JP2005066407A - Catalyst-packed apparatus in exhaust gas treatment apparatus - Google Patents

Catalyst-packed apparatus in exhaust gas treatment apparatus Download PDF

Info

Publication number
JP2005066407A
JP2005066407A JP2003209391A JP2003209391A JP2005066407A JP 2005066407 A JP2005066407 A JP 2005066407A JP 2003209391 A JP2003209391 A JP 2003209391A JP 2003209391 A JP2003209391 A JP 2003209391A JP 2005066407 A JP2005066407 A JP 2005066407A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
honeycomb
wall
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003209391A
Other languages
Japanese (ja)
Inventor
Kazunori Yoshino
和徳 吉野
Mitsuaki Ikeda
光明 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2003209391A priority Critical patent/JP2005066407A/en
Publication of JP2005066407A publication Critical patent/JP2005066407A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst-packed apparatus in an exhaust gas treatment apparatus, which is arranged at such a position that exhaust gas is made to flow downward from above in the exhaust gas treatment apparatus and in which untreated gas is prevented from leaking through a gap between its inner wall and a honeycomb catalyst unit to be expanded at high temperature. <P>SOLUTION: This catalyst-packed apparatus is constituted so that the honeycomb catalyst unit is arranged on a support installed on the inner wall of this catalyst-packed apparatus. At least a packed layer of particulate matter having 0.5-5 mm average particle size is formed in the gap between the honeycomb catalyst unit and the inner wall of this catalyst-packed apparatus. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、排ガス処理装置を構成する触媒充填装置に関するものであり、特に、高温時にハニカム触媒ユニットと装置内壁の間隙が拡張して、未処理ガスがリークするのを防止することのできる触媒充填装置に関するものである。
【0002】
【従来の技術】
コークス炉排ガス、各種化学工場から排出されるガス、都市型清掃施設、都市型浄水施設、汚泥処理施設等から排出されるガスを処理する工程では、チタン等の触媒が充填された装置(触媒充填装置)に排ガスを通過させ、排ガス中に含まれる有機性ガス等の有害成分の分解除去が行われる。
【0003】
上記触媒充填装置では、排ガスと触媒が接触して発熱反応が生じるため、操業中に昇温し、該装置の金属構成部材が熱膨張を起こす。それに伴って、例えば部材間に隙間が生じたり部材に塑性変形が生じ、常温状態では起こり得ない様々な不具合を生じることがある。
【0004】
これらの不具合の解決を意図した技術として、特許文献1には、ガスリークする可能性のある箇所をメタルタッチでガスシールすることにより、高温排ガスと接触する反応器内部部品と保温材により常温に保たれた反応器ケーシングとの熱伸び差だけ設けた隙間を、窒素酸化物の高濃度排ガスが通過するのを防止できる様にしたシール構造が開示されている。
【0005】
また特許文献2には、触媒支持フレームの外周と外部ケーシングの内周との一方にシール材収容空間を形成して伸縮性シール材を挿入し、他方側には加圧保持部材を取付けて該伸縮性シール材を圧縮状態に保つことで、触媒支持フレームが熱で伸縮変形した場合でも、安定した排ガスシール効果が得られる様に工夫されたシール機構が開示されている。
【0006】
更に特許文献3には、被処理ガスの流通が筒抜けを起こして短絡することがないよう、触媒パレット群のハウジングを含む構造体として、該パレットを移動可能に支持するガイド手段を備え、該パレットには該ガイド手段と滑動可能な、パレット左右に備えられた橇部を有し、更に、ハウジングとその縁を当接しているパレット前後にフランジ部を有したものが提案されている。
【0007】
これらの技術では、触媒の支持枠や支持台の如き触媒充填装置の構成部材が、高温時に膨張しやすい金属部材であるが故に生じる不具合を解決している。
【0008】
ところで、上述の通り触媒充填装置では、排ガスと触媒の接触により発熱反応が生じるため、一般に触媒入口よりも触媒出口の方が高温となる。そのため排ガス流れが上から下に向かうように構成された触媒充填装置の場合は、触媒出口付近に位置する支持台(金属製)が熱膨張を起こして装置内壁を押し広げる。これに対し、装置内部に配置されたアルミナ等の触媒や該触媒と装置内壁との間隙に充填されたセラミックファイバー等は、上記金属製支持台と比較して熱膨張率が小さいため高温でもさほど膨張せず、熱膨張差が生じるため空隙が生じ得る。
【0009】
例えば(メタ)アクリル酸や(メタ)アクリル酸エステルの製造における排ガスについて説明すると、該排ガスは、有機成分を多量に含むことから処理時の発熱量も大きく、触媒入口温度は320℃程度であるのに対し、触媒出口温度は700℃にまで達する。
【0010】
この様な状況を模して、例えば一辺が2.6mの正方形状のオーステナイト系ステンレス製支持台を常温から700℃まで昇温した場合を想定すると、オーステナイト系ステンレスの平均熱膨張係数は17.1×10−6m/m℃であるから、該支持台は縦横方向に約30mm伸びる。これに対し、同サイズの平均熱膨張係数が1.71×10−6m/m℃程度であるセラミック製の触媒は、縦横方向に3mm程度しか伸びないので、常温時には同サイズである触媒と支持台が、700℃では支持台が一回り大きくなって約27mmの差が生じる。
【0011】
この様に上記金属製支持台の熱膨張と上記触媒等の熱膨張との顕著な差により、高温状態では、装置の内壁と触媒等との間隙が著しく拡張することが考えられる。予め隙間にセラミックファイバー等を密に充填させておいた場合でも、該セラミックファイバーは上述の通り熱膨張率が小さいため、該セラミックファイバー層と装置内壁との間に空隙が生じることが考えられる。従って、未処理ガスのリークを確実に阻止するには、該空隙からのリーク防止も考慮する必要があると考えられる。
【0012】
特許文献4には、触媒層と反応器壁面の空間部において、金網を敷いた上に粒状触媒を充填させることが示されているが、該粒状触媒のサイズによっては圧損比を高く維持できなかったり、必ずしも流動性に優れているとは言えない場合がある。
【0013】
【特許文献1】
特許第2587422号公報
【特許文献2】
特開平8−108044号公報
【特許文献3】
特開2002−239345号公報
【特許文献4】
特開昭57−56026号公報
【0014】
【発明が解決しようとする課題】
本発明は、この様な事情に鑑みてなされたものであって、高温時にハニカム触媒ユニットと装置内壁の間隙が拡張した場合でも、未処理ガスのリークを確実に防止することができ、排ガス処理効率を高めることのできる触媒充填装置を提供することにある。
【0015】
【課題を解決するための手段】
本発明に係る排ガス処理装置における触媒充填装置とは、触媒充填装置の内壁に付設された支持台上にハニカム触媒ユニットが配置され、排ガス流れが上から下に向かう様に構成された排ガス処理装置における触媒充填装置であって、該ハニカム触媒ユニットと装置内壁の間隙に、平均粒径0.5〜5mmの粒状物からなる充填層が少なくとも形成されているところに特徴がある。
【0016】
前記粒状物としては、流動性に富み、かつ化学的に安定で取り扱いの容易なセラミック製のものを用いるのがよく、好ましいセラミックとしては、例えばγ−アルミナが挙げられる。更に、Pt、PdおよびRhよりなる群から選択される1種以上を担持させて触媒機能を与えた粒状物を充填することも有効である。
【0017】
また本発明の装置は、排ガス処理時に前記ハニカム触媒ユニットの入口温度が300℃以上となり、かつ前記ハニカム触媒ユニットの出口温度が該入口温度よりも100℃以上高くなる様な状況下で使用すると、その効果を存分に発揮させることができる。
【0018】
【発明の実施の形態】
本発明者らは、前述した様な状況の下で、触媒充填装置の内壁に付設された支持台上にハニカム触媒ユニットが配置され、排ガス流れが上から下に向かう様に構成される触媒充填装置において、高温時にハニカム触媒ユニットと装置内壁の間隙が広がって空隙が生じた場合でも、該空隙から未処理ガスがリークするのをより確実に阻止し、排ガス処理率を高めることのできる装置を実現すべく様々な角度から検討を重ねてきた。
【0019】
その結果、触媒充填装置における前記ハニカム触媒ユニットと装置内壁の間隙に、平均粒径5mm以下の粒状物からなる粒状物充填層を形成しておけばよいことを見出し、上記本発明に想到した。触媒充填装置をこの様な構造にすることで、前記間隙が広がり空隙が生じたときにも、前記粒状物が空隙の拡大に応じて流動し空隙を塞ぐので、該ハニカム触媒ユニットと装置内壁の間隙を高圧損状態に保つことができ、未処理ガスのリークを防止できる。
【0020】
上記平均粒径が大きすぎる粒状物の場合、触媒層との圧損比を高く維持することができず、未処理ガスがリークしやすい。従って、上記平均粒径が5mm以下の粒状物を用いる。好ましくは4mm以下の粒状物がよい。一方、平均粒径の小さすぎる粒状物だと、流動性が低下し、本発明の作用効果が十分に発現しない場合がある。また、この様な平均粒径の小さすぎる粒状物を使用すると、該粒状物がハニカム触媒ユニットと装置内壁の間隔から脱落するおそれがある。従って、平均粒径が0.5mm以上の粒状物を用いる。好ましくは平均粒径が1.0mm以上の粒状物を用いる。
【0021】
前記粒状物は、充填密度が0.5〜1.5g/cmとなるように充填することが好ましい。
【0022】
また前記粒状物としては、形状が破砕物、円柱状物、多角形体、球状物等の様々な形状のものを使用することができるが、高温時の流動性を確保するには、球状物を使用することが推奨される。
【0023】
前記粒状物の材質も特に限定しないが、取り扱いが容易で高温時に流動性を有するセラミックを用いることが推奨される。該セラミックとしては、例えばアルミニウム,チタン,シリコン,ジルコニウム,セリウム,タングステンの酸化物等が挙げられるが、その中でもγ−アルミナを使用すれば、高温時にも化学的に安定しており、流動性にも優れているので好ましい。
【0024】
上記粒状物として触媒作用を発揮するものを使用すれば、粒状物充填層に排ガスが流入した場合でも、該排ガスの浄化を行うことができるので好ましい。この様な機能を与えた粒状物としては、例えば、Pt,Pd,Rh,Fe,Co,Ni,Mn,Cu,Vの如き排ガス浄化触媒としての作用を有する金属の1種以上を、例えば上記セラミック製の担体に担持させたものが挙げられる。特に排ガス中の揮発性有機成分を有効に分解するには、Pt、PdおよびRhよりなる群から選択される1種以上をγ−アルミナ粒状物表面に担持させたものを用いるのがよい。
【0025】
また前記粒状物充填層は、粒状物の平均粒径が排ガス流れの方向に大きくなるよう充填されたものであるのがよい。この様に排ガス流れの方向に従い粒状物の平均粒径が大きくなるよう充填して、触媒入口近辺の粒状物を平均粒径の小さなものとし、金網近辺の粒状物を平均粒径の大きなものとすることで、圧損比を高く維持しつつ、金網やセラミックウールの隙間から粒状物が脱落するのを防止することができる。また、セラミックウールと装置内壁の間に生じた空隙が早急に充填されて、未処理ガスのリークを確実に抑制することができる。
【0026】
本発明のより具体的な触媒充填装置として、上記ハニカム触媒ユニットと装置内壁の間隙において、
▲1▼前記支持台上に、セラミックファイバー密充填層と前記粒状物充填層が下から順に形成された構造であるものや、
▲2▼前記支持台上に、セラミックファイバー密充填層、金属網および前記粒状物充填層が下から順に形成された構造であるもの
を採用すれば、上記粒状物充填層を安定に保持できるので好ましい。
【0027】
以下、図1、図2に例示する触媒充填装置を参照しつつ、本発明をより具体的に説明するが、本発明を図示例に限定する趣旨ではない。
【0028】
図1は、排ガス処理装置を構成する触媒充填装置の一例を示す断面説明図である。直方体筒状または円筒状の触媒充填装置1内に、支持台6を取り付け、該支持台6上に金網5を介して、ハニカム触媒ユニット2が配置されている。
【0029】
上記支持台としては、材質が鉄、ステンレス等の鉄合金等のものを用いることができ、構造もグリッドバー型、マルチビーム型等任意の構造のものを使用できる。その取り付けも、装置内壁に溶接やボルト・ナット等で固定する方法の他、装置内壁面に取り付けたフック等に懸架して固定することもできる。
【0030】
また圧損を高めないよう間隙の大きい支持台6を使用する場合には、上記支持台6上に、例えば網目の小さい金網5を敷いてから触媒ユニット2を配置すれば、触媒ユニット2の構成単位が比較的小さいものであっても脱落する恐れがないので好ましい。図示していないがハニカム触媒ユニット2の上部に押さえ具を配置してもよい。
【0031】
図1におけるハニカム触媒ユニット2と触媒充填装置1内壁の間隙には、支持台6および金網5上に、セラミックファイバー密充填層4、粒状物充填層3、該粒状物充填層3を押えるためのセラミックファイバー密充填層4が下から順に形成されている。
【0032】
本発明では、強度,接触効率性,耐圧損性を十分に備えたハニカム状の触媒を用いることを前提とする。ハニカム状の触媒は、その形状が、本来の意である「蜂の巣状」のものの他、「格子状」や「コルゲート状(蛇腹状)」のものでもよく、六角形,四角形,三角形の開口形を有するものを包含する。該触媒に関しては、サイズ,細孔径,比表面積等についても特に限定するものでなく、公知の方法で製造されたハニカム状の触媒を制限なく用いることができる。
【0033】
上記触媒の材質は、被処理ガスに応じて適宜選択すればよい。例えば揮発性有機成分(VOC)を含む排ガスの処理に適用する場合は、該成分に対する酸化分解性能の高いPt,Pd,Rh,Fe,Co,Ni,Mn,Cu,Vなどの金属触媒を、例えばセラミックからなる担体に0.01〜3質量%程度担持させたものを用いればよい。これらの金属触媒は、単独で使用し得る他、2種以上を任意の組み合わせで併用してもよい。上記触媒の中でもPt,Pd,Rhは、VOCに対してとりわけ優れた分解能を有し、かつ長期間高レベルの触媒活性を維持できるので望ましい。
【0034】
また上記触媒成分を担持するための好ましい担体としては、例えばアルミナ,酸化チタン,酸化ケイ素,ジルコニア,酸化セリウム等が挙げられる。
【0035】
上記セラミックファイバーとしては、材質がアルミナ、シリカ等の市販品を用いればよい。
【0036】
本発明のハニカム触媒ユニット2における触媒の充填方法についても特に限定するものでなく、後述する実施例に示す通り、直方体筒状の触媒を縦横方向に配列する他、複数個の触媒を充填したセルを複数配列する構造であってもよい。
【0037】
上記図1に示す粒状物充填層をより確実に安定化するため、図2に示す如くセラミック密充填層4上に金属網7を敷き、その上に上記粒状物充填層3を形成してもよい。該金属網7としては、鉄、ステンレス等の鉄合金製のものを用いることができる。
【0038】
触媒充填装置を上記構成にすれば、触媒出口温度が触媒入口温度より100℃以上高い状態となる場合でも、未処理ガスがリークするのをより確実に阻止し、排ガス処理率を高めることができ、排ガス処理時に触媒ユニットの入口温度が300℃以上であり、触媒出口温度が該入口温度より更に100℃以上高い状態となる場合であっても、本発明の効果を十分に達成させることができる。
【0039】
本発明の触媒充填装置を組み入れて排ガス処理装置を構成する際には、ガスフィルタを設けたり、液体触媒槽を併設して別の有害成分を除去したり、後述する実施例でも示す通り、触媒の特性に応じて予め排ガスを加熱すべくヒータを設置したり、処理後の廃熱を排ガスの加熱に再利用するため熱交換器を設置することも有効である。また複数の有害成分を除去するため、種類の異なる触媒をそれぞれ充填した複数の触媒充填装置を直列に配置したり、連続的に操業するため同種類の触媒を充填した触媒充填装置を並列に配置し、自動弁により定期的にラインを切り替えるようにしてもよい。
【0040】
前記VOCを処理する場合、触媒の空間速度は10000〜50000Hr−1とするのが一般的である。また本発明におけるハニカム触媒に対する粒状物の圧損比は2倍以上とするのが好ましい。
【0041】
【実施例】
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。
【0042】
<本発明例1>
(メタ)アクリル酸、(メタ)アクリル酸エステル製造過程で生じた廃液の処理工程で発生した排ガスを想定したモデルガスを、図3に示す工程を含む排ガス処理工程で処理した。
【0043】
図4(断面説明図)に示すように、一辺が2594mmのオーステナイト系ステンレス製の角形反応器(触媒充填装置1)内に付設されたオーステナイト系ステンレス製のグリッドバータイプの支持台6上に、金網(SUS304製)5を敷いた後、まず、貴金属(Pt,Pd)を担持させたサイズが150mm角で高さ50mmのハニカム触媒2を縦横17個ずつ1段配置した。このときハニカム触媒2と装置内壁8の間隙は22mmであった。そして図4に示す通り、前記間隙にブランケット状のセラミックファイバー4(イソライト工業株式会社製、商品名:Isowool)を充填密度が0.25g/mL(未使用状態の約2.5倍)、高さが30mmとなるよう充填し、その上部にSUS304製のデミスター7を載置した。
【0044】
次に、2〜5段目のハニカム触媒2を上記1段目と同様に設置し、その後、ハニカム触媒2と装置内壁8との間に球状のγ−アルミナ(平均粒径:3mm)[住友化学工業(株)社製「NKH3−24」]3を、最上段(5段目)ハニカム触媒の上面より25mm下の位置まで充填した。その後、ハニカム触媒2の上面まで前記と同様のセラミックファイバー4を密充填した。
【0045】
この様な触媒充填装置を備えた図3の排ガス処理工程において、CO:5000ppm、CO:3.0%、プロピレン:1400ppm、プロパン:2800ppmを含有する排ガスを、触媒入口での温度が350℃となるよう予めヒータ12で加熱した後、触媒充填装置11の上部から、ガス流量:570m(normal)/min、空間速度(SV):21000Hr−1の条件で流入させ、上記CO等の除去処理を行った。その結果、触媒出口温度は700℃にまで達し、処理後のガス中のCOは37ppm、COは4.8%、プロピレンは2ppm、プロパンは5ppmであった。
【0046】
<本発明例2>
前記粒状物として、球状のγ−アルミナに代えて貴金属(Pd)を担持したアルミナ球状物(平均粒径3mm)を使用した以外は、上記本発明例1と同様にして排ガスの処理を行った。その結果、触媒出口温度は700℃にまで達し、また処理後のガス中のCOは18ppm、COは4.8%、プロピレンは1ppm、プロパンは3ppmにまで低減した。
【0047】
上記本発明例1と本発明例2の比較から、前記粒状物として触媒機能を有する貴金属(Pd)を担持したものを用いれば、ハニカム触媒と装置内壁の間隙に流入した排ガスも処理することができ、排ガス中の有害成分をより効率よく低減できることがわかる。
【0048】
<比較例1>
前記ハニカム触媒ユニット3と装置1内壁との間隙に、前記ブランケット状のセラミックファイバーのみを充填密度が0.25g/mLとなるようハニカム触媒上面まで充填した以外は、上記本発明例1と同様にして排ガスの処理を行った。
【0049】
その結果、触媒出口温度は700℃にまで達し、処理後のガス中のCOは44ppm、COは2.8%、プロピレンは10ppm、プロパンは15ppmであった。
【0050】
<比較例2>
平均粒径が8.5mmの球状のγ−アルミナを用いた以外は、上記本発明例1と同様にして排ガスの処理を行った。
【0051】
その結果、触媒出口温度は700℃にまで達し、処理後のガス中のCOは42ppm、COは2.8%、プロピレンは6ppm、プロパンは10ppmであった。
【0052】
これらの比較例と上記本発明例1および2との比較から、未処理ガスをより低減するには、本発明の触媒充填装置を採用するのがよいことがわかる。尚、上記実施例において、CO濃度が処理前よりも高くなっているのは、未処理ガス中のCOや有機物が処理されてCOに転化するためである。
【0053】
【発明の効果】
上記本発明によれば、高温時の触媒等と構造部材との熱膨張差により生じた空隙から未処理ガスがリークするのを確実に防止することができる。特に、排ガス流れが上から下に向かう様に構成された触媒充填装置において、触媒支持台の膨張によりハニカム触媒ユニットと装置内壁の間隙が著しく拡張された場合であっても、未処理ガスのリークを防止して排ガスの処理率を高めることができる。
【図面の簡単な説明】
【図1】本発明の実施形態の一例を示す概略断面図である。
【図2】本発明の実施形態の他の例を示す概略断面図である。
【図3】実施例で採用した排ガス処理工程の一部を示す概略工程図である。
【図4】実施例で用いた本発明例の触媒充填装置を示す概略断面図である。
【符号の説明】
1、11 触媒充填装置
2 ハニカム触媒ユニット
3 粒状物充填層
4 セラミック密充填層(セラミックファイバー)
5 金網
6 支持台
7 金属網(デミスター)
8 装置内壁
12 ヒータ
13 熱交換器
14 送風機
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a catalyst filling device constituting an exhaust gas treatment device, and in particular, a catalyst filling capable of preventing leakage of untreated gas due to expansion of a gap between a honeycomb catalyst unit and an inner wall of the device at a high temperature. It relates to the device.
[0002]
[Prior art]
In the process of treating coke oven exhaust gas, gas discharged from various chemical factories, city-type cleaning facilities, city-type water purification facilities, sludge treatment facilities, etc., a device filled with a catalyst such as titanium (catalyst filling) The exhaust gas is passed through the apparatus), and harmful components such as organic gas contained in the exhaust gas are decomposed and removed.
[0003]
In the above catalyst filling device, the exhaust gas and the catalyst come into contact with each other and an exothermic reaction occurs. Therefore, the temperature rises during operation, and the metal component of the device undergoes thermal expansion. Along with this, for example, gaps may be generated between members, plastic deformation may occur in the members, and various problems that cannot occur at normal temperature may occur.
[0004]
As a technique intended to solve these problems, Patent Document 1 discloses that a gas leaking portion is gas-sealed with a metal touch so that it is kept at a normal temperature by a reactor internal component that is in contact with high-temperature exhaust gas and a heat insulating material. A seal structure is disclosed in which a high-concentration exhaust gas of nitrogen oxides can be prevented from passing through a gap provided by a difference in thermal expansion with respect to a dripped reactor casing.
[0005]
In Patent Document 2, a sealant accommodating space is formed in one of the outer periphery of the catalyst support frame and the inner periphery of the outer casing, and an elastic sealant is inserted, and a pressure holding member is attached to the other side. There has been disclosed a sealing mechanism devised so that a stable exhaust gas sealing effect can be obtained even when the catalyst support frame is stretched and deformed by heat by keeping the stretchable sealing material in a compressed state.
[0006]
Further, Patent Document 3 includes guide means for movably supporting the pallet as a structure including a housing of the catalyst pallet group so that the flow of the gas to be processed does not cause a short circuit due to cylinder slippage. Has been proposed that has flanges provided on the left and right sides of the pallet that can slide with the guide means, and further has flanges on the front and rear of the pallet that abut the edges of the housing.
[0007]
These techniques solve the problems that occur because the constituent members of the catalyst filling device such as the catalyst support frame and the support base are metal members that easily expand at high temperatures.
[0008]
Incidentally, as described above, in the catalyst filling device, an exothermic reaction occurs due to contact between the exhaust gas and the catalyst, so that the temperature at the catalyst outlet is generally higher than that at the catalyst inlet. Therefore, in the case of a catalyst filling device configured such that the exhaust gas flow is directed from the top to the bottom, a support base (made of metal) located near the catalyst outlet causes thermal expansion to expand the inner wall of the device. On the other hand, a catalyst such as alumina disposed inside the apparatus, or a ceramic fiber filled in the gap between the catalyst and the inner wall of the apparatus has a smaller coefficient of thermal expansion than the above-mentioned metal support base, so that even at high temperatures, Since it does not expand and a difference in thermal expansion occurs, voids may be generated.
[0009]
For example, the exhaust gas in the production of (meth) acrylic acid or (meth) acrylic acid ester will be described. Since the exhaust gas contains a large amount of organic components, the amount of heat generated during the treatment is large, and the catalyst inlet temperature is about 320 ° C. On the other hand, the catalyst outlet temperature reaches 700 ° C.
[0010]
Simulating such a situation, for example, assuming that a square austenitic stainless steel support base having a side of 2.6 m is heated from room temperature to 700 ° C., the average thermal expansion coefficient of austenitic stainless steel is 17. Since it is 1 × 10 −6 m / m ° C., the support base extends about 30 mm in the vertical and horizontal directions. On the other hand, a ceramic catalyst having an average coefficient of thermal expansion of about 1.71 × 10 −6 m / m ° C. of the same size extends only about 3 mm in the vertical and horizontal directions. When the support base is 700 ° C., the support base becomes one size larger, and a difference of about 27 mm occurs.
[0011]
As described above, due to the remarkable difference between the thermal expansion of the metal support and the thermal expansion of the catalyst or the like, it is conceivable that the gap between the inner wall of the apparatus and the catalyst or the like is significantly expanded at a high temperature. Even when the ceramic fiber or the like is densely filled in the gap in advance, the ceramic fiber has a small coefficient of thermal expansion as described above, and thus it is conceivable that a void is generated between the ceramic fiber layer and the inner wall of the apparatus. Therefore, in order to reliably prevent leakage of untreated gas, it is considered necessary to consider leakage prevention from the gap.
[0012]
In Patent Document 4, it is shown that in the space between the catalyst layer and the reactor wall surface, a granular catalyst is filled on a wire mesh, but the pressure loss ratio cannot be maintained high depending on the size of the granular catalyst. Or may not necessarily be excellent in fluidity.
[0013]
[Patent Document 1]
Japanese Patent No. 2587422 [Patent Document 2]
JP-A-8-108044 [Patent Document 3]
JP 2002-239345 A [Patent Document 4]
Japanese Patent Laid-Open No. 57-56026
[Problems to be solved by the invention]
The present invention has been made in view of such circumstances, and even when the gap between the honeycomb catalyst unit and the inner wall of the apparatus is expanded at a high temperature, the leakage of untreated gas can be reliably prevented, and the exhaust gas treatment can be performed. An object of the present invention is to provide a catalyst filling device capable of increasing the efficiency.
[0015]
[Means for Solving the Problems]
The catalyst filling device in the exhaust gas treatment device according to the present invention is an exhaust gas treatment device in which a honeycomb catalyst unit is disposed on a support base attached to the inner wall of the catalyst filling device, and the exhaust gas flow is directed from top to bottom. In the catalyst filling apparatus according to claim 1, there is a feature in that at least a packed layer made of a granular material having an average particle diameter of 0.5 to 5 mm is formed in a gap between the honeycomb catalyst unit and the inner wall of the apparatus.
[0016]
As the granular material, it is preferable to use a ceramic product which is rich in fluidity, chemically stable and easy to handle, and preferable ceramics include, for example, γ-alumina. Furthermore, it is also effective to fill a granular material that supports one or more selected from the group consisting of Pt, Pd, and Rh to give a catalytic function.
[0017]
Further, when the apparatus of the present invention is used in a situation where the inlet temperature of the honeycomb catalyst unit is 300 ° C. or higher during exhaust gas treatment and the outlet temperature of the honeycomb catalyst unit is 100 ° C. or higher than the inlet temperature, The effect can be fully exhibited.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Under the circumstances as described above, the present inventors have provided a catalyst packing in which a honeycomb catalyst unit is disposed on a support base attached to an inner wall of a catalyst charging device, and an exhaust gas flow is directed from top to bottom. In the apparatus, even when the gap between the honeycomb catalyst unit and the inner wall of the apparatus is widened at a high temperature and a gap is generated, an apparatus that can more reliably prevent untreated gas from leaking from the gap and increase the exhaust gas treatment rate. We have studied from various angles to realize it.
[0019]
As a result, it has been found that a granular material packed layer made of granular materials having an average particle size of 5 mm or less may be formed in the gap between the honeycomb catalyst unit and the inner wall of the catalyst charging device, and the present invention has been conceived. With such a structure of the catalyst filling device, even when the gap is widened and the gap is generated, the granular material flows according to the enlargement of the gap and closes the gap. The gap can be maintained in a high pressure loss state, and leakage of untreated gas can be prevented.
[0020]
When the average particle size is too large, the pressure loss ratio with the catalyst layer cannot be kept high, and the untreated gas tends to leak. Therefore, a granular material having an average particle size of 5 mm or less is used. A granular material of 4 mm or less is preferable. On the other hand, if the average particle size is too small, the fluidity is lowered, and the effects of the present invention may not be sufficiently exhibited. In addition, when such a granular material having an average particle size that is too small is used, the granular material may fall out of the gap between the honeycomb catalyst unit and the inner wall of the apparatus. Therefore, a granular material having an average particle size of 0.5 mm or more is used. Preferably, a granular material having an average particle diameter of 1.0 mm or more is used.
[0021]
The granular material is preferably filled so as to have a filling density of 0.5 to 1.5 g / cm 3 .
[0022]
In addition, as the granular material, those having various shapes such as a crushed material, a cylindrical material, a polygonal material, and a spherical material can be used, but in order to ensure fluidity at a high temperature, the spherical material is used. Recommended to use.
[0023]
The material of the granular material is not particularly limited, but it is recommended to use a ceramic that is easy to handle and has fluidity at high temperatures. Examples of the ceramic include oxides of aluminum, titanium, silicon, zirconium, cerium, tungsten, etc. Among them, if γ-alumina is used, it is chemically stable even at high temperatures, and is fluid. Is also preferable.
[0024]
It is preferable to use a catalyst that exhibits a catalytic action as the particulate matter because the exhaust gas can be purified even when the exhaust gas flows into the particulate-filled bed. Examples of the granular material having such a function include one or more metals having an action as an exhaust gas purification catalyst such as Pt, Pd, Rh, Fe, Co, Ni, Mn, Cu, and V, for example, Those supported on a ceramic carrier may be mentioned. In particular, in order to effectively decompose the volatile organic component in the exhaust gas, it is preferable to use one in which one or more selected from the group consisting of Pt, Pd and Rh are supported on the surface of the γ-alumina granular material.
[0025]
The granular material packed bed is preferably packed so that the average particle size of the granular material becomes larger in the direction of the exhaust gas flow. In this way, the particles are packed so that the average particle size of the particles increases in accordance with the direction of the exhaust gas flow, the particles near the catalyst inlet have a small average particle size, and the particles near the wire mesh have a large average particle size. By doing so, it is possible to prevent the particulate matter from dropping out from the gaps between the wire mesh and the ceramic wool while maintaining a high pressure loss ratio. In addition, the gap generated between the ceramic wool and the inner wall of the apparatus is filled quickly, and leakage of untreated gas can be reliably suppressed.
[0026]
As a more specific catalyst filling device of the present invention, in the gap between the honeycomb catalyst unit and the inner wall of the device,
(1) A structure in which a ceramic fiber densely packed layer and the granular material packed layer are formed in order from the bottom on the support base,
(2) If the structure in which the ceramic fiber densely packed layer, the metal net, and the granular material packed layer are formed in order from the bottom is adopted on the support base, the granular material packed layer can be stably held. preferable.
[0027]
Hereinafter, the present invention will be described more specifically with reference to the catalyst filling apparatus illustrated in FIGS. 1 and 2, but the present invention is not limited to the illustrated examples.
[0028]
FIG. 1 is a cross-sectional explanatory view showing an example of a catalyst filling device constituting the exhaust gas treatment device. A support base 6 is attached in a rectangular parallelepiped cylindrical or cylindrical catalyst filling device 1, and the honeycomb catalyst unit 2 is disposed on the support base 6 via a wire mesh 5.
[0029]
As the support base, a material such as an iron alloy such as iron or stainless steel can be used, and a structure having an arbitrary structure such as a grid bar type or a multi-beam type can be used. In addition to the method of fixing to the inner wall of the apparatus by welding, bolts, nuts, or the like, the mounting can also be performed by hanging on a hook or the like attached to the inner wall of the apparatus.
[0030]
Further, when the support base 6 having a large gap is used so as not to increase the pressure loss, if the catalyst unit 2 is arranged on the support base 6 after the metal mesh 5 having a small mesh is laid, for example, the structural unit of the catalyst unit 2 Even if it is comparatively small, there is no fear of dropping off, which is preferable. Although not shown, a pressing tool may be disposed on the upper part of the honeycomb catalyst unit 2.
[0031]
In the gap between the honeycomb catalyst unit 2 and the inner wall of the catalyst filling device 1 in FIG. 1, the ceramic fiber densely packed layer 4, the granular material packed layer 3, and the granular material packed layer 3 are pressed onto the support base 6 and the wire mesh 5. The ceramic fiber densely packed layer 4 is formed in order from the bottom.
[0032]
In the present invention, it is assumed that a honeycomb catalyst having sufficient strength, contact efficiency, and pressure resistance is used. The honeycomb-shaped catalyst may have a “honeycomb” shape as well as a “lattice-like” or “corrugated (bellows-like)” shape, and a hexagonal, square, or triangular opening shape. Including those having The catalyst is not particularly limited in terms of size, pore diameter, specific surface area, and the like, and a honeycomb-like catalyst manufactured by a known method can be used without limitation.
[0033]
What is necessary is just to select the material of the said catalyst suitably according to to-be-processed gas. For example, when applied to treatment of exhaust gas containing a volatile organic component (VOC), a metal catalyst such as Pt, Pd, Rh, Fe, Co, Ni, Mn, Cu, and V having high oxidative decomposition performance for the component, For example, what is supported by about 0.01 to 3% by mass on a carrier made of ceramic may be used. These metal catalysts can be used alone or in combination of two or more in any combination. Among the above catalysts, Pt, Pd, and Rh are desirable because they have particularly excellent resolution for VOC and can maintain a high level of catalytic activity for a long period of time.
[0034]
Examples of a preferable carrier for supporting the catalyst component include alumina, titanium oxide, silicon oxide, zirconia, and cerium oxide.
[0035]
As the ceramic fiber, a commercially available product such as alumina or silica may be used.
[0036]
The method for filling the catalyst in the honeycomb catalyst unit 2 of the present invention is also not particularly limited. As shown in the examples described later, a cell filled with a plurality of catalysts in addition to arranging the rectangular parallelepiped cylindrical catalysts in the vertical and horizontal directions. The structure which arranges two or more.
[0037]
In order to stabilize the granular material packed layer shown in FIG. 1 more reliably, a metal net 7 is laid on the ceramic dense packed layer 4 as shown in FIG. 2, and the granular packed layer 3 is formed thereon. Good. As the metal net 7, one made of an iron alloy such as iron or stainless steel can be used.
[0038]
If the catalyst filling device is configured as described above, even when the catalyst outlet temperature is higher than the catalyst inlet temperature by 100 ° C. or more, it is possible to more reliably prevent the untreated gas from leaking and increase the exhaust gas treatment rate. Even when the inlet temperature of the catalyst unit is 300 ° C. or higher during exhaust gas treatment and the catalyst outlet temperature is higher than the inlet temperature by 100 ° C. or higher, the effect of the present invention can be sufficiently achieved. .
[0039]
When the exhaust gas treatment apparatus is configured by incorporating the catalyst filling apparatus of the present invention, a gas filter is provided, or a liquid catalyst tank is additionally provided to remove other harmful components. It is also effective to install a heater in advance to heat the exhaust gas according to the characteristics, or to install a heat exchanger in order to reuse the waste heat after treatment for heating the exhaust gas. Also, in order to remove multiple harmful components, multiple catalyst filling devices filled with different types of catalysts are arranged in series, and in order to operate continuously, catalyst filling devices filled with the same type of catalyst are arranged in parallel. However, the line may be switched periodically by an automatic valve.
[0040]
When the VOC is processed, the space velocity of the catalyst is generally set to 10,000 to 50,000 Hr- 1 . Moreover, it is preferable that the pressure loss ratio of the granular material to the honeycomb catalyst in the present invention is twice or more.
[0041]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.
[0042]
<Invention Example 1>
The model gas which assumed the waste gas generated in the processing process of the waste liquid produced in the (meth) acrylic acid and (meth) acrylic acid ester manufacturing process was processed in the exhaust gas processing process including the process shown in FIG.
[0043]
As shown in FIG. 4 (cross-sectional explanatory view), on a grid bar type support base 6 made of austenitic stainless steel attached in an austenitic stainless steel square reactor (catalyst filling apparatus 1) having a side of 2594 mm, After laying the wire mesh (made of SUS304) 5, first, 17 honeycomb catalysts 2 each supporting a noble metal (Pt, Pd) and having a size of 150 mm square and a height of 50 mm were arranged one by one in 17 columns. At this time, the gap between the honeycomb catalyst 2 and the device inner wall 8 was 22 mm. And as shown in FIG. 4, a blanket-like ceramic fiber 4 (made by Isolite Kogyo Co., Ltd., trade name: Isowool) is filled in the gap with a packing density of 0.25 g / mL (about 2.5 times the unused state), high The demister 7 made of SUS304 was placed on the top.
[0044]
Next, the 2nd to 5th stage honeycomb catalyst 2 was installed in the same manner as the first stage, and then spherical γ-alumina (average particle size: 3 mm) between the honeycomb catalyst 2 and the inner wall 8 of the apparatus [Sumitomo “NKH3-24”] 3 manufactured by Chemical Industry Co., Ltd. was filled to a position 25 mm below the upper surface of the uppermost (fifth) honeycomb catalyst. Thereafter, ceramic fibers 4 similar to those described above were closely packed up to the upper surface of the honeycomb catalyst 2.
[0045]
In the exhaust gas treatment process of FIG. 3 equipped with such a catalyst filling device, an exhaust gas containing CO: 5000 ppm, CO 2 : 3.0%, propylene: 1400 ppm, and propane: 2800 ppm has a temperature at the catalyst inlet of 350 ° C. After being heated by the heater 12 in advance, the gas is flowed from the upper part of the catalyst filling device 11 under the conditions of gas flow rate: 570 m 3 (normal) / min, space velocity (SV): 21000 Hr −1 to remove the CO and the like. Processed. As a result, the catalyst outlet temperature reached 700 ° C., and CO in the treated gas was 37 ppm, CO 2 was 4.8%, propylene was 2 ppm, and propane was 5 ppm.
[0046]
<Invention Example 2>
Exhaust gas treatment was performed in the same manner as in Example 1 of the present invention except that an alumina sphere (average particle size 3 mm) carrying a noble metal (Pd) was used instead of the sphere γ-alumina. . As a result, the catalyst outlet temperature reached 700 ° C., and CO in the treated gas was reduced to 18 ppm, CO 2 was 4.8%, propylene was 1 ppm, and propane was reduced to 3 ppm.
[0047]
From the comparison between the present invention example 1 and the present invention example 2, it is possible to treat the exhaust gas flowing into the gap between the honeycomb catalyst and the inner wall of the apparatus if the particulate material carrying a noble metal (Pd) having a catalytic function is used. It can be seen that harmful components in the exhaust gas can be reduced more efficiently.
[0048]
<Comparative Example 1>
Except that the gap between the honeycomb catalyst unit 3 and the inner wall of the apparatus 1 was filled only with the blanket-shaped ceramic fiber up to the upper surface of the honeycomb catalyst so that the filling density was 0.25 g / mL, the same as in the above-mentioned Example 1 of the present invention. The exhaust gas was treated.
[0049]
As a result, the catalyst outlet temperature reached 700 ° C., and CO in the treated gas was 44 ppm, CO 2 was 2.8%, propylene was 10 ppm, and propane was 15 ppm.
[0050]
<Comparative example 2>
Exhaust gas was treated in the same manner as in Invention Example 1 except that spherical γ-alumina having an average particle diameter of 8.5 mm was used.
[0051]
As a result, the catalyst outlet temperature reached 700 ° C., and CO in the treated gas was 42 ppm, CO 2 was 2.8%, propylene was 6 ppm, and propane was 10 ppm.
[0052]
From the comparison between these comparative examples and the above inventive examples 1 and 2, it can be seen that the catalyst filling apparatus of the present invention should be employed in order to further reduce the untreated gas. In the above embodiment, the CO 2 concentration is higher than that before the treatment because CO and organic matter in the untreated gas are treated and converted to CO 2 .
[0053]
【The invention's effect】
According to the present invention, it is possible to reliably prevent the untreated gas from leaking from the voids caused by the difference in thermal expansion between the catalyst and the like at high temperature and the structural member. In particular, in a catalyst filling device configured so that the exhaust gas flow is directed from the top to the bottom, even if the gap between the honeycomb catalyst unit and the inner wall of the device is significantly expanded due to the expansion of the catalyst support base, the leakage of untreated gas And the exhaust gas treatment rate can be increased.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an example of an embodiment of the present invention.
FIG. 2 is a schematic sectional view showing another example of the embodiment of the present invention.
FIG. 3 is a schematic process diagram showing a part of an exhaust gas treatment process employed in an example.
FIG. 4 is a schematic cross-sectional view showing a catalyst filling apparatus according to an example of the present invention used in Examples.
[Explanation of symbols]
1, 11 Catalyst filling device 2 Honeycomb catalyst unit 3 Granule packed bed 4 Ceramic dense packed bed (ceramic fiber)
5 Wire mesh 6 Support stand 7 Metal mesh (Demister)
8 Inner wall 12 Heater 13 Heat exchanger 14 Blower

Claims (5)

触媒充填装置の内壁に付設された支持台上にハニカム触媒ユニットが配置され、排ガス流れが上から下に向かう様に構成された触媒充填装置であって、該ハニカム触媒ユニットと装置内壁の間隙に、平均粒径0.5〜5mmの粒状物からなる充填層が少なくとも形成されていることを特徴とする排ガス処理装置における触媒充填装置。A catalyst filling device in which a honeycomb catalyst unit is arranged on a support base attached to an inner wall of the catalyst filling device, and an exhaust gas flow is directed from the top to the bottom, in the gap between the honeycomb catalyst unit and the inner wall of the device. A catalyst filling device in an exhaust gas treatment device, wherein at least a packed bed made of a granular material having an average particle size of 0.5 to 5 mm is formed. 前記粒状物は、セラミックである請求項1に記載の触媒充填装置。The catalyst filling apparatus according to claim 1, wherein the granular material is ceramic. 前記セラミックは、γ−アルミナである請求項2に記載の触媒充填装置。The catalyst filling apparatus according to claim 2, wherein the ceramic is γ-alumina. 前記セラミックは、Pt、PdおよびRhよりなる群から選択される1種以上をγ−アルミナ粒状物表面に担持させたものである請求項2に記載の触媒充填装置。3. The catalyst filling apparatus according to claim 2, wherein the ceramic is one in which at least one selected from the group consisting of Pt, Pd, and Rh is supported on the surface of the γ-alumina granular material. 排ガス処理時に前記ハニカム触媒ユニットの入口温度が300℃以上となり、かつ前記ハニカム触媒ユニットの出口温度が該入口温度よりも100℃以上高くなる様な状況下で使用される請求項1〜4のいずれかに記載の触媒充填装置。Any one of claims 1 to 4, wherein the honeycomb catalyst unit is used in a situation in which an inlet temperature of the honeycomb catalyst unit is 300 ° C or higher and an outlet temperature of the honeycomb catalyst unit is 100 ° C or higher than the inlet temperature during exhaust gas treatment. The catalyst filling apparatus according to claim 1.
JP2003209391A 2003-08-28 2003-08-28 Catalyst-packed apparatus in exhaust gas treatment apparatus Pending JP2005066407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003209391A JP2005066407A (en) 2003-08-28 2003-08-28 Catalyst-packed apparatus in exhaust gas treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003209391A JP2005066407A (en) 2003-08-28 2003-08-28 Catalyst-packed apparatus in exhaust gas treatment apparatus

Publications (1)

Publication Number Publication Date
JP2005066407A true JP2005066407A (en) 2005-03-17

Family

ID=34402347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003209391A Pending JP2005066407A (en) 2003-08-28 2003-08-28 Catalyst-packed apparatus in exhaust gas treatment apparatus

Country Status (1)

Country Link
JP (1) JP2005066407A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009014025A1 (en) * 2007-07-26 2009-01-29 Nippon Shokubai Co., Ltd. Exhaust gas processing device
US8263267B2 (en) 2008-07-07 2012-09-11 Samsung Sdi Co., Ltd. Rechargeable battery and associated methods
US8802300B2 (en) 2006-11-17 2014-08-12 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US8815454B2 (en) 2007-12-14 2014-08-26 Samsung Sdi Co., Ltd. Lithium secondary battery
US9093702B2 (en) 2009-09-03 2015-07-28 Samsung Sdi Co., Ltd. Electrolytic solution for lithium battery, lithium battery employing the same and method for operating the lithium battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8802300B2 (en) 2006-11-17 2014-08-12 Samsung Sdi Co., Ltd. Rechargeable lithium battery
WO2009014025A1 (en) * 2007-07-26 2009-01-29 Nippon Shokubai Co., Ltd. Exhaust gas processing device
JPWO2009014025A1 (en) * 2007-07-26 2010-09-30 株式会社日本触媒 Exhaust gas treatment equipment
JP5484905B2 (en) * 2007-07-26 2014-05-07 株式会社日本触媒 Exhaust gas treatment equipment
US8815454B2 (en) 2007-12-14 2014-08-26 Samsung Sdi Co., Ltd. Lithium secondary battery
US8263267B2 (en) 2008-07-07 2012-09-11 Samsung Sdi Co., Ltd. Rechargeable battery and associated methods
US9093702B2 (en) 2009-09-03 2015-07-28 Samsung Sdi Co., Ltd. Electrolytic solution for lithium battery, lithium battery employing the same and method for operating the lithium battery

Similar Documents

Publication Publication Date Title
US5407647A (en) Gas-scrubber apparatus for the chemical conversion of toxic gaseous compounds into non-hazardous inert solids
JP6770176B2 (en) Smoke exhaust denitration method
CN201762134U (en) Multifunctional sewage treatment packed tower
CN100558445C (en) The purification method of organic exhaust gas
AU2002310553B2 (en) Catalyst or sorbent beds
TW200800368A (en) Methods and apparatus for PFC abatement using a CDO chamber
JP2011110528A (en) Carbon dioxide recovery apparatus
JP2006523139A5 (en)
AU2002310553A1 (en) Catalyst or sorbent beds
JP2005066407A (en) Catalyst-packed apparatus in exhaust gas treatment apparatus
AU2011228242A1 (en) Method and device for treating gas discharged from a carbon dioxide recovery device
JP2010188333A (en) Method of cleaning fluidized bed of diesel exhaust
KR100607862B1 (en) Apparatus for purifying flue gas of smelting furnace for LCDs&#39; substrate glass using low-temperature activated carbon catalyst and the method thereof
JP5484905B2 (en) Exhaust gas treatment equipment
KR20070010725A (en) Development for removal of dust and nitrogen oxides, sulfur oxides using dust collect system
TW483998B (en) Rotor of a rotary regenerative air preheater and method of retrofitting the rotor
CN101664638A (en) Integrated device of electrocatalysis-adsorption, desulfurization, denitration, dust removal and heavy metal removal of fuel gas
RU2536749C2 (en) Integrated device to clean exhaust gases of marine engine
CN106237788A (en) Horizontal single hop modularity flue gas desulfurization and denitrification adsorbent equipment
JP2014166618A (en) Harmful substance adsorber
JP3779889B2 (en) Catalyst regeneration method
CN106669419A (en) Denitration method for FCC (Fluid Catalytic Cracking) device regenerated fume
CN111298645A (en) Activated carbon fiber-based device and method for denitration and dioxin removal of waste incineration flue gas
JP2002210328A (en) Exhaust gas treatment method and treatment apparatus
US11555621B1 (en) Adapter for modular catalytic monoliths

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081119

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090130