JP2005065454A - Power generation method and generator - Google Patents

Power generation method and generator Download PDF

Info

Publication number
JP2005065454A
JP2005065454A JP2003295021A JP2003295021A JP2005065454A JP 2005065454 A JP2005065454 A JP 2005065454A JP 2003295021 A JP2003295021 A JP 2003295021A JP 2003295021 A JP2003295021 A JP 2003295021A JP 2005065454 A JP2005065454 A JP 2005065454A
Authority
JP
Japan
Prior art keywords
power generation
conductive member
coil
flow path
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003295021A
Other languages
Japanese (ja)
Inventor
Minoru Suzuki
実 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2003295021A priority Critical patent/JP2005065454A/en
Publication of JP2005065454A publication Critical patent/JP2005065454A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Landscapes

  • Control Of Eletrric Generators (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power generation method and a generator that can generate low-cost power at a low construction cost without the need for using a seed material while reducing facility cost and rework cost by achieving a long life for a device without using a number of refractories. <P>SOLUTION: Fuel is intermittently ignited in an ignition chamber connected to a combustion chamber that communicates with a dust 21 in the upstream of the dust 21, and detonated in the combustion chamber by the intermittent combustion of the fuel after the ignition. A dissociated or ionized combustion gas generated by the detonation is sent to the duct 21 as a conductive fluid, a short-circuiting range between a coil 23 and a second conductive member 24 is expanded toward downstream-side ends of the coil 23 and the second conductive member 24 from their upstream-side ends, and inductance between the coil and the second conductive member is reduced in the downstream of the short-circuiting range, thus generating an inductance current at the coil and drawing out the inductance current at the downstream-side end. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、導電性流体の流動のための発電流路に磁界を形成するとともに、該発電流路に第一の導電部材と第二の導電部材とを互いに間隔をもって配し、上記磁界が形成された上記発電流路へ導電性流体を流して、上記第一の導電部材と上記第二の導電部材との間を該導電性流体で短絡させて上記第一の導電部材及び上記第二の導電部材から誘導電流を取り出す発電方法及び発電装置に関するものである。   The present invention forms a magnetic field in a power generation channel for the flow of a conductive fluid, and a first conductive member and a second conductive member are arranged at intervals in the power generation channel to form the magnetic field. The conductive fluid is caused to flow through the generated power generation flow path, and the first conductive member and the second conductive member are short-circuited with the conductive fluid to short-circuit the first conductive member and the second conductive member. The present invention relates to a power generation method and a power generation apparatus that extract an induced current from a conductive member.

この種の装置では、例えば、導電性流体の流動のための発電流路に、該導電性流体の流動方向に対して直交方向で互いに対向せる一対の磁極と、該流動方向と該一対の磁極の対向方向との直交方向で互いに対向せる一対の電極とが配されている。このような発電流路へ導電性流体を上記一対の磁極の間に生じる磁力線に直交させて流動せしめることにより、上記一対の電極で電流が取り出される。   In this type of apparatus, for example, a pair of magnetic poles opposed to each other in a direction orthogonal to the flow direction of the conductive fluid, and the flow direction and the pair of magnetic poles in a power generation flow path for the flow of the conductive fluid A pair of electrodes that are opposed to each other in a direction orthogonal to the opposite direction is arranged. A current is taken out by the pair of electrodes by causing the conductive fluid to flow in such a power generation channel in a direction perpendicular to the magnetic field lines generated between the pair of magnetic poles.

例えば、特許文献1においては、導電性流体を循環せる流動経路の一部に上記発電流路が形成されている。この流動経路には、導電性流体として、熱により容易に電離して高導電性となるNaやK等のシード材を添加した希ガスが封入されている。該希ガスに添加された上記シード材は、上記流動経路に配された熱源によって該希ガスが加熱される高温状態で電離して高導電性となる。このような高導電性のシード材を添加した高温状態の希ガスが導電性流体として上記循環により上記発電流路へ連続して流動されて、発電が行なわれる。
特公平6−11183号公報(図1〜図3)
For example, in patent document 1, the said power generation flow path is formed in a part of flow path which circulates a conductive fluid. In this flow path, a rare gas to which a seed material such as Na or K that is easily ionized by heat and becomes highly conductive is added as a conductive fluid. The seed material added to the rare gas is ionized in a high temperature state where the rare gas is heated by a heat source arranged in the flow path, and becomes highly conductive. A noble gas in a high temperature state to which such a highly conductive seed material is added is continuously flowed to the power generation flow path by the circulation as a conductive fluid to generate power.
Japanese Patent Publication No. 6-11183 (FIGS. 1 to 3)

しかしながら、上述の特許文献1の装置では、導電性流体の発電流路への高温の希ガスの流動が連続して行なわれるので、装置が絶え間なく上記希ガスから熱を受ける結果、装置、特に上記発電流路を形成する壁面が昇温して高温状態となるため、耐久性が低くなったり、そして耐火物を多用して装置を構成する必要があるので、設備費が高くなってしまう。また、発電流路に配された電極には、一般に、高い導電性で安価な金属、例えば銅やその合金が用いられるので、このような金属は上述のような高温環境下では焼損しやすく、その結果補修費が高くなる。   However, in the above-described device of Patent Document 1, since the flow of a high-temperature noble gas to the power generation flow path of the conductive fluid is continuously performed, the device continuously receives heat from the noble gas. Since the wall surface forming the power generation flow path is heated to a high temperature state, the durability becomes low, and it is necessary to configure the apparatus using a large amount of refractory, resulting in an increase in equipment cost. In addition, since the electrode disposed in the power generation channel is generally a highly conductive and inexpensive metal, such as copper or an alloy thereof, such a metal is likely to burn out in the high temperature environment as described above. As a result, the repair cost becomes high.

また、上述のように装置が長時間にわたり高温状態に維持される環境下では、一般に、電離しやすい流体は、反応性が高いので、導電性流体の流動経路内で装置を損傷させるような本来望ましくない化学反応が生じやすいため導電性流体として用いることができない。したがって、上述の特許文献1の装置では、上記流動経路内に希ガスを流動させることとしている。その結果、希ガスは電離しにくいので、シード材が必要となり、コストが高くなる。   In addition, in an environment where the apparatus is maintained at a high temperature for a long time as described above, in general, a fluid that is easily ionized has high reactivity, so that the apparatus may be damaged in the flow path of the conductive fluid. Since it is easy to produce an undesirable chemical reaction, it cannot be used as a conductive fluid. Therefore, in the apparatus of the above-mentioned Patent Document 1, a rare gas is caused to flow in the flow path. As a result, the rare gas is difficult to ionize, so a seed material is required and the cost is increased.

また、発電流路の全域で電流を取り出して最大限の発電を行なうためには、該発電流路での導電性流体の流動方向で該発電流路の全域にわたって磁極や電極を配しなければならないのでコストが高くなる。また、上記磁極として永久磁石を用いると、磁界が装置外に漏れてその周辺の電気機器に悪影響をもたらしてしまう。したがって、特許文献1の装置では、大規模な電磁石が必要となり、その結果建設費が高くなる。   Also, in order to obtain the maximum amount of power by taking out the current in the entire area of the power generation flow path, magnetic poles and electrodes must be arranged over the entire area of the power generation flow path in the flow direction of the conductive fluid in the power generation flow path. The cost is high because it is not necessary. Further, when a permanent magnet is used as the magnetic pole, the magnetic field leaks out of the apparatus and adversely affects the surrounding electrical equipment. Therefore, the apparatus of Patent Document 1 requires a large-scale electromagnet, resulting in a high construction cost.

そこで、本発明は、耐火物を多用しなくとも装置に長寿命化を図って設備費及び補修費
を安価としつつ、大規模な電極や磁石を設けずに、そしてシード材を必要としない低コストな発電を安価な建設費で実現できる発電方法及び発電装置の提供を目的とする。
Therefore, the present invention is a low-cost device that does not require a seed material without providing a large-scale electrode and magnet, while extending the life of the device without using a large amount of refractories and reducing the equipment cost and repair cost. An object of the present invention is to provide a power generation method and a power generation apparatus capable of realizing costly power generation with low construction costs.

さらに、本発明は、上記発電に加えて、上記発電後に導電性流体に残存する高いエネルギーをさらに有効利用を図って有用物質の製造もできる発電方法及び発電装置の提供を目的とする。   Furthermore, an object of the present invention is to provide a power generation method and a power generation apparatus capable of producing a useful substance by further effectively using high energy remaining in a conductive fluid after the power generation in addition to the power generation.

本出願は、発電方法に関しては、装置を長時間連続的に高温にさせずに耐熱材を多用しなくとも装置に長寿命化を図って設備費及び補修費を安価としつつ、シード材を必要としない低コストな発電を安価な建設費で実現できる方法として、第一の発明を提案する。また、本出願は、第一の発明での発電に加えて、該発電に導電性流体として利用された燃焼ガスの衝撃波の高いエネルギーをさらに有効利用を図って有用物質として水素含有ガスもしくは炭素含有ガスの製造もできる方法として、第二の発明を提案する。さらに、本出願は、第一の発明での発電に加えて、該発電後の燃焼ガスに残存する高いエネルギーを有効利用してガスタービン及び蒸気タービンの少なくとも一方で追加的な発電を行なってさらに高能率な発電を可能とする方法として、第三の発明を提案する。   In this application, regarding the power generation method, a seed material is required while extending the life of the device and reducing the equipment cost and the repair cost without increasing the temperature of the device continuously for a long time and without using a large amount of heat-resistant material. The first invention is proposed as a method capable of realizing low-cost power generation with low construction costs. In addition to the power generation in the first aspect of the present application, the present application aims to further effectively use the high energy of the shock wave of the combustion gas used as a conductive fluid for the power generation, and contains hydrogen-containing gas or carbon as a useful substance. The second invention is proposed as a method capable of producing gas. Further, in the present application, in addition to the power generation in the first invention, the high energy remaining in the combustion gas after the power generation is effectively utilized to perform additional power generation in at least one of the gas turbine and the steam turbine. The third invention is proposed as a method that enables highly efficient power generation.

また、本出願は、発電装置に関しては、上記第一の発明を実施する装置として第四の発明、上記第二の発明を実施する装置として第五の発明、上記第三の発明を実施する装置として第六の発明を提案する。   The present application also relates to a power generator, the fourth invention as an apparatus for carrying out the first invention, the fifth invention as an apparatus for carrying out the second invention, and an apparatus for carrying out the third invention. The sixth invention is proposed as follows.

<第一の発明>
第一の発明に係る発電方法は、導電性流体の流動のための発電流路に磁界を形成するとともに、該発電流路に第一の導電部材と第二の導電部材とを互いに間隔をもって配し、上記磁界が形成された上記発電流路へ導電性流体を流して、上記第一の導電部材と上記第二の導電部材との間を該導電性流体で短絡させて上記第一の導電部材及び上記第二の導電部材で電流を取り出すこととしている。
<First invention>
A power generation method according to a first aspect of the present invention is to form a magnetic field in a power generation flow path for the flow of a conductive fluid, and to arrange the first conductive member and the second conductive member in the power generation flow path with a space between each other. Then, a conductive fluid is caused to flow through the power generation channel in which the magnetic field is formed, and the first conductive member is short-circuited between the first conductive member and the second conductive member by the conductive fluid. The current is taken out by the member and the second conductive member.

かかる方法において、第一の発明では、第一の導電部材及び第二の導電部材の構成の特徴として、第一の導電部材と第二の導電部材は発電流路での導電性流体の流動方向で互いに重複範囲をもって配されている。上記第一の導電部材は上記発電流路に配されるコイルとして形成され、該コイルの軸線が上記流動方向に延びるように該コイルが配されている。上記第二の導電部材は上記コイルに対して間隔をもって上記流動方向に延び上記発電流路に配される導電材で形成されている。上記コイルと上記第二の導電部材のそれぞれの上流側端部が直流電源を介して互いに接続されるとともに、それぞれの下流側端部が互いに導通して閉回路を形成していて、上記直流電源によって該閉回路に初期電流を予め生じさせて該閉回路が上記発電流路に磁界を形成させている。   In this method, in the first invention, as a characteristic of the configuration of the first conductive member and the second conductive member, the first conductive member and the second conductive member are in the flow direction of the conductive fluid in the power generation flow path. Are arranged with overlapping ranges. The first conductive member is formed as a coil disposed in the power generation flow path, and the coil is disposed such that an axis of the coil extends in the flow direction. The second conductive member is formed of a conductive material that extends in the flow direction with a spacing from the coil and is disposed in the power generation flow path. The upstream ends of the coil and the second conductive member are connected to each other via a DC power source, and the downstream ends are connected to each other to form a closed circuit. Thus, an initial current is generated in advance in the closed circuit, and the closed circuit forms a magnetic field in the power generation flow path.

上述の特徴を有する第一の導電部材及び第二の導電部材を用いた第一の発明に係る方法にあっては、上述のごとく磁界が形成された上記発電流路の上流側で該発電流路に連通せる燃焼室に接続された着火室内にて燃料を間欠的に着火させ、その都度、着火後の燃料の間欠的な燃焼により上記燃焼室にて爆轟(デトネーション)を生じさせて、該爆轟により燃焼ガスを解離または電離させるとともに、この燃焼ガスを導電性流体として上記発電流路へ送る。該燃焼ガスが該発電流路を上流から下流へ向け進行しながら上記コイルと上記第二の導電部材との間を短絡させることにより、上記コイルと上記第二の導電部材との間の短絡範囲が上記上流側端部から上記下流側端部へ向け拡大する。このような上記短絡範囲の拡大に伴って、上記短絡範囲より下流側で上記コイルと上記第二の導電部材のインダクタンスが減少する。上記磁界を形成するように上記コイルには誘導電流が発生するが、上記コイルのインダクタンスが減少するので、上記誘導電流が初期電流以上に増大する。
この誘導電流の増大によりコイルの磁界が増大するため、誘導電流がさらに増大する。このように増大した誘導電流は上記下流側端部で取り出される。なお、ここで、爆轟とは、衝撃波を伴って火炎が超音速で伝播する現象をいう。
In the method according to the first invention using the first conductive member and the second conductive member having the above-described features, the current generation is performed upstream of the power generation flow path where the magnetic field is formed as described above. The fuel is ignited intermittently in an ignition chamber connected to a combustion chamber that communicates with the road, and detonation is caused in the combustion chamber by intermittent combustion of the fuel after ignition, While the combustion gas is dissociated or ionized by the detonation, the combustion gas is sent to the power generation channel as a conductive fluid. A short circuit range between the coil and the second conductive member by short-circuiting the coil and the second conductive member while the combustion gas travels from the upstream to the downstream in the power generation flow path. Expands from the upstream end to the downstream end. Along with the expansion of the short circuit range, the inductance of the coil and the second conductive member decreases on the downstream side of the short circuit range. An induced current is generated in the coil so as to form the magnetic field. However, since the inductance of the coil is reduced, the induced current is increased beyond the initial current.
Since the magnetic field of the coil increases due to the increase of the induced current, the induced current further increases. The induced current thus increased is taken out at the downstream end. Here, detonation refers to a phenomenon in which a flame propagates at supersonic speed with a shock wave.

上記燃焼室は、上記発電流路に向けて流路断面積が漸次減少していることが好ましい。このように流路断面積が漸次減少した燃焼室内では燃焼ガスの衝撃波が収束されて高温高圧が更に高まるので、該発電流路への導入時の燃焼ガスの解離度または電離度が向上し、その結果、発電効率が格段に高くなる。   In the combustion chamber, it is preferable that the cross-sectional area of the flow path gradually decreases toward the power generation flow path. In this way, the shock wave of the combustion gas is converged in the combustion chamber where the cross-sectional area of the flow path gradually decreases, and the high temperature and pressure are further increased, so the degree of dissociation or ionization of the combustion gas when introduced into the power generation flow path is improved, As a result, the power generation efficiency is significantly increased.

また、爆轟の発生を繰り返し断続的に行なうことにより、上記下流側端部でパルス電流を繰り返し得ることができる。また、このようなパルス電流は、コンデンサとインバータで交流電力とすることも可能である。   Further, by repeatedly and intermittently generating detonation, a pulse current can be repeatedly obtained at the downstream end. Further, such a pulse current can be converted to AC power by a capacitor and an inverter.

<第二の発明>
第二の発明に係る発電方法では、上記第一発明での発電とともに、該発電に導電性流体として利用された燃焼ガスの衝撃波のエネルギーを有効利用して有用物質として水素含有ガスもしくは炭素含有ガスを製造するための装置である。この第二の発明では、燃焼室に連通せる反応室に、炭素もしくは炭化水素を含有する反応物質、あるいは、二酸化炭素を含有する反応物質を収容し、燃焼室に接続された着火室内にて燃料を間欠的に着火させる。こうすることにより、第一の発明で発電するとともに、燃焼ガスの衝撃波を上記反応室の導入口から該反応室内へ伝播させて、上記反応室内の反応物質を該衝撃波で衝撃圧縮させて高温に加熱して、燃焼ガス中の水蒸気と反応物質中の炭素もしくは炭化水素とを反応させて水素含有ガスを生成させ、あるいは、反応物質中の二酸化炭素を熱分解反応させて炭素含有ガスを生成させ、上記水素含有ガスもしくは該炭素含有ガスを上記反応室の外部へ取り出す。その結果、第一発明での発電に加えて、燃焼ガスの衝撃波のエネルギーを有効利用して有用物質を製造できる。
<Second invention>
In the power generation method according to the second invention, in addition to the power generation in the first invention, the hydrogen-containing gas or the carbon-containing gas is used as a useful substance by effectively utilizing the energy of the shock wave of the combustion gas used as a conductive fluid for the power generation. It is an apparatus for manufacturing. In the second aspect of the invention, a reaction substance containing carbon or hydrocarbons or a reaction substance containing carbon dioxide is accommodated in a reaction chamber that communicates with the combustion chamber, and fuel is contained in an ignition chamber connected to the combustion chamber. Is ignited intermittently. By doing so, while generating electric power in the first invention, the shock wave of the combustion gas is propagated from the inlet of the reaction chamber into the reaction chamber, and the reactant in the reaction chamber is shock-compressed with the shock wave to a high temperature. Heat to react the water vapor in the combustion gas with the carbon or hydrocarbon in the reactant to produce a hydrogen-containing gas, or to thermally decompose carbon dioxide in the reactant to produce a carbon-containing gas. The hydrogen-containing gas or the carbon-containing gas is taken out of the reaction chamber. As a result, in addition to the power generation in the first invention, a useful substance can be produced by effectively utilizing the energy of the shock wave of the combustion gas.

<第三の発明>
第三の発明に係る発電方法は、第一の発明に係る発電方法で電力を取り出した後に高温高圧の燃焼ガスを有効利用してガスタービン及び蒸気タービンの少なくとも一方で追加的な発電を行なうための装置である。この第三の発明では、ガスタービンへ上記燃焼ガスを供給、もしくは、蒸気タービン駆動のためのボイラへ上記燃焼ガスを供給、あるいは上記ガスタービン及び上記ボイラの両方へ上記燃焼ガスを供給する。その結果、第一の発明での発電に加えて、該発電後の燃焼ガスのエネルギーを無駄なく利用して上記ガスタービンや上記蒸気タービンで発電でき、装置全体としての発電能率が向上する。
<Third invention>
The power generation method according to the third aspect of the present invention is to perform additional power generation at least one of the gas turbine and the steam turbine by effectively using the high-temperature and high-pressure combustion gas after the electric power is taken out by the power generation method according to the first aspect of the invention. It is a device. In the third aspect of the invention, the combustion gas is supplied to a gas turbine, the combustion gas is supplied to a boiler for driving a steam turbine, or the combustion gas is supplied to both the gas turbine and the boiler. As a result, in addition to the power generation in the first aspect of the invention, the gas turbine and the steam turbine can be used to generate power without wasteful use of the energy of the combustion gas after the power generation, and the power generation efficiency of the entire apparatus is improved.

<第四の発明>
第四の発明に係る発電装置は、第一の発明と同様の発電を行なうための装置である。この第四の発明の装置は、導電性流体の流動のための発電流路と、該発電流路に磁界を形成する磁界形成手段と、互いに間隔をもって該発電流路に配された第一の導電部材及び第二の導電部材とを有し、上記磁界形成手段によって磁界が形成された上記発電流路へ導電性流体を流して、上記第一の導電部材と上記第二の導電部材との間を該導電性流体で短絡させて上記第一の導電部材及び上記第二の導電部材で誘導電流を取り出すようになっていることとしている。
<Fourth Invention>
A power generation device according to a fourth invention is a device for generating power similar to that of the first invention. The device according to the fourth aspect of the present invention includes a power generation channel for the flow of the conductive fluid, a magnetic field forming means for forming a magnetic field in the power generation channel, and a first A conductive member and a second conductive member, and a conductive fluid is caused to flow through the power generation flow path in which a magnetic field is formed by the magnetic field forming unit, and the first conductive member and the second conductive member The induction current is taken out by the first conductive member and the second conductive member by short-circuiting the gap with the conductive fluid.

かかる装置において、第四の発明では、その構成の特徴として、第一の導電部材と第二の導電部材は発電流路での導電性流体の流動方向で互いに重複範囲をもって配されている。上記第一の導電部材は上記発電流路に配されたコイルとして形成され、該コイルの軸線が該発電流路の導電性流体の流動方向に延びるように該コイルが配されている。上記第二の導電部材は上記コイルに対して間隔をもって上記流動方向に延び上記発電流路に配され
る導電材で形成されている。また、磁界形成手段は、上記コイル及び上記第二の導電部材のそれぞれの上流側端部が直流電源を介して互いに接続されるとともに、それぞれの下流側端部が互いに導通されて形成される閉回路として構成されていて、上記直流電源によって該閉回路に初期電流を予め生じさせて上記発電流路に磁界を形成させるようになっている。さらに、上記発電流路は、燃料の供給を受ける着火室に接続された燃焼室に該発電流路の上流側で連通している。
In such a device, in the fourth invention, as a feature of the configuration, the first conductive member and the second conductive member are arranged in an overlapping range in the flow direction of the conductive fluid in the power generation flow path. The first conductive member is formed as a coil disposed in the power generation flow path, and the coil is disposed such that the axis of the coil extends in the flow direction of the conductive fluid in the power generation flow path. The second conductive member is formed of a conductive material that extends in the flow direction with a spacing from the coil and is disposed in the power generation flow path. Further, the magnetic field forming means is a closed circuit formed by connecting the upstream ends of the coil and the second conductive member to each other via a DC power source and electrically connecting the downstream ends of the coils and the second conductive member. The circuit is configured so that an initial current is previously generated in the closed circuit by the DC power source to form a magnetic field in the power generation flow path. Further, the power generation channel communicates with the combustion chamber connected to the ignition chamber that receives the supply of fuel on the upstream side of the power generation channel.

このような特徴を有する第四の発明にあっては、第一の発明と同様に爆轟により解離または電離した燃焼ガスが導電性流体として発電流路へ流れて、上記下流側端部で誘導電流が取り出される。   In the fourth invention having such a feature, the combustion gas dissociated or ionized by detonation flows into the power generation flow path as a conductive fluid and is guided at the downstream end as in the first invention. Current is taken out.

<第五の発明>
第五の発明に係る発電装置は、上記第四の発明での発電とともに、該発電に導電性流体として利用された燃焼ガスの衝撃波のエネルギーを有効利用して有用物質として水素含有ガスもしくは炭素含有ガスを製造するための装置である。この第五の発明では、例えば、発電流路は、燃料及び酸化剤の供給を受ける着火室に接続された燃焼室に連通し、該燃焼室は、炭素と炭化水素と二酸化炭素とのいずれかを含有する反応物質を収容せる反応室に上記発電流路を介して連通していている。上記反応室は、該反応室へ反応物質を供給する反応物質供給手段が接続されているとともに、水素含有ガスあるいは炭素含有ガスを上記反応室の外部へ取り出す排出手段が設けられている。したがって、解離または電離した燃焼ガスを導電性流体として燃焼室から発電流路へ流して発電するとともに、該燃焼室から該発電流路を経て該反応室内へ燃焼ガスの衝撃波を伝播させて、上記反応室内の反応物質を衝撃圧縮させて高温に加熱して、燃焼ガス中の水蒸気と反応物質中の炭素もしくは炭化水素とを反応させて水素含有ガスを生成させ、あるいは、反応物質中の二酸化炭素を熱分解反応させて炭素含有ガスを生成させる。
<Fifth invention>
A power generation device according to a fifth aspect of the invention includes a hydrogen-containing gas or a carbon-containing substance as a useful substance by effectively utilizing the energy of the shock wave of the combustion gas used as a conductive fluid in the power generation together with the power generation in the fourth aspect An apparatus for producing gas. In the fifth aspect of the invention, for example, the power generation channel communicates with a combustion chamber connected to an ignition chamber that receives supply of fuel and oxidant, and the combustion chamber is one of carbon, hydrocarbon, and carbon dioxide. Is communicated with the reaction chamber containing the reactive substance containing the above through the power generation channel. The reaction chamber is connected to a reactant supply means for supplying a reactant to the reaction chamber, and is provided with a discharge means for taking out a hydrogen-containing gas or a carbon-containing gas to the outside of the reaction chamber. Accordingly, the combustion gas dissociated or ionized flows as a conductive fluid from the combustion chamber to the power generation flow path to generate power, and a shock wave of the combustion gas is propagated from the combustion chamber to the reaction chamber through the power generation flow path, The reaction material in the reaction chamber is impact-compressed and heated to a high temperature to react with water vapor in the combustion gas and carbon or hydrocarbon in the reaction material to generate a hydrogen-containing gas, or carbon dioxide in the reaction material To produce a carbon-containing gas.

また、上記の燃焼室、発電流路、反応室の接続関係は、上記では、燃焼室が発電流路を介して反応室に直列に連通しているが、発電流路が反応室を介して燃焼室に連通していても、また燃焼室が発電流路に連通しているとともに反応室にも並列に連通していてもよい。   Further, in the above description, the combustion chamber, the power generation channel, and the reaction chamber are connected in series with the reaction chamber via the power generation channel, but the power generation channel is connected via the reaction chamber. The combustion chamber may communicate with the combustion chamber, or the combustion chamber may communicate with the power generation flow path and may also communicate with the reaction chamber in parallel.

<第六の発明>
第六の発明に係る発電装置は、第四の発明での発電後に高温高圧の燃焼ガスを有効利用してガスタービン及び蒸気タービンの少なくとも一方で追加的な発電を行なうための装置である。この第六の発明では、燃焼室が、該燃焼室からの燃焼ガスで駆動されて発電するガスタービンと、蒸気タービンを駆動するためのボイラとの少なくとも一方に接続されている。その結果、発電流路の電極で電流を取り出して発電が行なわれるとともに、該発電後の燃焼ガスでガスタービン及び蒸気タービンでの少なくとも一方を駆動して発電することが可能である。
<Sixth invention>
A power generation apparatus according to a sixth aspect is an apparatus for performing additional power generation at least one of a gas turbine and a steam turbine by effectively utilizing high-temperature and high-pressure combustion gas after power generation in the fourth aspect. In the sixth aspect of the invention, the combustion chamber is connected to at least one of a gas turbine that is driven by the combustion gas from the combustion chamber to generate electric power and a boiler that drives the steam turbine. As a result, electric power is generated by taking out an electric current from the electrode of the power generation channel, and at least one of the gas turbine and the steam turbine can be driven by the combustion gas after the power generation to generate electric power.

上記第一の発明によれば、コイル、第二の導電部材、そして直流電源を含んでなる閉回路に初期電流を流すことによって該発電流路に磁界を形成し、爆轟により解離または電離した燃焼ガスを導電性流体として上記発電流路に送って、互いに間隔をもって配されたコイルと第二の導電部材との間の短絡範囲を燃焼ガスの流動方向で上流から下流に向け拡大させて、上記短絡範囲より下流側で上記コイルと上記第二の導電部材のインダクタンスを減少させることにより、上記コイルに誘導電流を発生させ、該誘導電流を取り出すことができ、爆轟によって解離または電離した燃焼ガスを導電性流体として用いるので、シード材を特に用いることなく発電が行なえる。また、単発あるいは連発で生じる爆轟による燃焼ガスから短時間ずつ装置が熱を受けるだけであるので、耐火物を多用する必要がなく、
設備費及び補修費が安価となる。また、コイルに誘導電流を発生させて、大電流を得ることができるので、磁極や電極を上記発電流路の上記流動方向全域にわたって設ける必要がなく、また大規模な電磁石が不要であるので、建設費も安価にできる。
According to the first aspect of the invention, a magnetic field is formed in the power generation flow path by flowing an initial current through a closed circuit including a coil, a second conductive member, and a DC power supply, and dissociated or ionized by detonation. Sending the combustion gas as a conductive fluid to the power generation flow path, expanding the short-circuit range between the coil and the second conductive member spaced apart from each other in the flow direction of the combustion gas from upstream to downstream, By reducing the inductance of the coil and the second conductive member on the downstream side of the short circuit range, an induction current can be generated in the coil, and the induction current can be taken out. Combustion dissociated or ionized by detonation Since gas is used as the conductive fluid, power generation can be performed without using a seed material. In addition, since the device only receives heat from the combustion gas due to detonation that occurs in a single shot or repeatedly, there is no need to use a lot of refractories,
Equipment costs and repair costs are reduced. In addition, since a large current can be obtained by generating an induced current in the coil, it is not necessary to provide magnetic poles and electrodes over the entire flow direction of the power generation flow path, and a large-scale electromagnet is unnecessary. Construction costs can also be reduced.

また、上記第二の発明によれば、第一の発明での発電とともに、該発電に導電性流体として利用された燃焼ガスの衝撃波を有効利用して、燃焼ガス中の水蒸気と反応物質中の炭素もしくは炭化水素とが反応して水素含有ガスを生成し、あるいは、反応物質中の二酸化炭素が熱分解反応して炭素含有ガスを生成するので、上述の第一の発明の効果に加えて、燃焼ガスの衝撃波のエネルギーを有効利用して有用物質を製造できる。   Further, according to the second invention, in addition to the power generation in the first invention, the shock wave of the combustion gas used as a conductive fluid for the power generation is effectively used, so that the water vapor in the combustion gas and the reactant Carbon or hydrocarbon reacts to produce a hydrogen-containing gas, or carbon dioxide in the reactants undergoes a thermal decomposition reaction to produce a carbon-containing gas. In addition to the effects of the first invention described above, A useful substance can be produced by effectively utilizing the energy of the shock wave of the combustion gas.

さらに、上記第三の発明によれば、第一の発明での発電後に高温高圧の燃焼ガスを有効利用してガスタービンもしくは蒸気タービン、あるいはこれら両方で発電されるので、燃焼ガスのエネルギーが無駄なく使われて、装置全体としての発電効率が向上する。   Furthermore, according to the third aspect of the invention, after the power generation in the first aspect, the high-temperature and high-pressure combustion gas is effectively used to generate power in the gas turbine and / or the steam turbine, so that the combustion gas energy is wasted. The power generation efficiency of the entire device is improved.

また、第四の発明によれば、コイルと第二の導電部材が導電性流体の発電流路にて、互いに間隔をもって配されるとともに該発電流路での導電性流体の流動方向で互いに重複範囲をもって配され、上記コイル、上記第二の導電部材、そして直流電源がこれらを含んでなる閉回路を形成し、上記爆轟を生じさせて解離または電離した燃焼ガスを発生させるための燃焼室が上記発電流路に連通して構成されているので、第一の発明と同様にシード材を特に用いる必要がなく、そして耐火物を多用する必要もないので、安価な装置となる。   According to the fourth invention, the coil and the second conductive member are arranged at intervals in the power generation flow path of the conductive fluid and overlap each other in the flow direction of the conductive fluid in the power generation flow path. Combustion chamber that is arranged with a range, and that forms the closed circuit including the coil, the second conductive member, and the DC power source, and generates the combustion gas dissociated or ionized by causing the detonation. Since it is configured to communicate with the power generation flow path, it is not necessary to use a seed material in the same manner as in the first invention, and it is not necessary to use a large amount of refractory, so that the apparatus is inexpensive.

さらに、第五の発明によれば、第四の発明の構成に加えて、水素もしくは炭素製造のための反応室が発電流路を介して燃焼室と連通して構成されているので、上述の第四の発明の効果に加えて、有用物質の製造のためのエネルギーとして燃焼ガスの衝撃波のエネルギーを有効利用するため、安価な運転費で有用物質を製造する装置となる。   Furthermore, according to the fifth invention, in addition to the configuration of the fourth invention, the reaction chamber for producing hydrogen or carbon is configured to communicate with the combustion chamber via the power generation flow path. In addition to the effect of the fourth invention, the energy of the shock wave of the combustion gas is effectively used as the energy for producing the useful substance, so that the apparatus for producing the useful substance can be produced at a low operating cost.

また、第六の発明によれば、第四の発明の構成に加えて、発電流路が、燃焼室からの燃焼ガスで駆動されて発電するガスタービンや、蒸気タービンを駆動するためのボイラに接続されているので、第四の発明の効果に加えて、燃焼ガスのエネルギーの無駄がなく装置全体としての発電効率が高い装置となる。   Further, according to the sixth invention, in addition to the configuration of the fourth invention, the power generation flow path is driven by the combustion gas from the combustion chamber to generate a gas turbine or a boiler for driving the steam turbine. Since it is connected, in addition to the effect of the fourth invention, there is no waste of combustion gas energy, and the apparatus has high power generation efficiency as a whole.

以下、本発明の実施の形態を、添付図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1は本実施形態装置の概略構成を示す図である。   FIG. 1 is a diagram showing a schematic configuration of the apparatus according to the present embodiment.

本実施形態装置は、図1に示すように、燃料の間欠的な燃焼により爆轟を生じさせて解離または電離した燃焼ガスを発生させる爆轟発生装置10と、該燃焼ガスを導電性流体として受けて発電する発電装置20と、燃焼ガスの衝撃波を受け二酸化炭素分解反応を生じさせる反応装置30と、上記爆轟発生装置10の燃焼排ガスを利用して発電を行うガスタービン40とを主として備えている。したがって、本実施形態装置の機能は、上記発電装置20での発電機能と、上記ガスタービン40での発電機能と、上記反応装置30での二酸化炭素分解反応による炭素含有ガス製造機能とに大別される。ここで、本実施形態装置は、上記発電装置20での発電とともに、上記反応装置30での炭素含有ガス製造機能では該発電後の上記燃焼ガスの衝撃波のエネルギーを利用し、上記ガスタービン40での発電機能では上記発電後に上記爆轟発生装置10から排ガスとして排出される燃焼ガスのエネルギーを利用している。以下、上記爆轟発生装置10、上記ガスタービン40、上記発電装置20、上記反応装置30の順に説明する。   As shown in FIG. 1, the apparatus according to this embodiment includes a detonation generator 10 that generates detonation by dissociating or ionizing detonation by intermittent combustion of fuel, and uses the combustion gas as a conductive fluid. The power generation apparatus 20 that receives and generates electric power, the reaction apparatus 30 that generates a carbon dioxide decomposition reaction by receiving a shock wave of combustion gas, and the gas turbine 40 that generates electric power using the combustion exhaust gas of the detonation generator 10 are mainly provided. ing. Therefore, the function of the present embodiment apparatus is roughly divided into a power generation function in the power generation apparatus 20, a power generation function in the gas turbine 40, and a carbon-containing gas production function by a carbon dioxide decomposition reaction in the reaction apparatus 30. Is done. Here, the apparatus of the present embodiment uses the energy of the shock wave of the combustion gas after the power generation in the function of producing the carbon-containing gas in the reactor 30 together with the power generation in the power generation apparatus 20, and the gas turbine 40 The power generation function uses the energy of the combustion gas discharged as exhaust gas from the detonation generator 10 after the power generation. Hereinafter, the detonation generator 10, the gas turbine 40, the power generator 20, and the reactor 30 will be described in this order.

上記爆轟発生装置10は、図1に示すように、燃料を該爆轟発生装置10へ供給する燃
料供給装置11が接続されている。この燃料供給装置11は、上記爆轟発生装置10への燃料供給量が制御弁11Aで調整可能となっている。また、上記爆轟発生装置10は、上記燃料を燃焼させるための酸化剤として後述の熱交換器41から約400℃程度の予熱空気を受け該予熱空気を該爆轟発生装置10へ燃焼用空気として供給する予熱空気供給装置12が接続されている。上記燃焼用空気は予熱されて燃料との反応性が高くなっているので、安価な低質燃料を用いることができ、また爆轟発生装置10の小型化が図れる。
As shown in FIG. 1, the detonation generator 10 is connected to a fuel supply device 11 that supplies fuel to the detonator 10. In the fuel supply device 11, the amount of fuel supplied to the detonation generating device 10 can be adjusted by a control valve 11A. The detonation generator 10 receives preheated air of about 400 ° C. from a heat exchanger 41, which will be described later, as an oxidant for burning the fuel, and the preheated air is supplied to the detonator 10 as combustion air. Is connected to the preheated air supply device 12. Since the combustion air is preheated and has high reactivity with the fuel, an inexpensive low-quality fuel can be used, and the detonation generator 10 can be downsized.

上記爆轟発生装置10は、図2に示すように、燃料及び予熱空気の供給を受ける着火室13と、上記着火室13に連通された燃焼室14とを有している。   As shown in FIG. 2, the detonation generator 10 includes an ignition chamber 13 that receives supply of fuel and preheated air, and a combustion chamber 14 that communicates with the ignition chamber 13.

上記着火室13は円筒状に形成され、上記着火室13の一端部には、上記燃料を間欠的に着火させる着火装置としての点火栓13Aが設けられている。また、上記着火室13には、該着火室13の軸線方向に延びる螺旋状の金属からなるシェルキンスパイラル13Bが設けられている。このシェルキンスパイラル13Bは、上記点火栓13Aで燃料が着火されて生じた火炎を加速させる。さらに、上記着火室13には、上記軸線方向で離間して配された二つの圧力センサ13Cが設けられている。この二つの圧力センサ13Cは、それぞれ上記着火室13内の火炎の通過タイミングを検知していて、図示しない計測手段によって、火炎の進行方向上流側の圧力センサでの火炎通過タイミングから下流側の圧力センサでの火炎通過タイミングまでの所要時間と、二つの圧力センサ間の距離との関係により、着火室13内の火炎の進行速度が計測される。この火炎の進行速度に基づいて、図示しない制御手段によって、上記点火栓13Aの点火タイミングと上記制御弁11Aの燃料供給量とが制御されて、爆轟の開始位置が最適な位置に調整される。また、着火室13内に煤の堆積等が生じると、異常燃焼が生じるので、該火炎の進行速度にもとづいて、煤の堆積等による異常燃焼を早期に検知することも可能である。   The ignition chamber 13 is formed in a cylindrical shape, and one end of the ignition chamber 13 is provided with an ignition plug 13A as an ignition device for igniting the fuel intermittently. The ignition chamber 13 is provided with a shellkin spiral 13 </ b> B made of a spiral metal extending in the axial direction of the ignition chamber 13. The shellkin spiral 13B accelerates the flame generated when the fuel is ignited by the spark plug 13A. Furthermore, the ignition chamber 13 is provided with two pressure sensors 13C that are spaced apart in the axial direction. These two pressure sensors 13C detect the passage timing of the flame in the ignition chamber 13, respectively, and the pressure on the downstream side from the flame passage timing at the upstream pressure sensor in the flame traveling direction is measured by a measuring means (not shown). The progress speed of the flame in the ignition chamber 13 is measured based on the relationship between the time required for the flame to pass through the sensor and the distance between the two pressure sensors. Based on the flame speed, the ignition timing of the spark plug 13A and the fuel supply amount of the control valve 11A are controlled by a control means (not shown), and the detonation start position is adjusted to the optimum position. . Further, when soot accumulation or the like occurs in the ignition chamber 13, abnormal combustion occurs. Therefore, it is possible to detect abnormal combustion due to soot accumulation or the like at an early stage based on the traveling speed of the flame.

上記着火室13の他端部は、分散室15に連通されている。この分散室15は、該分散室15から、燃焼室14にやや湾曲形成された導入側端部14Aの複数位置へ、それぞれ路程が等しくなるように誘導路16によって連通している。   The other end of the ignition chamber 13 communicates with the dispersion chamber 15. The dispersion chamber 15 communicates from the dispersion chamber 15 to a plurality of positions on the introduction side end portion 14A that is slightly curved in the combustion chamber 14 by a guide passage 16 so that the path lengths are equal to each other.

上記燃焼室14は、図2にて右方に向け軸線に直角な断面での断面積が小さくなる円錐状をなしていて、この断面積が上記導入側端部14Aで最大、図2にて右側端部の出口開口端部14Bで最小となる収束部を形成するようになっている。誘導路16から燃焼室14へ導入された複数の爆轟波が収束されて、さらに高温高圧の収束爆轟波が形成される。上記燃焼室14は、該燃焼室14の出口開口端部14Bで発電装置20と接続されていて、上記着火室13で着火した燃料の間欠的な燃焼により爆轟を生じさせて解離または電離した燃焼ガスが上記発電装置20(図1参照)へ流入する。また、燃焼室14は、円錐状をなして三次元で流路断面積が漸次減少して収束部を形成しているが、略三角柱状をなして二次元で流路断面積が漸次減少して収束部を形成するようにしてもよい。こうすることにより、燃焼ガスが解離または電離して導電性流体として持続する時間が長くなり、その結果、発電時間が増加し、発電量と発電効率を向上させることができる。   The combustion chamber 14 has a conical shape in which the cross-sectional area in the cross section perpendicular to the axis is directed to the right in FIG. 2, and this cross-sectional area is maximum at the introduction end 14A. A minimum convergence portion is formed at the outlet opening end portion 14B at the right end portion. A plurality of detonation waves introduced from the induction path 16 into the combustion chamber 14 are converged, and a high-temperature high-pressure convergent detonation wave is formed. The combustion chamber 14 is connected to the power generation device 20 at the outlet opening end portion 14B of the combustion chamber 14, and detonated or ionized by causing detonation by intermittent combustion of the fuel ignited in the ignition chamber 13. Combustion gas flows into the power generator 20 (see FIG. 1). In addition, the combustion chamber 14 has a conical shape, and the flow passage cross-sectional area gradually decreases in three dimensions to form a converging portion. However, the combustion chamber 14 has a substantially triangular prism shape, and the flow passage cross-sectional area gradually decreases in two dimensions. Thus, a convergence portion may be formed. By doing so, the time for which the combustion gas is dissociated or ionized and continues as a conductive fluid is lengthened, and as a result, the power generation time is increased, and the power generation amount and the power generation efficiency can be improved.

着火室13及び燃焼室14には、本実施形態では、着火室13及び燃焼室14の内壁を冷却して所定温度以下に維持するためのジャケット、例えば水冷ジャケット17(17A,17B及び17C)が形成されている。この水冷ジャケット17は、着火室13及び燃焼室14の内壁の温度を上記燃料の着火温度以下に維持し、着火室13及び燃焼室14の内壁の過昇温による着火室13及び燃焼室14での異常燃焼を防止する。   In the present embodiment, the ignition chamber 13 and the combustion chamber 14 are provided with a jacket for cooling the inner walls of the ignition chamber 13 and the combustion chamber 14 to maintain the temperature below a predetermined temperature, for example, a water cooling jacket 17 (17A, 17B and 17C). Is formed. The water cooling jacket 17 maintains the temperature of the inner walls of the ignition chamber 13 and the combustion chamber 14 below the ignition temperature of the fuel, and the ignition chamber 13 and the combustion chamber 14 are caused by overheating of the inner walls of the ignition chamber 13 and the combustion chamber 14. To prevent abnormal combustion.

また、燃焼室14の出口開口端部14B近傍には、上述の発電装置20への燃焼ガスの流動後に燃焼室14の燃焼排ガスを排出する排出口18が形成されている。この排出口18は、図1に示す制御弁18Aを介して、上記燃焼排ガスにより駆動されて発電を行なう
ガスタービン40に接続されている(図1参照)。
Further, in the vicinity of the outlet opening end portion 14B of the combustion chamber 14, an exhaust port 18 for discharging the combustion exhaust gas of the combustion chamber 14 after the combustion gas flows to the power generation device 20 is formed. The exhaust port 18 is connected to a gas turbine 40 that generates power by being driven by the combustion exhaust gas via a control valve 18A shown in FIG. 1 (see FIG. 1).

このガスタービン40は、図1に見られるように、熱交換器41に接続されていて、該熱交換器41は、該ガスタービン40を駆動した後の燃焼排ガスと外部からの空気を熱交換により昇温せしめて、上述の予熱空気供給装置12のための予熱空気を生じさせる。この熱交換器41には、該熱交換器41での熱交換後の燃焼排ガスを無害化処理して大気放散させる排ガス処理装置42が接続されている。   As shown in FIG. 1, the gas turbine 40 is connected to a heat exchanger 41, and the heat exchanger 41 performs heat exchange between combustion exhaust gas after driving the gas turbine 40 and air from the outside. The preheated air for the above-mentioned preheated air supply device 12 is generated by raising the temperature. The heat exchanger 41 is connected to an exhaust gas treatment device 42 that detoxifies the combustion exhaust gas after heat exchange in the heat exchanger 41 and dissipates it into the atmosphere.

また、爆轟発生装置10へ供給される燃料と空気の比率を理論混合比よりも空気不足条件として、該爆轟発生装置10からの燃焼排ガスと予熱空気供給装置12からの予熱空気とをガスタービン40の燃焼器(図示せず)に供給してこれらを燃焼させることにより、上記ガスタービン40を駆動して発電させるようにしてもよい。このようにすることにより、爆轟発生装置10において発生するNOの発生量を低減することができ、さらに燃焼排ガスの未燃分を有効利用して発電することができる。 Further, assuming that the ratio of the fuel and air supplied to the detonation generator 10 is an air shortage condition rather than the theoretical mixing ratio, the combustion exhaust gas from the detonator 10 and the preheated air from the preheated air supply device 12 are gasified. The gas turbine 40 may be driven to generate electric power by supplying it to a combustor (not shown) of the turbine 40 and burning them. By doing so, it is possible to reduce the generation amount of the NO X generated in the detonation generator 10, electric power can be generated by effectively utilizing further unburned flue gases.

また、製鉄所のように酸素製造プラントがある場合には、予熱空気に代えて酸素を爆轟発生装置10へ供給してもよい。これにより、空気中のN分によるNO発生を低減でき、装置をコンパクトにできる。 Further, when there is an oxygen production plant such as an ironworks, oxygen may be supplied to the detonation generator 10 instead of preheated air. This can reduce the NO X generation by N content in the air, the apparatus can be made compact.

上述の爆轟発生装置10に連通している上記発電装置20は、図3に示すように、上述の燃焼室14にその出口開口端部14Bで連通し導電性流体の流動のための管状の発電流路21を備えている。この発電流路21には、該発電流路21の軸線22の延びる方向(導電性流体の流動方向)で、第一の導電部材としてのコイル23と第二の導電部材24とが互いに重複範囲をもって配されている。   As shown in FIG. 3, the power generation device 20 communicating with the detonation generating device 10 communicates with the combustion chamber 14 at the outlet opening end portion 14B, and has a tubular shape for the flow of conductive fluid. A power generation channel 21 is provided. In the power generation channel 21, the coil 23 as the first conductive member and the second conductive member 24 overlap each other in the direction in which the axis 22 of the power generation channel 21 extends (the flow direction of the conductive fluid). It is arranged with.

上記コイル23は、該コイル23の軸線が上記発電流路21の軸線22と一致して延び、絶縁材25を介して発電流路21の周壁に取付けられている。   The coil 23 extends so that the axis of the coil 23 coincides with the axis 22 of the power generation channel 21, and is attached to the peripheral wall of the power generation channel 21 via an insulating material 25.

上記第二の導電部材24は、上記軸線22上に配された棒状の導電材で形成され、上記コイル23に対して半径方向に間隔をもって上記発電流路21に配されている。この第二の導電部材24は、該第二の導電部材24の下流側端部に取付けられた取付部材24Aを介して絶縁材25に支持されている。   The second conductive member 24 is formed of a rod-shaped conductive material disposed on the axis 22, and is disposed in the power generation passage 21 with a radial interval with respect to the coil 23. The second conductive member 24 is supported by the insulating material 25 via an attachment member 24A attached to the downstream end of the second conductive member 24.

本実施形態では、第二の導電部材24は、上記軸線22に直角な断面での面積が上記発電流路21での導電性流体の流動方向で上流(以下、単に上流という)から下流(以下、単に下流という)に向けて徐々に増加している。したがって、第二の導電部材24は、該第二の導電部材24の上流側端に向けて送られる導電性流体との流動抵抗の軽減が図られている。また、上述のコイル23と第二の導電部材24は、それぞれ中空となっていてその中空部に水等の冷却液が流され、高温の導電性流体からの熱を受けての過昇温の防止が図られていることが好ましい。   In the present embodiment, the second conductive member 24 has an area in a cross section perpendicular to the axis 22 in the flow direction of the conductive fluid in the power generation channel 21 from the upstream (hereinafter simply referred to as upstream) to the downstream (hereinafter referred to as upstream). It is gradually increasing toward the downstream). Accordingly, the flow resistance of the second conductive member 24 with the conductive fluid sent toward the upstream end of the second conductive member 24 is reduced. In addition, the coil 23 and the second conductive member 24 are hollow, and a cooling liquid such as water is flowed through the hollow portion, and the temperature rises due to heat from a high-temperature conductive fluid. It is preferable that prevention is achieved.

上記コイル23と上記第二の導電部材24のぞれぞれの上流側端部(図3にて左側端部)は、直流電源26を介して互いに接続されている。一方、上記コイル23と上記第二の導電部材24のそれぞれの下流側端部(図3にて右側端部)は、コンデンサ27、インバータ28、負荷29が順に接続されている。かくして、上記コイル23、上記第二の導電部材24、上記直流電源26、上記コンデンサ27、上記インバータ28、上記負荷29は閉回路を形成し、上記コイル23が、該閉回路内を流れる電流によって、発電流路21に磁界を形成する磁界発生手段を構成している。すなわち、この閉回路では、上述の爆轟発生装置10から上記発電流路21へ導電性流体としての燃焼ガスが流動しない時には、上記直流電源26が該閉回路に初期電流を生じさせて、上記コイル23から上記発電流路
21に磁界が形成される。上記爆轟発生装置10から上記発電流路21へ燃焼ガスが流動する時には、上記発電流路21を上流から下流へ向け進行する該燃焼ガスによってコイル23と第二の導電部材24との間が短絡される。その短絡範囲は、導電性流体としての該燃焼ガスの下流端が上流から下流へ進行するので、上記コイル23と上記第二の導電部材24のそれぞれの上流側端部から下流側端部へ向け拡大される。このように上記短絡範囲が拡大されるので、上記短絡範囲より下流側で上記コイル23と上記第二の導電部材24のインダクタンスが減少する。上記磁界を形成するように上記コイル23には誘導電流が発生するが、上記コイル23のインダクタンスが減少するので、上記誘導電流が初期電流以上に増大する。この誘導電流の増大によりコイル23の磁界が増大するため、誘導電流がさらに増大する。このような誘導電流はパルス電流として上記下流側端部で得られる。
The upstream end portions (left end portions in FIG. 3) of the coil 23 and the second conductive member 24 are connected to each other via a DC power supply 26. On the other hand, a capacitor 27, an inverter 28, and a load 29 are connected in order to the downstream end portions (the right end portion in FIG. 3) of each of the coil 23 and the second conductive member 24. Thus, the coil 23, the second conductive member 24, the DC power supply 26, the capacitor 27, the inverter 28, and the load 29 form a closed circuit, and the coil 23 is driven by a current flowing in the closed circuit. The magnetic field generating means for forming a magnetic field in the power generation flow path 21 is configured. That is, in this closed circuit, when the combustion gas as the conductive fluid does not flow from the detonation generating device 10 to the power generation passage 21, the DC power source 26 generates an initial current in the closed circuit, and A magnetic field is formed from the coil 23 to the power generation channel 21. When the combustion gas flows from the detonator 10 to the power generation channel 21, the combustion gas traveling from the upstream side to the downstream side of the power generation channel 21 establishes a gap between the coil 23 and the second conductive member 24. Shorted. The short-circuit range is such that the downstream end of the combustion gas as the conductive fluid proceeds from upstream to downstream, so that the upstream end of each of the coil 23 and the second conductive member 24 is directed toward the downstream end. Enlarged. Thus, since the short circuit range is expanded, the inductance of the coil 23 and the second conductive member 24 is decreased on the downstream side of the short circuit range. An induced current is generated in the coil 23 so as to form the magnetic field. However, since the inductance of the coil 23 is reduced, the induced current is increased beyond the initial current. Since the magnetic field of the coil 23 increases due to the increase of the induced current, the induced current further increases. Such an induced current is obtained at the downstream end as a pulse current.

また、コンデンサ27とインバータ28はこのパルス電流を交流電流に変換して上記負荷29に供給するようになっている。   The capacitor 27 and the inverter 28 convert the pulse current into an alternating current and supply it to the load 29.

また、X線、電子ビーム、慣性核融合の発生装置を負荷とする場合には、上記コンデンサ27及び上記インバータ28を設けずにパルス電流を取り出し、上記発生装置にパルス電流を直接供給するようにしてもよい。   In addition, when the X-ray, electron beam, and inertial fusion generator is used as a load, the pulse current is taken out without providing the capacitor 27 and the inverter 28, and the pulse current is directly supplied to the generator. May be.

また、コイル23の下流側の板厚、幅、または素線径を上流側より大きくすることにより、短絡範囲が下流側へ向けて拡大される際、コイル23のインダクタンスがより大きく減少するので、コイル23に発生する誘導電流を大きくすることができる。   Further, by increasing the plate thickness, width, or strand diameter on the downstream side of the coil 23 from the upstream side, when the short circuit range is expanded toward the downstream side, the inductance of the coil 23 is greatly reduced. The induced current generated in the coil 23 can be increased.

また、発電装置20の発電流路21を下流側に向けて流路断面積が漸次減少していて、上記コイル23の直径が下流側に向けて漸次減少するようにしてもよい。これによっても、短絡範囲が下流側へ向けて拡大される際、コイル23のインダクタンスがより大きく減少するので、コイル23に発生する誘導電流を大きくすることができる。   Further, the flow passage cross-sectional area may gradually decrease toward the downstream side of the power generation passage 21 of the power generation apparatus 20, and the diameter of the coil 23 may gradually decrease toward the downstream side. Also by this, when the short circuit range is expanded toward the downstream side, the inductance of the coil 23 is further reduced, so that the induced current generated in the coil 23 can be increased.

また、発電流路21に磁界を形成させるためにコイル23に初期電流を発生させる直流電源26として、コンデンサに蓄えた電力を瞬間的にコイル23に通電するようにすれば、定常電流を用いる必要がなく、省エネルギーと装置のコンパクト化が可能である。   Further, as a direct current power source 26 for generating an initial current in the coil 23 in order to form a magnetic field in the power generation flow path 21, it is necessary to use a steady current if the power stored in the capacitor is instantaneously supplied to the coil 23. It is possible to save energy and make the device compact.

上記発電装置20の発電流路21に接続されている上記反応装置30には、図1に示すように、入口側に、二酸化炭素を反応物質として該反応装置30に供給する反応物質供給装置31が接続され、出口側には、上記反応装置30内から反応生成ガスを受けるバッファタンク32が接続されている。   As shown in FIG. 1, the reaction device 30 connected to the power generation flow path 21 of the power generation device 20 includes, on the inlet side, a reactant supply device 31 that supplies carbon dioxide as a reactant to the reaction device 30. And a buffer tank 32 for receiving the reaction product gas from the reaction apparatus 30 is connected to the outlet side.

上記反応物質供給装置31は、図1に示すように、制御弁31Aの開閉制御により上記反応装置30への反応物質の供給量が所定量に制御される。なお、上記反応物質供給装置31は、図1における破線で示されるように、反応物質として二酸化炭素に代えて、炭化水素を含有せる廃プラスチックや廃油等、あるいは、炭素を含有せる廃活性炭等を上記反応装置30へ供給するようにしてもよい。このような炭化水素もしくは炭素を含有する物質を反応物質として採用する場合には、燃焼ガス中の水蒸気と上記反応物質中の炭化水素もしくは炭素とが反応して、水素含有ガスを生成させる。かかる場合、上記反応装置30の入口側に、水蒸気を上記反応装置30へ供給する水蒸気供給装置33を例えば図1の破線で示すごとく接続すると、水素製造反応が促進される。   As shown in FIG. 1, the reactant supply device 31 controls the supply amount of the reactant to the reactor 30 to a predetermined amount by opening / closing control of a control valve 31A. In addition, as shown by the broken line in FIG. 1, the reactant supply device 31 replaces carbon dioxide as a reactant with waste plastic or waste oil containing hydrocarbons, or waste activated carbon containing carbon. You may make it supply to the said reactor 30. FIG. When such a substance containing hydrocarbon or carbon is employed as a reactant, water vapor in the combustion gas reacts with hydrocarbon or carbon in the reactant to generate a hydrogen-containing gas. In this case, if a steam supply device 33 that supplies steam to the reaction device 30 is connected to the inlet side of the reaction device 30 as shown by a broken line in FIG. 1, for example, the hydrogen production reaction is promoted.

次に、図4に基づき、本実施形態にかかる反応装置30を詳細に説明する。   Next, based on FIG. 4, the reaction apparatus 30 concerning this embodiment is demonstrated in detail.

図4(A)は反応装置30の概略構成を示す図であり、図4(B)は図4(A)のB−B断面図である。   4A is a diagram showing a schematic configuration of the reaction apparatus 30, and FIG. 4B is a cross-sectional view taken along the line BB in FIG. 4A.

この反応装置30は、図4(A),(B)に示すように、図4(A)にて横方向に延びる軸線34まわりに回転する回転体35に、周方向の複数位置で、上記軸線34に平行に延びて回転体35の軸線方向両端にて開口する反応室35Aが形成されている。各反応室35Aは、上述の反応物質供給装置31から反応物質の供給を受けた後に、上述の爆轟発生装置10から燃焼ガスの衝撃波のエネルギーを利用して反応物質を反応させるための空間である。上記反応室35Aでは、上記燃焼ガスの衝撃波によって上記反応物質を衝撃圧縮して高温とすることにより、二酸化炭素の分解反応を生じさせて、炭素含有ガスを生成させる。   As shown in FIGS. 4 (A) and 4 (B), the reaction device 30 is arranged at a plurality of positions in the circumferential direction on a rotating body 35 that rotates about an axis 34 extending in the lateral direction in FIG. 4 (A). A reaction chamber 35 </ b> A that extends in parallel to the axis 34 and opens at both ends in the axial direction of the rotating body 35 is formed. Each reaction chamber 35 </ b> A is a space for reacting a reactant using the shock wave energy of the combustion gas from the detonation generator 10 after receiving the reactant supply from the reactant supply device 31. is there. In the reaction chamber 35A, the reactant is shock-compressed by a shock wave of the combustion gas to a high temperature, thereby causing a decomposition reaction of carbon dioxide to generate a carbon-containing gas.

この回転体35の両端面に対向する位置には、回転体35の回転を許容するよう該端面に対して微小間隙をもって蓋状の開閉部材36,37が非回転でそれぞれ配設されている。この開閉部材36,37と回転体35の端部周面との間はこれらの相対回転を許容しつつシール部材38によってシールされている。また、シールとしてはラビリンスシール、オイルシールまたは水封装置を用いてもよい。   Lid-like opening and closing members 36 and 37 are arranged in a non-rotating manner at a position facing both end faces of the rotating body 35 with a minute gap with respect to the end face so as to allow the rotating body 35 to rotate. The opening / closing members 36 and 37 and the peripheral surface of the end portion of the rotating body 35 are sealed by a seal member 38 while allowing their relative rotation. Moreover, you may use a labyrinth seal, an oil seal, or a water seal device as a seal.

供給側(図4(A)にて左側)の開閉部材36には、上記回転体35の半径方向で互いに対向する位置に、上述の反応物質供給装置31に連通せる一つの供給開口36Aと、上述の発電装置20の発電流路21と連通せる一つの衝撃波導入開口36Bとが形成されている。   On the supply side (left side in FIG. 4A), the opening / closing member 36 has one supply opening 36A that communicates with the above-described reactant supply device 31 at a position facing each other in the radial direction of the rotating body 35, and One shock wave introduction opening 36 </ b> B that can communicate with the power generation flow path 21 of the power generation apparatus 20 is formed.

また、排出側(図4(A)にて右側)の開閉部材37には、図1に示す上記バッファタンク32に連通せる一つの排出口37Aが形成されている。該排出口37Aは、上記反応室35A内の反応生成ガスを排出する排出手段を構成し、また上記排出口37Aは、図1に見られるように、制御弁37Bにより開閉されるようになっている。上記排出口37Aと、供給開口36A、衝撃波導入開口36Bとの位置関係を以下説明する。   Further, the discharge side opening / closing member 37 (on the right side in FIG. 4A) has one discharge port 37A that communicates with the buffer tank 32 shown in FIG. The discharge port 37A constitutes a discharge means for discharging the reaction product gas in the reaction chamber 35A, and the discharge port 37A is opened and closed by a control valve 37B as seen in FIG. Yes. The positional relationship between the discharge port 37A, the supply opening 36A, and the shock wave introduction opening 36B will be described below.

上記回転体35は、図4に示されるごとく、軸受等の支持部材39によって回転自在に支持され、駆動手段(図示せず)によって、各反応室35Aの開口が供給開口36Aに順次一致して連通するように、間欠的に回転されるようになっている。すなわち、本実施形態では、上記回転体35には8つの反応室35Aが形成されているので、上記回転体35が45°ずつ間欠回転して、順次各反応室35Aの開口が上記供給開口36Aと一致する。   As shown in FIG. 4, the rotating body 35 is rotatably supported by a support member 39 such as a bearing, and the opening of each reaction chamber 35A is sequentially aligned with the supply opening 36A by a driving means (not shown). It is rotated intermittently so as to communicate. That is, in this embodiment, since eight reaction chambers 35A are formed in the rotator 35, the rotator 35 rotates intermittently by 45 °, and the openings of the reaction chambers 35A are sequentially opened to the supply openings 36A. Matches.

具体的には、上記回転体35の回転により、複数の反応室のうち一つの反応室35Aの開口が供給開口36Aと一致するときには、該一つの反応室35Aと反応物質供給装置31とが上記供給開口36Aを介して連通される。このとき、該供給開口36Aと半径方向で対向する衝撃波導入開口36Bには、上記一つの反応室35Aと半径方向反対側の他の反応室35Aの開口が一致する。その後、上記回転体35が45°ずつ4回、すなわち180°回転したときに、上記衝撃波導入開口36Bと上記一つの反応室35Aが一致して、該一つの反応室35Aと発電装置20の発電流路21とが上記衝撃波導入開口36Bを介して連通される。上記180°回転の間に上記一つの反応室35Aの開口が上記供給開口36A及び上記衝撃波導入開口36Bと一致せずに開閉部材36の蓋面(壁面)に対面するときには、該蓋面によって上記一つの反応室35Aの左端開口が閉ざされる。その結果、該一つの反応室35Aと上記反応物質供給装置31及び上記発電流路21との連通が実質的に遮断される。   Specifically, when the rotation of the rotating body 35 causes the opening of one reaction chamber 35A of the plurality of reaction chambers to coincide with the supply opening 36A, the one reaction chamber 35A and the reactant supply device 31 are connected to each other. The communication is made through the supply opening 36A. At this time, the opening of the one reaction chamber 35A and the other reaction chamber 35A on the opposite side in the radial direction coincides with the shock wave introduction opening 36B opposed to the supply opening 36A in the radial direction. Thereafter, when the rotating body 35 is rotated four times by 45 °, that is, by 180 °, the shock wave introduction opening 36B and the one reaction chamber 35A coincide with each other, and the power generation of the one reaction chamber 35A and the power generation apparatus 20 is achieved. The flow path 21 communicates with the shock wave introduction opening 36B. When the opening of the one reaction chamber 35A does not coincide with the supply opening 36A and the shock wave introduction opening 36B during the 180 ° rotation and faces the lid surface (wall surface) of the opening / closing member 36, the lid surface causes The left end opening of one reaction chamber 35A is closed. As a result, the communication between the one reaction chamber 35A and the reactant supply device 31 and the power generation channel 21 is substantially blocked.

また、上述のごとく上記一つの反応室35Aの左端開口が衝撃波導入開口36Bと一致するときには、該一つの反応室35Aは排出側で排出口37Aと一致し、図1に示す制御弁37Bを介して上記バッファタンク32と連通可能な状態となる。また、上記一つの反
応室35Aが排出口37Aと一致せずに開閉部材37の蓋面に対面するときには、該蓋面によって該反応室35Aの右端開口が実質的に閉ざされる。
Further, as described above, when the left end opening of the one reaction chamber 35A coincides with the shock wave introduction opening 36B, the one reaction chamber 35A coincides with the discharge port 37A on the discharge side, via the control valve 37B shown in FIG. Thus, communication with the buffer tank 32 is possible. When the one reaction chamber 35A faces the lid surface of the opening / closing member 37 without being aligned with the discharge port 37A, the right end opening of the reaction chamber 35A is substantially closed by the lid surface.

このように、複数の反応室35Aは、図4からも判るように、回転体35の間欠回転によって、供給側で供給開口36Aと一致しかつ排出側で開閉部材37の蓋面に対面したときの一つの反応室35Aが反応物質の供給を順次断続的に受ける。そして、反応物質の供給を受けたその反応室35Aの開口が回転体35の180°回転後に衝撃波導入開口36Bと一致する位置にきたときに、上記図1の制御弁37Bが閉状態のままで、爆轟発生装置10からの燃焼ガスの衝撃波が上記発電流路21を経て反応室35A内に伝播するようになっている。上記衝撃波により上記反応室35A内で上記反応物質が衝撃圧縮されて高温となって、該反応物質中の二酸化炭素が熱分解反応し、炭素含有ガスを生成する。その後、上記制御弁37Bが開状態とされて、該反応室35Aから開閉部材37の排出口37Aを経て上記炭素含有ガスが排出され、バッファタンク32へ収容される。なお、本実施形態では反応装置30は上述のごとく構成されているが、特にその形態に限定はない。例えば、反応器は上述のような回転する形式でなくとも非回転であってもよい。このような構成では、反応室の数や形状も任意であり、爆轟発生装置10からの燃焼ガスの衝撃波を受けて反応物質が瞬時に圧縮されるに適した反応室を有していればよい。   Thus, as can be seen from FIG. 4, the plurality of reaction chambers 35 </ b> A coincide with the supply opening 36 </ b> A on the supply side and face the lid surface of the opening / closing member 37 on the discharge side by intermittent rotation of the rotating body 35. One reaction chamber 35A receives the supply of reactants sequentially and intermittently. Then, when the opening of the reaction chamber 35A that has been supplied with the reactant comes to a position that coincides with the shock wave introduction opening 36B after the rotation of the rotator 35 by 180 °, the control valve 37B in FIG. 1 remains closed. The shock wave of the combustion gas from the detonation generator 10 propagates into the reaction chamber 35A through the power generation channel 21. The reaction material is shock-compressed in the reaction chamber 35A by the shock wave and becomes a high temperature, and carbon dioxide in the reaction material undergoes a thermal decomposition reaction to generate a carbon-containing gas. Thereafter, the control valve 37B is opened, and the carbon-containing gas is discharged from the reaction chamber 35A through the discharge port 37A of the opening / closing member 37 and stored in the buffer tank 32. In the present embodiment, the reaction apparatus 30 is configured as described above, but the form is not particularly limited. For example, the reactor may not be rotating as described above but may be non-rotating. In such a configuration, the number and shape of the reaction chambers are arbitrary, and the reaction chamber may have a reaction chamber suitable for instantaneously compressing the reactants upon receiving the shock wave of the combustion gas from the detonation generator 10. Good.

上記バッファタンク32は、比較的大容量に形成されていて、上記反応室35Aからの高圧の炭素含有ガスを急激に圧力緩和させるとともに、該圧力緩和により該炭素含有ガスを急冷させて炭素の昇華点(3370℃)以下の温度として該炭素含有ガス中の炭素を固体化せしめて落下させて取り出すようになっている。また、炭化水素もしくは炭素を含有する物質が反応物質として上記反応物質供給装置31から上記反応室35Aへ供給される場合には、図1にて破線で示すように、バッファタンク32内の水素含有ガスを上述の燃料供給装置11へ燃料として帰還させて有効利用させる帰還路50を設けることができる。また、上記バッファタンク32に、バッファタンク32内で圧力変動が緩和された水素含有ガスから水素を分離する水素分離装置(例えば、PSA)51を接続することもできる。該水素分離装置51で分離された水素は、それぞれ適した用途に用いることができる。上記水素分離装置51は、上記水素含有ガスから水素を分離した後の残ガス(主として一酸化炭素)を燃料として上述の燃料供給装置11に帰還させて有効利用するため、該燃料供給装置11に接続することも可能である。   The buffer tank 32 is formed to have a relatively large capacity, and the pressure of the high-pressure carbon-containing gas from the reaction chamber 35A is rapidly relaxed, and the carbon-containing gas is rapidly cooled by the pressure relaxation to sublimate the carbon. The carbon in the carbon-containing gas is solidified at a temperature below the point (3370 ° C.) and dropped to be taken out. When a hydrocarbon or carbon-containing substance is supplied as a reactant from the reactant supply device 31 to the reaction chamber 35A, as shown by a broken line in FIG. It is possible to provide a return path 50 that allows the gas to be returned to the above-described fuel supply device 11 as fuel and used effectively. In addition, a hydrogen separator (for example, PSA) 51 that separates hydrogen from a hydrogen-containing gas whose pressure fluctuation has been reduced in the buffer tank 32 can be connected to the buffer tank 32. The hydrogen separated by the hydrogen separator 51 can be used for each suitable application. The hydrogen separation device 51 returns the residual gas (mainly carbon monoxide) after separating hydrogen from the hydrogen-containing gas to the fuel supply device 11 as a fuel for effective use. It is also possible to connect.

次に、本実施形態装置の動作を図1ないし図4にもとづいて説明する。   Next, the operation of the apparatus according to the present embodiment will be described with reference to FIGS.

1) 爆轟発生装置10では、先ず、着火室13、分散室15、誘導路16、そして燃焼室14内に、ほぼ理論混合比、または理論混合比よりも空気不足条件で、燃料と予熱空気が上記着火室13から充填される。この充填の際、図3に示す第一の導電部材たるコイル23、第二の導電部材24、直流電源26、コンデンサ27、インバータ28、負荷29によって形成される閉回路には、上記直流電源26によって初期電流が予め生じており、発電流路21には磁界が形成されている。また、反応装置30の一つの反応室35Aはすでに反応物質の供給を受けており、上記燃焼室14は発電装置20を介して上記一つの反応室35Aと連通している。   1) In the detonator 10, first, fuel and preheated air in the ignition chamber 13, the dispersion chamber 15, the induction path 16, and the combustion chamber 14, almost at a theoretical mixing ratio or under an air shortage condition than the theoretical mixing ratio. Is filled from the ignition chamber 13. At the time of filling, a closed circuit formed by the coil 23 as the first conductive member, the second conductive member 24, the DC power source 26, the capacitor 27, the inverter 28, and the load 29 shown in FIG. Thus, an initial current is generated in advance, and a magnetic field is formed in the power generation channel 21. In addition, one reaction chamber 35A of the reaction device 30 has already been supplied with reactants, and the combustion chamber 14 communicates with the one reaction chamber 35A via the power generation device 20.

2) 次いで、点火栓13Aを作動させると、着火室13内では、着火により爆轟が起こり、その爆轟波が分散室15そして誘導路16を経て燃焼室14の導入側端部14Aに伝播される。その際、誘導路16の複数の路程はそれぞれ等しく設定されているので、複数の誘導路16の爆轟波は同時に燃焼室14の導入側端部14Aに達することとなる。   2) Next, when the spark plug 13A is operated, detonation occurs due to ignition in the ignition chamber 13, and the detonation wave propagates to the introduction side end portion 14A of the combustion chamber 14 through the dispersion chamber 15 and the guide path 16. Is done. At that time, the plurality of guide paths 16 are set to be equal to each other, so detonation waves of the plurality of guide paths 16 reach the introduction side end portion 14 </ b> A of the combustion chamber 14 at the same time.

燃焼室14内では複数の爆轟波が導入側端部14Aから出口開口端部14Bへと進行するが、燃焼室14の断面積は下流に向け次第に小さくなっているため、爆轟波が収束され
て、下流側に伝播するにつれて温度及び圧力が上昇する。
In the combustion chamber 14, a plurality of detonation waves travel from the inlet side end portion 14A to the outlet opening end portion 14B. However, since the cross-sectional area of the combustion chamber 14 gradually decreases toward the downstream, the detonation wave converges. As the temperature propagates downstream, the temperature and pressure increase.

燃焼室14の出口開口端部14Bには発電装置20が接続されていて、爆轟により解離または電離した燃焼ガスが導電性流体として該発電装置20の発電流路21内へ流動する。   A power generation device 20 is connected to the outlet opening end portion 14B of the combustion chamber 14, and the combustion gas dissociated or ionized by detonation flows into the power generation passage 21 of the power generation device 20 as a conductive fluid.

また、燃料と予熱空気との混合比は必ずしも理論混合比である必要はない。上記混合比を変えることによって、火炎のピーク発生タイミングが変化するので、燃焼室14内の火炎進行方向での爆轟発生位置を燃焼室14の導入側端部14Aとすることができ、これにより、燃焼室14での爆轟波の到達温度及び圧力が最大となる。   Further, the mixing ratio of the fuel and the preheated air is not necessarily the theoretical mixing ratio. By changing the mixing ratio, the flame peak generation timing changes, so that the detonation generation position in the flame traveling direction in the combustion chamber 14 can be the introduction side end portion 14A of the combustion chamber 14, thereby The ultimate temperature and pressure of the detonation wave in the combustion chamber 14 are maximized.

なお、燃料としては、メタン、メタノール、灯油、重油等のような純燃料や、コールタール、原油、廃プラスチック、下水処理汚泥の消化ガス、製鉄所での副生ガスのような低質燃料を用いることができる。これらの燃料が予熱空気と燃焼反応して発生した燃焼ガスの主成分はCOとHOであり、該燃焼ガスは、爆轟により約1500Kで解離を開始、約3000Kで電離を開始して、導電性流体として発電流路へ送られる。 As fuel, pure fuel such as methane, methanol, kerosene, heavy oil, etc., low quality fuel such as coal tar, crude oil, waste plastic, digested gas of sewage treatment sludge, and by-product gas at steelworks are used. be able to. The main components of the combustion gas generated by the combustion reaction of these fuels with preheated air are CO 2 and H 2 O. The combustion gas starts dissociation at about 1500 K by detonation and starts ionization at about 3000 K. Then, it is sent to the power generation channel as a conductive fluid.

3) 上述の解離または電離した燃焼ガスが衝撃波を伴って上記発電流路21内へ流動すると、該燃焼ガスが該発電流路21を上流から下流へ向け進行しながら、コイル23と第二の導電部材24との間を上流端側から短絡させる。すなわち、上記コイル23と上記第二の導電部材24との間の短絡範囲は、上記発電流路21に送られた燃焼ガスによって上記コイル23と上記第二の導電部材24のそれぞれの上流側端部から下流側端部へ向け拡大される。このように上記短絡範囲が拡大されると、上記コイル23と上記第二の導電部材24は該短絡範囲よりも下流側で閉回路を形成することとなるので、上記コイル23及び上記第二の導電部材24を含んでなる閉回路のインダクタンスを形成する部分は実質的に上記下流側の部分だけになる。そして、上記燃焼ガスの流速が10km/s以上の高速であるので、上記短絡範囲の急激な拡大により上述の閉回路のインダクタンス、すなわち上記短絡範囲より下流側で上記コイル23と上記第二の導電部材24のインダクタンスが急激に減少する。上記磁界を形成するように上記コイル23には誘導電流が発生するが、上記コイル23のインダクタンスが減少するので、上記誘導電流が初期電流以上に増大する。この誘導電流の増大によりコイル23の磁界が増大するため、誘導電流がさらに増大する。このように増大した誘導電流はパルス電流として上記下流側端部で得られる。このパルス電流は、コンデンサ27とインバータ28により、交流電力に変換されて、負荷29に供給される。   3) When the dissociated or ionized combustion gas flows into the power generation flow path 21 with a shock wave, the combustion gas travels from the upstream to the downstream along the power generation flow path 21 while the coil 23 and the second The conductive member 24 is short-circuited from the upstream end side. That is, the short circuit range between the coil 23 and the second conductive member 24 is the upstream end of each of the coil 23 and the second conductive member 24 by the combustion gas sent to the power generation passage 21. It is expanded from the part toward the downstream end. Thus, when the short circuit range is expanded, the coil 23 and the second conductive member 24 form a closed circuit on the downstream side of the short circuit range. The part forming the inductance of the closed circuit including the conductive member 24 is substantially only the downstream part. Since the combustion gas has a high flow rate of 10 km / s or more, the coil 23 and the second conductive material are connected downstream of the short circuit range due to the sudden expansion of the short circuit range. The inductance of the member 24 decreases rapidly. An induced current is generated in the coil 23 so as to form the magnetic field. However, since the inductance of the coil 23 is reduced, the induced current is increased beyond the initial current. Since the magnetic field of the coil 23 increases due to the increase of the induced current, the induced current further increases. The induced current thus increased is obtained as a pulse current at the downstream end. This pulse current is converted into AC power by the capacitor 27 and the inverter 28 and supplied to the load 29.

上述のように交流電力を得た後、上述の燃焼室14の図1に示す制御弁18Aが閉状態から開状態となって、上記燃焼室14の燃焼排ガスが排出口18からガスタービン40へ供給されて、上記燃焼ガスに残存する高エネルギーを利用して該ガスタービン40でも電力が得られる。   After obtaining AC power as described above, the control valve 18A of the combustion chamber 14 shown in FIG. 1 is changed from the closed state to the open state, and the combustion exhaust gas in the combustion chamber 14 is transferred from the exhaust port 18 to the gas turbine 40. Electric power is also obtained in the gas turbine 40 by utilizing the high energy supplied and remaining in the combustion gas.

4) 上記発電流路21内を通過後の燃焼ガスの衝撃波は、炭素含有ガス製造に有効利用する目的で、反応室35A内へ至る。そして、すでに反応物質の供給を受けている反応室35A内に、開閉部材36の衝撃波導入開口36Bから燃焼ガスの上記衝撃波が伝播されると、反応室35A内の上記反応物質がこの衝撃波によって反応室35Aの排出側の端部(図4にて右端部)に向けて衝撃圧縮されて高温、例えば6000Kとなる。この高温状態のもとで、上記反応物質中の二酸化炭素が熱分解反応し、その結果、炭素含有ガスを得る。   4) The shock wave of the combustion gas after passing through the power generation flow channel 21 reaches the reaction chamber 35A for the purpose of effectively using the carbon-containing gas. When the shock wave of the combustion gas is propagated from the shock wave introduction opening 36B of the opening / closing member 36 into the reaction chamber 35A that has already been supplied with the reactant, the reactant in the reaction chamber 35A reacts by the shock wave. Impact compression is performed toward the discharge side end (the right end in FIG. 4) of the chamber 35 </ b> A and the temperature becomes high, for example, 6000K. Under this high temperature condition, the carbon dioxide in the reactant reacts thermally, and as a result, a carbon-containing gas is obtained.

このような反応を回転体35の間欠的な回転により次々に衝撃波導入開口36Bに連通した各反応室35A内で行い、その都度、炭素含有ガスを生成する。   Such a reaction is successively performed in each reaction chamber 35A communicated with the shock wave introduction opening 36B by intermittent rotation of the rotating body 35, and a carbon-containing gas is generated each time.

5) 次に、反応室35A内で生成された炭素含有ガスは、制御弁37Bの開放によりバッファタンク32内に噴出されて一旦収容される。このとき、上記バッファタンク32内に高速噴出された高温の炭素含有ガスは断熱のもとで急冷却されるので、逆反応が阻止されるとともに、炭素がその昇華点以下に冷却されるので、ガス中の炭素を固体として分離除去することができる。又、バッファタンク32は、大容量となっており、バッファタンク32内へ噴射された高圧の炭素含有ガスが一旦収容されることにより、該炭素含有ガスの圧力変動が緩和されて安定した低圧となる。このように、本実施形態では、生成時には高温高圧であった炭素含有ガスの圧力及び温度をバッファタンク32にて低下させることにより逆反応を阻止して、反応室35A内での反応物質の供給量に対する炭素含有ガスの生成量の比を高めている。   5) Next, the carbon-containing gas produced in the reaction chamber 35A is ejected into the buffer tank 32 by the opening of the control valve 37B and temporarily stored. At this time, since the high-temperature carbon-containing gas jetted into the buffer tank 32 is rapidly cooled under heat insulation, the reverse reaction is prevented and the carbon is cooled below its sublimation point. The carbon in the gas can be separated and removed as a solid. Further, the buffer tank 32 has a large capacity, and once the high-pressure carbon-containing gas injected into the buffer tank 32 is once stored, the pressure fluctuation of the carbon-containing gas is alleviated and a stable low pressure is achieved. Become. As described above, in the present embodiment, the reverse reaction is prevented by lowering the pressure and temperature of the carbon-containing gas, which was high temperature and high pressure at the time of generation, in the buffer tank 32, and the reactant is supplied in the reaction chamber 35A. The ratio of the amount of carbon-containing gas produced to the amount is increased.

また、炭化水素もしくは炭素を含有する物質を反応物質として上記反応物質供給装置31が上記反応室35Aへ供給し水素含有ガスを得る場合には、図1にて破線で示す帰還路50によって、バッファタンク32内の水素含有ガスを上述の着火室13へ燃料として帰還させて有効利用する。   When the reactant supply device 31 supplies the reaction chamber 35A to the reaction chamber 35A by using a substance containing hydrocarbon or carbon as a reactant, a buffer 50 is provided by a return path 50 indicated by a broken line in FIG. The hydrogen-containing gas in the tank 32 is returned to the ignition chamber 13 as fuel and used effectively.

また、本実施形態では、燃焼室、発電のための発電流路、反応室の順でこれらが直列して連通しているが、燃焼室、反応室、発電流路の順でもよく、また、発電流路と反応室とを燃焼室に並列して連通させるようにしてもよい。   In this embodiment, the combustion chamber, the power generation channel for power generation, and the reaction chamber communicate in series in this order, but the combustion chamber, the reaction chamber, and the power generation channel may be in this order. The power generation channel and the reaction chamber may be communicated in parallel with the combustion chamber.

なお、本実施形態では、複数の反応室を有する反応装置に一つの爆轟発生装置が発電装置を介して連通しているが、爆轟発生装置は一つでなく複数であっても、反応室は複数でなく一つであってもよく、その場合、一つの反応室を有する反応装置に複数の爆轟発生装置を発電装置を介して並列して連通させて、該複数の爆轟発生装置で順次爆轟を発生させてほぼ連続的に発電装置へ導電性流体として燃焼ガスを送り、上記一つの反応室へ該燃焼ガスの衝撃波を伝播させるようにすることができる。   In this embodiment, one detonation generator communicates with a reaction apparatus having a plurality of reaction chambers via a power generation device. There may be one chamber instead of a plurality of chambers. In this case, a plurality of detonations are generated by connecting a plurality of detonators to a reactor having one reaction chamber in parallel via a power generator. It is possible to generate detonation sequentially in the apparatus and to send the combustion gas as a conductive fluid to the power generation apparatus almost continuously to propagate the shock wave of the combustion gas to the one reaction chamber.

また、本実施形態では第二の導電部材24が発電流路21の軸線22上に配されているが、第二の導電部材は流動方向でコイルに対し重複範囲をもってそして間隔をもって発電流路に配されていれば任意の位置に配することができる。例えば、図5に示す第二の導電部材24Bのように、コイル23の包絡面に沿って発電流路21の周壁に配してもよい。   In the present embodiment, the second conductive member 24 is arranged on the axis 22 of the power generation flow path 21. However, the second conductive member has an overlapping range with respect to the coil in the flow direction, and has a gap in the power generation flow path. If it is arranged, it can be arranged at any position. For example, like the 2nd electroconductive member 24B shown in FIG. 5, you may distribute | arrange on the surrounding wall of the electric power generation flow path 21 along the envelope surface of the coil 23. FIG.

この第二の導電部材24Bは、コイル23とともに絶縁材25に取付けられていて、コイル23に対して間隔をもって非接触に配されている。また、この第二の導電部材24Bは、図5(B)に示すように周方向の一部に配され、図5(A)に示すように、軸線方向ではコイル23の外周に沿って延び、半径方向ではコイル23の導線と導線との間でコイル23の内周と同一半径位置まで延びて櫛状になっている。該コイル23と上記第二の導電部材24Bとの間は上記発電流路21にて解離または電離した燃焼ガスによって流動方向で短絡されて、上述の図3に示す実施形態と同様に、誘導電流が取り出される。   The second conductive member 24 </ b> B is attached to the insulating material 25 together with the coil 23, and is arranged in a non-contact manner with respect to the coil 23. Further, the second conductive member 24B is arranged in a part of the circumferential direction as shown in FIG. 5B, and extends along the outer circumference of the coil 23 in the axial direction as shown in FIG. 5A. In the radial direction, the coil extends between the conductors of the coil 23 to the same radial position as the inner periphery of the coil 23 to form a comb shape. The coil 23 and the second conductive member 24B are short-circuited in the flow direction by the combustion gas dissociated or ionized in the power generation passage 21, and the induced current is similar to the embodiment shown in FIG. Is taken out.

また、第二の導電部材をコイル状とし、第一の導電部材たるコイル23の導線と導線との間に、第二の導電部材の導線が交互に位置するように、上記コイルと上記第二導電部材を二重コイル状に配してもよい。これにより、コイル23に発生する誘導電流を連続的に増大させることができ、発電効率を向上させることができる。   In addition, the second conductive member is coiled, and the coil and the second conductive member are alternately positioned between the conductive wires of the coil 23 serving as the first conductive member. The conductive member may be arranged in a double coil shape. Thereby, the induced current generated in the coil 23 can be continuously increased, and the power generation efficiency can be improved.

また、上述の反応物質に代えて、フロン、ポリ塩化ビフェニル、ダイオキシン類のいずれか一つを含有する有害物質を反応室に供給するようにして、燃焼ガスの衝撃波による衝撃圧縮により高温加熱して上記有害物質の分解反応を生じさせて、該有害物質を無害化させることが可能である。また、有害物質として、例えば医療廃棄物を反応室へ供給しても
よい。
In addition, instead of the above-mentioned reactants, a hazardous substance containing any one of chlorofluorocarbon, polychlorinated biphenyls, and dioxins is supplied to the reaction chamber, and heated at high temperature by impact compression by a combustion gas shock wave. It is possible to make the harmful substance harmless by causing a decomposition reaction of the harmful substance. Further, for example, medical waste may be supplied as a harmful substance to the reaction chamber.

本発明の実施形態装置の概略構成を示す図である。It is a figure which shows schematic structure of embodiment apparatus of this invention. 図1の装置に備えられた爆轟発生装置の概略構成を示す図である。It is a figure which shows schematic structure of the detonation generator with which the apparatus of FIG. 1 was equipped. 図1の装置に備えられた発電装置の概略構成を示す図である。It is a figure which shows schematic structure of the electric power generating apparatus with which the apparatus of FIG. 1 was equipped. (A)は、図1の装置に備えられた反応装置の概略構成を示す図であり、(B)は、(A)におけるB−B断面図である。(A) is a figure which shows schematic structure of the reaction apparatus with which the apparatus of FIG. 1 was equipped, (B) is BB sectional drawing in (A). (A)は、本発明の他の実施形態に係る発電装置の概略構成を示す図であり、(B)は、(A)におけるB−B断面図である。(A) is a figure which shows schematic structure of the electric power generating apparatus which concerns on other embodiment of this invention, (B) is BB sectional drawing in (A).

符号の説明Explanation of symbols

12 予熱空気供給装置(予熱空気供給手段)
13 着火室
14 燃焼室
21 発電流路
23 コイル(第一の導電部材)
24 第二の導電部材
24B 第二の導電部材
26 直流電源
31 反応物質供給装置(反応物質供給手段)
32 バッファタンク(炭素分離手段)
35A 反応室
37A 排出口(排出手段)
40 ガスタービン
50 帰還路
12 Preheated air supply device (Preheated air supply means)
13 Ignition chamber 14 Combustion chamber 21 Power generation flow path 23 Coil (first conductive member)
24 Second conductive member 24B Second conductive member 26 DC power supply 31 Reactive substance supply device (reactive substance supply means)
32 Buffer tank (carbon separation means)
35A reaction chamber 37A outlet (discharge means)
40 Gas turbine 50 Return path

Claims (14)

導電性流体の流動のための発電流路に磁界を形成するとともに、該発電流路に第一の導電部材と第二の導電部材とを互いに間隔をもって配し、上記磁界が形成された上記発電流路へ導電性流体を流して、上記第一の導電部材と上記第二の導電部材との間を該導電性流体で短絡させて上記第一の導電部材及び上記第二の導電部材で電流を取り出す発電方法において、第一の導電部材と第二の導電部材は発電流路での導電性流体の流動方向で互いに重複範囲をもって配され、上記第一の導電部材は上記発電流路に配されるコイルとして形成され、該コイルの軸線が上記流動方向に延びるように該コイルが配され、上記第二の導電部材は上記コイルに対して間隔をもって上記流動方向に延び上記発電流路に配される導電材で形成され、上記コイルと上記第二の導電部材のそれぞれの上流側端部が直流電源を介して互いに接続されるとともに、それぞれの下流側端部が互いに導通して閉回路を形成し、上記直流電源によって該閉回路に初期電流を予め生じさせて該閉回路が上記発電流路に磁界を形成させ、上記発電流路の上流側で該発電流路に連通せる燃焼室に接続された着火室内にて燃料を間欠的に着火させ、着火後の燃料の間欠的な燃焼により上記燃焼室にて爆轟を生じさせて、該爆轟により解離または電離した燃焼ガスを導電性流体として上記発電流路へ送って、上記コイルと上記第二の導電部材との間の短絡範囲を上記上流側端部から上記下流側端部へ向け拡大させて、上記短絡範囲より下流側で上記コイルと上記第二の導電部材のインダクタンスを減少させることにより、上記コイルに誘導電流を発生させ、上記下流側端部で該誘導電流を取り出すことを特徴とする発電方法。   The power generation in which the magnetic field is formed in the power generation flow path for the flow of the conductive fluid, the first conductive member and the second conductive member are arranged in the power generation flow path with a space between each other. A conductive fluid is allowed to flow through the flow path, and the first conductive member and the second conductive member are short-circuited with the conductive fluid, and current is passed through the first conductive member and the second conductive member. The first conductive member and the second conductive member are disposed in an overlapping range in the flow direction of the conductive fluid in the power generation flow path, and the first conductive member is disposed in the power generation flow path. The coil is disposed such that the axis of the coil extends in the flow direction, and the second conductive member extends in the flow direction with a space from the coil and is disposed in the power generation flow path. Formed of conductive material, and with the coil The upstream ends of the second conductive members are connected to each other via a DC power supply, and the downstream ends of the second conductive member are electrically connected to each other to form a closed circuit. An initial current is generated in advance so that the closed circuit forms a magnetic field in the power generation channel, and fuel is intermittently supplied in an ignition chamber connected to the combustion chamber that communicates with the power generation channel upstream of the power generation channel. Igniting, causing detonation in the combustion chamber by intermittent combustion of the fuel after ignition, and sending the combustion gas dissociated or ionized by the detonation as a conductive fluid to the power generation flow path, Expanding the short circuit range between the coil and the second conductive member from the upstream end to the downstream end, and the inductance of the coil and the second conductive member downstream from the short circuit range By reducing It generates an induction current in Le, power generation method characterized by taking out the induced current in the downstream end. 燃焼室は発電流路に向けて流路断面積が漸次減少していて、上記燃焼室にて導電性流体としての燃焼ガスを収束させて上記発電流路へ送ることとする請求項1に記載の発電方法。   The combustion chamber has a flow passage cross-sectional area that gradually decreases toward the power generation flow path, and the combustion gas as a conductive fluid is converged and sent to the power generation flow path in the combustion chamber. Power generation method. 爆轟の発生は繰り返し断続的に行なうこととする請求項1に記載の発電方法。   The power generation method according to claim 1, wherein detonation is repeatedly and intermittently performed. 導電性流体の流動のための発電流路に磁界を形成するとともに、該発電流路に第一の導電部材と第二の導電部材とを互いに間隔をもって配し、上記磁界が形成された上記発電流路へ導電性流体を流して、上記第一の導電部材と上記第二の導電部材との間を該導電性流体で短絡させて上記第一の導電部材及び上記第二の導電部材で電流を取り出す発電方法において、第一の導電部材と第二の導電部材は発電流路での導電性流体の流動方向で互いに重複範囲をもって配され、上記第一の導電部材は上記発電流路に配されるコイルとして形成され、該コイルの軸線が上記流動方向に延びるように該コイルが配され、上記第二の導電部材は上記コイルに対して間隔をもって上記流動方向に延び上記発電流路に配される導電材で形成され、上記コイルと上記第二の導電部材のそれぞれの上流側端部が直流電源を介して互いに接続されるとともに、それぞれの下流側端部が互いに導通して閉回路を形成し、上記直流電源によって該閉回路に初期電流を予め生じさせて該閉回路が上記発電流路に磁界を形成させ、上記発電流路の上流側で該発電流路に連通せる燃焼室に水素含有ガス生成反応のための反応室が連通していて、炭素もしくは炭化水素を含有する反応物質を該反応室に収容し、上記燃焼室に接続された着火室内にて燃料を間欠的に着火させ、着火後の燃料の間欠的な燃焼により衝撃波を伴う爆轟を上記燃焼室にて生じさせて、該爆轟により解離または電離した燃焼ガスを導電性流体として上記発電流路へ送って、上記コイルと上記第二の導電部材との間の短絡範囲を上記上流側端部から上記下流側端部へ向け拡大させて、上記短絡範囲より下流側で上記コイルと上記第二の導電部材のインダクタンスを減少させることにより、上記コイルに誘導電流を発生させ、上記下流側端部で該誘導電流を取り出すとともに、燃焼ガスの衝撃波を上記反応室の導入口から該反応室内へ伝播させて、上記反応室内の反応物質を上記衝撃波で衝撃圧縮させて高温に加熱して、燃焼ガス中の水蒸気と反応物質中の炭素もしくは炭化水素とを反応させて水素含有ガスを生成させ、該水素含有ガスを上記反応室の外部へ取り出すことを特徴とする発電方法。   The power generation in which the magnetic field is formed in the power generation flow path for the flow of the conductive fluid, the first conductive member and the second conductive member are arranged in the power generation flow path with a space between each other. A conductive fluid is allowed to flow through the flow path, and the first conductive member and the second conductive member are short-circuited with the conductive fluid, and current is passed through the first conductive member and the second conductive member. The first conductive member and the second conductive member are disposed in an overlapping range in the flow direction of the conductive fluid in the power generation flow path, and the first conductive member is disposed in the power generation flow path. The coil is disposed such that the axis of the coil extends in the flow direction, and the second conductive member extends in the flow direction with a space from the coil and is disposed in the power generation flow path. Formed of conductive material, and with the coil The upstream ends of the second conductive members are connected to each other via a DC power supply, and the downstream ends of the second conductive member are electrically connected to each other to form a closed circuit. An initial current is generated in advance so that the closed circuit forms a magnetic field in the power generation channel, and a reaction chamber for hydrogen-containing gas generation reaction is provided in the combustion chamber that communicates with the power generation channel upstream of the power generation channel. Reacting substances containing carbon or hydrocarbons that are in communication are accommodated in the reaction chamber, the fuel is ignited intermittently in an ignition chamber connected to the combustion chamber, and intermittent combustion of the fuel after ignition is performed. A detonation accompanied by a shock wave is generated in the combustion chamber, and the combustion gas dissociated or ionized by the detonation is sent as a conductive fluid to the power generation flow path, and the coil and the second conductive member are Short circuit range between the upstream end By expanding toward the downstream end and reducing the inductance of the coil and the second conductive member downstream from the short-circuit range, an induced current is generated in the coil, and the downstream end is In addition to taking out the induced current, a shock wave of the combustion gas is propagated from the inlet of the reaction chamber into the reaction chamber, and the reactants in the reaction chamber are shock-compressed with the shock wave and heated to a high temperature. A power generation method characterized in that a water-containing gas is produced by reacting the water vapor with carbon or hydrocarbons in a reactant, and the hydrogen-containing gas is taken out of the reaction chamber. 導電性流体の流動のための発電流路に磁界を形成するとともに、該発電流路に第一の導電部材と第二の導電部材とを互いに間隔をもって配し、上記磁界が形成された上記発電流路へ導電性流体を流して、上記第一の導電部材と上記第二の導電部材との間を該導電性流体で短絡させて上記第一の導電部材及び上記第二の導電部材で電流を取り出す発電方法において、第一の導電部材と第二の導電部材は発電流路での導電性流体の流動方向で互いに重複範囲をもって配され、上記第一の導電部材は上記発電流路に配されるコイルとして形成され、該コイルの軸線が上記流動方向に延びるように該コイルが配され、上記第二の導電部材は上記コイルに対して間隔をもって上記流動方向に延び上記発電流路に配される導電材で形成され、上記コイルと上記第二の導電部材のそれぞれの上流側端部が直流電源を介して互いに接続されるとともに、それぞれの下流側端部が互いに導通して閉回路を形成し、上記直流電源によって該閉回路に初期電流を予め生じさせて該閉回路が上記発電流路に磁界を形成させ、上記発電流路の上流側で該発電流路に連通せる燃焼室に炭素含有ガス生成反応のための反応室が連通していて、二酸化炭素を含有する反応物質を該反応室に収容し、上記燃焼室に接続された着火室内にて燃料を間欠的に着火させ、着火後の燃料の間欠的な燃焼により衝撃波を伴う爆轟を上記燃焼室にて生じさせて、該爆轟により解離または電離した燃焼ガスを導電性流体として上記発電流路へ送って、上記コイルと上記第二の導電部材との間の短絡範囲を上記上流側端部から上記下流側端部へ向け拡大させて、上記短絡範囲より下流側で上記コイルと上記第二の導電部材のインダクタンスを減少させることにより、上記コイルに誘導電流を発生させ、上記下流側端部で該誘導電流を取り出すとともに、燃焼ガスの衝撃波を上記反応室の導入口から該反応室内へ伝播させて、上記反応室内の反応物質を上記衝撃波で衝撃圧縮させて高温に加熱して、反応物質中の二酸化炭素を熱分解反応させて炭素含有ガスを生成させ、該炭素含有ガスを上記反応室の外部へ取り出すことを特徴とする発電方法。   The power generation in which the magnetic field is formed in the power generation flow path for the flow of the conductive fluid, the first conductive member and the second conductive member are arranged in the power generation flow path with a space between each other. A conductive fluid is allowed to flow through the flow path, and the first conductive member and the second conductive member are short-circuited with the conductive fluid, and current is passed through the first conductive member and the second conductive member. The first conductive member and the second conductive member are disposed in an overlapping range in the flow direction of the conductive fluid in the power generation flow path, and the first conductive member is disposed in the power generation flow path. The coil is disposed such that the axis of the coil extends in the flow direction, and the second conductive member extends in the flow direction with a space from the coil and is disposed in the power generation flow path. Formed of conductive material, and with the coil The upstream ends of the second conductive members are connected to each other via a DC power supply, and the downstream ends of the second conductive member are electrically connected to each other to form a closed circuit. An initial current is generated in advance so that the closed circuit forms a magnetic field in the power generation channel, and a reaction chamber for carbon-containing gas generation reaction is provided in the combustion chamber that communicates with the power generation channel upstream of the power generation channel. A reactant containing carbon dioxide is contained in the reaction chamber, and fuel is ignited intermittently in an ignition chamber connected to the combustion chamber, and shock waves are generated by intermittent combustion of the fuel after ignition. Is generated in the combustion chamber, and the combustion gas dissociated or ionized by the detonation is sent to the power generation flow path as a conductive fluid between the coil and the second conductive member. Short circuit range from the upstream end to the downstream side And the induction current is generated in the coil by reducing the inductance of the coil and the second conductive member on the downstream side of the short circuit range, and the induction current is generated at the downstream end. In addition, the shock wave of the combustion gas is propagated from the inlet of the reaction chamber into the reaction chamber, the reactant in the reaction chamber is shock-compressed with the shock wave and heated to a high temperature, and carbon dioxide in the reactant is A power generation method characterized in that a carbon-containing gas is produced by a thermal decomposition reaction, and the carbon-containing gas is taken out of the reaction chamber. 請求項1の発電方法で電力を取り出した後の燃焼ガスをガスタービンに供給して、もしくは、ボイラに供給して該ボイラで発生する蒸気を蒸気タービンに供給することにより発電し、あるいは、上記ガスタービンと上記蒸気タービンの両方で発電することを特徴とする発電方法。   The combustion gas after taking out the electric power by the power generation method according to claim 1 is supplied to a gas turbine, or it is supplied to a boiler to generate power by supplying steam generated in the boiler to a steam turbine, or A power generation method characterized in that power is generated by both a gas turbine and the steam turbine. 導電性流体の流動のための発電流路と、該発電流路に磁界を形成する磁界形成手段と、互いに間隔をもって該発電流路に配された第一の導電部材及び第二の導電部材とを有し、上記磁界形成手段によって磁界が形成された上記発電流路へ導電性流体を流して、上記第一の導電部材と上記第二の導電部材との間を該導電性流体で短絡させて上記第一の導電部材及び上記第二の導電部材で電流を取り出す発電装置において、第一の導電部材と第二の導電部材は発電流路での導電性流体の流動方向で互いに重複範囲をもって配され、上記第一の導電部材は上記発電流路に配されたコイルとして形成され、該コイルの軸線が該発電流路の導電性流体の流動方向に延びるように該コイルが配され、上記第二の導電部材は上記コイルに対して間隔をもって上記流動方向に延び上記発電流路に配される導電材で形成され、磁界形成手段は、上記コイル及び上記第二の導電部材のそれぞれの上流側端部が直流電源を介して互いに接続されるとともに、それぞれの下流側端部が互いに導通されて形成される閉回路として構成されていて、上記直流電源によって該閉回路に初期電流を予め生じさせて該閉回路が上記発電流路に磁界を形成させ、上記発電流路は、燃料の供給を受ける着火室に接続された燃焼室に該発電流路の上流側で連通しており、上記着火室で着火した燃料の間欠的な燃焼により爆轟を生じさせて、該爆轟により解離または電離した燃焼ガスを導電性流体として上記発電流路へ送って、上記コイルと上記第二の導電部材との間の短絡範囲を上記上流側端部から上記下流側端部へ向け拡大させて、上記短絡範囲より下流側で上記コイルと上記第二の導電部材のインダクタンスを減少させることにより、上記コイルに誘導電流を発生させ、上記下流側端部で該誘導電流を取り出すようになっていることを特徴とする発電装置。   A power generation flow path for the flow of the conductive fluid; a magnetic field forming means for forming a magnetic field in the power generation flow path; and a first conductive member and a second conductive member disposed in the power generation flow path with an interval therebetween. A conductive fluid is caused to flow through the power generation flow path in which the magnetic field is formed by the magnetic field forming means, and the first conductive member and the second conductive member are short-circuited by the conductive fluid. In the power generation device for taking out current with the first conductive member and the second conductive member, the first conductive member and the second conductive member overlap each other in the flow direction of the conductive fluid in the power generation flow path. And the first conductive member is formed as a coil disposed in the power generation flow path, and the coil is disposed such that an axis of the coil extends in a flow direction of the conductive fluid in the power generation flow path. The second conductive member is spaced from the coil The magnetic field forming means is connected to the upstream ends of the coil and the second conductive member through a DC power source. In addition, each downstream side end portion is configured as a closed circuit, and an initial current is generated in advance in the closed circuit by the DC power source so that the closed circuit generates a magnetic field in the power generation flow path. The power generation channel is connected to a combustion chamber connected to an ignition chamber that receives supply of fuel on the upstream side of the power generation channel, and the explosion is caused by intermittent combustion of fuel ignited in the ignition chamber. The combustion gas dissociated or ionized by the detonation is sent to the power generation flow path as a conductive fluid, and the short-circuit range between the coil and the second conductive member is set to the upstream end. From above to the downstream end Thus, by reducing the inductance of the coil and the second conductive member on the downstream side of the short-circuit range, an induced current is generated in the coil, and the induced current is extracted at the downstream end. A power generation device characterized by that. 導電性流体の流動のための発電流路と、該発電流路に磁界を形成する磁界形成手段と、互いに間隔をもって該発電流路に配された第一の導電部材及び第二の導電部材とを有し、上記磁界形成手段によって磁界が形成された上記発電流路へ導電性流体を流して、上記第一の導電部材と上記第二の導電部材との間を該導電性流体で短絡させて上記第一の導電部材及び上記第二の導電部材で電流を取り出す発電装置において、第一の導電部材と第二の導電部材は発電流路での導電性流体の流動方向で互いに重複範囲をもって配され、上記第一の導電部材は上記発電流路に配されたコイルとして形成され、該コイルの軸線が該発電流路の導電性流体の流動方向に延びるように該コイルが配され、上記第二の導電部材は上記コイルに対して間隔をもって上記流動方向に延び上記発電流路に配される導電材で形成され、磁界形成手段は、上記コイル及び上記第二の導電部材のそれぞれの上流側端部が直流電源を介して互いに接続されるとともに、それぞれの下流側端部が互いに導通されて形成される閉回路として構成されていて、上記直流電源によって該閉回路に初期電流を予め生じさせて該閉回路が上記発電流路に磁界を形成させ、上記発電流路は、燃料の供給を受ける着火室に接続された燃焼室に該発電流路の上流側で連通し、該燃焼室は、炭素もしくは炭化水素を含有する反応物質を収容せる反応室に発電流路を介して連通し、該反応室は、該反応室へ反応物質を供給する反応物質供給手段が接続されているとともに、水素含有ガスを上記反応室の外部へ取り出す排出手段が設けられており、上記着火室で着火した燃料の間欠的な燃焼により衝撃波を伴う爆轟を生じさせて、該爆轟により解離または電離した燃焼ガスを導電性流体として上記発電流路へ送って、上記コイルと上記第二の導電部材との間の短絡範囲を上記上流側端部から上記下流側端部へ向け拡大させて、上記短絡範囲より下流側で上記コイルと上記第二の導電部材のインダクタンスを減少させることにより、上記コイルに誘導電流を発生させ、上記下流側端部で該誘導電流を取り出すとともに、上記燃焼室から上記発電流路を経て上記反応室内へ燃焼ガスの衝撃波を伝播させて、上記反応室内の反応物質を該衝撃波で衝撃圧縮させて高温に加熱して、燃焼ガス中の水蒸気と反応物質中の炭素もしくは炭化水素とを反応させて水素含有ガスを生成させるようになっていることを特徴とする発電装置。   A power generation flow path for the flow of the conductive fluid; a magnetic field forming means for forming a magnetic field in the power generation flow path; and a first conductive member and a second conductive member disposed in the power generation flow path with an interval therebetween. A conductive fluid is caused to flow through the power generation flow path in which the magnetic field is formed by the magnetic field forming means, and the first conductive member and the second conductive member are short-circuited by the conductive fluid. In the power generation device for taking out current with the first conductive member and the second conductive member, the first conductive member and the second conductive member overlap each other in the flow direction of the conductive fluid in the power generation flow path. And the first conductive member is formed as a coil disposed in the power generation flow path, and the coil is disposed such that an axis of the coil extends in a flow direction of the conductive fluid in the power generation flow path. The second conductive member is spaced from the coil The magnetic field forming means is connected to the upstream ends of the coil and the second conductive member through a DC power source. In addition, each downstream side end portion is configured as a closed circuit, and an initial current is generated in advance in the closed circuit by the DC power source so that the closed circuit generates a magnetic field in the power generation flow path. The power generation channel is formed and communicates with a combustion chamber connected to an ignition chamber that is supplied with fuel on the upstream side of the power generation channel, and the combustion chamber contains a reactant containing carbon or hydrocarbons. The reaction chamber is connected to the reaction chamber via a power generation channel, and the reaction chamber is connected to a reactant supply means for supplying the reactant to the reaction chamber and discharges the hydrogen-containing gas to the outside of the reaction chamber. Means are provided. A detonation accompanied by a shock wave is generated by intermittent combustion of the fuel ignited in the ignition chamber, and the combustion gas dissociated or ionized by the detonation is sent to the power generation channel as a conductive fluid, and the coil and The short-circuit range between the second conductive member is expanded from the upstream end portion toward the downstream end portion, and the inductance of the coil and the second conductive member is reduced downstream from the short-circuit range. By causing the coil to generate an induced current, the induced current is taken out at the downstream end, and a shock wave of combustion gas is propagated from the combustion chamber to the reaction chamber through the power generation flow path. The reaction material in the reaction chamber is shock-compressed with the shock wave and heated to a high temperature to react the water vapor in the combustion gas with the carbon or hydrocarbon in the reaction material to generate a hydrogen-containing gas. A power generator characterized by comprising: 導電性流体の流動のための発電流路と、該発電流路に磁界を形成する磁界形成手段と、互いに間隔をもって該発電流路に配された第一の導電部材及び第二の導電部材とを有し、上記磁界形成手段によって磁界が形成された上記発電流路へ導電性流体を流して、上記第一の導電部材と上記第二の導電部材との間を該導電性流体で短絡させて上記第一の導電部材及び上記第二の導電部材で電流を取り出す発電装置において、第一の導電部材と第二の導電部材は発電流路での導電性流体の流動方向で互いに重複範囲をもって配され、上記第一の導電部材は上記発電流路に配されたコイルとして形成され、該コイルの軸線が該発電流路の導電性流体の流動方向に延びるように該コイルが配され、上記第二の導電部材は上記コイルに対して間隔をもって上記流動方向に延び上記発電流路に配される導電材で形成され、磁界形成手段は、上記コイル及び上記第二の導電部材のそれぞれの上流側端部が直流電源を介して互いに接続されるとともに、それぞれの下流側端部が互いに導通されて形成される閉回路として構成されていて、上記直流電源によって該閉回路に初期電流を予め生じさせて該閉回路が上記発電流路に磁界を形成させ、上記発電流路は、炭素もしくは炭化水素を含有する反応物質を収容せる反応室を介して、燃料の供給を受ける着火室に接続された燃焼室に上記発電流路の上流側で連通し、該反応室は、該反応室へ反応物質を供給する反応物質供給手段が接続されているとともに、水素含有ガスを上記反応室の外部へ取り出す排出手段が設けられており、上記着火室で着火した燃料の間欠的な燃焼により衝撃波を伴う爆轟を生じさせて、該爆轟により解離または電離した燃焼ガスを導電性流体として上記発電流路へ送って、上記コイルと上記第二の導電部材との間の短絡範囲を上記上流側端部から上記下流側端部へ向け拡大させて、上記短絡範囲より下流側で上記コイルと上記第二の導電部材のインダクタンスを減少させることにより、上記コイルに誘導電流を発生させ、上記下流側端部で該誘導電流を取り出すとともに、上記燃焼室から上記反応室内
へ燃焼ガスの衝撃波を伝播させて、上記反応室内の反応物質を該衝撃波で衝撃圧縮させて高温に加熱して、燃焼ガス中の水蒸気と反応物質中の炭素もしくは炭化水素とを反応させて水素含有ガスを生成させるようになっていることを特徴とする発電装置。
A power generation flow path for the flow of the conductive fluid; a magnetic field forming means for forming a magnetic field in the power generation flow path; and a first conductive member and a second conductive member disposed in the power generation flow path with an interval therebetween. A conductive fluid is caused to flow through the power generation flow path in which the magnetic field is formed by the magnetic field forming means, and the first conductive member and the second conductive member are short-circuited by the conductive fluid. In the power generation device for taking out current with the first conductive member and the second conductive member, the first conductive member and the second conductive member overlap each other in the flow direction of the conductive fluid in the power generation flow path. And the first conductive member is formed as a coil disposed in the power generation flow path, and the coil is disposed such that an axis of the coil extends in a flow direction of the conductive fluid in the power generation flow path. The second conductive member is spaced from the coil The magnetic field forming means is connected to the upstream ends of the coil and the second conductive member through a DC power source. In addition, each downstream side end portion is configured as a closed circuit, and an initial current is generated in advance in the closed circuit by the DC power source so that the closed circuit generates a magnetic field in the power generation flow path. And the power generation channel communicates upstream of the power generation channel with a combustion chamber connected to an ignition chamber that is supplied with fuel via a reaction chamber containing a reactant containing carbon or hydrocarbons. The reaction chamber is connected to a reactant supply means for supplying the reactant to the reaction chamber, and is provided with a discharge means for taking out the hydrogen-containing gas to the outside of the reaction chamber. Ignited fuel A detonation accompanied by a shock wave is generated by intermittent combustion of the gas, and the combustion gas dissociated or ionized by the detonation is sent to the power generation channel as a conductive fluid, and the coil and the second conductive member are Inducting the coil by expanding the short circuit range between the upstream end and the downstream end and reducing the inductance of the coil and the second conductive member downstream from the short circuit range. A current is generated, the induced current is taken out at the downstream end, and a shock wave of the combustion gas is propagated from the combustion chamber to the reaction chamber, and the reactant in the reaction chamber is shock-compressed with the shock wave to generate a high temperature. The power generator is characterized in that the hydrogen-containing gas is generated by reacting the water vapor in the combustion gas with the carbon or hydrocarbon in the reactant.
導電性流体の流動のための発電流路と、該発電流路に磁界を形成する磁界形成手段と、互いに間隔をもって該発電流路に配された第一の導電部材及び第二の導電部材とを有し、上記磁界形成手段によって磁界が形成された上記発電流路へ導電性流体を流して、上記第一の導電部材と上記第二の導電部材との間を該導電性流体で短絡させて上記第一の導電部材及び上記第二の導電部材で電流を取り出す発電装置において、第一の導電部材と第二の導電部材は発電流路での導電性流体の流動方向で互いに重複範囲をもって配され、上記第一の導電部材は上記発電流路に配されたコイルとして形成され、該コイルの軸線が該発電流路の導電性流体の流動方向に延びるように該コイルが配され、上記第二の導電部材は上記コイルに対して間隔をもって上記流動方向に延び上記発電流路に配される導電材で形成され、磁界形成手段は、上記コイル及び上記第二の導電部材のそれぞれの上流側端部が直流電源を介して互いに接続されるとともに、それぞれの下流側端部が互いに導通されて形成される閉回路として構成されていて、上記直流電源によって該閉回路に初期電流を予め生じさせて該閉回路が上記発電流路に磁界を形成させ、上記発電流路は、燃料の供給を受ける着火室に接続された燃焼室に該発電流路の上流側で連通し、該燃焼室は、上記発電流路に連通しているとともに、炭素もしくは炭化水素を含有する反応物質を収容せる反応室に連通し、該反応室は、該反応室へ反応物質を供給する反応物質供給手段が接続されているとともに、水素含有ガスを上記反応室の外部へ取り出す排出手段が設けられており、上記着火室で着火した燃料の間欠的な燃焼により衝撃波を伴う爆轟を生じさせて、該爆轟により解離または電離した燃焼ガスを導電性流体として上記発電流路へ送って、上記コイルと上記第二の導電部材との間の短絡範囲を上記上流側端部から上記下流側端部へ向け拡大させて、上記短絡範囲より下流側で上記コイルと上記第二の導電部材のインダクタンスを減少させることにより、上記コイルに誘導電流を発生させ、上記下流側端部で該誘導電流を取り出すとともに、上記燃焼室から上記反応室内へ燃焼ガスの衝撃波を伝播させて、上記反応室内の反応物質を該衝撃波で衝撃圧縮させて高温に加熱して、燃焼ガス中の水蒸気と反応物質中の炭素もしくは炭化水素とを反応させて水素含有ガスを生成させるようになっていることを特徴とする発電装置。   A power generation flow path for the flow of the conductive fluid; a magnetic field forming means for forming a magnetic field in the power generation flow path; and a first conductive member and a second conductive member disposed in the power generation flow path with an interval therebetween. A conductive fluid is caused to flow through the power generation flow path in which the magnetic field is formed by the magnetic field forming means, and the first conductive member and the second conductive member are short-circuited by the conductive fluid. In the power generation device for taking out current with the first conductive member and the second conductive member, the first conductive member and the second conductive member overlap each other in the flow direction of the conductive fluid in the power generation flow path. And the first conductive member is formed as a coil disposed in the power generation flow path, and the coil is disposed such that an axis of the coil extends in a flow direction of the conductive fluid in the power generation flow path. The second conductive member is spaced from the coil The magnetic field forming means is connected to the upstream ends of the coil and the second conductive member through a DC power source. In addition, each downstream side end portion is configured as a closed circuit, and an initial current is generated in advance in the closed circuit by the DC power source so that the closed circuit generates a magnetic field in the power generation flow path. The power generation channel communicates with a combustion chamber connected to an ignition chamber that receives supply of fuel on the upstream side of the power generation channel; the combustion chamber communicates with the power generation channel; The reaction chamber communicates with a reaction chamber containing a reactant containing carbon or hydrocarbon, and the reaction chamber is connected to a reactant supply means for supplying the reactant to the reaction chamber, and the hydrogen-containing gas is supplied to the reaction chamber. To take out outside Means are provided, and a detonation accompanied by a shock wave is generated by intermittent combustion of the fuel ignited in the ignition chamber, and the combustion gas dissociated or ionized by the detonation is used as a conductive fluid to the power generation channel. And extending the short-circuit range between the coil and the second conductive member from the upstream end toward the downstream end, and downstream of the short-circuit range with the coil and the second conductive member. By reducing the inductance of the conductive member, an induced current is generated in the coil, the induced current is taken out at the downstream end, and a shock wave of the combustion gas is propagated from the combustion chamber to the reaction chamber. The reaction material in the reaction chamber is shock-compressed with the shock wave and heated to a high temperature to react the water vapor in the combustion gas with the carbon or hydrocarbon in the reaction material to generate a hydrogen-containing gas. A power generation device characterized by that. 導電性流体の流動のための発電流路と、該発電流路に磁界を形成する磁界形成手段と、互いに間隔をもって該発電流路に配された第一の導電部材及び第二の導電部材とを有し、上記磁界形成手段によって磁界が形成された上記発電流路へ導電性流体を流して、上記第一の導電部材と上記第二の導電部材との間を該導電性流体で短絡させて上記第一の導電部材及び上記第二の導電部材で電流を取り出す発電装置において、第一の導電部材と第二の導電部材は発電流路での導電性流体の流動方向で互いに重複範囲をもって配され、上記第一の導電部材は上記発電流路に配されたコイルとして形成され、該コイルの軸線が該発電流路の導電性流体の流動方向に延びるように該コイルが配され、上記第二の導電部材は上記コイルに対して間隔をもって上記流動方向に延び上記発電流路に配される導電材で形成され、磁界形成手段は、上記コイル及び上記第二の導電部材のそれぞれの上流側端部が直流電源を介して互いに接続されるとともに、それぞれの下流側端部が互いに導通されて形成される閉回路として構成されていて、上記直流電源によって該閉回路に初期電流を予め生じさせて該閉回路が上記発電流路に磁界を形成させ、上記発電流路は、燃料の供給を受ける着火室に接続された燃焼室に該発電流路の上流側で連通し、該燃焼室は、二酸化炭素を含有する反応物質を収容せる反応室に発電流路を介して連通し、該反応室は、該反応室へ反応物質を供給する反応物質供給手段が接続されているとともに、炭素含有ガスを上記反応室の外部へ取り出す排出手段が設けられており、上記着火室で着火した燃料の間欠的な燃焼により衝撃波を伴う爆轟を生じさせて、該爆轟により解離または電離した燃焼ガスを導電性流体として上記発電流路へ送って、上記コイルと上記第二の導電部材との間の短
絡範囲を上記上流側端部から上記下流側端部へ向け拡大させて、上記短絡範囲より下流側で上記コイルと上記第二の導電部材のインダクタンスを減少させることにより、上記コイルに誘導電流を発生させ、上記下流側端部で該誘導電流を取り出すとともに、上記燃焼室から上記発電流路を経て上記反応室内へ燃焼ガスの衝撃波を伝播させて、上記反応室内の反応物質を該衝撃波で衝撃圧縮させて高温に加熱して、反応物質中の二酸化炭素を熱分解反応させて炭素含有ガスを生成させるようになっていることを特徴とする発電装置。
A power generation flow path for the flow of the conductive fluid; a magnetic field forming means for forming a magnetic field in the power generation flow path; and a first conductive member and a second conductive member disposed in the power generation flow path with an interval therebetween. A conductive fluid is caused to flow through the power generation flow path in which the magnetic field is formed by the magnetic field forming means, and the first conductive member and the second conductive member are short-circuited by the conductive fluid. In the power generation device for taking out current with the first conductive member and the second conductive member, the first conductive member and the second conductive member overlap each other in the flow direction of the conductive fluid in the power generation flow path. And the first conductive member is formed as a coil disposed in the power generation flow path, and the coil is disposed such that an axis of the coil extends in a flow direction of the conductive fluid in the power generation flow path. The second conductive member is spaced from the coil The magnetic field forming means is connected to the upstream ends of the coil and the second conductive member through a DC power source. In addition, each downstream side end portion is configured as a closed circuit, and an initial current is generated in advance in the closed circuit by the DC power source so that the closed circuit generates a magnetic field in the power generation flow path. And the power generation channel communicates with a combustion chamber connected to an ignition chamber that receives supply of fuel on the upstream side of the power generation channel, and the combustion chamber contains a reactant containing carbon dioxide. The reaction chamber is connected to the reaction chamber via a power generation channel, and the reaction chamber is connected to a reactant supply means for supplying the reactant to the reaction chamber, and a discharge means for extracting the carbon-containing gas to the outside of the reaction chamber. The above wearing A detonation accompanied by a shock wave is generated by intermittent combustion of the fuel ignited in the chamber, and the combustion gas dissociated or ionized by the detonation is sent to the power generation channel as a conductive fluid, and the coil and the second By expanding the short-circuit range between the first and second conductive members from the upstream end to the downstream end, and reducing the inductance of the coil and the second conductive member downstream from the short-circuit range. Generating an induced current in the coil, taking out the induced current at the downstream end, and propagating a shock wave of combustion gas from the combustion chamber to the reaction chamber through the power generation flow path, A power generation apparatus characterized in that a reactive substance is shock-compressed with the shock wave and heated to a high temperature, and carbon dioxide in the reactive substance is subjected to a thermal decomposition reaction to generate a carbon-containing gas.
導電性流体の流動のための発電流路と、該発電流路に磁界を形成する磁界形成手段と、互いに間隔をもって該発電流路に配された第一の導電部材及び第二の導電部材とを有し、上記磁界形成手段によって磁界が形成された上記発電流路へ導電性流体を流して、上記第一の導電部材と上記第二の導電部材との間を該導電性流体で短絡させて上記第一の導電部材及び上記第二の導電部材で電流を取り出す発電装置において、第一の導電部材と第二の導電部材は発電流路での導電性流体の流動方向で互いに重複範囲をもって配され、上記第一の導電部材は上記発電流路に配されたコイルとして形成され、該コイルの軸線が該発電流路の導電性流体の流動方向に延びるように該コイルが配され、上記第二の導電部材は上記コイルに対して間隔をもって上記流動方向に延び上記発電流路に配される導電材で形成され、磁界形成手段は、上記コイル及び上記第二の導電部材のそれぞれの上流側端部が直流電源を介して互いに接続されるとともに、それぞれの下流側端部が互いに導通されて形成される閉回路として構成されていて、上記直流電源によって該閉回路に初期電流を予め生じさせて該閉回路が上記発電流路に磁界を形成させ、上記発電流路は、二酸化炭素を含有する反応物質を収容せる反応室を介して、燃料の供給を受ける着火室に接続された燃焼室に上記発電流路の上流側で連通し、該反応室は、該反応室へ反応物質を供給する反応物質供給手段が接続されているとともに、炭素含有ガスを上記反応室の外部へ取り出す排出手段が設けられており、上記着火室で着火した燃料の間欠的な燃焼により衝撃波を伴う爆轟を生じさせて、該爆轟により解離または電離した燃焼ガスを導電性流体として上記発電流路へ送って、上記コイルと上記第二の導電部材との間の短絡範囲を上記上流側端部から上記下流側端部へ向け拡大させて、上記短絡範囲より下流側で上記コイルと上記第二の導電部材のインダクタンスを減少させることにより、上記コイルに誘導電流を発生させ、上記下流側端部で該誘導電流を取り出すとともに、上記燃焼室から上記反応室内へ燃焼ガスの衝撃波を伝播させて、上記反応室内の反応物質を該衝撃波で衝撃圧縮させて高温に加熱して、反応物質中の二酸化炭素を熱分解反応させて炭素含有ガスを生成させるようになっていることを特徴とする発電装置。   A power generation flow path for the flow of the conductive fluid; a magnetic field forming means for forming a magnetic field in the power generation flow path; and a first conductive member and a second conductive member disposed in the power generation flow path with an interval therebetween. A conductive fluid is caused to flow through the power generation flow path in which the magnetic field is formed by the magnetic field forming means, and the first conductive member and the second conductive member are short-circuited by the conductive fluid. In the power generation device for taking out current with the first conductive member and the second conductive member, the first conductive member and the second conductive member overlap each other in the flow direction of the conductive fluid in the power generation flow path. And the first conductive member is formed as a coil disposed in the power generation flow path, and the coil is disposed such that an axis of the coil extends in a flow direction of the conductive fluid in the power generation flow path. The second conductive member is spaced from the coil The magnetic field forming means is connected to the upstream ends of the coil and the second conductive member through a DC power source. In addition, each downstream side end portion is configured as a closed circuit, and an initial current is generated in advance in the closed circuit by the DC power source so that the closed circuit generates a magnetic field in the power generation flow path. The power generation channel communicates with the combustion chamber connected to the ignition chamber that receives the supply of fuel on the upstream side of the power generation channel through a reaction chamber that contains a reactant containing carbon dioxide, The reaction chamber is connected to a reactant supply means for supplying the reactant to the reaction chamber, and is provided with a discharge means for taking out the carbon-containing gas to the outside of the reaction chamber, and ignited in the ignition chamber. Intermittent fuel A detonation accompanied by a shock wave is generated by combustion, and a combustion gas dissociated or ionized by the detonation is sent as a conductive fluid to the power generation flow path, and a short circuit range between the coil and the second conductive member Is increased from the upstream end to the downstream end to reduce the inductance of the coil and the second conductive member downstream from the short-circuit range, thereby generating an induced current in the coil. The induction current is taken out at the downstream end, and a shock wave of combustion gas is propagated from the combustion chamber to the reaction chamber, and the reactant in the reaction chamber is shock-compressed with the shock wave and heated to a high temperature. A power generating device characterized in that carbon-containing gas is generated by a thermal decomposition reaction of carbon dioxide in a reactant. 導電性流体の流動のための発電流路と、該発電流路に磁界を形成する磁界形成手段と、互いに間隔をもって該発電流路に配された第一の導電部材及び第二の導電部材とを有し、上記磁界形成手段によって磁界が形成された上記発電流路へ導電性流体を流して、上記第一の導電部材と上記第二の導電部材との間を該導電性流体で短絡させて上記第一の導電部材及び上記第二の導電部材で電流を取り出す発電装置において、第一の導電部材と第二の導電部材は発電流路での導電性流体の流動方向で互いに重複範囲をもって配され、上記第一の導電部材は上記発電流路に配されたコイルとして形成され、該コイルの軸線が該発電流路の導電性流体の流動方向に延びるように該コイルが配され、上記第二の導電部材は上記コイルに対して間隔をもって上記流動方向に延び上記発電流路に配される導電材で形成され、磁界形成手段は、上記コイル及び上記第二の導電部材のそれぞれの上流側端部が直流電源を介して互いに接続されるとともに、それぞれの下流側端部が互いに導通されて形成される閉回路として構成されていて、上記直流電源によって該閉回路に初期電流を予め生じさせて該閉回路が上記発電流路に磁界を形成させ、上記発電流路は、燃料の供給を受ける着火室に接続された燃焼室に該発電流路の上流側で連通し、該燃焼室は、上記発電流路に連通しているとともに、二酸化炭素を含有する反応物質を収容せる反応室に連通し、該反応室は、該反応室へ反応物質を供給する反応物質供給手段が接続されているとともに、炭素含有ガスを上記反応室の外部へ取り出す排出手段が設けられており、上記着火室で
着火した燃料の間欠的な燃焼により衝撃波を伴う爆轟を生じさせて、該爆轟により解離または電離した燃焼ガスを導電性流体として上記発電流路へ送って、上記コイルと上記第二の導電部材との間の短絡範囲を上記上流側端部から上記下流側端部へ向け拡大させて、上記短絡範囲より下流側で上記コイルと上記第二の導電部材のインダクタンスを減少させることにより、上記コイルに誘導電流を発生させ、上記下流側端部で該誘導電流を取り出すとともに、上記燃焼室から該反応室内へ燃焼ガスの衝撃波を伝播させて、上記反応室内の反応物質を該衝撃波で衝撃圧縮させて高温に加熱して、反応物質中の二酸化炭素を熱分解反応させて炭素含有ガスを生成させるようになっていることを特徴とする発電装置。
A power generation flow path for the flow of the conductive fluid; a magnetic field forming means for forming a magnetic field in the power generation flow path; and a first conductive member and a second conductive member disposed in the power generation flow path with an interval therebetween. A conductive fluid is caused to flow through the power generation flow path in which the magnetic field is formed by the magnetic field forming means, and the first conductive member and the second conductive member are short-circuited by the conductive fluid. In the power generation device for taking out current with the first conductive member and the second conductive member, the first conductive member and the second conductive member overlap each other in the flow direction of the conductive fluid in the power generation flow path. And the first conductive member is formed as a coil disposed in the power generation flow path, and the coil is disposed such that an axis of the coil extends in a flow direction of the conductive fluid in the power generation flow path. The second conductive member is spaced from the coil The magnetic field forming means is connected to the upstream ends of the coil and the second conductive member through a DC power source. In addition, each downstream side end portion is configured as a closed circuit, and an initial current is generated in advance in the closed circuit by the DC power source so that the closed circuit generates a magnetic field in the power generation flow path. The power generation channel communicates with a combustion chamber connected to an ignition chamber that receives supply of fuel on the upstream side of the power generation channel; the combustion chamber communicates with the power generation channel; The reaction chamber communicates with a reaction chamber containing a reactant containing carbon dioxide, and the reaction chamber is connected to a reactant supply means for supplying the reactant to the reaction chamber, and the carbon-containing gas is supplied to the outside of the reaction chamber. Ejection means to take out A detonation accompanied by a shock wave is generated by intermittent combustion of the fuel ignited in the ignition chamber, and the combustion gas dissociated or ionized by the detonation is sent to the power generation channel as a conductive fluid, The short-circuit range between the coil and the second conductive member is expanded from the upstream end to the downstream end, and the coil and the second conductive member are arranged downstream of the short-circuit range. By reducing the inductance, an induced current is generated in the coil, the induced current is taken out at the downstream end, and a shock wave of the combustion gas is propagated from the combustion chamber to the reaction chamber, so that A power generation apparatus characterized in that a reactive substance is shock-compressed with the shock wave and heated to a high temperature, and carbon dioxide in the reactive substance is subjected to a thermal decomposition reaction to generate a carbon-containing gas.
導電性流体の流動のための発電流路と、該発電流路に磁界を形成する磁界形成手段と、互いに間隔をもって該発電流路に配された第一の導電部材及び第二の導電部材とを有し、上記磁界形成手段によって磁界が形成された上記発電流路へ導電性流体を流して、上記第一の導電部材と上記第二の導電部材との間を該導電性流体で短絡させて上記第一の導電部材及び上記第二の導電部材で電流を取り出す発電装置において、第一の導電部材と第二の導電部材は発電流路での導電性流体の流動方向で互いに重複範囲をもって配され、上記第一の導電部材は上記発電流路に配されたコイルとして形成され、該コイルの軸線が該発電流路の導電性流体の流動方向に延びるように該コイルが配され、上記第二の導電部材は上記コイルに対して間隔をもって上記流動方向に延び上記発電流路に配される導電材で形成され、磁界形成手段は、上記コイル及び上記第二の導電部材のそれぞれの上流側端部が直流電源を介して互いに接続されるとともに、それぞれの下流側端部が互いに導通されて形成される閉回路として構成されていて、上記直流電源によって該閉回路に初期電流を予め生じさせて該閉回路が上記発電流路に磁界を形成させ、上記発電流路は、燃料の供給を受ける着火室に接続された燃焼室に該発電流路の上流側で連通し、該燃焼室は、該燃焼室からの排ガスで駆動されて発電するガスタービンと、蒸気タービンを駆動するためのボイラとの少なくとも一方に接続されており、上記着火室で着火した燃料の間欠的な燃焼により爆轟を生じさせて、該爆轟により解離または電離した燃焼ガスを導電性流体として上記発電流路へ送って、上記コイルと上記第二の導電部材との間の短絡範囲を上記上流側端部から上記下流側端部へ向け拡大させて、上記短絡範囲より下流側で上記コイルと上記第二の導電部材のインダクタンスを減少させることにより、上記コイルに誘導電流を発生させ、上記下流側端部で該誘導電流を取り出すとともに、上記ガスタービン及び上記蒸気タービンの少なくとも一方を駆動させて発電させるようになっていることを特徴とする発電装置。
A power generation flow path for the flow of the conductive fluid; a magnetic field forming means for forming a magnetic field in the power generation flow path; and a first conductive member and a second conductive member disposed in the power generation flow path with an interval therebetween. A conductive fluid is caused to flow through the power generation flow path in which the magnetic field is formed by the magnetic field forming means, and the first conductive member and the second conductive member are short-circuited by the conductive fluid. In the power generation device for taking out current with the first conductive member and the second conductive member, the first conductive member and the second conductive member overlap each other in the flow direction of the conductive fluid in the power generation flow path. And the first conductive member is formed as a coil disposed in the power generation flow path, and the coil is disposed such that an axis of the coil extends in a flow direction of the conductive fluid in the power generation flow path. The second conductive member is spaced from the coil The magnetic field forming means is connected to the upstream ends of the coil and the second conductive member through a DC power source. In addition, each downstream side end portion is configured as a closed circuit, and an initial current is generated in advance in the closed circuit by the DC power source so that the closed circuit generates a magnetic field in the power generation flow path. And the power generation channel communicates with a combustion chamber connected to an ignition chamber that receives supply of fuel on the upstream side of the power generation channel, and the combustion chamber is driven by exhaust gas from the combustion chamber to generate power. Is connected to at least one of a gas turbine and a boiler for driving a steam turbine, and detonation is generated by intermittent combustion of fuel ignited in the ignition chamber, and dissociation or ionization is caused by the detonation. Burning gas To the power generation flow path as a conductive fluid, and expand the short-circuit range between the coil and the second conductive member from the upstream end to the downstream end. By reducing the inductance of the coil and the second conductive member on the downstream side, an induced current is generated in the coil, the induced current is taken out at the downstream end, and the gas turbine and the steam turbine A power generation apparatus characterized in that at least one of them is driven to generate power.
JP2003295021A 2003-08-19 2003-08-19 Power generation method and generator Pending JP2005065454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003295021A JP2005065454A (en) 2003-08-19 2003-08-19 Power generation method and generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003295021A JP2005065454A (en) 2003-08-19 2003-08-19 Power generation method and generator

Publications (1)

Publication Number Publication Date
JP2005065454A true JP2005065454A (en) 2005-03-10

Family

ID=34371389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003295021A Pending JP2005065454A (en) 2003-08-19 2003-08-19 Power generation method and generator

Country Status (1)

Country Link
JP (1) JP2005065454A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2312126A1 (en) 2009-10-08 2011-04-20 General Electric Company Power generation system and corresponding power generating method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2312126A1 (en) 2009-10-08 2011-04-20 General Electric Company Power generation system and corresponding power generating method

Similar Documents

Publication Publication Date Title
RU2410603C1 (en) Device of plasma ignition of dust-coal fuel
AU6079801A (en) Apparatus and method for combined generation of heat and electricity
JP2003514166A (en) Low power small plasma fuel converter
US7973262B2 (en) Powerplant and method using a triple helical vortex reactor
KR20080092858A (en) Electro-dynamic swirler, combustion apparatus and methods using the same
JP2008298075A (en) Ignition system for combustor, combustor, and combustor ignition method
US20090151322A1 (en) Plasma Assisted Combustion Device
WO2013185219A1 (en) Processes for producing carbon black
US4134034A (en) Magnetohydrodynamic power systems
US20130065187A1 (en) Metal powder ignition apparatus, metal powder ignition method, compact metal powder combustion apparatus and metal powder combustion method using water plasma
JPH09317408A (en) Refuse incinerating power system, refuse disposal system, and fuel reform device used therefor
New et al. Experimental investigations on DDT enhancements by Schelkin spirals in a PDE
US20080173270A1 (en) Fuel injection device including plasma-inducing electrode arrays
US20090114178A1 (en) Fuel injection device including plasma-inducing electrode arrays
JP2005155632A (en) Fuel preconditioning pulse explosion power generation system and its plant
JP2005065454A (en) Power generation method and generator
JP4332396B2 (en) Detonation generation method and apparatus
JPH11159741A (en) Fuel modifying device
JP2005176553A (en) Method and apparatus for composite power generating
JP2005051917A (en) Generating method and generator
JP2005226596A (en) Hydrogen manufacturing method and device for simultaneously using power generation function
RU2499952C2 (en) Steam generator and method to produce high-temperature water steam
JP2007309162A (en) Waste incinerator power generation device
JP2005226597A (en) Hydrogen manufacturing method and device for simultaneously using power generation function
US9531020B2 (en) Method of operating a heater