JP2005063902A - Electrolyte membrane electrode junction for solid polymer type fuel cell, and solid polymer type fuel cell - Google Patents

Electrolyte membrane electrode junction for solid polymer type fuel cell, and solid polymer type fuel cell Download PDF

Info

Publication number
JP2005063902A
JP2005063902A JP2003295630A JP2003295630A JP2005063902A JP 2005063902 A JP2005063902 A JP 2005063902A JP 2003295630 A JP2003295630 A JP 2003295630A JP 2003295630 A JP2003295630 A JP 2003295630A JP 2005063902 A JP2005063902 A JP 2005063902A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
fuel cell
electrode
electrolyte
peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003295630A
Other languages
Japanese (ja)
Other versions
JP4845077B2 (en
Inventor
Fusayoshi Miura
房美 三浦
Eijiro Toyoda
英司郎 豊田
Naoki Hasegawa
直樹 長谷川
Tatsuya Hatanaka
達也 畑中
Tomo Morimoto
友 森本
Masafumi Kobayashi
雅史 小林
Manabu Kato
加藤  学
Norimitsu Takeuchi
仙光 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2003295630A priority Critical patent/JP4845077B2/en
Publication of JP2005063902A publication Critical patent/JP2005063902A/en
Application granted granted Critical
Publication of JP4845077B2 publication Critical patent/JP4845077B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolyte membrane electrode junction for solid polymer fuel cell of which the electrolyte membrane and the electrode are hardly deteriorated, and a solid polymer fuel cell in which the deterioration of battery performance is small even in the case of operation for a long period of time. <P>SOLUTION: In the electrolyte membrane electrode junction for a solid polymer fuel cell which is constructed of an electrolyte membrane having ion conductivity and a pair of electrodes provided on both sides of the electrolyte membrane, a peroxide decomposition substance composed of at least one kind of an iron-contained oxide and an iron-contained hydroxide is contained in at least one of the electrolyte membrane and the pair of the electrodes. And the solid polymer fuel cell is structured by using such electrolyte membrane electrode junction. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、固体高分子型燃料電池に関し、特に固体高分子型燃料電池に用いられる電解質膜電極接合体に関する。   The present invention relates to a polymer electrolyte fuel cell, and more particularly to an electrolyte membrane electrode assembly used in a polymer electrolyte fuel cell.

ガスの電気化学反応により電気を発生させる燃料電池は、発電効率が高く、排出されるガスがクリーンで環境に対する影響が極めて少ない。そのため、近年、発電用、低公害の自動車用電源等、種々の用途が期待されている。   A fuel cell that generates electricity by an electrochemical reaction of gas has high power generation efficiency, clean gas discharged, and extremely little influence on the environment. Therefore, in recent years, various uses such as power generation and low-pollution automobile power supplies are expected.

なかでも、固体高分子型燃料電池は、80℃程度の低温で作動させることができ、大きな出力密度を有する。固体高分子型燃料電池は、通常、プロトン導電性のある高分子膜を電解質とする。電解質となる高分子膜の両側にそれぞれ燃料極、酸素極となる一対の電極が設けられ電解質膜電極接合体(MEA)が構成される。この電解質膜電極接合体をセパレータで挟持した単セルが発電単位となる。そして、水素や炭化水素等の燃料ガスを燃料極に、酸素や空気等の酸化剤ガスを酸素極にそれぞれ供給し、ガスと電解質と電極との三相界面における電気化学反応により発電を行う。   Among these, the polymer electrolyte fuel cell can be operated at a low temperature of about 80 ° C. and has a large output density. In general, a polymer electrolyte fuel cell uses a proton conductive polymer membrane as an electrolyte. A pair of electrodes each serving as a fuel electrode and an oxygen electrode are provided on both sides of the polymer film serving as an electrolyte to form an electrolyte membrane electrode assembly (MEA). A single cell in which the electrolyte membrane electrode assembly is sandwiched between separators serves as a power generation unit. Then, a fuel gas such as hydrogen or hydrocarbon is supplied to the fuel electrode, and an oxidant gas such as oxygen or air is supplied to the oxygen electrode, and power is generated by an electrochemical reaction at the three-phase interface between the gas, the electrolyte, and the electrode.

しかし、固体高分子型燃料電池は、長期間の運転により、電池性能が低下してしまうという問題を有する。電池性能の低下の原因としては、例えば、電解質膜や電極の劣化が挙げられる。加えて、セパレータや、燃料電池システムを構成する配管、マニホールド等に用いられる金属材料の腐食が挙げられる。金属材料が腐食すると、溶出した金属イオンが、電解質膜や電極を構成する高分子中のスルホン酸基のプロトンとイオン交換する。これにより、電解質膜のプロトン導電性が阻害され、抵抗が増加する。また、電極における電気化学反応も阻害される。   However, the polymer electrolyte fuel cell has a problem that the battery performance is deteriorated by long-term operation. As a cause of the decrease in battery performance, for example, deterioration of an electrolyte membrane or an electrode can be mentioned. In addition, corrosion of metal materials used for separators, piping constituting a fuel cell system, manifolds, and the like can be given. When the metal material is corroded, the eluted metal ions are ion-exchanged with protons of sulfonic acid groups in the polymer constituting the electrolyte membrane and the electrode. Thereby, the proton conductivity of the electrolyte membrane is inhibited, and the resistance increases. Moreover, the electrochemical reaction in an electrode is also inhibited.

通常、固体高分子型燃料電池の運転時には、酸素極において、水素と酸素とから水が生成される。しかし、運転条件等によっては、酸素極における酸素の還元が2電子反応で止まってしまい、過酸化水素(H22)が生成されることがある。生成された過酸化水素は、例えば、金属イオン等の存在下でラジカル分解する。その過酸化水素ラジカルにより、電解質膜や電極が損傷を受け劣化すると考えられる。 Usually, when the polymer electrolyte fuel cell is operated, water is generated from hydrogen and oxygen at the oxygen electrode. However, depending on the operating conditions, the reduction of oxygen at the oxygen electrode may be stopped by a two-electron reaction, and hydrogen peroxide (H 2 O 2 ) may be generated. The generated hydrogen peroxide undergoes radical decomposition in the presence of, for example, metal ions. The hydrogen peroxide radical is thought to damage and deteriorate the electrolyte membrane and the electrode.

過酸化水素による電解質膜等の劣化を抑制し、燃料電池の耐久性を向上させる試みとして、例えば、酸化マンガン、酸化ルテニウム、酸化タングステン等の酸化物を、電解質膜や電極に含有させることが提案されている(例えば、特許文献1、2参照。)。   As an attempt to suppress the deterioration of electrolyte membranes caused by hydrogen peroxide and improve the durability of fuel cells, for example, it is proposed to include oxides such as manganese oxide, ruthenium oxide, and tungsten oxide in electrolyte membranes and electrodes (For example, refer to Patent Documents 1 and 2).

一方、特許文献3には、供給される燃料ガスをラジカル化させ、出力特性を向上させるという観点から、電極触媒層に鉄フェライト等の磁性体物質を配合した燃料電池電極が示されている。
特開2001−118591号公報 特開2000−106203号公報 特開2001−110431号公報
On the other hand, Patent Document 3 discloses a fuel cell electrode in which a magnetic substance such as iron ferrite is blended in an electrode catalyst layer from the viewpoint of radicalizing a supplied fuel gas and improving output characteristics.
JP 2001-118591 A JP 2000-106203 A JP 2001-110431 A

しかしながら、上記特許文献1、2に示された手法では、含有させる酸化物として、資源量が少なく高価な金属を用いるため、実用性、コストの面で問題がある。一方、特許文献3には、過酸化水素のラジカル化を抑制するという思想は全くない。すなわち、特許文献3に示された燃料電池電極では、燃料ガスをラジカル化させることを目的とする。そのため、燃料ガスのイオン化を促進すべく、大量の磁性体物質が、電気化学反応が進行する電極触媒層に配合される。   However, the methods disclosed in Patent Documents 1 and 2 have problems in terms of practicality and cost because they use an expensive metal with a small amount of resources as the oxide to be contained. On the other hand, Patent Document 3 has no idea of suppressing radicalization of hydrogen peroxide. That is, the fuel cell electrode disclosed in Patent Document 3 aims to radicalize the fuel gas. Therefore, in order to promote ionization of the fuel gas, a large amount of magnetic substance is blended in the electrode catalyst layer in which the electrochemical reaction proceeds.

固体高分子型燃料電池の多くは、電解質膜として、炭化水素系材料あるいはフッ素系材料からなる高分子膜を用いる。従来、フッ素系電解質膜は、過酸化水素によりほとんど損傷を受けないと考えられてきた。したがって、上記特許文献1、2においても、炭化水素系電解質膜について検討がなされている。しかし、本発明者は、種々の検討を重ねた結果、フッ素系電解質膜であっても、過酸化水素により損傷を受ける場合があるという知見を得た。この場合、過酸化水素によりC−F結合が分解されるため、フッ酸等の有害な物質が生じるおそれもある。   Many of the polymer electrolyte fuel cells use a polymer membrane made of a hydrocarbon material or a fluorine material as an electrolyte membrane. Conventionally, it has been considered that a fluorine-based electrolyte membrane is hardly damaged by hydrogen peroxide. Therefore, also in the said patent documents 1, 2, examination is made about the hydrocarbon type electrolyte membrane. However, as a result of various studies, the present inventor has obtained knowledge that even a fluorine-based electrolyte membrane may be damaged by hydrogen peroxide. In this case, since the C—F bond is decomposed by hydrogen peroxide, harmful substances such as hydrofluoric acid may be generated.

本発明は、このような実状に鑑みてなされたものであり、電池内で生成された過酸化水素を分解して無害化することにより、長期間運転した場合でも電池性能の低下が少ない固体高分子型燃料電池を提供することを課題とする。また、そのような固体高分子型燃料電池を構成し得る電解質膜電極接合体を提供することを課題とする。   The present invention has been made in view of such a situation, and by decomposing and detoxifying hydrogen peroxide generated in the battery, the solid content is low even when operated for a long period of time. It is an object to provide a molecular fuel cell. It is another object of the present invention to provide an electrolyte membrane electrode assembly that can constitute such a polymer electrolyte fuel cell.

本発明の固体高分子型燃料電池用電解質膜電極接合体は、イオン導電性を有する電解質膜と、該電解質膜の両側に設けられた一対の電極と、からなり、該電解質膜および該一対の電極の少なくとも一つに鉄含有酸化物および鉄含有水酸化物の一種以上からなる過酸化物分解物質を含むことを特徴とする。   An electrolyte membrane electrode assembly for a polymer electrolyte fuel cell of the present invention comprises an electrolyte membrane having ionic conductivity and a pair of electrodes provided on both sides of the electrolyte membrane, and the electrolyte membrane and the pair of electrodes At least one of the electrodes includes a peroxide decomposing substance composed of one or more of an iron-containing oxide and an iron-containing hydroxide.

本発明の電解質膜電極接合体(以下、適宜「MEA」と称す。)では、電解質膜の両側にそれぞれ燃料極、酸素極となる一対の電極が配置される。よって、本発明のMEAでは、電解質膜、燃料極、酸素極の少なくとも一つに、過酸化物分解物質が含まれる。過酸化物分解物質がそれらの二つ以上に含まれる場合には、より過酸化物の分解効果が高くなる。   In the electrolyte membrane electrode assembly of the present invention (hereinafter referred to as “MEA” where appropriate), a pair of electrodes that respectively serve as a fuel electrode and an oxygen electrode are disposed on both sides of the electrolyte membrane. Therefore, in the MEA of the present invention, a peroxide decomposition substance is contained in at least one of the electrolyte membrane, the fuel electrode, and the oxygen electrode. When the peroxide decomposition substance is contained in two or more of them, the decomposition effect of the peroxide becomes higher.

本発明のMEAに含まれる過酸化物分解物質は、鉄含有酸化物および鉄含有水酸化物の一種以上(以下、適宜「鉄含有酸化物等」と称す。)からなる。通常、固体高分子型燃料電池の運転時には、その内部は80℃程度の高温下、酸性雰囲気等の過酷な条件となる。よって、過酸化物分解物質には、高温かつ酸性の条件で溶出し難いことが要求される。鉄含有酸化物等は、高温かつ酸性の条件でも比較的安定であり、溶出し難い。また、過酸化水素等の過酸化物の分解能が高い。以下、一例として、過酸化水素の分解について説明する。   The peroxide-decomposing substance contained in the MEA of the present invention comprises one or more of iron-containing oxides and iron-containing hydroxides (hereinafter referred to as “iron-containing oxides” as appropriate). Usually, when the polymer electrolyte fuel cell is operated, the inside is subjected to severe conditions such as an acidic atmosphere at a high temperature of about 80 ° C. Therefore, peroxide-decomposing substances are required to be difficult to elute under high temperature and acidic conditions. Iron-containing oxides and the like are relatively stable even under high temperature and acidic conditions, and are difficult to elute. Moreover, the resolution of peroxides such as hydrogen peroxide is high. Hereinafter, decomposition of hydrogen peroxide will be described as an example.

過酸化水素は、式(1)、(2)に示すように、遷移金属イオン(Mn+/M(n+1)+)の存在下でラジカル分解する。
HOOH + M(n+1)+ → HOO・ + H+ + Mn+ ・・・(1)
HOOH + Mn+ → HO・ + OH- + M(n+1)+ ・・・(2)
過酸化物分解物質は、このように過酸化水素がラジカル分解する前に、過酸化水素を、式(3)に示すように還元分解するか、あるいは式(4)に示すように酸化分解する。
22 + 2H+ + 2e- → 2H2 ・・・(3)
22 → O2 + 2H+ + 2e- ・・・(4)
なお、過酸化物分解物質の表面では、式[(3)+(4)]より、式(5)に示すように、2分子の過酸化水素が衝突して、水と酸素とに分解する、いわゆる接触分解反応となる。
2H22 → 2H2 + O2 ・・・(5)
このように、運転中に生成された過酸化水素は、ラジカル化する前に過酸化物分解物質により分解されるため、過酸化水素ラジカルによるフッ素系材料等の分解や低分子量化は抑制される。その結果、電解質膜や電極の劣化が抑制される。また、セパレータや、燃料電池システムを構成する配管、マニホールド等に移動する過酸化水素が減少するため、それら金属材料の腐食も抑制される。
Hydrogen peroxide undergoes radical decomposition in the presence of transition metal ions (M n + / M (n + 1) + ) as shown in formulas (1) and (2).
HOOH + M (n + 1) + → HOO · + H + + M n + ··· (1)
HOOH + M n + → HO · + OH + M (n + 1) + (2)
The peroxide-decomposing substance can be reduced or decomposed as shown in formula (3) or oxidatively decomposed as shown in formula (4) before hydrogen peroxide is radically decomposed in this way. .
H 2 O 2 + 2H + + 2e → 2H 2 O ... (3)
H 2 O 2 → O 2 + 2H + + 2e (4)
On the surface of the peroxide-decomposing substance, from the formula [(3) + (4)], as shown in the formula (5), two molecules of hydrogen peroxide collide and decompose into water and oxygen. This is a so-called catalytic decomposition reaction.
2H 2 O 2 → 2H 2 O + O 2 (5)
In this way, hydrogen peroxide generated during operation is decomposed by peroxide-decomposing substances before radicalization, so that decomposition of fluorine-based materials and the like and reduction in molecular weight due to hydrogen peroxide radicals are suppressed. . As a result, deterioration of the electrolyte membrane and the electrode is suppressed. Moreover, since the hydrogen peroxide which moves to a separator, piping, a manifold, etc. which comprise a fuel cell system reduces, corrosion of these metal materials is also suppressed.

ここで、金属材料の腐食について説明する。金属Mが2価で溶出する腐食反応は、式(6)で示される。
M → M2+ + 2e- ・・・(6)
一方、過酸化水素の存在下では、過酸化水素が式(7)に示すように腐食の還元反応を担う。
22 + 2H+ + 2e- → 2H2 ・・・(7)
したがって、MEAにて過酸化水素を分解し、MEAの外部へ移動する過酸化水素を少なくすることで、金属材料の腐食を効果的に抑制することができる。
Here, the corrosion of the metal material will be described. The corrosion reaction in which the metal M elutes in divalent is represented by the formula (6).
M → M 2+ + 2e - ··· (6)
On the other hand, in the presence of hydrogen peroxide, hydrogen peroxide is responsible for the corrosion reduction reaction as shown in equation (7).
H 2 O 2 + 2H + + 2e → 2H 2 O ... (7)
Therefore, corrosion of the metal material can be effectively suppressed by decomposing hydrogen peroxide with the MEA and reducing the amount of hydrogen peroxide that moves to the outside of the MEA.

本発明の固体高分子型燃料電池は、上記本発明の電解質膜電極接合体を備えることを特徴とする。すなわち、本発明の固体高分子型燃料電池では、運転時に過酸化水素が生成しても、過酸化水素は過酸化物分解物質により速やかに分解される。そのため、運転時における電解質膜や電極の劣化が少なく、長期間運転した場合でも電池性能の低下は少ない。   A polymer electrolyte fuel cell according to the present invention includes the above-described electrolyte membrane electrode assembly according to the present invention. That is, in the polymer electrolyte fuel cell of the present invention, even if hydrogen peroxide is generated during operation, the hydrogen peroxide is rapidly decomposed by the peroxide decomposition substance. For this reason, there is little deterioration of the electrolyte membrane and the electrode during operation, and there is little decrease in battery performance even when operated for a long period.

本発明の電解質膜電極接合体は、電解質膜および一対の電極の少なくとも一つに鉄含有酸化物および鉄含有水酸化物の一種以上からなる過酸化物分解物質を含む。そのため、運転中に生成された過酸化水素は、過酸化物分解物質により速やかに分解され無害化される。したがって、本発明の電解質膜電極接合体を備えた固体高分子型燃料電池では、電極や電解質膜の劣化が少なく、長期間運転した場合でも電池性能の低下は少ない。   In the electrolyte membrane electrode assembly of the present invention, at least one of the electrolyte membrane and the pair of electrodes contains a peroxide decomposing substance composed of one or more of an iron-containing oxide and an iron-containing hydroxide. Therefore, hydrogen peroxide generated during operation is quickly decomposed and detoxified by the peroxide decomposition substance. Therefore, in the polymer electrolyte fuel cell provided with the electrolyte membrane electrode assembly of the present invention, there is little deterioration of the electrode and the electrolyte membrane, and even when the battery is operated for a long time, the battery performance is hardly lowered.

以下に、本発明の固体高分子型燃料電池用電解質膜電極接合体および固体高分子型燃料電池の実施形態を説明する。なお、本発明の固体高分子型燃料電池用電解質膜電極接合体および固体高分子型燃料電池は、下記の実施形態に限定されるものではない。本発明の固体高分子型燃料電池用電解質膜電極接合体および固体高分子型燃料電池は、本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。   Hereinafter, embodiments of the electrolyte membrane electrode assembly for a polymer electrolyte fuel cell and the polymer electrolyte fuel cell of the present invention will be described. In addition, the electrolyte membrane electrode assembly for polymer electrolyte fuel cells and the polymer electrolyte fuel cell of the present invention are not limited to the following embodiments. The electrolyte membrane electrode assembly for a polymer electrolyte fuel cell and the polymer electrolyte fuel cell of the present invention are in various forms that have been modified or improved by those skilled in the art without departing from the gist of the present invention. Can be implemented.

〈固体高分子型燃料電池用電解質膜電極接合体〉
本発明の固体高分子型燃料電池用電解質膜電極接合体は、イオン導電性を有する電解質膜と、該電解質膜の両側に設けられた一対の電極と、からなり、該電解質膜および該一対の電極の少なくとも一つに鉄含有酸化物および鉄含有水酸化物の一種以上からなる過酸化物分解物質を含む。
<Electrolyte membrane electrode assembly for polymer electrolyte fuel cell>
An electrolyte membrane electrode assembly for a polymer electrolyte fuel cell of the present invention comprises an electrolyte membrane having ionic conductivity and a pair of electrodes provided on both sides of the electrolyte membrane, and the electrolyte membrane and the pair of electrodes At least one of the electrodes includes a peroxide decomposing material composed of one or more of an iron-containing oxide and an iron-containing hydroxide.

過酸化物分解物質となる鉄含有酸化物としては、例えば、FeO、Fe23、Fe34(鉄フェライト:FeO・Fe23)等が挙げられる。また、鉄含有水酸化物としては、Fe(OH)2、Fe(OH)3等の他、FeOOH等のオキシ水酸化物が挙げられる。これらの一種を単独で用いてもよく、また二種以上を混合して用いてもよい。特に、酸に対する溶解性が低く、過酸化水素の分解能を長期間安定して発揮できるという理由から、過酸化物分解物質として鉄フェライト(Fe34)を用いることが望ましい。また、BaFe1219、MnFe24、NixFe3-x4等のように鉄(Fe)の一部がアルカリ土類金属、遷移金属等の他の元素で置換された酸化物を用いてもよい。これらの酸化物は、電子導電性が良好である。そのため、これらの酸化物を電極に含有させれば、電極の電子導電性をあまり低下させずに、過酸化水素を分解することができる。 Examples of the iron-containing oxide that becomes a peroxide-decomposing substance include FeO, Fe 2 O 3 , Fe 3 O 4 (iron ferrite: FeO · Fe 2 O 3 ), and the like. Examples of the iron-containing hydroxide include Fe (OH) 2 and Fe (OH) 3 , and oxyhydroxide such as FeOOH. One of these may be used alone, or a mixture of two or more may be used. In particular, it is desirable to use iron ferrite (Fe 3 O 4 ) as a peroxide decomposing substance because of its low solubility in acid and the ability to stably exhibit the resolution of hydrogen peroxide for a long period of time. Also, oxides in which a part of iron (Fe) is substituted with other elements such as alkaline earth metals and transition metals, such as BaFe 12 O 19 , MnFe 2 O 4 , and Ni x Fe 3−x O 4 . May be used. These oxides have good electronic conductivity. Therefore, if these oxides are contained in the electrode, hydrogen peroxide can be decomposed without significantly reducing the electronic conductivity of the electrode.

鉄含有酸化物等の粒子径は、特に限定されるものではない。但し、鉄含有酸化物等の粒子径が小さすぎると、酸性条件で溶出し易くなり長期間の安定性という観点で問題となる。よって、鉄含有酸化物等の粒子径は0.05μm以上であることが望ましい。一方、鉄含有酸化物等の粒子径が大きすぎると、分散性が低下する。よって、鉄含有酸化物等の粒子径は5μm以下であることが望ましい。   The particle diameter of the iron-containing oxide or the like is not particularly limited. However, if the particle diameter of the iron-containing oxide or the like is too small, it is easy to elute under acidic conditions, which causes a problem in terms of long-term stability. Therefore, the particle diameter of the iron-containing oxide or the like is desirably 0.05 μm or more. On the other hand, when the particle diameter of the iron-containing oxide or the like is too large, the dispersibility is lowered. Accordingly, the particle diameter of the iron-containing oxide or the like is desirably 5 μm or less.

過酸化物分解物質は、電解質膜、燃料極、酸素極の少なくとも一つに含まれる。例えば、過酸化物分解物質を電解質膜に含有させる場合、過酸化物分解物質の含有割合を、電解質膜の全体重量を100wt%とした場合の0.1wt%以上とすることが望ましい。0.1wt%未満の場合には、過酸化物を分解する効果が小さいからである。0.5wt%以上とするとより好適である。一方、プロトン導電性を考慮すると、過酸化物分解物質の含有割合を5wt%以下とすることが望ましい。1wt%以下とするとより好適である。   The peroxide decomposing substance is contained in at least one of the electrolyte membrane, the fuel electrode, and the oxygen electrode. For example, when the peroxide decomposing substance is contained in the electrolyte membrane, the content ratio of the peroxide decomposing substance is preferably 0.1 wt% or more when the total weight of the electrolyte membrane is 100 wt%. This is because when the amount is less than 0.1 wt%, the effect of decomposing peroxide is small. More preferably, it is 0.5 wt% or more. On the other hand, in consideration of proton conductivity, it is desirable that the content ratio of the peroxide decomposing substance is 5 wt% or less. More preferably, it is 1 wt% or less.

一般に、燃料極および酸素極は、それぞれ、触媒層と拡散層とから構成される。触媒層は、電気化学反応の反応場であり、カーボンに担持された白金等の触媒と固体高分子電解質とを含む。拡散層は、触媒層への反応ガスの供給と、触媒層との間で電子の授受を行う役割を果たし、カーボンクロス等の多孔質材料からなる。よって、例えば、過酸化物分解物質を電極の触媒層に含有させる場合、過酸化物分解物質の含有割合を、カーボンに担持された白金触媒(以下、「Pt/C触媒」と表す。)の重量を100wt%とした場合の0.2wt%以上とすることが望ましい。0.2wt%未満の場合には、過酸物を分解する効果が小さいからである。0.5wt%以上とするとより好適である。一方、電極における電気化学的反応への影響を考慮すると、過酸化物分解物質の含有割合を5wt%以下とすることが望ましい。1wt%以下とするとより好適である。   In general, the fuel electrode and the oxygen electrode are each composed of a catalyst layer and a diffusion layer. The catalyst layer is a reaction field for electrochemical reaction, and includes a catalyst such as platinum supported on carbon and a solid polymer electrolyte. The diffusion layer serves to supply a reaction gas to the catalyst layer and exchange electrons with the catalyst layer, and is made of a porous material such as carbon cloth. Therefore, for example, when a peroxide decomposition substance is contained in the catalyst layer of the electrode, the content ratio of the peroxide decomposition substance is that of a platinum catalyst (hereinafter referred to as “Pt / C catalyst”) supported on carbon. It is desirable to set it to 0.2 wt% or more when the weight is 100 wt%. This is because when the amount is less than 0.2 wt%, the effect of decomposing the peracid is small. More preferably, it is 0.5 wt% or more. On the other hand, when the influence on the electrochemical reaction in the electrode is taken into consideration, it is desirable that the content rate of the peroxide decomposition substance is 5 wt% or less. More preferably, it is 1 wt% or less.

また、過酸化物分解物質を電極の拡散層に含有させる場合、過酸化物分解物質の含有割合を、拡散層を構成する多孔質材料の重量を100wt%とした場合の0.2wt%以上とすることが望ましい。0.2wt%未満の場合には、過酸物を分解する効果が小さいからである。1wt%以上とするとより好適である。一方、拡散層の撥水性低下による生成水の排出性能低下を抑制するという観点から、過酸化物分解物質の含有割合を10wt%以下とすることが望ましい。5wt%以下とするとより好適である。なお、触媒層と拡散層とが一体となり電極を構成するような場合には、過酸化物分解物質の含有割合は、上記触媒層に固定する場合に準ずればよい。   Further, when the peroxide decomposition substance is contained in the diffusion layer of the electrode, the content ratio of the peroxide decomposition substance is 0.2 wt% or more when the weight of the porous material constituting the diffusion layer is 100 wt%. It is desirable to do. This is because when the amount is less than 0.2 wt%, the effect of decomposing the peracid is small. More preferably, it is 1 wt% or more. On the other hand, it is desirable that the content rate of the peroxide decomposing substance is 10 wt% or less from the viewpoint of suppressing a decrease in the discharge performance of the generated water due to a decrease in water repellency of the diffusion layer. More preferably, it is 5 wt% or less. When the catalyst layer and the diffusion layer are integrated to form an electrode, the content ratio of the peroxide decomposing substance may be the same as that for fixing to the catalyst layer.

過酸化物分解物質は、電解質膜、燃料極、酸素極のいずれに含まれていてもよい。生成した過酸化水素を速やかに分解するという観点から、過酸化物分解物質を酸素極に含有させることが望ましい。また、電解質膜の劣化、およびフッ酸等の生成を効果的に抑制するという観点から、過酸化物分解物質を電解質膜に含有させることが望ましい。過酸化物分解物質を、電解質膜および酸素極の両方に含有させるとより好適である。また、電極が触媒層と拡散層とから構成される場合、その拡散層および電解質膜の少なくとも一つに過酸化物分解物質を含有させることが望ましい。過酸化物分解物質を拡散層に含有させることにより、MEAの外部へ移動する過酸化水素を少なくすることができ、燃料電池システムを構成する配管等の金属材料の腐食を効果的に抑制することができる。   The peroxide decomposition substance may be contained in any of the electrolyte membrane, the fuel electrode, and the oxygen electrode. From the viewpoint of promptly decomposing the generated hydrogen peroxide, it is desirable to contain a peroxide decomposing substance in the oxygen electrode. Further, from the viewpoint of effectively suppressing deterioration of the electrolyte membrane and generation of hydrofluoric acid or the like, it is desirable to contain a peroxide decomposing substance in the electrolyte membrane. More preferably, the peroxide decomposition substance is contained in both the electrolyte membrane and the oxygen electrode. Moreover, when an electrode is comprised from a catalyst layer and a diffusion layer, it is desirable to contain a peroxide decomposition substance in at least one of the diffusion layer and the electrolyte membrane. By containing a peroxide-decomposing substance in the diffusion layer, hydrogen peroxide moving to the outside of the MEA can be reduced, and corrosion of metal materials such as piping constituting the fuel cell system can be effectively suppressed. Can do.

過酸化物分解物質を電解質膜、電極へ含有させる方法は、特に限定されるものではない。例えば、粉末状の過酸化物分解物質を電解質膜等へ混合する、あるいは、ゾルゲル法により電解質膜等へ固定する等の方法が挙げられる。ゾルゲル法は、過酸化物分解物質の微粒子を、電解質膜等に均一に分散させることができるため好適である。以下、各方法について説明する。   The method for incorporating the peroxide decomposing substance into the electrolyte membrane and the electrode is not particularly limited. Examples thereof include a method of mixing a powdery peroxide-decomposing substance into an electrolyte membrane or the like, or fixing to a electrolyte membrane or the like by a sol-gel method. The sol-gel method is preferable because fine particles of a peroxide decomposing substance can be uniformly dispersed in an electrolyte membrane or the like. Hereinafter, each method will be described.

(1)混合法
(a)電解質膜
粉末状の過酸化物分解物質を電解質膜となる高分子に混練し、その高分子を成膜して電解質膜とすればよい。
(1) Mixing method (a) Electrolyte membrane A powdery peroxide-decomposing substance may be kneaded with a polymer to be an electrolyte membrane, and the polymer is formed into an electrolyte membrane.

(b)電極
電極の触媒層に含有させる場合、触媒層を形成するための触媒インクに、粉末状の過酸化物分解物質を混合すればよい。具体的には、粉末状の過酸化物分解物質と、電極触媒と、バインダーとなる高分子とを、水やアルコール等の溶媒に分散させて触媒インクを調製すればよい。
(B) Electrode When contained in the catalyst layer of the electrode, a powdery peroxide decomposition substance may be mixed with the catalyst ink for forming the catalyst layer. Specifically, a catalyst ink may be prepared by dispersing a powdery peroxide-decomposing substance, an electrode catalyst, and a polymer as a binder in a solvent such as water or alcohol.

電極の拡散層に含有させる場合、拡散層となるカーボンクロス等の表面に、粉末状の過酸化物分解物質を含む撥水層を形成すればよい。具体的には、まず、粉末状の過酸化物分解物質、炭素粉末等の導電性物質、ポリテトラフルオロエチレン(PTFE)等の撥水剤、必要に応じて界面活性剤等を、水またはアルコール等の揮発性溶媒と混合してペーストを生成する。次いで、そのペーストをドクターブレード法、スプレー法等によりカーボンクロス等の表面に塗布、乾燥して撥水層を形成すればよい。   When it is contained in the diffusion layer of the electrode, a water repellent layer containing a powdery peroxide-decomposing substance may be formed on the surface of carbon cloth or the like that becomes the diffusion layer. Specifically, first, a powdery peroxide-decomposing substance, a conductive substance such as carbon powder, a water repellent such as polytetrafluoroethylene (PTFE), a surfactant or the like, if necessary, water or alcohol Etc. to produce a paste. Next, the paste may be applied to the surface of carbon cloth or the like by a doctor blade method, a spray method, or the like, and dried to form a water repellent layer.

(2)ゾルゲル法
本方法では、電解質膜、あるいは電極の触媒層内電解質に、過酸化物分解物質を析出させて固定する。例えば、電解質膜等を、鉄を含む金属の塩を水に溶解した金属塩水溶液、あるいは鉄を含む金属の有機錯体を有機溶媒に溶解した有機錯体溶液に浸漬し、加水分解すればよい。ここで、鉄を含む金属の塩は、水への溶解度が高い塩として、酢酸塩、シュウ酸塩、硝酸塩、硫酸塩、塩化物等が挙げられる。また、鉄を含む金属の有機錯体は、それらのt−ブトキサイド、エチルヘキサネート、オクタンジオネート、イソプロポキサイド等が挙げられる。また、加水分解の際には、必要に応じて、加熱してもよく、酸またはアルカリを加えてもよい。特に、金属塩水溶液を用いる場合には、酢酸、クエン酸等の錯化剤を加えて加水分解することが望ましい。
(2) Sol-gel method In this method, a peroxide decomposing substance is deposited and fixed on the electrolyte membrane or the electrolyte in the catalyst layer of the electrode. For example, the electrolyte membrane or the like may be hydrolyzed by immersing it in a metal salt aqueous solution in which a metal salt containing iron is dissolved in water or an organic complex solution in which an organic complex of metal containing iron is dissolved in an organic solvent. Here, the metal salt containing iron includes acetate, oxalate, nitrate, sulfate, chloride, and the like as salts having high solubility in water. Moreover, as for the metal organic complex containing iron, those t-butoxide, ethyl hexanate, octane dionate, isopropoxide, etc. are mentioned. Moreover, in the case of a hydrolysis, you may heat as needed and you may add an acid or an alkali. In particular, when an aqueous metal salt solution is used, it is desirable to perform hydrolysis by adding a complexing agent such as acetic acid or citric acid.

また、電解質膜等の前駆体を、上記金属塩水溶液あるいは有機錯体溶液に浸漬し、加水分解してもよい。本方法は、電解質膜等の前駆体から電解質膜等への変換と、過酸化物分解物質の固定とを同時に進行させるため効率的である。ここで、電解質膜等の前駆体とは、電解質膜等の電解質基が電解質基前駆体に置換されたものをいう。また、電解質基前駆体とは、加水分解により容易に電解質基に変換可能な官能基をいう。電解質基前駆体の具体例として、スルホニルハライド基(−SO2X:Xはハロゲン元素、以下同じ。)等のハライド基、−SO3M(Mはアルカリ金属元素、以下同じ。)等のアルカリ金属塩等が挙げられる。 Further, a precursor such as an electrolyte membrane may be immersed in the metal salt aqueous solution or the organic complex solution and hydrolyzed. This method is efficient because the conversion from a precursor such as an electrolyte membrane to the electrolyte membrane and the like and the fixation of the peroxide decomposition substance proceed simultaneously. Here, a precursor such as an electrolyte membrane refers to a material in which an electrolyte group such as an electrolyte membrane is replaced with an electrolyte group precursor. The electrolyte group precursor means a functional group that can be easily converted into an electrolyte group by hydrolysis. Specific examples of the electrolyte group precursor include halide groups such as a sulfonyl halide group (—SO 2 X: X is a halogen element, the same shall apply hereinafter), and alkalis such as —SO 3 M (M is an alkali metal element, the same applies hereinafter). A metal salt etc. are mentioned.

電解質膜等の前駆体をアルカリ性の金属塩水溶液等に浸漬すると、例えば、ハライド基は加水分解されアルカリ金属塩となる(−SO2X→−SO3M)。次いで、酸と接触させることにより、電解質基前駆体は酸型に変換され電解質基となる(−SO3M→−SO3H)。電解質基前駆体を酸型の電解質基とするための酸としては、リン酸、フッ化水素酸、硫酸、塩酸、硝酸等を用いればよい。なかでも、リン酸、フッ化水素酸は、固定される鉄含有酸化物等の表面を難溶化することができるため、好適である。 When a precursor such as an electrolyte membrane is immersed in an alkaline metal salt aqueous solution or the like, for example, the halide group is hydrolyzed to become an alkali metal salt (—SO 2 X → —SO 3 M). Next, by contacting with an acid, the electrolyte group precursor is converted into an acid form to be an electrolyte group (—SO 3 M → —SO 3 H). Phosphoric acid, hydrofluoric acid, sulfuric acid, hydrochloric acid, nitric acid, etc. may be used as the acid for making the electrolyte group precursor an acid electrolyte group. Among these, phosphoric acid and hydrofluoric acid are preferable because the surface of the iron-containing oxide or the like to be fixed can be hardly soluble.

本発明のMEAは、過酸化物分解物質を電解質膜、電極へ含有させる点を除いて、通常の方法に従って作製することができる。例えば、まず、酸素極用および燃料極用の各触媒インクを、それぞれPTFE製シートの表面に塗布、乾燥し、該シート表面に各電極の触媒層を形成する。続いて、シート表面に形成された各電極の触媒層を、電解質膜の両表面にそれぞれホットプレス等により圧着する。圧着後、シートのみを剥離する。これにより、電解質膜の一方の表面には、酸素極を構成する触媒層が、他方の表面には燃料極を構成する触媒層が形成される。最後に、拡散層となるカーボンクロス等を両極それぞれの触媒層の表面にホットプレス等により圧着し、MEAとすればよい。   The MEA of the present invention can be produced according to a usual method except that a peroxide decomposing substance is contained in the electrolyte membrane and the electrode. For example, first, each catalyst ink for oxygen electrode and fuel electrode is applied to the surface of a PTFE sheet and dried to form a catalyst layer for each electrode on the sheet surface. Subsequently, the catalyst layer of each electrode formed on the sheet surface is pressure-bonded to both surfaces of the electrolyte membrane by hot pressing or the like. After crimping, only the sheet is peeled off. As a result, a catalyst layer constituting the oxygen electrode is formed on one surface of the electrolyte membrane, and a catalyst layer constituting the fuel electrode is formed on the other surface. Finally, a carbon cloth or the like serving as a diffusion layer may be pressure-bonded to the surfaces of the catalyst layers of both electrodes by hot pressing or the like to form an MEA.

なお、本発明のMEAでは、電解質膜の種類は特に限定されるものではない。例えば、全フッ素系スルホン酸膜、全フッ素系ホスホン酸膜、全フッ素系カルボン酸膜、含フッ素炭化水素系グラフト膜、全炭化水素系グラフト膜、全芳香族膜等を用いることができる。また、PTFE、ポリイミド等の補強材を含む、機械的特性を強化した複合高分子膜を用いてもよい。特に、耐久性等を考慮した場合には、全フッ素系の高分子膜を用いることが望ましい。なかでも、電解質としての性能が高いという理由から、全フッ素系スルホン酸膜を用いることが望ましい。全フッ素系スルホン酸膜の一例として、「ナフィオン」(登録商標、デュポン社製)、「アシプレックス」(登録商標、旭化成株式会社製)、「フレミオン」(登録商標、旭硝子株式会社製)等が挙げられる。   In the MEA of the present invention, the type of electrolyte membrane is not particularly limited. For example, a perfluorinated sulfonic acid film, a perfluorinated phosphonic acid film, a perfluorinated carboxylic acid film, a fluorinated hydrocarbon-based graft film, a perhydrocarbon-based graft film, a wholly aromatic film, or the like can be used. Moreover, you may use the composite polymer film which strengthened mechanical characteristics containing reinforcement materials, such as PTFE and a polyimide. In particular, when considering durability and the like, it is desirable to use a perfluorinated polymer film. Among these, it is desirable to use a perfluorinated sulfonic acid membrane because of its high performance as an electrolyte. Examples of perfluorinated sulfonic acid membranes include “Nafion” (registered trademark, manufactured by DuPont), “Aciplex” (registered trademark, manufactured by Asahi Kasei Co., Ltd.), “Flemion” (registered trademark, manufactured by Asahi Glass Co., Ltd.), etc. Can be mentioned.

〈固体高分子型燃料電池〉
本発明の固体高分子型燃料電池は、上記本発明の電解質膜電極接合体を備える。例えば、本発明の電解質膜電極接合体を、セパレータを介して複数個積層させて構成すればよい。電解質膜電極接合体を挟持するセパレータとしては、集電性能が高く、酸化水蒸気雰囲気下でも比較的安定な焼成カーボン、成形カーボンや、ステンレス材料の表面に貴金属や炭素材料を被覆したもの等を用いればよい。
<Solid polymer fuel cell>
The polymer electrolyte fuel cell of the present invention includes the above-described electrolyte membrane electrode assembly of the present invention. For example, what is necessary is just to comprise the electrolyte membrane electrode assembly of this invention by laminating | stacking two or more through a separator. As a separator for sandwiching an electrolyte membrane electrode assembly, a fired carbon, a molded carbon, or a stainless steel material coated with a noble metal or a carbon material, which has high current collecting performance and is relatively stable even in an oxidizing water vapor atmosphere, is used. That's fine.

上記実施形態に基づいて、過酸化物分解物質を含む電解質膜を製造し、その耐久性を評価した。また、過酸化物分解物質を電解質膜および酸素極の少なくとも一つに含むMEAを作製した。作製したMEAを用いて電池反応を行い、電解質膜および電極の劣化の程度を調査した。以下、順に説明する。   Based on the above embodiment, an electrolyte membrane containing a peroxide-decomposing substance was manufactured and its durability was evaluated. In addition, an MEA containing a peroxide decomposing substance in at least one of the electrolyte membrane and the oxygen electrode was produced. A battery reaction was performed using the produced MEA, and the degree of deterioration of the electrolyte membrane and the electrode was investigated. Hereinafter, it demonstrates in order.

〈過酸化物分解物質を含む電解質膜の製造およびその評価〉
(1)過酸化物分解物質を含む電解質膜の製造
(1−a)まず、水100mlに、FeCl2・6H2OをFe量が0.05wt%となるよう溶解し、塩化鉄水溶液を調製した。調製した塩化鉄水溶液に、全フッ素系スルホン酸膜(7cm×7cm、厚さ45μm、本製造過程では、以下単に「膜」と称す。)を浸漬し、90℃にて1時間維持した。続いて、0.1Mの酢酸ナトリウム水溶液を加え、90℃にて1時間維持した。すると、膜は次第に黒色化し、膜にFe34が固定された。また、膜のスルホン酸基(−SO3H)は、−SO3Naとなった。−SO3Naを再び−SO3Hに戻すため、膜をイオン交換水で数回洗浄した後、0.1Mの硫酸に90℃にて10分間浸漬し、酸型に変換した。その後、Fe34が固定された膜を取り出し、イオン交換水に入れ、90℃にて10分間維持することにより余剰の硫酸を除去した。得られた膜を真空乾燥し、その重量を測定した。固定されたFe34の重量は、1.6wt%であった。得られた膜を実施例1の電解質膜とした。
<Manufacture and evaluation of electrolyte membranes containing peroxide-decomposing substances>
(1) Manufacture of electrolyte membrane containing peroxide decomposing substance (1-a) First, FeCl 2 · 6H 2 O is dissolved in 100 ml of water so that the amount of Fe is 0.05 wt% to prepare an iron chloride aqueous solution. did. A perfluorinated sulfonic acid membrane (7 cm × 7 cm, thickness 45 μm, hereinafter simply referred to as “membrane” in this production process) was immersed in the prepared aqueous iron chloride solution and maintained at 90 ° C. for 1 hour. Subsequently, a 0.1 M aqueous sodium acetate solution was added and maintained at 90 ° C. for 1 hour. Then, the film gradually became black and Fe 3 O 4 was fixed to the film. Further, the sulfonic acid group (—SO 3 H) of the membrane became —SO 3 Na. To return the -SO 3 Na again -SO 3 H, washed several times the membrane with deionized water, and immersed for 10 minutes at 90 ° C. in 0.1M sulfuric acid, was converted to the acid form. Thereafter, Fe 3 O 4 takes out a fixed film, placed in deionized water to remove excess sulfuric acid by maintaining 10 minutes at 90 ° C.. The obtained film was vacuum dried and its weight was measured. The weight of the fixed Fe 3 O 4 was 1.6 wt%. The obtained membrane was used as the electrolyte membrane of Example 1.

(1−b)膜を酸型へ変換する際、硫酸に代えリン酸を使用した以外は、上記実施例1の電解質膜と同様にして、Fe34が固定された電解質膜を製造した。得られた膜を実施例2の電解質膜とした。 (1-b) An electrolyte membrane in which Fe 3 O 4 was fixed was produced in the same manner as the electrolyte membrane of Example 1 except that phosphoric acid was used instead of sulfuric acid when the membrane was converted to the acid type. . The obtained membrane was used as the electrolyte membrane of Example 2.

(1−c)膜を酸型へ変換する際、硫酸に代えフッ化水素酸を使用した以外は、上記実施例1の電解質膜と同様にして、Fe34が固定された電解質膜を製造した。得られた膜を実施例3の電解質膜とした。 (1-c) When the membrane is converted to the acid form, an electrolyte membrane in which Fe 3 O 4 is fixed is obtained in the same manner as the electrolyte membrane of Example 1 except that hydrofluoric acid is used instead of sulfuric acid. Manufactured. The obtained membrane was used as the electrolyte membrane of Example 3.

(2)耐久性の評価
上記製造した実施例1〜3の電解質膜を、PTFE製の密封容器中にて、1wt%の過酸化水素と14ppmの鉄イオン(Fe2+)とを含む水溶液(200ml)に浸漬し、100℃に加熱して24時間保持した。該水溶液を冷却した後、水溶液中に溶出したフッ化物イオン(F-)の濃度を測定した。F-濃度の測定は、イオン選択性電極(オリオン社製)を用いた。また、各電解質膜を真空乾燥し、各々の重量を測定した。F-濃度および電解質膜の浸漬前後の重量変化は、各電解質膜の劣化の程度を示す指標となる。なお、比較のため、Fe34が固定されていない同種の電解質膜(比較例1)を、上記同様の水溶液に浸漬し、F-濃度と重量変化とを測定した。結果を表1に示す。表1中「膜重量減少率(%)」は、式[{(浸漬後膜重量−浸漬前膜重量)/浸漬前膜重量}×100]から算出した。
(2) Durability Evaluation The electrolyte membranes of Examples 1 to 3 manufactured above were mixed in an aqueous solution containing 1 wt% hydrogen peroxide and 14 ppm iron ions (Fe 2+ ) in a PTFE sealed container ( 200 ml), heated to 100 ° C. and held for 24 hours. After the aqueous solution was cooled, the concentration of fluoride ions (F ) eluted in the aqueous solution was measured. For the measurement of F concentration, an ion selective electrode (manufactured by Orion) was used. Moreover, each electrolyte membrane was vacuum-dried and the weight of each was measured. The F concentration and the change in weight before and after the immersion of the electrolyte membrane serve as indices indicating the degree of deterioration of each electrolyte membrane. For comparison, an electrolyte membrane of the same kind (Comparative Example 1) in which Fe 3 O 4 is not fixed was immersed in the same aqueous solution as described above, and the F concentration and weight change were measured. The results are shown in Table 1. In Table 1, “film weight reduction rate (%)” was calculated from the formula [{(film weight after immersion−film weight before immersion) / film weight before immersion} × 100].

Figure 2005063902
Figure 2005063902

表1に示すように、Fe34が固定された実施例1〜3の電解質膜では、従来の比較例1の電解質膜と比較して、F-濃度および膜重量減少率は小さくなった。特に、実施例2、3の電解質膜におけるF-濃度および膜重量減少率は小さくなった。これは、実施例2、3の電解質膜では、酸型の変換にリン酸、フッ化水素酸を用いたことで、固定されたFe34の水溶液への溶出が抑制されたためと考えられる。このように、実施例1〜3の電解質膜は、過酸化水素およびFe2+の存在下でも分解され難く、劣化し難いことがわかる。 As shown in Table 1, in the electrolyte membranes of Examples 1 to 3 in which Fe 3 O 4 was fixed, the F concentration and the membrane weight reduction rate were smaller than those of the electrolyte membrane of Comparative Example 1 of the related art. . In particular, F in the electrolyte membrane of Example 2, 3 - concentration and film weight loss was smaller. This is probably because in the electrolyte membranes of Examples 2 and 3 , elution of the fixed Fe 3 O 4 into the aqueous solution was suppressed by using phosphoric acid and hydrofluoric acid for conversion of the acid type. . Thus, it can be seen that the electrolyte membranes of Examples 1 to 3 are hardly decomposed and hardly deteriorated even in the presence of hydrogen peroxide and Fe 2+ .

〈MEAの作製および劣化調査〉
(1)MEAの作製
以下に示す酸素極用触媒インク、燃料極用触媒インク、カーボンクロス、電解質膜を適宜組み合わせて使用して、種々のMEAを作製した。
<Production and degradation investigation of MEA>
(1) Production of MEA Various MEAs were produced by appropriately combining oxygen electrode catalyst ink, fuel electrode catalyst ink, carbon cloth, and electrolyte membrane shown below.

まず、酸素極の触媒層を形成するための酸素極用触媒インクを二種類調製した。0.5gのPt/C触媒(白金担持率60wt%)に、0.0025gのFe34粉末を加え、さらに、蒸留水2.0g、エタノール2.5g、プロピレングリコール1.0g、ナフィオン溶液(22wt%、デュポン社製)0.9gを、この順に加えた。そして、超音波ホモジナイザーで分散させてFe34を含む触媒インク調製した。また、Fe34粉末を加えずに、Fe34を含まない触媒インクを調製した。 First, two types of oxygen electrode catalyst inks for forming an oxygen electrode catalyst layer were prepared. Add 0.0025 g Fe 3 O 4 powder to 0.5 g Pt / C catalyst (platinum support rate 60 wt%), and further add 2.0 g distilled water, 2.5 g ethanol, 1.0 g propylene glycol, Nafion solution 0.9 g (22 wt%, manufactured by DuPont) was added in this order. Then, a catalyst ink containing Fe 3 O 4 was prepared by dispersing with an ultrasonic homogenizer. Also, a catalyst ink containing no Fe 3 O 4 was prepared without adding Fe 3 O 4 powder.

次に、燃料極の触媒層を形成するための燃料極用触媒インクを調製した。Fe34粉末を加えない点、および燃料極触媒には、白金の含有割合が30wt%であるPt/C触媒を用いた点以外は、上記酸素極用触媒インクの調製と同様の方法で、燃料極用触媒インクを調製した。 Next, a fuel electrode catalyst ink for forming a fuel electrode catalyst layer was prepared. Except for not adding Fe 3 O 4 powder and using a Pt / C catalyst having a platinum content of 30 wt% as the fuel electrode catalyst, the same method as the preparation of the oxygen electrode catalyst ink was used. A fuel electrode catalyst ink was prepared.

次に、拡散層となるカーボンクロスを二種類作製した。Fe34粉末と、炭素粉末(デンカブラック(平均粒子径0.03μm)、電気化学工業株式会社製)と、PTFE粉末とを、水中で混合してペーストを生成した。そのペーストをスプレーガンでカーボンクロスの表面に塗布し、乾燥することにより、Fe34を含有した撥水層を形成した。カーボンクロス表面の撥水層の目付け量は、乾燥後の重量で12mg/cm2とした。撥水層における各材料の含有割合は、Fe34粉末10wt%、炭素粉末45wt%、PTFE粉末45wt%である。また、Fe34粉末を使用せず、カーボンクロスの表面に、Fe34を含有しない撥水層を形成した。この場合、撥水層における各材料の含有割合は、炭素粉末50wt%、PTFE粉末50wt%である。 Next, two types of carbon cloths serving as diffusion layers were produced. Fe 3 O 4 powder, carbon powder (Denka black (average particle size 0.03 μm), manufactured by Denki Kagaku Kogyo Co., Ltd.) and PTFE powder were mixed in water to produce a paste. The paste was applied to the surface of the carbon cloth with a spray gun and dried to form a water repellent layer containing Fe 3 O 4 . The basis weight of the water repellent layer on the surface of the carbon cloth was 12 mg / cm 2 by weight after drying. The content ratio of each material in the water repellent layer is 10 wt% Fe 3 O 4 powder, 45 wt% carbon powder, and 45 wt% PTFE powder. Further, a water repellent layer not containing Fe 3 O 4 was formed on the surface of the carbon cloth without using Fe 3 O 4 powder. In this case, the content ratio of each material in the water repellent layer is 50 wt% carbon powder and 50 wt% PTFE powder.

電解質膜には、Fe34を含む上記実施例1の電解質膜、またはFe34を含まないナフィオン112(商品名、デュポン社製)膜を用いることとした。以下、MEAの作製手順を説明する。 The electrolyte membrane, Fe 3 electrolyte of Example 1 containing O 4 film or Fe 3 O 4 containing no Nafion 112 (trade name, manufactured by DuPont), we decided to use the film. Hereinafter, the production procedure of MEA will be described.

調製した酸素極用触媒インク、および燃料極用触媒インクを、それぞれテフロン(登録商標、デュポン社製)製のシート表面に、ドクターブレード法により塗布した。その後、室温で真空乾燥して溶媒を除去し、シート表面に各電極の触媒層を形成した。なお、酸素極の触媒層では、単位面積あたりの白金量を、0.5〜0.6mg/cm2とした。また、燃料極の触媒層では、単位面積あたりの白金量を0.2mg/cm2とした。各触媒層が形成されたシートを36mm角に切り出した後、燃料極の触媒層が形成されたシートを、電解質膜の一方の表面に、また、酸素極の触媒層が形成されたシートを電解質膜の他方の表面に、圧力約4.9MPa、温度約120℃でホットプレスした。その後、シートのみを剥離した。そして、拡散層となるカーボンクロスを、両極それぞれの触媒層の表面にホットプレスし、MEAとした。なお、燃料極の拡散層には、撥水層にFe34を含まないカーボンクロスを用いた。 The prepared oxygen electrode catalyst ink and fuel electrode catalyst ink were each applied to the surface of a sheet made of Teflon (registered trademark, manufactured by DuPont) by a doctor blade method. Thereafter, the solvent was removed by vacuum drying at room temperature, and a catalyst layer of each electrode was formed on the sheet surface. In the catalyst layer of the oxygen electrode, the platinum amount per unit area was set to 0.5 to 0.6 mg / cm 2 . In the catalyst layer of the fuel electrode, the amount of platinum per unit area was 0.2 mg / cm 2 . After the sheet with each catalyst layer formed is cut into 36 mm square, the sheet with the fuel electrode catalyst layer formed on one surface of the electrolyte membrane and the sheet with the oxygen electrode catalyst layer formed on the electrolyte The other surface of the membrane was hot pressed at a pressure of about 4.9 MPa and a temperature of about 120 ° C. Thereafter, only the sheet was peeled off. And the carbon cloth used as a diffused layer was hot-pressed on the surface of the catalyst layer of each electrode, and it was set as MEA. For the diffusion layer of the fuel electrode, a carbon cloth containing no Fe 3 O 4 in the water repellent layer was used.

(2)電解質等の劣化調査
作製した種々のMEAを、小型(電極面積13cm2)の固体高分子型燃料電池セルに組み込んだ。すなわち、MEAの両側に、ガス流路が形成されたカーボン製のセパレータを配置して、それをSUS製の支持体で保持した。そして、酸素極に加湿した空気を、燃料極に加湿した水素をそれぞれ供給して、固体高分子型燃料電池を24時間作動させた。空気および水素の加湿温度は90℃、流量は100ml/min、電池の作動温度は90℃とした。電池作動中に、酸素極および燃料極から排出された水をそれぞれ回収した。各回収水中のフッ化物イオン(F-)濃度を、イオンクロマト装置PIA−1000(株式会社島津製作所製)にて測定し、フッ素排出速度(μg/(cm2・hr))を求めた。フッ素排出速度は、単位時間、単位電極面積当たりの排出フッ素量であり、各電極からの回収水の量と、回収水中のF-濃度とから算出される。フッ素排出速度は、電解質膜および電極の劣化の程度を示す指標となる。表2に、各MEAの構成およびフッ素排出速度(μg/(cm2・hr))を示す。表2中、○印は、Fe34を含むことを示し、−印はFe34を含まないことを示す。
(2) Investigation of deterioration of electrolyte, etc. The produced various MEAs were incorporated into a small (electrode area 13 cm 2 ) solid polymer fuel cell. That is, carbon separators with gas flow paths formed on both sides of the MEA were placed and held by a SUS support. Then, humidified air was supplied to the oxygen electrode, and humidified hydrogen was supplied to the fuel electrode, and the polymer electrolyte fuel cell was operated for 24 hours. The humidification temperature of air and hydrogen was 90 ° C., the flow rate was 100 ml / min, and the operating temperature of the battery was 90 ° C. During the operation of the battery, water discharged from the oxygen electrode and the fuel electrode was collected. The fluoride ion (F ) concentration in each recovered water was measured with an ion chromatograph PIA-1000 (manufactured by Shimadzu Corporation), and the fluorine discharge rate (μg / (cm 2 · hr)) was determined. The fluorine discharge rate is the amount of fluorine discharged per unit time and unit electrode area, and is calculated from the amount of recovered water from each electrode and the F concentration in the recovered water. The fluorine discharge rate is an index indicating the degree of deterioration of the electrolyte membrane and the electrode. Table 2 shows the configuration of each MEA and the fluorine discharge rate (μg / (cm 2 · hr)). In Table 2, ○ mark, shown to contain Fe 3 O 4, - mark indicating that it does not contain the Fe 3 O 4.

Figure 2005063902
Figure 2005063902

表2に示すように、電解質膜および酸素極の少なくとも一方にFe34を含むMEA(実施例4〜8)では、Fe34を全く含まないMEA(比較例2)と比較して、フッ素排出速度は燃料極、酸素極の両方で小さくなった。これより、Fe34を含むMEAでは、電解質膜および電極の劣化が抑制されたことがわかる。また、電解質膜や拡散層にFe34を含むMEA(実施例4〜7)では、触媒層のみにFe34を含むMEA(実施例8)と比較して、フッ素排出速度はより小さくなった。これより、電解質膜や拡散層にFe34を含有させることで、電解質膜および電極の劣化をより効果的に抑制できることがわかる。 As shown in Table 2, the MEA (Examples 4 to 8) containing Fe 3 O 4 in at least one of the electrolyte membrane and the oxygen electrode was compared with the MEA containing no Fe 3 O 4 (Comparative Example 2). The fluorine discharge rate decreased at both the fuel electrode and the oxygen electrode. From this, it can be seen that in the MEA containing Fe 3 O 4 , deterioration of the electrolyte membrane and the electrode was suppressed. In addition, in the MEA containing Fe 3 O 4 in the electrolyte membrane and the diffusion layer (Examples 4 to 7), the fluorine discharge rate is higher than in the MEA containing Fe 3 O 4 only in the catalyst layer (Example 8). It has become smaller. From this, it is understood that the deterioration of the electrolyte membrane and the electrode can be more effectively suppressed by including Fe 3 O 4 in the electrolyte membrane and the diffusion layer.

以上より、電解質膜および一対の電極の少なくとも一つに過酸化物分解物質を含む本発明のMEAでは、電解質膜および電極の劣化が進行し難いことが確認できた。よって、本発明のMEAを用いれば、長期間運転した場合でも電池性能の低下の少ない固体高分子型燃料電池を経済的に実現できる。   From the above, it was confirmed that in the MEA of the present invention in which at least one of the electrolyte membrane and the pair of electrodes contains a peroxide decomposing substance, the electrolyte membrane and the electrode are hardly deteriorated. Therefore, by using the MEA of the present invention, it is possible to economically realize a polymer electrolyte fuel cell with little deterioration in battery performance even when operated for a long time.

Claims (4)

イオン導電性を有する電解質膜と、該電解質膜の両側に設けられた一対の電極と、からなり、
該電解質膜および該一対の電極の少なくとも一つに鉄含有酸化物および鉄含有水酸化物の一種以上からなる過酸化物分解物質を含む固体高分子型燃料電池用電解質膜電極接合体。
An electrolyte membrane having ionic conductivity, and a pair of electrodes provided on both sides of the electrolyte membrane,
An electrolyte membrane electrode assembly for a polymer electrolyte fuel cell, wherein at least one of the electrolyte membrane and the pair of electrodes contains a peroxide decomposing substance comprising at least one of an iron-containing oxide and an iron-containing hydroxide.
前記一対の電極は、それぞれ触媒層と拡散層とからなり、
該拡散層および前記電解質膜の少なくとも一つに前記過酸化物分解物質を含む請求項1に記載の固体高分子型燃料電池用電解質膜電極接合体。
Each of the pair of electrodes includes a catalyst layer and a diffusion layer,
The electrolyte membrane electrode assembly for a polymer electrolyte fuel cell according to claim 1, wherein the peroxide decomposition substance is contained in at least one of the diffusion layer and the electrolyte membrane.
前記過酸化物分解物質は、鉄フェライト(Fe34)を含む請求項1に記載の固体高分子型燃料電池用電解質膜電極接合体。 The electrolyte membrane electrode assembly for a polymer electrolyte fuel cell according to claim 1, wherein the peroxide decomposing substance includes iron ferrite (Fe 3 O 4 ). 請求項1に記載の固体高分子型燃料電池用電解質膜電極接合体を備えた固体高分子型燃料電池。   A polymer electrolyte fuel cell comprising the electrolyte membrane electrode assembly for a polymer electrolyte fuel cell according to claim 1.
JP2003295630A 2003-08-19 2003-08-19 Electrolyte membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell Expired - Fee Related JP4845077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003295630A JP4845077B2 (en) 2003-08-19 2003-08-19 Electrolyte membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003295630A JP4845077B2 (en) 2003-08-19 2003-08-19 Electrolyte membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2005063902A true JP2005063902A (en) 2005-03-10
JP4845077B2 JP4845077B2 (en) 2011-12-28

Family

ID=34371806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003295630A Expired - Fee Related JP4845077B2 (en) 2003-08-19 2003-08-19 Electrolyte membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4845077B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006109837A1 (en) * 2005-04-06 2006-10-19 Toyota Jidosha Kabushiki Kaisha Fuel cell
WO2007000956A1 (en) 2005-06-28 2007-01-04 Sumitomo Chemical Company, Limited Peroxide-degrading catalyst
JP2007012583A (en) * 2005-06-02 2007-01-18 Mitsubishi Heavy Ind Ltd Solid polyelectrolyte fuel cell
JP2007257965A (en) * 2006-03-22 2007-10-04 Toyota Central Res & Dev Lab Inc Polymer electrolyte fuel cell and fuel cell system
JP2011119217A (en) * 2009-11-30 2011-06-16 Hyundai Motor Co Ltd Electrode for polymer electrolyte fuel cell and manufacturing method of membrane/electrode assembly utilizing the same
WO2012154617A1 (en) 2011-05-06 2012-11-15 eRevolution Technologies, Inc. Stable hydrogen- containing carbon free nitrogen based fuels and systems and methods for generating energy therefrom

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790111A (en) * 1993-06-18 1995-04-04 Tanaka Kikinzoku Kogyo Kk Solid polyelectrolyte composition
JP2000106203A (en) * 1998-09-30 2000-04-11 Aisin Seiki Co Ltd Solid polymer electrolyte membrane, electrode for fuel cell, and solid polymer electrolyte fuel cell
JP2001118591A (en) * 1999-10-19 2001-04-27 Toyota Central Res & Dev Lab Inc High durability solid polymer electrolyte
JP2003502827A (en) * 1999-06-17 2003-01-21 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Gas diffusion substrates and electrodes
JP2003086188A (en) * 2001-06-27 2003-03-20 Basf Ag Fuel cell
JP2003123777A (en) * 2001-10-19 2003-04-25 Matsushita Electric Ind Co Ltd Polymer electrolyte fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790111A (en) * 1993-06-18 1995-04-04 Tanaka Kikinzoku Kogyo Kk Solid polyelectrolyte composition
JP2000106203A (en) * 1998-09-30 2000-04-11 Aisin Seiki Co Ltd Solid polymer electrolyte membrane, electrode for fuel cell, and solid polymer electrolyte fuel cell
JP2003502827A (en) * 1999-06-17 2003-01-21 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Gas diffusion substrates and electrodes
JP2001118591A (en) * 1999-10-19 2001-04-27 Toyota Central Res & Dev Lab Inc High durability solid polymer electrolyte
JP2003086188A (en) * 2001-06-27 2003-03-20 Basf Ag Fuel cell
JP2003123777A (en) * 2001-10-19 2003-04-25 Matsushita Electric Ind Co Ltd Polymer electrolyte fuel cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006109837A1 (en) * 2005-04-06 2006-10-19 Toyota Jidosha Kabushiki Kaisha Fuel cell
JP2007012583A (en) * 2005-06-02 2007-01-18 Mitsubishi Heavy Ind Ltd Solid polyelectrolyte fuel cell
WO2007000956A1 (en) 2005-06-28 2007-01-04 Sumitomo Chemical Company, Limited Peroxide-degrading catalyst
US7988944B2 (en) 2005-06-28 2011-08-02 Sumitomo Chemical Company, Limited Peroxide decomposition catalyst
JP2007257965A (en) * 2006-03-22 2007-10-04 Toyota Central Res & Dev Lab Inc Polymer electrolyte fuel cell and fuel cell system
JP2011119217A (en) * 2009-11-30 2011-06-16 Hyundai Motor Co Ltd Electrode for polymer electrolyte fuel cell and manufacturing method of membrane/electrode assembly utilizing the same
WO2012154617A1 (en) 2011-05-06 2012-11-15 eRevolution Technologies, Inc. Stable hydrogen- containing carbon free nitrogen based fuels and systems and methods for generating energy therefrom

Also Published As

Publication number Publication date
JP4845077B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
JP5095089B2 (en) Solid polymer electrolyte, solid polymer fuel cell, and manufacturing method thereof
JP4979179B2 (en) Solid polymer fuel cell and manufacturing method thereof
JP4917794B2 (en) Membrane / electrode assembly for fuel cell and fuel cell system including the same
JP4326271B2 (en) Solid polymer electrolytes containing transition metal oxides
JP2019526918A (en) Membrane-electrode assembly, method for producing the same, and fuel cell including the same
CN101306377B (en) Catalyst for fuel cell and its preparation method, membrane-electrode assembly for fuel cell including the same and fuel cell system including the same
JP4451154B2 (en) Electrolyte membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell
WO2012046870A1 (en) Polymer electrolyte fuel cell
JP4821147B2 (en) Fuel cell and fuel cell system
JP4276035B2 (en) Electrolyte membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP4708757B2 (en) Polymer electrolyte fuel cell
JP4487468B2 (en) Anode for fuel cell and fuel cell
JP2006210135A (en) Catalyst electrode material, catalyst electrode, manufacturing method thereof, support material for electrode catalyst and electrochemical device
JP2009021226A (en) Membrane electrode assembly for fuel cell and fuel cell
JP4969025B2 (en) Membrane electrode for fuel cell and fuel cell
JP2006252967A (en) Solid polymer electrolyte membrane for fuel cell, and fuel cell using the same
JP4574149B2 (en) Electrolyte membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP2007109599A (en) Film electrode assembly for solid polymer fuel cell
JP2007188768A (en) Polymer electrolyte fuel cell
JP4278133B2 (en) Electrolyte membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP4845077B2 (en) Electrolyte membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP2006244721A (en) Fuel cell and its manufacturing method
JP2009205917A (en) Membrane electrode assembly and fuel cell
JP2008091264A (en) Cathode for fuel cell and solid polymer electrolyte fuel cell equipped with this
JP7020987B2 (en) Polyelectrolyte

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111006

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees