつての薬品酸化法、光酸化法、燃焼法に代えて、超臨界水又は亜臨界水による分解の方法が開発されている(特許文献1)。   As a treatment method for reactants such as organic substances such as biomass, a method of decomposition with supercritical water or subcritical water has been developed in place of the former chemical oxidation method, photooxidation method and combustion method (patent) Reference 1).

さらに、超臨界流体又は亜臨界流体による有機物質等の反応方法として、例えば、水の臨界条件、すなわち、臨界温度374℃、臨界圧力218気圧を超えた条件の超臨界水が、その温度と圧力で制御可能となって、パラフィン系炭化水素やベンゼン等の被反応物質を分解処理する方法も知られている(特許文献2)。   Furthermore, as a reaction method of an organic substance or the like using a supercritical fluid or a subcritical fluid, for example, supercritical water having a critical condition of water, that is, a critical temperature of 374 ° C. and a critical pressure exceeding 218 atm. And a method of decomposing a reaction substance such as paraffinic hydrocarbon and benzene is also known (Patent Document 2).

特許文献2では、例えば、木粉等の有機物質を分散させた高圧流体を断熱的に急速に圧縮して超臨界又は亜臨界の状態を保つことにより、流体蒸気の超臨界又は亜臨界の状態での化学反応により、木粉を糖への糖化反応を行なわせることができる反応装置を開示している。すなわち、流体蒸気を圧縮して超臨界流体又は亜臨界流体を得る手段と、この超臨界流体又は亜臨界流体を有機物等の被反応物質に接触させて化学反応を行わせる手段と、この化学反応によって生じる生成物を含む流体を膨張させて冷却させる手段とからなる反応装置である。そしてその手段として、シリンダとこのシリンダに設けられた圧縮プランジャにより流体蒸気を圧縮するとしているが、その際の高圧をシールする方法については何ら記載されていない。
特公平1−38532号公報 特開2002−263465号公報
In Patent Document 2, for example, a supercritical or subcritical state of fluid vapor is maintained by rapidly compressing a high-pressure fluid in which an organic substance such as wood powder is dispersed in an adiabatic manner and maintaining a supercritical or subcritical state. Discloses a reaction apparatus capable of causing a saccharification reaction of wood flour to sugar by a chemical reaction in That is, means for compressing fluid vapor to obtain a supercritical fluid or subcritical fluid, means for bringing the supercritical fluid or subcritical fluid into contact with a reactant such as an organic substance, and performing a chemical reaction, and this chemical reaction And a means for expanding and cooling the fluid containing the product generated by the above. And as the means, although fluid vapor | steam is compressed with a cylinder and the compression plunger provided in this cylinder, the method of sealing the high voltage | pressure in that case is not described at all.
Japanese Patent Publication No. 1-38532 JP 2002-263465 A

特許文献2のような超臨界流体又は亜臨界流体による有機物質等の反応装置を効率的に実施できる高温、高圧流体の超臨界状態又は亜臨界状態を扱うための反応装置においては、高温、高圧の超臨界流体又は亜臨界流体をシリンダとこのシリンダに設けられた圧縮プランジャとの境界面をシールする方法として、従来の内燃機関や圧縮機に見られる複数のリング構成での潤滑油を用いたシール方法では、蒸気による洗浄作用によりシリンダ摺動面の潤滑油が洗浄されるため高いシール性を確保することができない。   In a reactor for handling a supercritical state or subcritical state of a high-temperature, high-pressure fluid that can efficiently implement a reactor such as an organic substance using a supercritical fluid or a subcritical fluid as in Patent Document 2, a high temperature, high pressure As a method of sealing the boundary surface between the cylinder and the compression plunger provided in the cylinder, a supercritical fluid or a subcritical fluid was used in a plurality of ring configurations found in conventional internal combustion engines and compressors. In the sealing method, since the lubricating oil on the cylinder sliding surface is cleaned by the cleaning action by steam, high sealing performance cannot be secured.

そこで、本発明では、反応機関におけるシリンダ内での高温、高圧の超臨界流体又は亜臨界流体を確実にシールすることが可能な超臨界流体又は亜臨界流体による有機物質等の反応装置を提供することを目的とした。   In view of this, the present invention provides a reaction apparatus for an organic substance or the like using a supercritical fluid or subcritical fluid that can reliably seal a high-temperature, high-pressure supercritical fluid or subcritical fluid in a cylinder in a reaction engine. Aimed at that.

上記した目的を達成するため、本発明の超臨界流体又は亜臨界流体による有機物質等の反応装置は、シリンダとこのシリンダに設けられた圧縮プランジャとからなり、圧縮プランジャを動作させることによりシリンダ内に導入した被反応物質を伴う流体蒸気を圧縮し、この圧縮による被反応物質の化学反応が終了した後に圧縮プランジャを逆方向に動作させて流体蒸気の温度及び圧力を下げ、得られた生成物を含む流体をシリンダ内から取り出して新たな流体蒸気をシリンダ内に吹き込むことにより周期的に吸排気行程を行う反応機関において、前記シリンダの摺動面下部と前記圧縮プランジャの上部にリングのような合口部を有しないグランドパッキン等のシール部材を1個又は複数個設けると共に、前記シリンダ摺動面と前記プランジャの外周及び該両シール部材により形成された境界部に逆止弁を介し液体を注入し、該シール部材のシール性を高めかつ該シリンダの摺動面や該シール部材の磨耗を低く抑えるための液体導入機構を反応機関に併設したことを特徴とする。   In order to achieve the above-described object, a reaction device for organic substances or the like using a supercritical fluid or a subcritical fluid according to the present invention comprises a cylinder and a compression plunger provided in the cylinder. After compressing the fluid vapor with the reactants introduced into the reactor, the chemical reaction of the reactants due to this compression is completed, the plunger is operated in the reverse direction to lower the temperature and pressure of the fluid vapor, and the product obtained In a reaction engine that periodically performs an intake and exhaust stroke by taking out a fluid containing the inside of the cylinder and blowing new fluid vapor into the cylinder, a ring or the like is formed on the lower part of the sliding surface of the cylinder and the upper part of the compression plunger. One or more sealing members such as a gland packing having no joint portion are provided, and the cylinder sliding surface and the plunger Liquid for injecting liquid through the check valve to the outer periphery and the boundary formed by the both seal members to improve the sealing performance of the seal member and to keep the wear of the sliding surface of the cylinder and the seal member low It is characterized by the fact that the introduction mechanism is attached to the reaction engine.

上記した本発明の反応機関における前記境界部の容積は前記プランジャの上下運動により大きく変化するため、注入された非圧縮性の液体で充満された該境界部は極端に高圧になり、該シール部材を破壊したり、シール部材を通過し反応室に流入し、反応室の圧力を変化させ、安定した超臨界又は亜臨界状態を確保することができなくなる。   Since the volume of the boundary in the reaction engine of the present invention described above changes greatly due to the vertical movement of the plunger, the boundary filled with the injected incompressible liquid becomes extremely high pressure, and the seal member Or pass through the seal member and flow into the reaction chamber, the pressure in the reaction chamber is changed, and a stable supercritical or subcritical state cannot be secured.

また、前記シリンダ下部からの流出を含め、該境界部に保有される液体の量が不足すると該シール部材のシール性低下や磨耗増大を招き安定した反応を維持することができなくなる。即ち、該境界部の該液体の圧力制御が課題となる。しかし、該液体は一般に非圧縮性の液体であるため、該液体の圧力制御は、容積制御と言い換えることができる。   Further, if the amount of liquid held in the boundary portion including the outflow from the lower portion of the cylinder is insufficient, the sealing performance of the sealing member is reduced and the wear is increased, so that a stable reaction cannot be maintained. That is, the pressure control of the liquid at the boundary becomes a problem. However, since the liquid is generally an incompressible liquid, the pressure control of the liquid can be rephrased as volume control.

そこで、該境界部に注入する液体導入経路に前記プランジャの上下運動による該境界部の最大容積変化量及び前記シール部材からの洩れ量を補給するに足る量とすると共に、前記プランジャの上下運動と同期し吐出・吸入させることにより、液体導入部の容積を概ね一定に保つことにより、前記プランジャの下降時の該境界部の異常な圧力上昇防止と、該プランジャの上昇時の該境界部への液体の供給を行う容積バランス形圧送ポンプを設けたことを特徴とする。   Therefore, the maximum amount of change in the volume of the boundary due to the vertical movement of the plunger and the amount of leakage from the seal member are set to an amount sufficient to replenish the liquid introduction path to be injected into the boundary, and the vertical movement of the plunger By discharging and sucking in synchronism, the volume of the liquid introduction part is kept substantially constant, thereby preventing an abnormal pressure increase at the boundary when the plunger is lowered and preventing the pressure from being applied to the boundary when the plunger is raised. A volume balance type pressure pump for supplying liquid is provided.

また、上記本発明の反応機関における前記した課題に対しては、前記容積バランス形圧送付ポンプの別案として、該容積バランス形圧送ポンプのように積極的に吐出・吸入せずに前記プランジャの上下運動により発生する前記境界部の圧力変動を利用し、前記液体導入経路に圧力により容積が変化する蓄圧室を設け、高圧時は該蓄圧室の容積を増し、該境界部の圧力低下に応じ該蓄圧室の容積を減らすことにより、前記境界部と該蓄圧室の容積の和を概ね一定にする蓄圧室を設けたことを特徴とする。   Further, in response to the above-mentioned problem in the reaction engine of the present invention, as an alternative to the volume balance type pressure delivery pump, the plunger is not actively discharged / inhaled like the volume balance type pressure delivery pump. A pressure accumulating chamber whose volume is changed by pressure is provided in the liquid introduction path by utilizing the pressure fluctuation of the boundary generated by the vertical movement, and the volume of the accumulating chamber is increased at a high pressure to respond to the pressure drop of the boundary. A pressure accumulation chamber is provided in which the sum of the volume of the boundary portion and the pressure accumulation chamber is made substantially constant by reducing the volume of the pressure accumulation chamber.

さらに、上記本発明の前記課題に対しての別案として、前記反応室の前記圧縮蒸気と前記境界部の前記液体を分離する可動ピストンを介し、該反応部と該境界部を連通する経路を設けることにより、該反応室と該境界部の圧力を概ね同一にしたことを特徴とする。   Further, as another solution to the above-described problem of the present invention, a path that communicates the reaction part and the boundary part via a movable piston that separates the compressed vapor in the reaction chamber and the liquid in the boundary part is provided. By providing, the pressure in the reaction chamber and the boundary portion is made substantially the same.

上述のように本発明は構成されるから、次のような効果を発揮する。   Since the present invention is configured as described above, the following effects are exhibited.

本発明の反応装置では、シリンダ下部にグランドパッキン等のシール部材を設けた構成とすることにより、シリンダにおける圧縮プランジャの摺動部分に液体導入ポンプ等の液体導入機構を反応機関に併設して、この液体導入機構をシリンダ内の超臨界流体又は亜臨界流体と同期し注入することにより、シリンダの摺動部分に超臨界流体又は亜臨界流体を確実にシールすることができる。   In the reaction apparatus of the present invention, by providing a seal member such as a gland packing at the bottom of the cylinder, a liquid introduction mechanism such as a liquid introduction pump is attached to the reaction engine at the sliding portion of the compression plunger in the cylinder, By injecting this liquid introduction mechanism in synchronism with the supercritical fluid or subcritical fluid in the cylinder, the supercritical fluid or subcritical fluid can be reliably sealed in the sliding portion of the cylinder.

また、液体導入機構において、該圧送ポンプの吐出量を概ね、圧縮プランジャの上下運動による該境界部の容積変化量及びシール部材からの洩れ量を補給するに足る量とすると共に、前記圧縮プランジャの上下運動と同期し吐出・吸入させ、液体導入部の容積を概ね一定に保つことにより、圧縮プランジャの下降時の該境界部の異常な圧力上昇防止と、該圧縮プランジャの上昇時の該境界部の負圧を回避し該境界部の液体の量と圧力を適正に維持することができる。   In the liquid introduction mechanism, the discharge amount of the pressure pump is generally set to an amount sufficient to replenish the volume change amount of the boundary portion due to the vertical movement of the compression plunger and the leakage amount from the seal member. By discharging and sucking in synchronism with the vertical movement and keeping the volume of the liquid introduction part substantially constant, the abnormal pressure rise of the boundary part when the compression plunger is lowered and the boundary part when the compression plunger is raised are prevented. Thus, the amount and pressure of the liquid at the boundary can be properly maintained.

また、前記液体導入機構により前記シリンダと前記圧縮プランジャで形成された境界部に高圧液体を注入する経路に、前記圧縮プランジャの上下運動による該境界部の容積変化に伴う圧力変化を吸収する蓄圧装置を設けることにより、極端な圧力上昇や圧力低下を防止できる。   Further, a pressure accumulator that absorbs a pressure change accompanying a volume change of the boundary due to a vertical movement of the compression plunger in a path for injecting a high-pressure liquid into a boundary formed by the cylinder and the compression plunger by the liquid introduction mechanism. By providing, extreme pressure rise and pressure drop can be prevented.

圧縮プランジャの上下運動によるシリンダと圧縮プランジャにより形成される境界部の容積変化に伴う圧力変化を吸収する蓄圧装置において該蓄圧室の該可動ピストンの反対側を反応室と連通することにより、前記圧縮プランジャの圧縮上昇行程時のシリンダ内の圧力上昇が該可動ピストンを介し、該境界部の液体の圧力を上昇させ、逆に前記圧縮プランジャの下降時のシリンダ内の圧力低下は該可動ピストンを介し該境界部の圧力を下げる圧力伝播機構を設けることにより、反応室内の圧力変動に追従し、該境界部の液体の圧力が維持されるため前記圧縮プランジャ上部のシール部材からの該反応室への流体の流入を確実に防止し、該反応室の圧力を前記シリンダ下部に設けたシール部材に伝達し液体による確実なシールが可能となる。   In the pressure accumulator that absorbs the pressure change accompanying the volume change of the boundary formed by the cylinder and the compression plunger due to the vertical movement of the compression plunger, the opposite side of the movable piston of the pressure accumulation chamber is communicated with the reaction chamber, whereby the compression An increase in pressure in the cylinder during the compression stroke of the plunger increases the pressure of the liquid at the boundary via the movable piston, and conversely, a decrease in pressure in the cylinder when the compression plunger moves down is via the movable piston. By providing a pressure propagation mechanism that lowers the pressure at the boundary, the pressure in the reaction chamber is tracked and the liquid pressure at the boundary is maintained. Inflow of fluid is reliably prevented, and the pressure in the reaction chamber is transmitted to a seal member provided at the lower part of the cylinder, so that reliable sealing with liquid is possible.

また、シリンダの下部及び圧縮プランジャの上部に設けた両シール部材においてシール部材の個数や締代等により、該上部シール部材のシール性を該下部シール部材のシール性より高く設定することにより、圧縮プランジャの上下運動による前記境界部の圧力変動によるシール部材からの洩れを下部シール側で生じさせることが可能となる。   In addition, by setting the sealing performance of the upper sealing member higher than the sealing performance of the lower sealing member by setting the number of sealing members, the tightening allowance, etc. in both sealing members provided at the lower part of the cylinder and the upper part of the compression plunger, It is possible to cause leakage from the seal member due to pressure fluctuation at the boundary due to the vertical movement of the plunger on the lower seal side.

また、シリンダ下部に設けた前記境界部のシール部材以外に前記圧縮プランジャを駆動するピストン側にグランドパッキン等のシール部材を1個又は複数個設けると共にその間に両シール部材の間にランタンリング等を設け該間から前記圧縮プランジャ側からの液体又は該ピストン側からの油の漏れを外部に導入することにより、これらの液体と水蒸気とが混入するのを避けることが可能となる。これにより、シリンダにおける超臨界状態又は亜臨界状態を安定化させ、反応機関を効率的に動作させることができる。   In addition to the boundary sealing member provided at the lower part of the cylinder, one or more sealing members such as a gland packing are provided on the piston side for driving the compression plunger, and a lantern ring or the like is provided between the sealing members therebetween. It is possible to avoid mixing these liquids and water vapor by introducing liquid leakage from the compression plunger side or oil leakage from the piston side to the outside. Thereby, the supercritical state or subcritical state in the cylinder can be stabilized, and the reaction engine can be operated efficiently.

次に発明を実施するための最良の形態を図に基づいて説明する。本発明に係る超臨界流体又は亜臨界流体による有機物質等の反応装置1の構成のうち反応機関2を図1に示した。なお、蒸気発生部や反応生成物回収のための復水器等の図は省略されている。反応装置1では、超臨界流体又は亜臨界流体を得る流体として、水のほか、例えば、二酸化炭素、亜酸化窒素、フレオン12、フレオン13、エタン、エチレン、プロピレン、ブタン、ヘキサン、メタノール、ベンゼン、トルエン、アンモニア、その他多様な物質を選択して利用することも可能であるが、以下は水の場合で説明する。   Next, the best mode for carrying out the invention will be described with reference to the drawings. The reaction engine 2 is shown in FIG. 1 in the configuration of the reaction apparatus 1 for an organic substance or the like using a supercritical fluid or a subcritical fluid according to the present invention. Note that illustrations of a steam generator, a condenser for collecting reaction products, and the like are omitted. In the reactor 1, as a fluid for obtaining a supercritical fluid or subcritical fluid, in addition to water, for example, carbon dioxide, nitrous oxide, freon 12, freon 13, ethane, ethylene, propylene, butane, hexane, methanol, benzene, Toluene, ammonia, and other various substances can be selected and used, but the following will be described in the case of water.

反応装置1には、シリンダ3と、シリンダ3内を上下運動する圧縮プランジャ4とからなる反応機関2が設けられている。圧縮プランジャ4とは、ビストンを含む広い概念である。   The reaction apparatus 1 is provided with a reaction engine 2 including a cylinder 3 and a compression plunger 4 that moves up and down in the cylinder 3. The compression plunger 4 is a broad concept including biston.

反応機関2において、シリンダ3はブロック21に支持されており、圧縮プランジャ4はブロック21内の駆動用ピストン4bにより駆動されるように締結されている。また、駆動用ピストン4bは連接棒23、ピストンピン4cを介しクランク軸22により周期的に上下運動する。   In the reaction engine 2, the cylinder 3 is supported by a block 21, and the compression plunger 4 is fastened so as to be driven by a driving piston 4 b in the block 21. The driving piston 4b periodically moves up and down by the crankshaft 22 through the connecting rod 23 and the piston pin 4c.

反応機関2における圧縮プランジャ4を動作させることにより、反応装置1に併設したボイラー5から水蒸気を導入すると共に、この水蒸気を圧縮して超臨界水又は亜臨界水を得ることができる。この超臨界状態又は亜臨界状態の水蒸気に被反応物質を接触させて、被反応物質に化学反応を生じさせる。次いで、被反応物質の化学反応終了後に圧縮プランジャ4を逆方向に動作させて該超臨界水又は該亜臨界水の温度及び圧力を下げ水蒸気とし、被反応物質の生成物の含まれた水蒸気をシリンダから取り出す。再度、圧縮プランジャ4を前記同様に動作させることにより、新たな水蒸気がシリンダ3に吹き込む。反応機関2においては、このような吸排気行程を周期的に動作させることができる。   By operating the compression plunger 4 in the reaction engine 2, it is possible to introduce water vapor from the boiler 5 provided in the reaction apparatus 1, and to compress the water vapor to obtain supercritical water or subcritical water. A reactant is brought into contact with the supercritical or subcritical water vapor to cause a chemical reaction in the reactant. Next, after the chemical reaction of the reactant is completed, the compression plunger 4 is operated in the reverse direction to lower the temperature and pressure of the supercritical water or the subcritical water to obtain steam. Remove from the cylinder. Again, the water vapor is blown into the cylinder 3 by operating the compression plunger 4 in the same manner as described above. In the reaction engine 2, such an intake / exhaust stroke can be periodically operated.

反応室6は、シリンダ3の摺動面と圧縮プランジャの頂面4a、更には、シリンダ3の上部に締結されたヘッド10により形成された空間からなる。また、反応室6を形成するヘッド10の反応室6の面にはボイラー5からの蒸気を吸入する吸気弁7と反応室6内の蒸気を排出する排気弁8が設けられ、更にそれらはそれぞれ吸気ポート9a、排気ポート9bを介し反応機関2の外部に導かれる。   The reaction chamber 6 includes a space formed by a sliding surface of the cylinder 3, a top surface 4 a of the compression plunger, and a head 10 fastened to the upper portion of the cylinder 3. In addition, an intake valve 7 for sucking steam from the boiler 5 and an exhaust valve 8 for discharging steam in the reaction chamber 6 are provided on the surface of the reaction chamber 6 of the head 10 forming the reaction chamber 6, respectively. It is guided to the outside of the reaction engine 2 through the intake port 9a and the exhaust port 9b.

吸気弁7及び排気弁8の開閉は、カム軸(図示しない)により駆動されるタペット14を介して上下方向に駆動される。吸気弁7及び排気弁8はバネ(図示しない)により常に閉状態になるように付勢されている。   Opening and closing of the intake valve 7 and the exhaust valve 8 is driven in the vertical direction via a tappet 14 driven by a cam shaft (not shown). The intake valve 7 and the exhaust valve 8 are urged so as to be always closed by a spring (not shown).

ヘッド10には、反応室6に通じる原料物質導入孔16が設けられており、吸気弁の開弁時期に概ね同期し原料を導入することにより蒸気との混合を良好にしている。   The head 10 is provided with a raw material introduction hole 16 that communicates with the reaction chamber 6 and introduces the raw material substantially in synchronism with the opening timing of the intake valve to improve mixing with the vapor.

吸入弁7よりシリンダ3内に吸入された蒸気は、圧縮プランジャ4により高圧に圧縮されるため、充分なシール性が必要である。しかし、従来の内燃機関や圧縮機等に用いられている複数のリング構成での潤滑油の粘性に頼ったシール方法では、蒸気の洗浄作用によりリングの合口部に潤滑油を保持することができず、十分な高圧に耐えるシール性を確保することができない。   Since the steam sucked into the cylinder 3 from the suction valve 7 is compressed to a high pressure by the compression plunger 4, a sufficient sealing property is required. However, with the sealing method that relies on the viscosity of the lubricating oil in a plurality of ring configurations used in conventional internal combustion engines, compressors, etc., the lubricating oil can be held at the abutment of the ring by the cleaning action of steam. Therefore, it is not possible to ensure a sealing property that can withstand a sufficient high pressure.

そこで、その摺動部のシール性を確保するために、シリンダ3の摺動面下部と圧縮プランジャ4の上部にグランドパッキン等の合口部のないシール部材15、18を1個又は複数個設けると共に、シリンダ3の摺動面と圧縮プランジャ4の外周面及び両シール部材で形成された境界部3bにシリンダ3の下部に設けた導入穴20aから液体圧送ポンプ19を用い水又は潤滑油等の液体を注入する。当然、反応室6の高圧をシールするためには境界部3bの圧力は最大反応室6の圧力になるため、境界部3bと液体圧送ポンプ19との間には逆止弁24を設けている。これにより、両シール部材15、18のシール性を高めると共に、シリンダ3の摺動面とシール部材15、18の異常磨耗を防止することにより、長期間にわたり安定したシール性を確保する。特に、このシール方式では、反応室6と境界部3bとの圧力差を小さくすることが可能であるため、圧縮プランジャ4の上部に設けたシール部材18の負担を低く抑えることができる。このことは、長期間にわたって安定した超臨界状態を確保することが可能となる。   Therefore, in order to ensure the sealing performance of the sliding portion, one or a plurality of sealing members 15 and 18 having no joint portion such as a gland packing are provided on the lower portion of the sliding surface of the cylinder 3 and the upper portion of the compression plunger 4. Liquid such as water or lubricating oil is supplied from the introduction hole 20a provided in the lower portion of the cylinder 3 to the boundary 3b formed by the sliding surface of the cylinder 3, the outer peripheral surface of the compression plunger 4, and both seal members. Inject. Of course, in order to seal the high pressure in the reaction chamber 6, the pressure in the boundary portion 3 b becomes the maximum pressure in the reaction chamber 6, so a check valve 24 is provided between the boundary portion 3 b and the liquid pumping pump 19. . As a result, the sealing performance of both the sealing members 15 and 18 is enhanced, and the abnormal sliding of the sliding surface of the cylinder 3 and the sealing members 15 and 18 is prevented, thereby ensuring a stable sealing performance over a long period of time. In particular, in this sealing method, the pressure difference between the reaction chamber 6 and the boundary portion 3b can be reduced, so that the burden on the seal member 18 provided on the upper portion of the compression plunger 4 can be kept low. This makes it possible to ensure a stable supercritical state over a long period of time.

しかし、圧縮プランジャ4の上下運動により境界部3bの容積は大きく変化するが、境界部3bに注入された液体はほとんど非圧縮性であるため、シール部材が完全にシールするとすると、圧縮プランジャ4の下降時には境界部3bの圧力は極端に高くなり、上下のシール部材15、18のシール性の限界を越え液体が流出するか、シール部材の破損を招くことが懸念される。しかし、一般的にはグランドパッキン等に代表されるシール部材は洩れることによる圧力損失でシール性を生み出しているため、洩れ分を補給しながら高圧をシールする必要がある。この境界部3bの圧力変化は回転数やストローク、即ち圧縮プランジャ4の速度により異なるが、境界部3bの圧力を積極的に制御することはより有効である。   However, although the volume of the boundary portion 3b greatly changes due to the vertical movement of the compression plunger 4, the liquid injected into the boundary portion 3b is almost incompressible. Therefore, if the sealing member seals completely, the compression plunger 4 When descending, the pressure at the boundary portion 3b becomes extremely high, and there is a concern that the liquid may flow out exceeding the limit of the sealing performance of the upper and lower sealing members 15 and 18, or the sealing member may be damaged. However, in general, a sealing member typified by a gland packing or the like produces a sealing property by pressure loss due to leakage, and thus it is necessary to seal a high pressure while replenishing the leakage. Although the pressure change at the boundary 3b varies depending on the rotation speed and stroke, that is, the speed of the compression plunger 4, it is more effective to positively control the pressure at the boundary 3b.

そこで、図2に示すように、境界部3bに液体を注入する経路の境界部3bと逆止弁24の間に、境界部3bの最大容積にシール部材15、18からの洩れ量を補給するのに充分な吐出量を有し、圧縮プランジャ4が下降時に吸入(この場合、境界部3bの圧力が高ければ、ポンプ19の後に設けた逆止弁24は閉じたままとなり、タンク25からの新しい液体は吸入されない)し、圧縮プランジャ4が上昇時吐出することにより境界部3bの容積が大きくなるタイミングに液体を送り込むこととなる。即ち、圧縮プランジャ4と同期した容積バランス形圧送ポンプ26を設けることにより、境界部3bの容積と容積バランス形圧送ポンプ26の圧縮容積29の和が常にほぼ一定することで極端な圧力上昇や圧力低下を防止するのである。   Therefore, as shown in FIG. 2, the amount of leakage from the seal members 15 and 18 is replenished to the maximum volume of the boundary portion 3b between the boundary portion 3b of the path for injecting liquid into the boundary portion 3b and the check valve 24. (When the pressure of the boundary portion 3b is high, the check valve 24 provided after the pump 19 remains closed and the tank 25 is discharged from the tank 25). No new liquid is sucked), and the liquid is fed at a timing when the volume of the boundary portion 3b is increased by discharging the compression plunger 4 when it rises. That is, by providing the volume balance type pumping pump 26 synchronized with the compression plunger 4, the sum of the volume of the boundary portion 3b and the compression volume 29 of the volume balance type pumping pump 26 is always substantially constant. It prevents the decline.

次に図2では、境界部3bの容積変化を積極的に容積バランス形圧送ポンプ26により吸収する方式を提案したが、図3では、境界部3bの圧力変化を利用し、容積変化を持たせた蓄圧室30を前記容積バランス形圧送ポンプ26に替えて設けたものである。シール部材15、18からの洩れによる液体の不足はある一定圧で液体を圧送するポンプ19により境界部3bと蓄圧室30の経路の圧力がある一定圧以下になれば、逆止弁24を介し供給されるのは全ての方式に共通である。   Next, FIG. 2 proposes a method in which the volume change of the boundary 3b is positively absorbed by the volume balance type pump 26, but in FIG. 3, the pressure change of the boundary 3b is used to give the volume change. The pressure accumulating chamber 30 is provided in place of the volume balance type pressure pump 26. The shortage of liquid due to leakage from the seal members 15 and 18 is caused through the check valve 24 when the pressure in the path between the boundary portion 3b and the pressure accumulating chamber 30 falls below a certain pressure by the pump 19 that pumps the liquid at a certain pressure. The supply is common to all systems.

次に図4で提案するものは、境界部3bの圧力制御を反応室6の圧力を用いて制御しようとするものであり、図3で提案した蓄圧室30の可動ピストン31の反対側に反応室6の圧力を供給するものである。即ち、反応室6の圧縮蒸気と境界部3bの液体を分離する可動ピストン33を介し、両面の圧力をバランスさせる圧力バランス機構を設けたものである。例えば、吸入蒸気を圧縮する行程で見ると、圧縮プランジャ4が上昇し、反応室6の圧力は上昇するが、境界部3bの容積は増えるため圧力は下がることになる。そこで、反応室6の圧力が経路20bを介し、可動ピストン33の上面34bに、また可動ピストン33の下面34aには境界部3bの低下した圧力が伝えられるため、可動ピストン33は下面34a側に移動し、境界部3b側の圧力を高める。この方式では、圧縮プランジャ4の上部に設けたシール部材18の上下間の圧力差を極端に小さく維持することができる。   Next, what is proposed in FIG. 4 is to control the pressure of the boundary portion 3b by using the pressure in the reaction chamber 6, and reacts on the opposite side of the movable piston 31 of the pressure accumulating chamber 30 proposed in FIG. The pressure of the chamber 6 is supplied. That is, a pressure balance mechanism that balances the pressures on both surfaces is provided via the movable piston 33 that separates the compressed vapor in the reaction chamber 6 and the liquid in the boundary portion 3b. For example, in the process of compressing the intake steam, the compression plunger 4 rises and the pressure in the reaction chamber 6 rises, but the volume of the boundary portion 3b increases, so the pressure drops. Therefore, the pressure in the reaction chamber 6 is transmitted to the upper surface 34b of the movable piston 33 via the path 20b, and the lower pressure 34a of the movable piston 33 is transmitted to the lower surface 34a. Move to increase the pressure on the boundary 3b side. In this method, the pressure difference between the upper and lower sides of the seal member 18 provided on the upper portion of the compression plunger 4 can be kept extremely small.

このように本発明は、圧縮プランジャ4の上部に設けたシール部材18は、反応室6の高圧をシールするのが目的でなく、境界部3bに注入した液体が反応室6に流出するのを防止するのが主目的である。反応室6の高圧をシールするのはシリンダ3の摺動面下部に設けたシール部材15である。この場合、境界部3bの液体は反応室6の圧力をシリンダ3の下部に設けたシール部材15に伝達することとシール部材15のシール性を高めるのが目的である。即ち、シール部材は洩れによる圧力損失でシール性を得ているため、高圧作用時に洩れる流体が充分必要なのである。   Thus, in the present invention, the sealing member 18 provided at the upper portion of the compression plunger 4 is not intended to seal the high pressure in the reaction chamber 6, but the liquid injected into the boundary portion 3 b flows out into the reaction chamber 6. The main purpose is to prevent. The high pressure in the reaction chamber 6 is sealed by a seal member 15 provided at the lower part of the sliding surface of the cylinder 3. In this case, the purpose of the liquid in the boundary portion 3 b is to transmit the pressure in the reaction chamber 6 to the seal member 15 provided in the lower portion of the cylinder 3 and to improve the sealing performance of the seal member 15. In other words, since the sealing member has a sealing property due to pressure loss due to leakage, a sufficient amount of fluid that leaks during high pressure action is necessary.

本発明で提案したシール方式では、いずれも圧縮プランジャ4の上部に設けたシール部材18に作用する圧力差は、シリンダ3の下部に設けたシール部材15に作用する圧力差より小さくなり、圧縮プランジャ4の上部に設けたシール部材の方が耐久性からみて有利であるが、反応室6への液体の流出は安定した超臨界水反応を確保することができなくなるため、シール部材の数や長さ、更には締代等により、圧縮プランジャ4の上部のシール部材18をシリンダ3の下部に設けたシール部材15より強固に設定する。   In any of the sealing methods proposed in the present invention, the pressure difference acting on the seal member 18 provided on the upper portion of the compression plunger 4 is smaller than the pressure difference acting on the seal member 15 provided on the lower portion of the cylinder 3. 4 is more advantageous from the viewpoint of durability. However, since the outflow of liquid into the reaction chamber 6 cannot secure a stable supercritical water reaction, the number and length of the seal members are long. Furthermore, the sealing member 18 at the upper part of the compression plunger 4 is set more firmly than the sealing member 15 provided at the lower part of the cylinder 3 by tightening allowance or the like.

また、本反応機関2では、圧縮プランジャ4は駆動ピストン4bに締結されているため、シリンダ3の下部に設けたシール部材15からの水蒸気の洩れは、駆動ピストン4bの摺動面の焼き付きの原因となると共に、駆動ピストン4bにより掻き上げられた潤滑油が境界部3bの液体に混入することは長期間の運転を考えると避けるべきであり、図5に示すように、シリンダ3下部のシール部材15a、15bの下に、更に駆動ピストン4bの側からの潤滑油をシールするシール部材15cを設けると共に、その間にランタンリング35等を挿入し、その間の洩れた液体や潤滑油等を外部に排出する穴36を設ける。   Further, in the present reaction engine 2, since the compression plunger 4 is fastened to the drive piston 4b, the leakage of water vapor from the seal member 15 provided at the lower portion of the cylinder 3 is a cause of seizure of the sliding surface of the drive piston 4b. At the same time, it should be avoided that the lubricating oil scooped up by the drive piston 4b is mixed into the liquid of the boundary portion 3b in consideration of a long-term operation. As shown in FIG. A seal member 15c for sealing lubricating oil from the drive piston 4b side is further provided below 15a and 15b, and a lantern ring 35 and the like are inserted between the sealing member 15c and the leaked liquid and lubricating oil are discharged to the outside. Hole 36 is provided.

本シール方式では、液体の粘性等に大きく頼っていないため、該境界面3bに注入する液体は、超臨界流体の種類や反応処理により影響しにくい液体の選定が可能となる。   Since this sealing method does not depend greatly on the viscosity or the like of the liquid, it is possible to select the liquid injected into the boundary surface 3b that is less affected by the type of supercritical fluid or the reaction process.

本発明に係る実施の最良の形態の超臨界流体又は亜臨界流体による有機物質等の反応装置の部分縦断面図である。It is a fragmentary longitudinal cross-sectional view of the reaction apparatus of the organic substance etc. by the supercritical fluid or subcritical fluid of the best form which concerns on this invention. 本発明に係る実施の最良の形態の超臨界流体又は亜臨界流体による有機物質等の反応装置における容積バランス形圧送ポンプにより吸収する方式を説明する部分縦断面図である。It is a fragmentary longitudinal cross-section explaining the system absorbed by the volume balance type pressure pump in the reaction apparatus of the organic substance etc. by the supercritical fluid or subcritical fluid of the best form which concerns on this invention. 本発明に係る実施の最良の形態の超臨界流体又は亜臨界流体による有機物質等の反応装置における蓄圧室を設けた形態を説明する部分縦断面図である。It is a fragmentary longitudinal cross-section explaining the form which provided the pressure accumulation chamber in the reactor of the organic substance etc. by the supercritical fluid or subcritical fluid of the best form which concerns on this invention. 本発明に係る実施の最良の形態の超臨界流体又は亜臨界流体による有機物質等の反応装置におけるシリンダの摺動部分の形態を説明する部分縦断面図である。It is a fragmentary longitudinal cross-section explaining the form of the sliding part of the cylinder in the reaction apparatus of the organic substance etc. by the supercritical fluid or subcritical fluid of the best form which concerns on this invention. 本発明に係る実施の最良の形態の超臨界流体又は亜臨界流体による有機物質等の反応装置におけるシリンダの摺動部分の形態を説明する部分縦断面図である。It is a fragmentary longitudinal cross-section explaining the form of the sliding part of the cylinder in the reaction apparatus of the organic substance etc. by the supercritical fluid or subcritical fluid of the best form which concerns on this invention.

符号の説明Explanation of symbols

1 反応装置
2 反応機関
3 シリンダ
3a 摺動面
3b 境界部
4 圧縮プランジャー
4a 圧縮プランジャー頂面
4b 駆動用ピストン
4c ピストンピン
5 ボイラー
6 反応室
7 吸気弁
8 排気弁
9a 吸気ポート
9b 排気ポート
10 ヘッド
11 吸気孔
12 排気孔
13 弁軸
14 タペット
15 シール部材
15a〜15c シール部材
16 原料物質導入孔
18 シール部材
19 液体圧送ポンプ
20a 導入穴
20b 経路
21 ブロック
22 クランク軸
23 連接棒
24 逆止弁
25 タンク
26 容積バランス形圧送ポンプ
27 プランジャ(ピストン)
28 カム軸
29 圧縮容積
30 蓄圧室
31 可動ピストン
31a スプリング
32 圧力バランス機構
33 可動ピストン
33a、33bスプリング
34a 下面
34b 上面
35 ランタンリング
36 排出穴
37 シール部材押え
DESCRIPTION OF SYMBOLS 1 Reaction apparatus 2 Reaction engine 3 Cylinder 3a Sliding surface 3b Boundary part 4 Compression plunger 4a Compression plunger top surface 4b Driving piston 4c Piston pin 5 Boiler 6 Reaction chamber 7 Intake valve 8 Exhaust valve 9a Intake port 9b Exhaust port 10 Head 11 Intake hole 12 Exhaust hole 13 Valve shaft 14 Tappet 15 Seal members 15a to 15c Seal member 16 Raw material material introduction hole 18 Seal member 19 Liquid pressure pump 20a Introduction hole 20b Path 21 Block 22 Crankshaft 23 Connecting rod 24 Check valve 25 Tank 26 Volume balanced pump 27 Plunger (piston)
28 Cam shaft 29 Compression volume 30 Accumulated chamber 31 Movable piston 31a Spring 32 Pressure balance mechanism 33 Movable piston 33a, 33b Spring 34a Lower surface 34b Upper surface 35 Lantern ring 36 Discharge hole 37 Seal member presser

Claims (6)

シリンダとこのシリンダに設けられた圧縮プランジャとからなり、圧縮プランジャを動作させることによりシリンダ内に導入した被反応物質を伴う流体蒸気を圧縮し、この圧縮による被反応物質の化学反応が終了した後に圧縮プランジャを逆方向に動作させて流体蒸気の温度及び圧力を下げ、得られた生成物を含む流体をシリンダ内から取り出して新たな流体蒸気をシリンダ内に吹き込むことにより周期的に吸排気行程を行う反応機関において、前記シリンダの摺動面下部と前記圧縮プランジャの上部にもグランドパッキン等のピストンリング等にある合口隙間を有しないシール部材を1個又は複数個設け、かつ両シール部材で挟まれた前記シリンダの摺動面と前記プランジャの外周面で形成される境界部に水又は油等の液体を注入できる経路を有する液体導入機構を併設したことを特徴とする超臨界流体又は亜臨界流体による有機物質等の反応装置。   It consists of a cylinder and a compression plunger provided in the cylinder, and by operating the compression plunger, the fluid vapor with the reactant introduced into the cylinder is compressed, and after the chemical reaction of the reactant by this compression is completed The compression plunger is operated in the opposite direction to lower the temperature and pressure of the fluid vapor, the fluid containing the obtained product is taken out from the cylinder, and new fluid vapor is blown into the cylinder to periodically perform the intake and exhaust strokes. In the reaction engine to be performed, one or a plurality of seal members that do not have a joint gap in a piston ring or the like such as a gland packing are provided at the lower part of the sliding surface of the cylinder and the upper part of the compression plunger, and are sandwiched between the two seal members. A liquid such as water or oil can be injected into a boundary formed by the sliding surface of the cylinder and the outer peripheral surface of the plunger. Reactor, such as an organic substance by supercritical fluid or subcritical fluid, characterized in that features a liquid introduction mechanism having. 前記境界部に液体を注入する前記液体導入機構において、該圧送ポンプの吐出量を概ね、前記プランジャの上下運動による該境界部の容積変化量及び前記シール部材からの洩れ量を補給するに足る量とすると共に、前記プランジャの上下運動と同期し吐出・吸入させ、液体導入部の容積を概ね一定に保つことにより、前記プランジャの下降時の該境界部の異常な圧力上昇防止と、該プランジャの上昇時の該境界部の負圧を回避し該境界部の液体の量と圧力を適正に維持することを特徴とする請求項1に記載された超臨界流体又は亜臨界流体による有機物質等の反応装置。   In the liquid introduction mechanism for injecting the liquid into the boundary portion, the discharge amount of the pressure pump is generally sufficient to replenish the amount of change in the volume of the boundary portion due to the vertical movement of the plunger and the leakage amount from the seal member. In addition, the discharge and suction are performed in synchronization with the vertical movement of the plunger, and the volume of the liquid introduction portion is kept substantially constant, thereby preventing an abnormal pressure increase at the boundary when the plunger is lowered, The organic material or the like by supercritical fluid or subcritical fluid according to claim 1, wherein a negative pressure at the boundary portion during rising is avoided and the amount and pressure of the liquid at the boundary portion are appropriately maintained. Reactor. 前記液体導入機構により前記シリンダと前記プランジャで形成された境界部に高圧液体を注入する前記経路に、逆止弁を介し一定圧で液体を供給するポンプを設け、かつ前記プランジャの上下運動による該境界部の容積変化に伴う圧力変化を吸収する蓄圧装置を設けたことを特徴とする請求項1又は2に記載された超臨界流体又は亜臨界流体による有機物質等の反応装置。   A pump for supplying liquid at a constant pressure via a check valve is provided in the path for injecting high-pressure liquid into the boundary formed by the cylinder and the plunger by the liquid introduction mechanism, and the plunger is moved up and down. 3. A reaction apparatus for an organic substance or the like using a supercritical fluid or a subcritical fluid according to claim 1 or 2, further comprising a pressure accumulating device that absorbs a pressure change caused by a volume change in the boundary portion. 前記プランジャの上下運動による前記シリンダと前記プランジャにより形成される該境界部の容積変化に伴う圧力変化を吸収する蓄圧装置において該蓄圧室の該可動ピストンの反対側を反応室と連通することにより、前記プランジャの圧縮上昇行程時のシリンダ内の圧力上昇が該可動ピストンを介し、該境界部の液体の圧力を上昇させ、逆に前記プランジャの下降時のシリンダ内の圧力低下は該可動ピストンを介し該境界部の圧力を下げる圧力伝播機構を設けてなる請求項1又は2に記載された超臨界流体又は亜臨界流体による有機物質等の反応装置。   By communicating the opposite side of the movable piston of the pressure accumulating chamber with the reaction chamber in the pressure accumulating device that absorbs the pressure change accompanying the volume change of the boundary portion formed by the cylinder and the plunger due to the vertical movement of the plunger, The increase in pressure in the cylinder during the compression-up stroke of the plunger increases the pressure of the liquid at the boundary via the movable piston, and conversely, the decrease in pressure in the cylinder when the plunger moves down is via the movable piston. 3. A reaction apparatus for an organic substance or the like using a supercritical fluid or a subcritical fluid according to claim 1 or 2, further comprising a pressure propagation mechanism that lowers the pressure at the boundary. 前記シリンダの下部及び前記プランジャの上部に設けた両シール部材においてシール部材の個数や締代等により、該上部シール部材のシール性を該下部シール部材のシール性より高く設定し、前記プランジャの上下運動による前記境界部の圧力変動によるシール部材からの洩れを下部シール側で生じさせ、前記反応室への液体の流入を防止したことを特徴とする請求項1〜4のいずれかに記載された超臨界流体又は亜臨界流体による有機物質等の反応装置。   The sealing performance of the upper sealing member is set to be higher than the sealing performance of the lower sealing member by setting the number of sealing members, the tightening allowance, and the like in both sealing members provided at the lower portion of the cylinder and the upper portion of the plunger. 5. The liquid according to claim 1, wherein leakage from the seal member due to pressure fluctuation at the boundary due to movement is caused on the lower seal side to prevent liquid from flowing into the reaction chamber. Reactors for organic substances using supercritical fluids or subcritical fluids. 前記シリンダ下部に設けた前記境界部のシール部材以外に前記プランジャを駆動するピストン側にグランドパッキン等のシール部材を1個又は複数個設けると共にその間に両シール部材の間にランタンリング等を設け該間から前記プランジャ側からの液体又は該ピストン側からの油の漏れを外部に導入することにより混入を避けるようにしたことを特徴とする請求項1〜5のいずれかに記載された超臨界流体又は亜臨界流体による有機物質等の反応装置。   In addition to the boundary sealing member provided at the lower part of the cylinder, one or a plurality of sealing members such as a gland packing are provided on the piston side for driving the plunger, and a lantern ring or the like is provided between the sealing members therebetween. The supercritical fluid according to any one of claims 1 to 5, wherein mixing is avoided by introducing a liquid leakage from the plunger side or oil leakage from the piston side to the outside. Or a reaction device for organic substances by subcritical fluid.
JP2003300447A 2003-08-25 2003-08-25 Reactors for organic substances using supercritical fluids or subcritical fluids Expired - Fee Related JP4296060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003300447A JP4296060B2 (en) 2003-08-25 2003-08-25 Reactors for organic substances using supercritical fluids or subcritical fluids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003300447A JP4296060B2 (en) 2003-08-25 2003-08-25 Reactors for organic substances using supercritical fluids or subcritical fluids

Publications (2)

Publication Number Publication Date
JP2005066484A true JP2005066484A (en) 2005-03-17
JP4296060B2 JP4296060B2 (en) 2009-07-15

Family

ID=34405377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003300447A Expired - Fee Related JP4296060B2 (en) 2003-08-25 2003-08-25 Reactors for organic substances using supercritical fluids or subcritical fluids

Country Status (1)

Country Link
JP (1) JP4296060B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007532292A (en) * 2004-04-09 2007-11-15 ニロ−ソアヴィ エス.ピー.エー. Super high pressure continuous homogenizer
JP2008155159A (en) * 2006-12-26 2008-07-10 Japan Organo Co Ltd Treatment apparatus using supercritical fluid
KR100932048B1 (en) 2009-06-08 2009-12-15 동아대학교 산학협력단 Servo cylinder
JP2019030858A (en) * 2017-08-09 2019-02-28 卓宏 伊藤 Processing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1015566A (en) * 1996-07-03 1998-01-20 Japan Organo Co Ltd Super-critical hydroxylation treatment apparatus
JP2001232382A (en) * 2000-02-22 2001-08-28 Japan Organo Co Ltd Supercritical water reacting apparatus
JP2003175326A (en) * 2001-12-12 2003-06-24 Japan Organo Co Ltd Hydrotheremal reactor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1015566A (en) * 1996-07-03 1998-01-20 Japan Organo Co Ltd Super-critical hydroxylation treatment apparatus
JP2001232382A (en) * 2000-02-22 2001-08-28 Japan Organo Co Ltd Supercritical water reacting apparatus
JP2003175326A (en) * 2001-12-12 2003-06-24 Japan Organo Co Ltd Hydrotheremal reactor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007532292A (en) * 2004-04-09 2007-11-15 ニロ−ソアヴィ エス.ピー.エー. Super high pressure continuous homogenizer
JP2008155159A (en) * 2006-12-26 2008-07-10 Japan Organo Co Ltd Treatment apparatus using supercritical fluid
KR100932048B1 (en) 2009-06-08 2009-12-15 동아대학교 산학협력단 Servo cylinder
JP2019030858A (en) * 2017-08-09 2019-02-28 卓宏 伊藤 Processing device

Also Published As

Publication number Publication date
JP4296060B2 (en) 2009-07-15

Similar Documents

Publication Publication Date Title
JP6041449B2 (en) Oil-cooled screw compressor system and oil-cooled screw compressor
US20110120242A1 (en) Portable, refrigerant recovery unit
CN101568729A (en) Variable capacity rotary compressor
JP2005066484A (en) Reaction device for organic substance, or the like, by supercritical fluid or subcritical fluid
EP0048535A1 (en) Apparatus and method for pumping hot, erosive slurry of coal solids in coal derived, water immiscible liquid
JPS6137465B2 (en)
CN1643252A (en) Reciprocable piston with a fluid scavenging system and method of scavenging a fluid
JP2017529485A (en) High pressure fuel pump for internal combustion engines, especially for fuel injection devices
CN101223391A (en) Reciprocating pump
EP3296557B1 (en) Fuel injection device and engine
WO2019171930A1 (en) Water injection pump
JP2001280221A (en) Seal for pump shaft having pressure-equalizing shuttle
JP6996023B1 (en) Compressor unit and its control method
RU2514453C1 (en) Piston pump with gas separator
RU2259499C1 (en) Compressor
JP2008101545A (en) Pump device
JP2004116330A (en) Reciprocating compressor and its gas leak prevention device
US20130074960A1 (en) Portable, refrigerant recovery unit
CN220505278U (en) Piston compressor
JPS6141970Y2 (en)
CN116557249B (en) Direct-discharge type constant-pressure liquid drainage emulsion pump
KR102453003B1 (en) Double type oil free reciprocating compressing apparatus and method
RU2316673C1 (en) Compressor with hydraulic seal
JPS6179849A (en) Oil-up preventing mechanism in stirling engine
RU2282059C2 (en) Posinive displacement pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090304

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees