JP2005063760A - Plasma treatment method and treatment device - Google Patents

Plasma treatment method and treatment device Download PDF

Info

Publication number
JP2005063760A
JP2005063760A JP2003290623A JP2003290623A JP2005063760A JP 2005063760 A JP2005063760 A JP 2005063760A JP 2003290623 A JP2003290623 A JP 2003290623A JP 2003290623 A JP2003290623 A JP 2003290623A JP 2005063760 A JP2005063760 A JP 2005063760A
Authority
JP
Japan
Prior art keywords
frequency
electrodes
resonance frequency
plasma processing
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003290623A
Other languages
Japanese (ja)
Inventor
Makoto Takatsuma
誠 高妻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2003290623A priority Critical patent/JP2005063760A/en
Priority to CNB2004800227378A priority patent/CN100425105C/en
Priority to KR1020067000580A priority patent/KR20060064047A/en
Priority to PCT/JP2004/011151 priority patent/WO2005015963A1/en
Priority to TW093123736A priority patent/TW200509195A/en
Publication of JP2005063760A publication Critical patent/JP2005063760A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma treatment method setting the power-feeding frequency range between electrodes so as to be able to obtain a stable discharge and high output efficiency. <P>SOLUTION: The plasma treatment device has an electrode circuit 1 composed of a secondary coil 22b of a transformer 22 boosting power source voltage, and a pair of electrodes 11, 12 facing each other. A solid dielectric 13 is arranged on at least on of the opposing surfaces of the electrodes 11, 12. The electrode circuit 1 constitutes an LC serial resonance circuit by leakage inductance of the secondary coil and capacitance of the electrodes. The energization frequency of the electrode circuit 1 is set between a resonance frequency when not discharging and a resonance frequency at the time when a space 10a between the electrodes can be deemed as a conductor. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、例えば大気圧近傍の圧力(略常圧)環境でグロー放電等によってプラズマを形成し、半導体基板などの被処理物を表面処理する方法及び装置に関する。   The present invention relates to a method and apparatus for forming a plasma by glow discharge or the like in a pressure (substantially normal pressure) environment near atmospheric pressure, for example, and surface-treating an object to be processed such as a semiconductor substrate.

大気圧近傍の圧力下でグロー放電によってプラズマ処理する方法は、種々提案されている(下記特許文献1〜3等参照)。例えば特許文献1、2に記載のものは、一対の電極を対向配置し、少なくとも一方の電極の対向面に固体誘電体を設置してある。そして、大気圧近傍の圧力下で、電極間にパルス電界を印加する。パルスの周波数は、好ましくは0.5kHz〜100kHzの範囲で設定する。これにより、グロー放電プラズマを形成でき、安定した表面処理を行なうことができる。
また、特許文献3に記載のものでは、空気雰囲気で一対の電極間に交流電界を印加する。そして、固体誘電体の単位面積当たりの静電容量と交流周波数との比を1400pF/(m・kHz)以下に設定する。
Various methods of performing plasma treatment by glow discharge under a pressure near atmospheric pressure have been proposed (see Patent Documents 1 to 3 below). For example, in Patent Documents 1 and 2, a pair of electrodes are arranged to face each other, and a solid dielectric is placed on the facing surface of at least one of the electrodes. Then, a pulse electric field is applied between the electrodes under a pressure near atmospheric pressure. The frequency of the pulse is preferably set in the range of 0.5 kHz to 100 kHz. Thereby, glow discharge plasma can be formed and stable surface treatment can be performed.
Moreover, in the thing of patent document 3, an alternating current electric field is applied between a pair of electrodes in an air atmosphere. Then, the ratio between the capacitance per unit area of the solid dielectric and the AC frequency is set to 1400 pF / (m 2 · kHz) or less.

特開平10−36537号公報Japanese Patent Laid-Open No. 10-36537 特開平10−154598号公報JP-A-10-154598 特開2001−284099号公報JP 2001-284099 A

上掲の従来方法は、周波数等の範囲が具体的な数値で示されているが、それら数値は、電界の波形や処理ガス等が所定の場合に限り意味をなすものであり、汎用的でない。また、電源装置の出力効率が考慮されておらず、ロスが大きくなる場合がある。   In the above-described conventional method, the range of the frequency and the like is indicated by specific numerical values, but these numerical values are meaningful only when the waveform of the electric field, the processing gas, etc. are predetermined, and are not general-purpose. . Further, the output efficiency of the power supply device is not taken into consideration, and the loss may increase.

上記問題点を解決するため、発明者は鋭意研究、考察を行なった。すなわち、一対の対向電極からなる電極構造は、電極間空間のインピーダンスと、少なくとも一方の電極の対向面に設けられた固体誘電体のキャパシタンスとの直列接続と考えることができる。また、一般に、電極構造と電源との間にはトランスが介在され、このトランスの二次コイルにホット側の電極が接続されている。トランスには漏れインダクタンスがあるので、これと電極構造によって、LC直列共振回路が構成されていると見ることができる。周知の通り、LC直列共振回路においては、共振周波数で電源を駆動したとき、出力を最大にできる。一方、前記電極構造において、固体誘電体のキャパシタンスは容易に求めることができるが、電極間空間のインピーダンスはプラズマの状態等によって変動し、これを直接的に解析するのは容易でない。   In order to solve the above problems, the inventor has intensively studied and considered. That is, an electrode structure composed of a pair of counter electrodes can be considered as a series connection of the impedance of the interelectrode space and the capacitance of the solid dielectric provided on the counter surface of at least one of the electrodes. In general, a transformer is interposed between the electrode structure and the power source, and a hot-side electrode is connected to a secondary coil of the transformer. Since the transformer has a leakage inductance, it can be considered that this and the electrode structure constitute an LC series resonance circuit. As is well known, in the LC series resonance circuit, the output can be maximized when the power source is driven at the resonance frequency. On the other hand, in the electrode structure, the capacitance of the solid dielectric can be easily obtained, but the impedance of the interelectrode space varies depending on the state of the plasma and the like, and it is not easy to directly analyze this.

ところで、放電していない状態であれば電極間空間のインピーダンスも一定している。このときの共振周波数は、処理ガスの誘電率等の物性が分かれば計算で求めることができ、勿論、実測でも容易に求めることができる。
放電し出すと電極間空間のインピーダンスが低下すると考えられ、共振周波数が非放電時よりも小さくなる。
更に、グロー放電を通り越してアーク放電の状態になると、電極間空間を導体と見做すことができるため、電極構造全体のインピーダンスが、固体誘電体のキャパシタンス分だけになると考えられる。このときの共振周波数は、計算で求めることができる。また、電極間空間を導体に置換した等価回路を用いることによって、測定も可能である。
By the way, the impedance of the inter-electrode space is also constant if it is not discharged. The resonance frequency at this time can be obtained by calculation if the physical properties such as the dielectric constant of the processing gas are known, and of course, it can be easily obtained by actual measurement.
When the discharge starts, it is considered that the impedance of the interelectrode space decreases, and the resonance frequency becomes smaller than that in the non-discharge state.
Further, when the arc discharge is passed through the glow discharge, the interelectrode space can be regarded as a conductor, so that the impedance of the entire electrode structure is considered to be only the capacitance of the solid dielectric. The resonance frequency at this time can be obtained by calculation. Measurement can also be performed by using an equivalent circuit in which the interelectrode space is replaced with a conductor.

このような研究考察の結果、以下の知見を得た。すなわち、電極への通電周波数を、非放電時の共振周波数と、電極間空間を導体と見做したときの共振周波数との間の範囲内にすると、安定的なグロー放電を得ることができる。そして、この範囲内に、高出力が可能な周波数が必ず存在し得る。かかる知見の下に、本発明をなした。   As a result of such research considerations, the following knowledge was obtained. That is, stable glow discharge can be obtained by setting the energization frequency to the electrodes to a range between the resonance frequency when not discharging and the resonance frequency when the inter-electrode space is regarded as a conductor. In this range, there can always be a frequency capable of high output. Based on this finding, the present invention was made.

すなわち、本発明は、互いに対向する一対の電極とインダクタを含む電極回路を備え、少なくとも一方の電極の対向面には固体誘電体が設けられたプラズマ処理装置を用い、前記電極どうし間の空間に処理ガスを導入するとともに前記電極回路に給電してプラズマ処理を行なう方法であって、当該処理時における電極回路への給電周波数を、非放電時における共振周波数(以下、「第1共振周波数」という。)と、前記電極間空間を導体と見做せる時における共振周波数(以下、「第2共振周波数」という。)との間に設定することを特徴とする。また、互いに対向する一対の電極とインダクタを含み、電源から給電可能な電極回路を備え、少なくとも一方の電極の対向面には固体誘電体が設けられ、これら電極どうし間の空間に処理ガスを導入するとともに前記電極回路に給電してプラズマ処理を行なう装置であって、前記電源回路への給電周波数を、非放電時における共振周波数と、前記電極間空間を導体と見做せる時における共振周波数との間に設定する周波数設定手段を設けたことを特徴とする。
これによって、安定した放電状態を得ることができ、しかも高出力効率となるピーク周波数の存在する周波数範囲を、汎用的に設定することができる。
That is, the present invention includes a plasma processing apparatus provided with an electrode circuit including a pair of electrodes facing each other and an inductor, and a solid dielectric is provided on the facing surface of at least one of the electrodes, and in the space between the electrodes. In this method, plasma treatment is performed by introducing a processing gas and supplying power to the electrode circuit, and the power supply frequency to the electrode circuit during the processing is referred to as a resonance frequency during non-discharge (hereinafter referred to as “first resonance frequency”). )) And a resonance frequency (hereinafter referred to as “second resonance frequency”) when the space between the electrodes can be regarded as a conductor. In addition, it includes a pair of electrodes facing each other and an inductor, and is equipped with an electrode circuit that can be fed from a power source. A solid dielectric is provided on the facing surface of at least one of the electrodes, and a processing gas is introduced into the space between these electrodes In addition, an apparatus for performing plasma processing by supplying power to the electrode circuit, wherein the power supply frequency to the power supply circuit is a resonance frequency when not discharging and a resonance frequency when the inter-electrode space can be regarded as a conductor. A frequency setting means for setting between the two is provided.
As a result, a stable discharge state can be obtained, and the frequency range in which the peak frequency at which high output efficiency is present can be set for general use.

ここで、前記電極間空間で放電を起こしながら、電極回路への給電周波数を前記第1共振周波数と第2共振周波数との間で調節し、電流がピークとなる周波数を求め、このピーク周波数またはその近傍の周波数にて処理を実行することが望ましい。これによって、高出力効率を確実に得ることができる。   Here, while causing discharge in the space between the electrodes, the power supply frequency to the electrode circuit is adjusted between the first resonance frequency and the second resonance frequency to obtain a frequency at which the current peaks, and this peak frequency or It is desirable to execute processing at a frequency in the vicinity thereof. As a result, high output efficiency can be obtained with certainty.

前記一対の電極を、処理ガスで満たされた非放電時の電極間空間のキャパシタンス成分と固体誘電体のキャパシタンス成分の直列接続として、前記第1共振周波数を算出してもよい。また、前記一対の電極を、固体誘電体のキャパシタンス成分のみとして、前記第2共振周波数を算出してもよい。   The first resonance frequency may be calculated by using the pair of electrodes as a series connection of a capacitance component of the interelectrode space filled with the processing gas and a capacitance component of the solid dielectric. In addition, the second resonance frequency may be calculated using only the capacitance component of the solid dielectric as the pair of electrodes.

前記算出に代えて、前記電極回路への給電によって、放電の起きるしきい値未満の振幅の電界を電極間に印加するとともにこの給電周波数を調節し、電流がピークとなる周波数を、前記第1共振周波数としてもよい。また、前記一対の電極どうしを固体誘電体を挟んで当接させて電極間空間を無くした状態で給電周波数を調節し、電流がピークとなる周波数を、前記第2共振周波数としてもよい。   Instead of the calculation, an electric field having an amplitude less than a threshold value at which discharge occurs is applied between the electrodes by supplying power to the electrode circuit, and the frequency at which the current reaches a peak is adjusted by adjusting the power supply frequency. The resonance frequency may be used. Further, the power supply frequency may be adjusted in a state where the pair of electrodes are brought into contact with each other with the solid dielectric interposed therebetween to eliminate the inter-electrode space, and the frequency at which the current peaks may be set as the second resonance frequency.

前記プラズマ処理装置が、電源からの電圧をトランスで昇圧して前記電極回路に給電するようになっており、前記トランスの漏れインダクタンスにより前記インダクタを構成するのが望ましい。
前記漏れインダクタンスからなるインダクタおよび前記一対の電極からなるキャパシタに、実物のインダクタまたはコンデンサを加えることにより、前記電極回路を構成してもよい。これにより、第1、第2共振周波数を調節でき、ひいては、処理時における給電周波数の設定範囲を調節することができる。
The plasma processing apparatus boosts a voltage from a power source with a transformer to supply power to the electrode circuit, and it is preferable that the inductor is constituted by a leakage inductance of the transformer.
The electrode circuit may be configured by adding a real inductor or capacitor to the inductor composed of the leakage inductance and the capacitor composed of the pair of electrodes. As a result, the first and second resonance frequencies can be adjusted, and as a result, the setting range of the power supply frequency during processing can be adjusted.

本発明は、コロナ放電等ではなく、グロー放電によるプラズマ処理を行なうものであるので、電極(または誘電体)の放電する部分は、面状であることが好ましい(以下、この面状部分を「放電面」という。)。また、一対の電極間の距離は、略一定(一対の電極の放電面どうしが平行)であるのが好ましい。これにより、電界集中によるアーク放電を防止できるとともに、均一なグロー放電を発生させることができる。放電面どうし間の距離は、0.5mm以上、20mm以下が好ましく、1mm以上7mm以下がより好ましい。放電面は、曲面であっても良いが、曲率は大きい方が好ましく(R=5mm以上)、平面がより好ましい。また、放電面は、平滑(つるつる)であることがこのましい。凸凹や突起があると、火花が目立つので、好ましくない。これら条件を満たす電極構造としては、一対の平板状電極を平行に対向させた平行平板電極型、ロール状(円筒状)電極とその周面に沿う円筒凹面を有する凹面電極とからなるロール−凹面電極型、同軸をなす内外一対の円筒状電極からなる同軸円筒電極型などが挙げられる。   Since the present invention performs plasma treatment by glow discharge rather than corona discharge or the like, the discharge portion of the electrode (or dielectric) is preferably planar (hereinafter, this planar portion is referred to as “ This is called the discharge surface.) The distance between the pair of electrodes is preferably substantially constant (the discharge surfaces of the pair of electrodes are parallel to each other). Thereby, arc discharge due to electric field concentration can be prevented and uniform glow discharge can be generated. The distance between the discharge surfaces is preferably 0.5 mm or more and 20 mm or less, and more preferably 1 mm or more and 7 mm or less. The discharge surface may be a curved surface, but a larger curvature is preferable (R = 5 mm or more), and a flat surface is more preferable. In addition, the discharge surface is preferably smooth (smooth). Unevenness and protrusions are not preferable because sparks are conspicuous. The electrode structure satisfying these conditions includes a parallel plate electrode type in which a pair of flat electrodes are opposed in parallel, a roll-concave surface comprising a roll-shaped (cylindrical) electrode and a concave electrode having a cylindrical concave surface along its peripheral surface. Examples thereof include an electrode type and a coaxial cylindrical electrode type including a pair of cylindrical electrodes that are coaxial with each other.

本発明によれば、安定した放電状態を得ることができ、しかも高出力効率となるピーク周波数の存在する周波数範囲を、汎用的に設定することができる。   According to the present invention, a stable discharge state can be obtained, and a frequency range in which a peak frequency at which high output efficiency is present can be set for general use.

以下、本発明の実施形態を、図面を参照して説明する。
図1は、本発明に係る常圧プラズマ処理装置Mを模式的に示したものである。プラズマ処理装置Mは、電極構造10と電界印加手段20とを備えている。電極構造10は、互いに対向する一対の電極11,12にて構成されている。一対の電極11,12のうち少なくとも一方の対向面には、固体誘電体13が設けられている。ここでは、アース電極12にのみ設けられているが、ホット電極11に設けてもよく、両方の電極11,12に設けてもよい。これら電極11,12間の空間10p(ホット電極11とアース電極12の固体誘電体13との間)には、図示しない処理ガス導入手段によって処理ガスが導入されるようになっている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 schematically shows an atmospheric pressure plasma processing apparatus M according to the present invention. The plasma processing apparatus M includes an electrode structure 10 and an electric field applying unit 20. The electrode structure 10 is composed of a pair of electrodes 11 and 12 facing each other. A solid dielectric 13 is provided on at least one opposing surface of the pair of electrodes 11 and 12. Here, it is provided only on the ground electrode 12, but it may be provided on the hot electrode 11 or on both electrodes 11, 12. A processing gas is introduced into a space 10p between these electrodes 11 and 12 (between the hot electrode 11 and the solid dielectric 13 of the ground electrode 12) by a processing gas introducing means (not shown).

電界印加手段20は、交番電源21とトランス22とを有している。交番電源21は、例えば直流電圧をスイッチングして所望周波数の交番電圧を出力するようになっている。交番電源21には、周波数調節(設定)手段23が接続されており、この周波数調節部23によって交番電圧の出力周波数を調節(設定)できるようになっている。なお、交番電源21に代えて、パルス電圧を出力するパルス電源を用いてもよい。   The electric field applying means 20 has an alternating power source 21 and a transformer 22. The alternating power source 21 is configured to output an alternating voltage having a desired frequency by switching a DC voltage, for example. A frequency adjusting (setting) means 23 is connected to the alternating power source 21, and the output frequency of the alternating voltage can be adjusted (set) by the frequency adjusting unit 23. Instead of the alternating power source 21, a pulse power source that outputs a pulse voltage may be used.

トランス22は、交番電源21に接続された一次コイル22aと、電極11に接続された二次コイル22bとを有し、交番電源21の出力電圧を昇圧して電極11に供給するようになっている。
これによって、電極間空間10pに交番電界が印加されてグロー放電が起き、前記導入手段からの処理ガスがプラズマ化される。このプラズマ化された処理ガスが半導体基板などの被処理物に当てられることにより、被処理物の表面処理がなされるようになっている。なお、この処理は大気圧近傍の圧力(略常圧)下で行なわれる。
The transformer 22 has a primary coil 22 a connected to the alternating power source 21 and a secondary coil 22 b connected to the electrode 11, and boosts the output voltage of the alternating power source 21 and supplies it to the electrode 11. Yes.
As a result, an alternating electric field is applied to the interelectrode space 10p to cause glow discharge, and the processing gas from the introducing means is turned into plasma. The plasma processing gas is applied to an object to be processed such as a semiconductor substrate so that the surface of the object to be processed is processed. This process is performed under a pressure near atmospheric pressure (substantially normal pressure).

トランス22の二次コイル22bと電極構造10によって、電極回路1が構成されている。コイル(インダクタ)22bには、漏れインダクタンスLがある。また、電極構造10は、キャパシタと見做せる。したがって、電極回路1は、LC直列共振回路と考えることができる。その共振周波数fは、次式で表される。   The electrode circuit 1 is configured by the secondary coil 22 b of the transformer 22 and the electrode structure 10. The coil (inductor) 22b has a leakage inductance L. The electrode structure 10 can be regarded as a capacitor. Therefore, the electrode circuit 1 can be considered as an LC series resonance circuit. The resonance frequency f is expressed by the following equation.

Figure 2005063760
ここで、Lは、コイル22bの漏れインダクタンスであり、Cは、電極構造10のキャパシタンスである。
Figure 2005063760
Here, L is the leakage inductance of the coil 22 b and C is the capacitance of the electrode structure 10.

図2は、電極回路1の等価回路である。電極構造10は、電極間空間10pでのインピーダンス成分Zpと、固体誘電体13でのキャパシタンス成分Cdの直列接続になっている。電極間空間10pでのインピーダンス成分Zpは、キャパシタンスCpと抵抗Rの並列接続で表される。固体誘電体13のキャパシタンスCdは、該固体誘電体13の厚さおよび断面積などの寸法形状や誘電率によって決まり、容易に算出することができる。   FIG. 2 is an equivalent circuit of the electrode circuit 1. In the electrode structure 10, the impedance component Zp in the interelectrode space 10 p and the capacitance component Cd in the solid dielectric 13 are connected in series. The impedance component Zp in the interelectrode space 10p is represented by a parallel connection of a capacitance Cp and a resistor R. The capacitance Cd of the solid dielectric 13 is determined by the dimensional shape such as the thickness and cross-sectional area of the solid dielectric 13 and the dielectric constant, and can be easily calculated.

電極間空間10pで放電が起きていない時(非放電時)は、等価回路において、R=∞になる。したがって、電極構造10のキャパシタンスC(=C)は、次のようになる。 When there is no discharge in the interelectrode space 10p (non-discharge), R = ∞ in the equivalent circuit. Therefore, the capacitance C (= C 1 ) of the electrode structure 10 is as follows.

Figure 2005063760
非放電時の電極間空間10pのキャパシタンスCpは、該空間10pの厚さおよび断面積などの寸法形状、並びに該空間10p内に満たされた処理ガスの誘電率などの物性に基づいて、容易に算出することができる。ひいては、式(2)により、非放電時のキャパシタンスCを容易に算出することができる。
また、非放電時の電極回路1の共振周波数f(=f)は、次式で表される。
Figure 2005063760
The capacitance Cp of the inter-electrode space 10p during non-discharge can be easily determined based on the dimensional shape such as the thickness and the cross-sectional area of the space 10p and the physical properties such as the dielectric constant of the processing gas filled in the space 10p. Can be calculated. Hence, the equation (2), the capacitance C 1 at the time of non-discharge can be easily calculated.
Further, the resonance frequency f (= f 1 ) of the electrode circuit 1 during non-discharge is expressed by the following equation.

Figure 2005063760
これら式(1a)、(2)により、非放電時の電極回路1の共振周波数fを容易に算出することができる。以下、非放電時の共振周波数fを、適宜「第1共振周波数f」という。
Figure 2005063760
From these equations (1a) and (2), the resonance frequency f 1 of the electrode circuit 1 at the time of non-discharge can be easily calculated. Hereinafter, the resonance frequency f 1 at the time of non-discharge is appropriately referred to as “first resonance frequency f 1 ”.

一方、電極間空間10pでアーク放電が起きている時は、電極間空間10pを導体と見做すことができる。この時、図2の等価回路において、R=0になる。したがって、電極構造10のキャパシタンスC(=C)は、 On the other hand, when an arc discharge occurs in the interelectrode space 10p, the interelectrode space 10p can be regarded as a conductor. At this time, R = 0 in the equivalent circuit of FIG. Therefore, the capacitance C (= C 2 ) of the electrode structure 10 is

Figure 2005063760
となる。
また、アーク放電時の電極回路1の共振周波数f(=f)は、次式で表される。
Figure 2005063760
It becomes.
Further, the resonance frequency f (= f 2 ) of the electrode circuit 1 during arc discharge is expressed by the following equation.

Figure 2005063760
これら式(1b)、(3)により、アーク放電時の電極回路1の共振周波数fを容易に算出することができる。以下、アーク放電時(電極間空間10pを導体と見做せる時)の共振周波数fを、適宜「第2共振周波数f」という。第2共振周波数fは、第1共振周波数fより小さい。
Figure 2005063760
These formula (1b), can be calculated by (3), the resonance frequency f 2 of the electrode circuit 1 during arc discharge easily. Hereinafter, when arc discharge the resonance frequency f 2 (when considered to the conductor space 10p between the electrodes), referred to as "second resonance frequency f 2." Second resonance frequency f 2, the first smaller resonance frequency f 1.

なお、第1、第2共振周波数f,fは、実測でも求めることができる。すなわち、電極11,12間に、放電が発生するしきい値未満の振幅の電界が印加されるように、交番電源21の出力電圧を設定する。そして、出力周波数(電極回路1への給電周波数)をスキャンし、トランス22の一次側(または二次側)の電流を測定する。この電流測定値がピークとなった周波数が、第1共振周波数fである(図6参照)。 The first and second resonance frequencies f 1 and f 2 can also be obtained by actual measurement. That is, the output voltage of the alternating power source 21 is set so that an electric field having an amplitude less than a threshold value at which discharge occurs is applied between the electrodes 11 and 12. Then, the output frequency (feeding frequency to the electrode circuit 1) is scanned, and the primary side (or secondary side) current of the transformer 22 is measured. The frequency at which the current measurement value reaches a peak is the first resonance frequency f 1 (see FIG. 6).

また、図3に示すように、一対の電極11,12どうしを電極間空間10aの厚さ分だけ近付けることにより、固体誘電体13を挟んで当接させて電極間空間10aを無くした電極構造10’を作る。これによって、アーク放電状態(電極間空間10aを導体と見做せる状態)と回路的に等価にすることができる。そして、上記と同様に出力周波数をスキャンし、電流測定を行なう。この電流測定値がピークとなった周波数が、第2共振周波数fである(図6参照)。 Further, as shown in FIG. 3, the electrode structure in which the pair of electrodes 11 and 12 are brought close to each other by the thickness of the interelectrode space 10a so that the solid dielectric 13 is held between them to eliminate the interelectrode space 10a. Make 10 '. This makes it possible to make the circuit equivalent to an arc discharge state (a state in which the interelectrode space 10a can be regarded as a conductor). Then, in the same manner as described above, the output frequency is scanned and current measurement is performed. Frequency This current measurement value becomes peak, the second resonant frequency f 2 (see FIG. 6).

プラズマ処理装置Mによってプラズマ表面処理を実行する際は、周波数調節手段23によって、交番電源21の出力周波数fpの大きさが、上記の計算または測定により得られた第1、第2共振周波数f,fの間に入るように調節する。すなわち、次式の範囲内になるように調節する。
<fp<f (5)
これによって、電極間空間10aにおいて、安定したグロー放電を起こすことができ、良好なプラズマ表面処理を行なうことができる。
When the plasma surface treatment is executed by the plasma processing apparatus M, the first and second resonance frequencies f 1 obtained by the above calculation or measurement by the frequency adjusting means 23 are used to determine the magnitude of the output frequency fp of the alternating power source 21. , F 2 . That is, it adjusts so that it may be in the range of the following formula.
f 2 <fp <f 1 (5)
As a result, stable glow discharge can be caused in the interelectrode space 10a, and good plasma surface treatment can be performed.

また、式(5)を満たす範囲内に、出力効率がピークとなる周波数fpmaxが必ず存在する(図6参照)。すなわち、次式の関係が成立する。
<fpmax<f (5’)
周波数をこのピーク値fpmaxに設定することによって、極めて良好な出力効率を得ることができる。なお、電極間空間10aで反応が進行し過ぎると被処理物の表面での反応が減退することもあるので、そのような場合には、周波数をピークからずらして設定すると良い。
Further, a frequency fp max at which the output efficiency reaches a peak always exists within a range satisfying the expression (5) (see FIG. 6). That is, the relationship of the following formula is established.
f 2 <fp max <f 1 (5 ′)
By setting the frequency to this peak value fp max , very good output efficiency can be obtained. Note that if the reaction proceeds excessively in the inter-electrode space 10a, the reaction on the surface of the object to be processed may decrease. In such a case, the frequency may be set so as to be shifted from the peak.

周波数fpの上限と下限、すなわち第1、第2共振周波数f,fの値は、任意に変更することができる。例えば、図4に示すように、電極回路1の電極構造10の前段または後段に、実物のインダクタL’や実物のキャパシタC’を直列に介在させたり、図5に示すように、実物のインダクタL”や実物のキャパシタC”を電極構造10と並列に設けたりする。これによって、第1、第2共振周波数f,fをずらすことができ、ひいては周波数設定範囲を変更することができる。勿論、電極回路1の変形例は、図4、図5に記載のものに限られず、多様な回路構成を採ることができる。 The upper and lower limits of the frequency fp, that is, the values of the first and second resonance frequencies f 1 and f 2 can be arbitrarily changed. For example, as shown in FIG. 4, a real inductor L ′ or a real capacitor C ′ is interposed in series before or after the electrode structure 10 of the electrode circuit 1, or as shown in FIG. L ″ or a real capacitor C ″ may be provided in parallel with the electrode structure 10. As a result, the first and second resonance frequencies f 1 and f 2 can be shifted, and thus the frequency setting range can be changed. Of course, modifications of the electrode circuit 1 are not limited to those shown in FIGS. 4 and 5, and various circuit configurations can be adopted.

上記式(5)で示された周波数設定範囲は、出力波形や処理ガスの種類や処理内容や装置構成などに依らず、汎用的に適用することができる。すなわち、出力波形は、パルスでも正弦波でも方形波でもよい。また、成膜、エッチング、洗浄、アッシング、表面改質などの種々のプラズマ表面処理に遍く適用でき、処理ガスの種類や装置構成が限定されることもない。被処理物を電極間空間10aの外部に配置する所謂リモート式と、電極間空間10aの内部に配置する所謂ダイレクト式の何れの方式にも適用できる。さらには、大気圧近傍での常圧プラズマ処理に限らず、減圧プラズマ処理にも適用可能である。   The frequency setting range represented by the above equation (5) can be applied universally regardless of the output waveform, the type of processing gas, the processing content, the apparatus configuration, and the like. That is, the output waveform may be a pulse, a sine wave, or a square wave. Further, it can be applied to various plasma surface treatments such as film formation, etching, cleaning, ashing, and surface modification, and the type of processing gas and the apparatus configuration are not limited. The present invention can be applied to any of a so-called remote type in which the workpiece is disposed outside the inter-electrode space 10a and a so-called direct type in which the workpiece is disposed inside the inter-electrode space 10a. Furthermore, the present invention is not limited to atmospheric pressure plasma processing near atmospheric pressure, and can be applied to reduced pressure plasma processing.

図1と同様のプラズマ処理装置において、第1、第2共振周波数f,fを前記実施形態の手法で実測した。すなわち、電源21の出力電圧を50Vとし、電極11,12間の電界が放電のしきい値を下回るようにした。そのうえで周波数をスキャンし、トランス22の一次側の電流を測定したところ、図6の一点鎖線に示すように、ほぼ65kHz(=f)で電流のピークが現れた。また、2つの電極11,12を図3に示すように当接させ、電流測定したところ、図6の二点鎖線に示すように、ほぼ20kHz(=f)で電流のピークが現れた。
なお、図6の電流値は、各測定における最大値を100として規格化して示してある(後記図7も同様)。また、共振周波数f,fを求める段階での電流値は、ピークにおいても微弱であり、後記のグロー放電処理時のものと比べると相当に小さい。
In the same plasma processing apparatus as in FIG. 1, the first and second resonance frequencies f 1 and f 2 were measured by the method of the above embodiment. That is, the output voltage of the power source 21 was set to 50 V so that the electric field between the electrodes 11 and 12 was lower than the discharge threshold. Then, the frequency was scanned and the current on the primary side of the transformer 22 was measured. As shown by the one-dot chain line in FIG. 6, a current peak appeared at about 65 kHz (= f 1 ). Further, when the two electrodes 11 and 12 were brought into contact with each other as shown in FIG. 3 and the current was measured, a current peak appeared at about 20 kHz (= f 2 ) as shown by a two-dot chain line in FIG.
Note that the current values in FIG. 6 are standardized with the maximum value in each measurement being 100 (the same applies to FIG. 7 described later). Further, the current value at the stage of obtaining the resonance frequencies f 1 and f 2 is weak at the peak, and is considerably smaller than that at the later-described glow discharge treatment.

その後、電極間空間10aに処理ガスとして窒素ガス100%を導入しながら、電源21の電圧を250Vにし、電極11,12間に交番電界を印加した。そして、周波数と電流の関係を測定した。その結果、図6の実線に示すように、55kHz(=fpmax)において、電流のピークが現れた。これによって、上記式(5’)に示す関係式f<fpmax<fが成り立つことが確認された。なお、fp=55kHzのときの一次側電流は、9.2Aであり、投入電力すなわち出力は2300Wであった。電極の単位面積当たりに換算すると、12W/cmであった。 Thereafter, while introducing 100% nitrogen gas as a processing gas into the interelectrode space 10a, the voltage of the power source 21 was set to 250 V, and an alternating electric field was applied between the electrodes 11 and 12. Then, the relationship between frequency and current was measured. As a result, as indicated by the solid line in FIG. 6, a peak of current appeared at 55 kHz (= fp max ). Thus, it was confirmed that the relational expression f 2 <fp max <f 1 shown in the above formula (5 ′) is satisfied. The primary side current when fp = 55 kHz was 9.2 A, and the input power, that is, the output was 2300 W. When converted per unit area of the electrode, it was 12 W / cm 2 .

また、図7に示すように、出力に比例して放電の発光強度が大きくなり、fpmax=55kHzのとき、最大となり、極めて良好で安定したグロー放電が確認された。
式(5)に示す関係式f<fp<fが成り立つ20kHz〜65kHzの範囲では、電極間空間10aの全域で安定した放電を得ることができた。65kHz(=f)以上および20kHz(=f)以下では、所望の放電を得るのが困難であった。
Further, as shown in FIG. 7, the light emission intensity of the discharge increased in proportion to the output, which was the maximum when fp max = 55 kHz, and an extremely good and stable glow discharge was confirmed.
In the range of 20 kHz to 65 kHz where the relational expression f 2 <fp <f 1 shown in Expression (5) is satisfied, stable discharge could be obtained in the entire interelectrode space 10a. At 65 kHz (= f 1 ) or more and 20 kHz (= f 2 ) or less, it is difficult to obtain a desired discharge.

さらに、出力2500W、周波数55kHzの条件(A)と、その約1/2の出力1200Wで周波数30kHzの条件(B)とで、ガラスの洗浄能力(接触角と搬送速度)を比較した。ガラスの搬送速度は、1m/minと2m/minの2通りとした。なお、条件(A)では、直流から変換した交番電界を印加したのに対し、条件(B)では、パルス電界を印加した。その結果、図8に示すように、条件(A)は、条件(B)に対して2倍の搬送速度で同等の接触角となり、処理能力が出力とほぼ比例することが確認された。   Furthermore, the glass cleaning ability (contact angle and conveyance speed) was compared between the condition (A) with an output of 2500 W and a frequency of 55 kHz, and the condition (B) with an output of 1200 W and a frequency of 30 kHz. The glass conveyance speed was set to two types, 1 m / min and 2 m / min. In the condition (A), an alternating electric field converted from direct current was applied, whereas in the condition (B), a pulse electric field was applied. As a result, as shown in FIG. 8, it was confirmed that the condition (A) had an equivalent contact angle at twice the conveyance speed as compared to the condition (B), and the processing capability was almost proportional to the output.

実施例1と同じ装置を用い、処理ガスをアルゴンガスに代えて、周波数と電流の関係を測定したところ、図6とほぼ同じ結果が得られた。式(5)に示す関係式f<fp<fが成り立つ20kHz〜65kHzの範囲では、電極間空間10aの全域で安定した放電を得ることができた。20kHz以下では出力を上げると火花放電へ移行した。65kHz以上では瞬時にアーク放電に移行し、安定放電できなかった。 When the same apparatus as in Example 1 was used and the processing gas was changed to argon gas and the relationship between frequency and current was measured, almost the same result as in FIG. 6 was obtained. In the range of 20 kHz to 65 kHz where the relational expression f 2 <fp <f 1 shown in Expression (5) is satisfied, stable discharge could be obtained in the entire interelectrode space 10a. When the output was increased below 20 kHz, the spark discharge was started. At 65 kHz or higher, arc discharge instantaneously occurred and stable discharge could not be performed.

第1共振周波数f=190kHz、第2共振周波数f=75kHzの装置において、処理ガスとして窒素ガスを用い、実施例1と同様に周波数fpmaxを測定した。その結果、fpmax=150kHzであり、上記式(5’)に示す関係式f<fpmax<fが成り立つことが確認された。190kHz以上では針放電となった。75kHz以下では放電が起きなかった。 In the apparatus having the first resonance frequency f 1 = 190 kHz and the second resonance frequency f 2 = 75 kHz, nitrogen gas was used as the processing gas, and the frequency fp max was measured in the same manner as in Example 1. As a result, fp max = 150 kHz, and it was confirmed that the relational expression f 2 <fp max <f 1 shown in the above formula (5 ′) holds. Needle discharge occurred at 190 kHz or higher. Discharge did not occur at 75 kHz or less.

さらに、出力2000W、周波数150kHz、直流から変換した交番電界の条件(C)と、その約1/2の出力1200W、周波数30kHz、パルス電界の条件(D)とで、ガラスの洗浄能力(接触角と搬送速度)を比較した。その結果、図9に示すように、条件(C)は、条件(D)に対して2倍の搬送速度で同等の接触角となり、処理能力が出力とほぼ比例することが確認された。   Further, the glass cleaning ability (contact angle) is obtained under the condition (C) of an alternating electric field converted from DC at an output of 2000 W, a frequency of 150 kHz, and an output of 1200 W, a frequency of 30 kHz, and a pulse electric field (D). And transport speed). As a result, as shown in FIG. 9, it was confirmed that the condition (C) had the same contact angle at twice the conveyance speed as compared to the condition (D), and the processing capability was almost proportional to the output.

本発明の一実施形態に係る常圧プラズマ処理装置の概略構成を示す回路図である。It is a circuit diagram which shows schematic structure of the atmospheric pressure plasma processing apparatus which concerns on one Embodiment of this invention. 前記装置の電極回路の等価回路図である。It is an equivalent circuit diagram of the electrode circuit of the device. 前記装置において第2共振周波数を測定する方法の解説図である。It is explanatory drawing of the method of measuring a 2nd resonant frequency in the said apparatus. 前記装置の電極回路の変形例を示す回路図である。It is a circuit diagram which shows the modification of the electrode circuit of the said apparatus. 前記装置の電極回路の他の変形例を示す回路図である。It is a circuit diagram which shows the other modification of the electrode circuit of the said apparatus. 実施例1による周波数と電流の関係の測定結果を示すグラフである。It is a graph which shows the measurement result of the relationship between the frequency by Example 1, and an electric current. 実施例1による出力とプラズマの発光強度の関係の測定結果を示すグラフである。It is a graph which shows the measurement result of the relationship between the output by Example 1, and the light emission intensity of plasma. 実施例1による処理条件と処理能力(搬送速度ごとの接触角)の関係の測定結果を示すグラフである。It is a graph which shows the measurement result of the relationship between the processing conditions by Example 1, and processing capability (contact angle for every conveyance speed). 実施例3による処理条件と処理能力(搬送速度ごとの接触角)の関係の測定結果を示すグラフである。It is a graph which shows the measurement result of the relationship between the processing conditions by Example 3, and processing capability (contact angle for every conveyance speed).

符号の説明Explanation of symbols

M 常圧プラズマ処理装置
1 電極回路
10 電極構造
10a 電極間空間
11 ホット電極
12 アース電極
13 固体誘電体
20 電界印加手段
21 交番電源
22 トランス
22b 二次コイル(インダクタ)
23 周波数調節手段(周波数設定手段)
L’,L” 実物のインダクタ
C’,C” 実物のキャパシタ
fp 処理時における交番電源の出力周波数(電極回路への給電周波数)
fpmax ピーク周波数
M Atmospheric pressure plasma processing apparatus 1 Electrode circuit 10 Electrode structure 10a Interelectrode space 11 Hot electrode 12 Ground electrode 13 Solid dielectric 20 Electric field applying means 21 Alternating power supply 22 Transformer 22b Secondary coil (inductor)
23 Frequency adjusting means (frequency setting means)
L ′, L ″ real inductor C ′, C ″ real capacitor fp output frequency of alternating power supply during processing (feed frequency to electrode circuit)
fp max peak frequency

Claims (9)

互いに対向する一対の電極とインダクタを含む電極回路を備え、少なくとも一方の電極の対向面には固体誘電体が設けられたプラズマ処理装置を用い、前記電極どうし間の空間に処理ガスを導入するとともに前記電極回路に給電してプラズマ処理を行なう方法であって、当該処理時における電極回路への給電周波数を、非放電時における共振周波数(以下、「第1共振周波数」という。)と、前記電極間空間を導体と見做せる時における共振周波数(以下、「第2共振周波数」という。)との間に設定することを特徴とするプラズマ処理方法。 A plasma processing apparatus having an electrode circuit including a pair of electrodes facing each other and an inductor, and a solid dielectric provided on the facing surface of at least one of the electrodes, and introducing a processing gas into the space between the electrodes A method for performing plasma processing by supplying power to the electrode circuit, wherein a power supply frequency to the electrode circuit during the processing is a resonance frequency during non-discharge (hereinafter referred to as “first resonance frequency”) and the electrode. A plasma processing method, characterized in that it is set between a resonance frequency (hereinafter referred to as a “second resonance frequency”) when the interspace is regarded as a conductor. 前記電極間空間で放電を起こしながら、電極回路への給電周波数を前記第1共振周波数と第2共振周波数との間で調節し、電流がピークとなる周波数を求め、このピーク周波数またはその近傍の周波数にて処理を実行することを特徴とする請求項1に記載のプラズマ処理方法。 While causing discharge in the space between the electrodes, the power supply frequency to the electrode circuit is adjusted between the first resonance frequency and the second resonance frequency to obtain the frequency at which the current reaches a peak, The plasma processing method according to claim 1, wherein the processing is performed at a frequency. 前記一対の電極を、処理ガスで満たされた非放電時の電極間空間のキャパシタンス成分と固体誘電体のキャパシタンス成分の直列接続として、前記第1共振周波数を算出することを特徴とする請求項1に記載のプラズマ処理方法。 2. The first resonance frequency is calculated by using the pair of electrodes as a series connection of a capacitance component of an interelectrode space filled with a processing gas and a capacitance component of a solid dielectric during non-discharge. The plasma processing method as described in any one of. 前記一対の電極を、固体誘電体のキャパシタンス成分のみとして、前記第2共振周波数を算出することを特徴とする請求項1に記載のプラズマ処理方法。 The plasma processing method according to claim 1, wherein the second resonance frequency is calculated using only the capacitance component of the solid dielectric as the pair of electrodes. 放電の起きるしきい値未満の振幅の電界を電極間に印加するとともにその周波数を調節し、電流がピークとなる周波数を、前記第1共振周波数とすることを特徴とする請求項1に記載のプラズマ処理方法。 The electric field having an amplitude less than a threshold value at which discharge occurs is applied between the electrodes and the frequency thereof is adjusted, and the frequency at which the current reaches a peak is defined as the first resonance frequency. Plasma processing method. 前記一対の電極どうしを固体誘電体を挟んで当接させた状態で給電周波数を調節し、電流がピークとなる周波数を、前記第2共振周波数とすることを特徴とする請求項1に記載のプラズマ処理方法。 2. The frequency according to claim 1, wherein a power supply frequency is adjusted in a state where the pair of electrodes are in contact with each other with a solid dielectric interposed therebetween, and a frequency at which a current reaches a peak is defined as the second resonance frequency. Plasma processing method. 前記プラズマ処理装置が、電源からの電圧をトランスで昇圧して前記電極回路に給電するようになっており、前記トランスの漏れインダクタンスにより前記インダクタを構成したことを特徴とする請求項1〜6の何れかに記載のプラズマ処理方法。 The plasma processing apparatus boosts a voltage from a power source with a transformer and supplies power to the electrode circuit, and the inductor is configured by a leakage inductance of the transformer. The plasma processing method in any one. 前記漏れインダクタンスからなるインダクタおよび前記一対の電極からなるキャパシタに、実物のインダクタまたはコンデンサを加えることにより、前記電極回路を構成し、これにより、第1、第2共振周波数を調節することを特徴とする請求項7に記載のプラズマ処理方法。 The electrode circuit is configured by adding a real inductor or a capacitor to the inductor composed of the leakage inductance and the capacitor composed of the pair of electrodes, thereby adjusting the first and second resonance frequencies. The plasma processing method according to claim 7. 互いに対向する一対の電極とインダクタを含み、電源から給電可能な電極回路を備え、少なくとも一方の電極の対向面には固体誘電体が設けられ、これら電極どうし間の空間に処理ガスを導入するとともに前記電極回路に給電してプラズマ処理を行なう装置であって、前記電源回路への給電周波数を、前記電極間空間の非放電時における共振周波数と、前記電極間空間を導体と見做せる時における共振周波数との間に設定する周波数設定手段を設けたことを特徴とするプラズマ処理装置。 A pair of electrodes facing each other and an inductor are provided, and an electrode circuit that can be fed from a power source is provided. A solid dielectric is provided on the facing surface of at least one of the electrodes, and a processing gas is introduced into the space between the electrodes. An apparatus for performing plasma processing by supplying power to the electrode circuit, wherein the power supply frequency to the power supply circuit is a resonance frequency when the inter-electrode space is not discharged and when the inter-electrode space can be regarded as a conductor. A plasma processing apparatus comprising frequency setting means for setting between a resonance frequency and a resonance frequency.
JP2003290623A 2003-08-08 2003-08-08 Plasma treatment method and treatment device Pending JP2005063760A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003290623A JP2005063760A (en) 2003-08-08 2003-08-08 Plasma treatment method and treatment device
CNB2004800227378A CN100425105C (en) 2003-08-08 2004-08-04 Plasma processing method and apparatus
KR1020067000580A KR20060064047A (en) 2003-08-08 2004-08-04 Plasma processing method and apparatus
PCT/JP2004/011151 WO2005015963A1 (en) 2003-08-08 2004-08-04 Plasma processing method and apparatus
TW093123736A TW200509195A (en) 2003-08-08 2004-08-06 Plasma processing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003290623A JP2005063760A (en) 2003-08-08 2003-08-08 Plasma treatment method and treatment device

Publications (1)

Publication Number Publication Date
JP2005063760A true JP2005063760A (en) 2005-03-10

Family

ID=34368604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003290623A Pending JP2005063760A (en) 2003-08-08 2003-08-08 Plasma treatment method and treatment device

Country Status (2)

Country Link
JP (1) JP2005063760A (en)
CN (1) CN100425105C (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101016573B1 (en) 2008-08-05 2011-02-22 한국표준과학연구원 Plasma generation apparatus
JP2011049570A (en) * 2005-04-28 2011-03-10 Hitachi Kokusai Electric Inc Substrate processing apparatus, and semiconductor device manufacturing method
WO2011065370A1 (en) 2009-11-24 2011-06-03 澤藤電機株式会社 Device for applying high voltage using pulse voltage, and method of applying high voltage
JP2013089515A (en) * 2011-10-20 2013-05-13 Hitachi Ltd Plasma processing apparatus
WO2015049781A1 (en) * 2013-10-04 2015-04-09 東芝三菱電機産業システム株式会社 Power-supply device
JP2016523074A (en) * 2013-06-04 2016-08-08 フーゴ・フォーゲルザング・マシネンバウ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングHugo Vogelsang Maschinenbau Gmbh Device for electrically disrupting cell assembly
JP2017004930A (en) * 2015-06-05 2017-01-05 パナソニックIpマネジメント株式会社 Plasma generator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5782226B2 (en) * 2010-03-24 2015-09-24 東京エレクトロン株式会社 Substrate processing equipment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5874704A (en) * 1995-06-30 1999-02-23 Lam Research Corporation Low inductance large area coil for an inductively coupled plasma source
US6170428B1 (en) * 1996-07-15 2001-01-09 Applied Materials, Inc. Symmetric tunable inductively coupled HDP-CVD reactor
JP3122618B2 (en) * 1996-08-23 2001-01-09 東京エレクトロン株式会社 Plasma processing equipment
JP3840821B2 (en) * 1998-11-30 2006-11-01 株式会社日立製作所 Plasma processing equipment
JP3719352B2 (en) * 1999-07-23 2005-11-24 三菱電機株式会社 Power supply device for plasma generation and method for manufacturing the same
JP4178775B2 (en) * 2001-08-31 2008-11-12 株式会社日立国際電気 Plasma reactor
DE10154229B4 (en) * 2001-11-07 2004-08-05 Applied Films Gmbh & Co. Kg Device for the regulation of a plasma impedance
JP3977114B2 (en) * 2002-03-25 2007-09-19 株式会社ルネサステクノロジ Plasma processing equipment

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049570A (en) * 2005-04-28 2011-03-10 Hitachi Kokusai Electric Inc Substrate processing apparatus, and semiconductor device manufacturing method
KR101016573B1 (en) 2008-08-05 2011-02-22 한국표준과학연구원 Plasma generation apparatus
WO2011065370A1 (en) 2009-11-24 2011-06-03 澤藤電機株式会社 Device for applying high voltage using pulse voltage, and method of applying high voltage
JP2011114877A (en) * 2009-11-24 2011-06-09 Sawafuji Electric Co Ltd Device for applying high voltage using pulse voltage, and method of applying high voltage
KR101362501B1 (en) 2009-11-24 2014-02-13 사와후지 덴키 가부시키가이샤 Device for applying high voltage using pulse voltage, and method of applying high voltage
AU2010323631B2 (en) * 2009-11-24 2014-03-06 Sawafuji Electric Co., Ltd. Device for applying high voltage using pulse voltage, and method of applying high voltage
US9130480B2 (en) 2009-11-24 2015-09-08 Sawafuji Electric Co., Ltd. Device for applying high voltage using pulse voltage, and method of applying high voltage
JP2013089515A (en) * 2011-10-20 2013-05-13 Hitachi Ltd Plasma processing apparatus
JP2016523074A (en) * 2013-06-04 2016-08-08 フーゴ・フォーゲルザング・マシネンバウ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングHugo Vogelsang Maschinenbau Gmbh Device for electrically disrupting cell assembly
WO2015049781A1 (en) * 2013-10-04 2015-04-09 東芝三菱電機産業システム株式会社 Power-supply device
JP6068667B2 (en) * 2013-10-04 2017-01-25 東芝三菱電機産業システム株式会社 Power supply
JP2017004930A (en) * 2015-06-05 2017-01-05 パナソニックIpマネジメント株式会社 Plasma generator

Also Published As

Publication number Publication date
CN1833473A (en) 2006-09-13
CN100425105C (en) 2008-10-08

Similar Documents

Publication Publication Date Title
US6774569B2 (en) Apparatus for producing and sustaining a glow discharge plasma under atmospheric conditions
JP5208194B2 (en) Power feeding device and high-frequency ignition device
US8552651B2 (en) High frequency plasma generation system and high frequency plasma ignition device using the same
US20080060579A1 (en) Apparatus of triple-electrode dielectric barrier discharge at atmospheric pressure
TWI400010B (en) Apparatus and method for forming a plasma
CN204827767U (en) Ignition and ignition system
JP2005063760A (en) Plasma treatment method and treatment device
US20210234088A1 (en) Piezoelectric Transformer
EP1697961B1 (en) Method and apparatus for stabilizing a glow discharge plasma under atmospheric conditions
JP2019053977A (en) Atmospheric pressure plasma generation device
Teranishi et al. A novel generation method of dielectric barrier discharge and ozone production using a piezoelectric transformer
KR100852412B1 (en) Method and apparatus for routing harmonics in a plasma to ground within a plasma enhanced semiconductor wafer processing chamber
JP3232511B2 (en) High frequency high voltage power supply
TW201724164A (en) Plasma processing device and cleaning method thereof including a step for cleaning parts in a processing chamber and a step for cleaning a surface of a lifting push pin
JP2009064618A (en) Plasma process device
TW557643B (en) Inductively coupled plasma processor
WO2005015963A1 (en) Plasma processing method and apparatus
JP4532948B2 (en) Plasma processing method
CN101652016A (en) Constant-pressure linear cold-plasma jet generating device
EP3755125B1 (en) Atmospheric-pressure plasma generation device, atmospheric-pressure plasma generation circuit, and atmospheric-pressure plasma generation method
JP3092192B2 (en) Freon gas treatment equipment
CN104347336B (en) Inductance coupling coil and plasma processing device
Hothongkham et al. Performance evaluation of an ozone generator using a phase shift PWM full bridge inverter
JP6261100B2 (en) Atmospheric pressure inductively coupled plasma device
Ponomarev et al. High-frequency generator based on pulsed excitation of the oscillating circuit for biological decontamination

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050406