JP2005061747A - Heat-treating setter and its manufacturing method - Google Patents

Heat-treating setter and its manufacturing method Download PDF

Info

Publication number
JP2005061747A
JP2005061747A JP2003294566A JP2003294566A JP2005061747A JP 2005061747 A JP2005061747 A JP 2005061747A JP 2003294566 A JP2003294566 A JP 2003294566A JP 2003294566 A JP2003294566 A JP 2003294566A JP 2005061747 A JP2005061747 A JP 2005061747A
Authority
JP
Japan
Prior art keywords
setter
welded
heat
plate
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003294566A
Other languages
Japanese (ja)
Inventor
Isao Kishimoto
勇夫 岸本
Mitsushige Mitsuda
光茂 密田
Narutoshi Shimatani
成俊 嶋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2003294566A priority Critical patent/JP2005061747A/en
Publication of JP2005061747A publication Critical patent/JP2005061747A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/061Lifting, gripping, or carrying means, for one or more sheets forming independent means of transport, e.g. suction cups, transport frames
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/20Uniting glass pieces by fusing without substantial reshaping
    • C03B23/203Uniting glass sheets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-treating setter capable of heat-treating by placing a novel and large treating object, capable of stably placing the treating object without substantially causing a warp, and capable of uniformly heating the treating object. <P>SOLUTION: This heat-treating setter introduces the treating object G into a heat treatment furnace by placing the treating object G on a placing surface 1b of a plate part 1a. The crystallized glass heat-treating setter 1 has the plate part 1a formed into a structure of welding a plate-like member 23 in a plane shape, and sets a thermal expansion coefficient range of 30 to 750 °C to -10×10<SP>-7</SP>to 15×10<SP>-7</SP>/K. In this manufacturing method of the heat-treating setter 1, a plurality of glass panes are held in a plane shape; its joining end surfaces are oppositely arranged; the end surfaces are heated, softened, and welded to be formed into a welded glass pane; the welded glass pane is heat-treated and crystallized to be formed into a welded crystallized glass pane; and is processed in desired dimensional accuracy. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、被処理物を載置して熱処理炉に導入する熱処理用セッターに関し、特に、大型のプラズマ・ディスプレイ・パネル(以下PDPと称す)用基板や液晶パネル用ガラス基板等に適する熱処理用セッターに関するものである。   The present invention relates to a heat treatment setter for placing an object to be processed and introducing it into a heat treatment furnace, and in particular, for heat treatment suitable for a large plasma display panel (hereinafter referred to as PDP) substrate, a glass substrate for a liquid crystal panel, and the like. It is about setters.

近年、表示デバイスの多様化が進む中で、大画面の平面ディスプレイが注目されている。その代表格であるPDPは、前面と背面とに2枚のガラス基板を対向配置し、上下を両ガラス基板で、側方を隔壁で挟まれた100〜150μmのセルにHe、Ne等の希ガスを封じ込め電圧の印加によりガス放電させて文字や画像を表示するもので、表示画面の大きさに比して薄型であることを特徴としている。   In recent years, with the diversification of display devices, a large-screen flat display attracts attention. The typical PDP has two glass substrates facing each other on the front and back, both glass substrates on the top and bottom, and a 100-150 μm cell sandwiched between the sides. Characters and images are displayed by discharging gas by applying a gas containment voltage, and is characterized by being thinner than the size of the display screen.

このガラス基板上には電極や絶縁層の精密な回路パターンを形成するためにペーストが塗布され、塗布されたペーストを板ガラスに定着させるために熱処理炉(または焼成炉と称す)において約500〜700℃の温度域で焼成される。そのため、ガラス基板の熱処理用セッターは熱変形が少ないものが要求されており、現状では、結晶化ガラス板やセラミック板等が用いられている。   A paste is applied on the glass substrate in order to form a precise circuit pattern of electrodes and insulating layers, and about 500 to 700 in a heat treatment furnace (or called a baking furnace) in order to fix the applied paste to the plate glass. Baking in the temperature range of ° C. For this reason, a setter for heat treatment of a glass substrate is required to have little thermal deformation, and at present, a crystallized glass plate, a ceramic plate or the like is used.

例えば、特許文献1には、結晶化ガラス板からなる大型セッターの平坦度を所望の精度に維持するために定盤とアタッチメントを使用している。   For example, Patent Document 1 uses a surface plate and an attachment in order to maintain the flatness of a large setter made of a crystallized glass plate at a desired accuracy.

また、特許文献2には、炭化珪素(SiC)セラミック板からなるセッターが開示されており、セッターに通電することでセッター自体を発熱させフラットディスプレイパネルの熱処理について説明が為されている。   Further, Patent Document 2 discloses a setter made of a silicon carbide (SiC) ceramic plate, and the heat treatment of the flat display panel is described by causing the setter itself to generate heat by energizing the setter.

さらに、特許文献3には、石英ガラス板を熔着する大板の作製方法が記載されている。
特開平10−81571号 特開2002−293558号 特開2003−26433号
Furthermore, Patent Document 3 describes a method for producing a large plate on which a quartz glass plate is welded.
JP 10-81571 A JP 2002-293558 A JP 2003-26433 A

近年、画面の大型化のための表示パネルの大型化や複数パネルの一括処理化に伴い、大きい熱処理用セッターが要求されてきている。   In recent years, with an increase in the size of a display panel for increasing the size of a screen and the batch processing of a plurality of panels, a large setter for heat treatment has been required.

しかしながら、特許文献1の結晶化ガラス板からなる大型のセッターは、その製板方法により幅方向の寸法に限界があるため、一体の結晶化ガラス板で所望の大きさのセッターが得られないという問題がある。このため接着剤を用いて結晶化ガラス板を接合した場合には、他の部位に対して接合部の抗折強度強が低くなるので強度上の問題があり、その上、接着剤の成分や固化した接着剤の剥離により被処理物を汚染する問題もある。   However, the large setter made of the crystallized glass plate of Patent Document 1 has a limit in the dimension in the width direction due to the plate making method, so that a setter having a desired size cannot be obtained with an integral crystallized glass plate. There's a problem. For this reason, when the crystallized glass plate is bonded using an adhesive, there is a problem in strength because the bending strength strength of the bonded portion is lowered with respect to other parts. There is also a problem of contaminating the object to be processed by peeling off the solidified adhesive.

また、特許文献2の炭化珪素(SiC)セラミック板からなるセッターは、焼成設備を大型化することで所望の大きさのセッターを作製可能となるが、設備費用が嵩むのみならず、多孔質の焼結体であることに起因する高温時のガス放出対策のための表面処理が必要になることもあり非常に高価になるという問題がある。   Moreover, the setter which consists of a silicon carbide (SiC) ceramic board of patent document 2 can produce the setter of a desired magnitude | size by enlarging a baking equipment, but not only the installation cost increases, but porous There is a problem that it is very expensive because a surface treatment for countermeasures against gas emission at a high temperature due to the sintered body is required.

さらに、特許文献3の石英ガラス板を熔着した大板は、炭化珪素セラミック板と同様に素材自体が非常に高価である上、大板の組織がガラス状態であるので取り扱いの際に、割れや欠け等が生じる強度不足の問題がある。   Furthermore, the large plate to which the quartz glass plate of Patent Document 3 is welded is very expensive in the same manner as the silicon carbide ceramic plate, and the structure of the large plate is in a glass state, so that it is cracked during handling. There is a problem of insufficient strength that causes cracks and the like.

本発明は、上記の問題に鑑みてなされたものであり、従来にない大型の基板を載置して熱処理することが可能であり、セッターに実質的に反りが生じることなく、ガラス基板等の被処理物をセッター上に安定して載置可能であり、かつ被処理物の均一加熱が可能な熱処理用セッター及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and it is possible to place and heat-treat an unprecedented large-sized substrate, so that the setter is not substantially warped, such as a glass substrate. It is an object of the present invention to provide a heat-treating setter capable of stably placing an object to be processed on a setter and capable of uniformly heating the object to be processed, and a method for manufacturing the same.

本発明に係る熱処理用セッターは、被処理物を平板部の載置面に載置した状態で熱処理炉内に導入される30〜750℃の温度範囲の熱膨張係数が−10×10-7〜15×10-7/Kの結晶化ガラス製の熱処理用セッターであって、平板部が複数枚の板状部材を平面状に熔着した構造であることを特徴とする。 The setter for heat treatment according to the present invention has a thermal expansion coefficient of −10 × 10 −7 in a temperature range of 30 to 750 ° C. introduced into the heat treatment furnace in a state where the workpiece is placed on the placement surface of the flat plate portion. A setter for heat treatment made of crystallized glass of ˜15 × 10 −7 / K, wherein the flat plate portion has a structure in which a plurality of plate-like members are welded in a planar shape.

本発明で複数枚の板状部材を平面状に熔着した構造であるとは、結晶化ガラス製の複数枚の板状部材同士が熔着されて所望の大きさの平板部が形成されていることを意味するものであり、接着やその他機械的な接合によるものではない。このような複数枚の板状部材を熔着した構造であるので、従来にない大きさの載置面を容易に形成することが可能となり、且つ、接着やその他機械的な接合のように接合部位が局部的に強度低下を起こすこともない。また、30〜750℃の温度範囲での熱膨張係数が−10×10-7〜15×10-7/Kの結晶化ガラスにより形成されてなる熱処理用セッターは、通常の耐熱ガラス以上の温度差にも実質的に変形することがなく、繰り返し使用に耐え得るものである。 In the present invention, a structure in which a plurality of plate-like members are welded in a planar shape means that a plurality of plate-like members made of crystallized glass are welded together to form a flat plate portion having a desired size. It means that it is not by bonding or other mechanical joining. Since the structure is such that a plurality of plate-like members are welded, it is possible to easily form a mounting surface having an unprecedented size, and bonding such as bonding or other mechanical bonding is possible. The site does not cause local strength reduction. Moreover, the setter for heat treatment formed of crystallized glass having a thermal expansion coefficient of −10 × 10 −7 to 15 × 10 −7 / K in a temperature range of 30 to 750 ° C. is a temperature higher than that of normal heat resistant glass. The difference is not substantially deformed and can withstand repeated use.

また、本発明の熱処理用セッターは、熔着による板状部材同士の接合部位に、板状部材と同じ結晶が略同じ割合で析出していることを特徴とする。   Moreover, the setter for heat treatment of the present invention is characterized in that the same crystals as the plate-like members are precipitated at substantially the same rate at the joining sites of the plate-like members by welding.

板状部材同士の熔着による接合部位に、板状部材と同じ結晶が略同じ割合で析出しているとは、板状部材の主結晶が、例えば、β−石英であれば、接合部位にも同じβ−石英が、また、主結晶がβ−スポジュメンであればβ−スポジュメンが、ほぼ同じ割合で析出していることを意味する。このように、接合部位に板状部材と同じ結晶がほぼ同じ割合で析出していることで、接合部位の強度が正規の結晶析出状態である板状部材そのものの強度に近づけることができる。   The fact that the same crystals as the plate-like members are precipitated at substantially the same rate at the bonding site by welding of the plate-like members means that if the main crystal of the plate-like member is β-quartz, for example, Means that the same β-quartz and, if the main crystal is β-spodumene, β-spodumene is precipitated at almost the same rate. As described above, the same crystal as the plate-like member is precipitated in the joint portion at almost the same rate, so that the strength of the joint portion can be close to the strength of the plate-like member itself in the normal crystal precipitation state.

また、本発明の熱処理用セッターは、板状部材、即ち、非接合部位の抗折強度に対して接合部位の抗折強度が70%以上であることを特徴とする。   Moreover, the setter for heat treatment of the present invention is characterized in that the bending strength of the bonded portion is 70% or more with respect to the bending strength of the plate-like member, that is, the non-bonded portion.

接合部位の抗折強度としては、板状部材の抗折強度に対して70%以上であることが好ましく、接合部位の局部的な強度低下に起因する応力破壊を防止することが可能となる。また、板状部材の抗折強度に対して80%以上であることが更に好ましく、非接合部位と同等またはそれ以上であることが理想的である。絶対評価を行う場合には、JIS R1601に規定された方法で評価した抗折強度を用いることが好ましい。   The bending strength of the joining portion is preferably 70% or more with respect to the bending strength of the plate-like member, and it is possible to prevent stress fracture caused by a local decrease in strength of the joining portion. Moreover, it is more preferable that it is 80% or more with respect to the bending strength of a plate-shaped member, and it is ideal that it is equivalent or more than a non-joining site | part. When performing absolute evaluation, it is preferable to use the bending strength evaluated by the method prescribed in JIS R1601.

また、本発明の熱処理用セッターが、β−石英を主結晶とする30〜750℃の温度範囲での熱膨張係数が−10×10-7〜5×10-7/Kの結晶化ガラスにより形成されてなると、熱処理用セッターに約700℃の温度差(熱ショックともいう)が生じた場合でも、膨張差に起因する大きな変形や破壊が起こらない。 Moreover, the setter for heat treatment of the present invention is made of crystallized glass having β-quartz as a main crystal and having a thermal expansion coefficient of −10 × 10 −7 to 5 × 10 −7 / K in a temperature range of 30 to 750 ° C. Once formed, even when a temperature difference of about 700 ° C. (also referred to as a heat shock) occurs in the heat treatment setter, no major deformation or destruction due to the expansion difference occurs.

また、本発明の熱処理用セッターが、β−スポジュメンを主結晶とする30〜750℃の温度範囲の熱膨張係数が5×10-7〜15×10-7/Kの結晶化ガラスにより形成されてなると、β−石英を主結晶とする結晶化ガラスよりも連続使用時の耐熱温度が50〜100℃高くなり、強度に関してもビッカース硬度が10〜50程度高くなる。例えば、乳白色の結晶化ガラスである日本電気硝子(株)製のネオセラムN−11は、30〜750℃の温度範囲での熱膨張係数が12×10-7/Kで、連続使用温度が約800℃、短期使用温度が約900℃、熱衝撃強度が約600℃、ビッカース硬度がHv720である。 Moreover, the setter for heat treatment of the present invention is formed of crystallized glass having a thermal expansion coefficient of 5 × 10 −7 to 15 × 10 −7 / K having a β-spodumene as a main crystal and a temperature range of 30 to 750 ° C. Thus, the heat resistance temperature during continuous use is higher by 50 to 100 ° C. than the crystallized glass having β-quartz as the main crystal, and the Vickers hardness is increased by about 10 to 50 in terms of strength. For example, Neoceram N-11 made by Nippon Electric Glass Co., Ltd., which is a milky white crystallized glass, has a coefficient of thermal expansion of 12 × 10 −7 / K in the temperature range of 30 to 750 ° C., and the continuous use temperature is about 800 ° C, short-term use temperature is about 900 ° C, thermal shock strength is about 600 ° C, and Vickers hardness is Hv720.

また、本発明の熱処理用セッターは、平板部の載置面の平坦度が0.3%以下であり、かつ載置面の表面粗さのRa値が0.1〜1μmであることを特徴とする。   The setter for heat treatment of the present invention is characterized in that the flatness of the mounting surface of the flat plate portion is 0.3% or less and the Ra value of the surface roughness of the mounting surface is 0.1 to 1 μm. And

本発明で平坦度は、JIS R3202に規定された単位長さ当たりの反りの大きさの割合であり、表面粗さRaはJIS B0601に規定された算術平均粗さであって、測定カットオフ値が0.8mm、測定長が4mmの条件で測定した場合の値をそれぞれ意味する。本発明の熱処理用セッターは、大型のガラス基板を直接載置する載置面の平坦度、即ち、長さ500mm当たりの反りの大きさの割合が0.3%以下と高い平坦性を有するので、セッターの表面に直接載置される大型のガラス基板に反りを生じさせず、高い平坦性を維持したまま大型のガラス基板を熱処理することができる。   In the present invention, the flatness is a ratio of the amount of warpage per unit length specified in JIS R3202, and the surface roughness Ra is an arithmetic average roughness specified in JIS B0601, and is a measured cutoff value. Means a value when measured under conditions of 0.8 mm and a measurement length of 4 mm. Since the setter for heat treatment of the present invention has high flatness, that is, the flatness of the mounting surface on which a large glass substrate is directly mounted, that is, the ratio of the warpage per 500 mm in length is 0.3% or less. The large glass substrate placed directly on the surface of the setter is not warped, and the large glass substrate can be heat-treated while maintaining high flatness.

さらに、本発明のガラス基板熱処理用セッターは、大型のガラス基板を直接載置する載置面の表面粗さがRa値で0.1〜1μmの範囲にあるので、大型のガラス基板の軟化した表面にセッターの表面のパターンが転写されることがなく、しかも大型のガラス基板をセッターの載置面に載置する際に、大型のガラス基板がセッターの載置面を上滑りせず、熱処理後に大型のガラス基板をセッターの載置面から容易に分離することができる。   Furthermore, the setter for heat treatment of a glass substrate according to the present invention has a surface roughness of a mounting surface on which a large glass substrate is directly mounted within a range of 0.1 to 1 μm in Ra value, so that the large glass substrate is softened. The surface pattern of the setter is not transferred to the surface, and when a large glass substrate is placed on the setter mounting surface, the large glass substrate does not slide on the setter mounting surface, and after heat treatment A large glass substrate can be easily separated from the mounting surface of the setter.

また、本発明の熱処理用セッターが被処理物との接触面に通じて空気を導入する通気孔である貫通穴又は凹溝が設けられていると、熱処理後、熱処理用治具に密着状態にある板ガラス等の被処理物を分離する際に、通気孔から空気が速やかに侵入して被処理物を熱処理用治具から容易に分離することができる。なお、結晶化ガラスからなるので、アルミナセラミックスや炭化珪素その他の焼結体のように内部に多数の気孔(ボイド)が存在せず、熱処理の昇温時に不純物ガスが発生することもないため、被処理物の表面を汚染することもない。   Further, when the heat treatment setter of the present invention is provided with a through hole or a concave groove which is a ventilation hole for introducing air through the contact surface with the object to be treated, the heat treatment setter is brought into close contact with the heat treatment jig after the heat treatment. When separating an object to be processed such as a certain plate glass, air can quickly enter from the vent hole and the object to be processed can be easily separated from the heat treatment jig. In addition, since it consists of crystallized glass, many pores (voids) do not exist inside such as alumina ceramics, silicon carbide and other sintered bodies, and no impurity gas is generated when the temperature of the heat treatment is increased. It does not contaminate the surface of the workpiece.

本発明に係る熱処理用セッターの製造方法は、被処理物を平板部の載置面に載置した状態で熱処理炉内に導入される結晶化ガラス製の熱処理用セッターの製造方法であって、複数枚のガラス板を平面状に保持してその接合される端面を対向配置し、該端面を加熱・軟化させ熔着して熔着ガラス板とし、該熔着ガラス板を熱処理して結晶化させて熔着結晶化ガラス板とし、該熔着結晶化ガラス板を所望の寸法精度に加工することを特徴とする。   A method for manufacturing a heat-treating setter according to the present invention is a method for manufacturing a heat-treating setter made of crystallized glass introduced into a heat-treating furnace in a state where an object to be processed is placed on a mounting surface of a flat plate part, Holding a plurality of glass plates in a flat shape, the end faces to be joined are arranged opposite to each other, the end faces are heated and softened and welded to form a welded glass plate, and the welded glass plate is heat-treated and crystallized. A welded crystallized glass plate is obtained, and the welded crystallized glass plate is processed to a desired dimensional accuracy.

本発明の製造方法で、複数枚のガラス板を平面状に保持してその接合される端面を対向配置し、端面を加熱・軟化させ熔着して熔着ガラス板とする際に、接合部位の強度低下を防止する上で、接合部位の断面がガラス板の断面よりも小さくならないようにすることが重要となり、むしろガラス板の断面よりもその断面を大きくすることが好ましい。また、熔着ガラス板を熱処理により結晶化させて熔着結晶化ガラス板とすることにより、接合部位にもガラス板とほぼ同じ熱履歴で結晶化処理を施すことが可能となる。   In the production method of the present invention, when a plurality of glass plates are held in a flat shape and the end surfaces to be joined are arranged to face each other, the end surfaces are heated and softened and welded to form a welded glass plate. In order to prevent a decrease in strength, it is important not to make the cross section of the bonded portion smaller than the cross section of the glass plate, but it is preferable to make the cross section larger than the cross section of the glass plate. In addition, by crystallizing the welded glass plate by heat treatment to obtain a welded crystallized glass plate, it is possible to perform the crystallization process on the joining site with substantially the same thermal history as the glass plate.

また、本発明の熱処理用セッターの製造方法は、ガラス板の接合される端面を1300℃以上の所定の温度に加熱・軟化させて熔着し、20秒以内に冷却固化させて熔着ガラス板にすることを特徴とする。   In addition, the method for producing the setter for heat treatment of the present invention is such that the end face to which the glass plate is bonded is heated and softened to a predetermined temperature of 1300 ° C. or higher, and is fused and cooled and solidified within 20 seconds. It is characterized by.

一般に、Li2O−Al23−SiO2系の低膨張結晶化ガラスは、約1700℃で溶解され、粘度が103〜104ポイズとなる1300〜1500℃の温度でロール法などにより成形されガラス板となる。得られたガラス板は、約5nmの大きさに分相している。このようなガラス板を結晶化する際には、約750〜800℃でAl2Ti27、ZrO2、ZrO2・TiO2、TiO2などの結晶核が析出し、約900℃でβ−石英が、約1000℃でβ−スポジュメンが析出する。そのため、分相しているガラス板の端面を加熱・軟化させて熔着する場合、加熱から固化までを短時間で行わないと、所望しない結晶が析出して接合部位に所望の強度が得られなくなる。本発明では、所望しない結晶の析出を防止する上で、ガラス板の接合される端面を1300℃以上に加熱して軟化させて熔着し、20秒以内に約900℃以下に冷却し固化させて熔着ガラス板にすることが重要となる。ガラス板の接合される端面をこのような高温に短時間で昇温させるためには、バーナー等の加熱手段をガラス板の端面に対して相対的に移動可能にしておくことが好ましい。 In general, Li 2 O—Al 2 O 3 —SiO 2 -based low expansion crystallized glass is melted at about 1700 ° C. and the viscosity is 10 3 to 10 4 poise at a temperature of 1300 to 1500 ° C. by a roll method or the like. Molded into a glass plate. The obtained glass plate is phase-separated to a size of about 5 nm. When such a glass plate is crystallized, crystal nuclei such as Al 2 Ti 2 O 7 , ZrO 2 , ZrO 2 .TiO 2 , TiO 2 precipitate at about 750 to 800 ° C., and β at about 900 ° C. -Quartz precipitates β-spodumene at about 1000 ° C. Therefore, when heating and softening the end face of a glass plate that has undergone phase separation, if the heating to solidification is not performed in a short time, undesired crystals will precipitate and the desired strength will be obtained at the joint site. Disappear. In the present invention, in order to prevent undesired precipitation of crystals, the end face to which the glass plate is bonded is heated to 1300 ° C. or more, softened and welded, and cooled to about 900 ° C. or less and solidified within 20 seconds. It is important to use a welded glass plate. In order to raise the temperature of the end face to which the glass plate is joined to such a high temperature in a short time, it is preferable that a heating means such as a burner is movable relative to the end face of the glass plate.

また、本発明の熱処理用セッターの製造方法は、対向配置された複数枚のガラス板の端面を加熱・軟化させ熔着する際に、該ガラス板を回転させることを特徴とする。   Moreover, the manufacturing method of the setter for heat processing of this invention is characterized by rotating this glass plate, when heating and softening and welding the end surface of the several glass plate arrange | positioned facing.

一般に、結晶化ガラスを作製するための原ガラスは、温度変化に対して粘性が急激に変化する、所謂ショートな特性を有している。そのため、ガラス板の端面を加熱・軟化させると、重力が作用して垂れ下がってしまうので、板状にすることができなくなる。そこで、対向配置された複数枚のガラス板の端面を加熱・軟化させ熔着する際に、軟化している部位が垂れ下がって変形しないように、回転させる必要が生じる。対向配置された複数枚のガラス板を回転させる方向としては、ガラス板を水平に支持している場合には表裏に、またガラス板を垂直に支持している場合には上下方向が反転するように回転させると軟化部位の垂れ下がりを防止することが可能となる。ガラス板を回転させる際には、バーナー等の加熱手段と共に回転させることが必要になる。   In general, an original glass for producing crystallized glass has a so-called short characteristic in which viscosity rapidly changes with temperature change. For this reason, when the end face of the glass plate is heated and softened, gravity acts and hangs down, so that it cannot be formed into a plate shape. Therefore, when the end surfaces of a plurality of glass plates arranged opposite to each other are heated, softened, and welded, it is necessary to rotate the softened parts so that they do not hang down and deform. The direction of rotation of a plurality of opposed glass plates is such that when the glass plate is supported horizontally, the front and back are reversed, and when the glass plate is supported vertically, the vertical direction is reversed. When it is rotated, it is possible to prevent the softened portion from sagging. When rotating the glass plate, it is necessary to rotate it together with a heating means such as a burner.

また、本発明の熱処理用セッターの製造方法は、複数枚のガラス板の端面を加熱・軟化させ熔着して熔着ガラス板とし、該熔着ガラス板の熔着部の両側を加熱して徐冷点以上に昇温し、その後、歪点以下まで徐冷することを特徴とする。   In addition, the method for manufacturing the setter for heat treatment of the present invention comprises heating and softening the end faces of a plurality of glass plates to form a welded glass plate, and heating both sides of the welded portion of the welded glass plate. The temperature is raised above the annealing point, and then gradually cooled below the strain point.

1300℃以上に加熱して軟化させて熔着した熔着ガラス板の熔着部の両側には、非常に大きい熱歪みが生じるので、このままの状態で冷却すると、熔着部の両側に熱歪みによるクラックが生じて熔着ガラス板が割れてしまう。そのため、熔着部の両側の熱歪みが生じる部位を加熱して徐冷点以上に昇温し、その後、歪点以下まで徐冷する必要がある。   Since very large thermal strains are generated on both sides of the welded portion of the fused glass plate heated to 1300 ° C. or higher and softened, if it is cooled as it is, thermal strains are generated on both sides of the welded portion. A crack caused by this will cause the welded glass plate to break. Therefore, it is necessary to heat the part where the thermal strain on both sides of the welded part is heated to raise the temperature above the annealing point, and then gradually cool it below the strain point.

また、本発明の熱処理用セッターの製造方法は、複数枚のガラス板の端面を尖らせた後、該端面を加熱・軟化させ熔着して熔着ガラス板とすることを特徴とする。   The method for producing a heat-treating setter according to the present invention is characterized in that, after sharpening the end surfaces of a plurality of glass plates, the end surfaces are heated and softened and welded to form a welded glass plate.

熔着ガラス板の熔着部の形状を効率よく平板に近い所望の形状にするためには、ガラス板の接合させる端面を尖らせておくことが好ましい。これにより、短時間の加熱で端面温度を1300℃以上にあげることが可能となり、且つ、熔着部が大きくなりすぎないように制御することが容易になる。   In order to make the shape of the welded part of the welded glass plate into a desired shape close to a flat plate efficiently, it is preferable to sharpen the end face to which the glass plate is joined. Thereby, it becomes possible to raise end surface temperature to 1300 degreeC or more by heating for a short time, and it becomes easy to control so that a welding part does not become large too much.

また、本発明の熱処理用セッターの製造方法は、ガラス板の接合される端面を浄化した後、該端面を加熱・軟化させて熔着して熔着ガラス板とすることを特徴とする。   Moreover, the manufacturing method of the setter for heat treatment of the present invention is characterized in that, after purifying the end face to which the glass plate is bonded, the end face is heated and softened and welded to obtain a welded glass plate.

ガラス板の接合される端面に煤等の異物や水分等が付着して汚れている場合、その汚れに起因して接合部位に所望しない結晶析出が起こり、所望の強度が得られなくなる。このように接合部位に所望しない結晶の析出を防止する上で、ガラス板の接合される端面を浄化した後、該端面を加熱・軟化させて熔着して熔着ガラス板とすることが重要となる。ガラス板の接合される端面の浄化手段としては、有機物汚れに対してはアルコールその他の洗浄液での洗浄、クリーンな環境下で端部の温度を500℃以上に上げることで焼却するヒートクリーニング、無機物汚れに対しては酸またはアルカリ溶液によるエッチング等があり、端部を切除して新たな端面を露出させてもよい。   When foreign substances such as wrinkles or moisture adhere to the end face to which the glass plate is joined, undesired crystal precipitation occurs at the joining portion due to the dirt, and the desired strength cannot be obtained. Thus, in order to prevent undesired crystal precipitation at the joining site, it is important to purify the end face to which the glass plate is to be joined, and then heat and soften the end face to form a welded glass plate. It becomes. As cleaning means for the end face to which the glass plate is joined, washing with organic or other cleaning liquid for organic dirt, heat cleaning to incinerate by raising the end temperature to 500 ° C or higher in a clean environment, inorganic matter The dirt may be etched with an acid or alkali solution, and the end may be cut out to expose a new end face.

また、ガラス板の端面の加熱・軟化は、燃焼ガスと酸素を使用するバーナーを用いても可能であるが、煤や水分等の付着がない電気ヒーター、赤外線ランプ、赤外線レーザー等の加熱方法が好ましい。   In addition, heating and softening of the end face of the glass plate can be performed using a burner that uses combustion gas and oxygen, but there are heating methods such as electric heaters, infrared lamps, infrared lasers, etc. that do not adhere soot and moisture. preferable.

本発明の熱処理用セッターは、平板部が複数枚の板状部材を平面状に熔着した構造であり、従来にない大きさの載置面を容易に形成することが可能となり、且つ、接着やその他機械的な接合のように接合部位が局部的に強度低下を起こすこともなく十分な使用強度を有するので、大型表示パネルや複数パネルの一括処理化が可能となるので、大画面表示装置の効率よい製造に大きく貢献するものである。   The heat-treating setter of the present invention has a structure in which a flat plate portion is formed by welding a plurality of plate-like members in a flat shape, and it is possible to easily form a mounting surface having a size that has not been conventionally possible, and adhesion Large joints can be used for large display panels and multiple panels because the joints have sufficient strength without causing any local strength reduction as in mechanical joints and other mechanical joints. It contributes greatly to the efficient production of

また、本発明の熱処理用セッターは、熱膨張係数がゼロに近いので、熱処理を連続的または断続的に繰り返して行ってもセッター自体の伸び縮みが小さく、セッターに直接載置した被処理物に影響を与えず、また急激なサーマル・ショック等で破損もせず、安定して長期間使用できる。   In addition, since the setter for heat treatment of the present invention has a coefficient of thermal expansion close to zero, even if the heat treatment is repeated continuously or intermittently, the setter itself does not expand or contract, and the setter is placed directly on the setter. It is not affected and is not damaged by a sudden thermal shock, and can be used stably for a long time.

さらに、本発明の熱処理用セッターは、大型の基板を載置する平板部の載置面の平坦度が0.3%以下と高い平坦性を有して、セッターの表面に載置される大型のガラス基板に反りを生じさせず、高い平坦性を維持したまま大型のガラス基板を熱処理することができ、且つ、平板部載置面の表面粗さのRa値が0.1〜1μmの範囲にあり、大型のガラス基板の軟化した表面にセッターの表面のパターンが転写されることがなく、しかも大型のガラス基板をセッターの載置面に載置する際に、大型のガラス基板がセッターの載置面を上滑りせず、熱処理後に大型のガラス基板をセッターの載置面から容易に分離することができ、大型のプラズマ・ディスプレイ・パネル用基板等に適する実用上優れた効果を奏するものである。   Furthermore, the setter for heat treatment of the present invention has a flatness of a flat surface of a flat plate portion on which a large substrate is placed and has a high flatness of 0.3% or less, and is a large size placed on the surface of the setter. The large glass substrate can be heat-treated while maintaining high flatness without causing warpage of the glass substrate, and the Ra value of the surface roughness of the flat plate portion mounting surface is in the range of 0.1 to 1 μm. The pattern of the surface of the setter is not transferred to the softened surface of the large glass substrate, and when the large glass substrate is placed on the setting surface of the setter, the large glass substrate is The large glass substrate can be easily separated from the setter's mounting surface after heat treatment without causing the mounting surface to slide up, and has an excellent practical effect suitable for a large plasma display panel substrate. is there.

本発明に係る熱処理用セッターの製造方法は、複数枚のガラス板を平面状に保持してその接合される端面を対向配置し、該端面を加熱・軟化させ熔着して熔着ガラス板とし、該熔着ガラス板を熱処理して結晶化させて熔着結晶化ガラス板とし、該熔着結晶化ガラス板を所望の寸法精度に加工するので、上記の高い強度及び高精度を有する本発明の熱処理用セッターを効率よく製造することが可能となる。   The method for manufacturing a setter for heat treatment according to the present invention comprises a plurality of glass plates held in a flat shape, the end surfaces to be joined are arranged facing each other, and the end surfaces are heated and softened to form a welded glass plate. Since the welded glass plate is crystallized by heat treatment to form a welded crystallized glass plate, and the welded crystallized glass plate is processed to a desired dimensional accuracy, the present invention having the above-described high strength and high accuracy. It becomes possible to efficiently produce the setter for heat treatment.

以下、本発明の実施の形態に係る一例について図1を用いて詳細に説明する。図中、1は結晶化ガラス製の熱処理用セッターを、2及び3は板状部材を、4は接合部位を、Gは被処理物であるガラス基板を、5は通気孔として貫通孔を、6は凹溝をそれぞれ示している。   Hereinafter, an example according to an embodiment of the present invention will be described in detail with reference to FIG. In the figure, 1 is a setter for heat treatment made of crystallized glass, 2 and 3 are plate-like members, 4 is a bonding site, G is a glass substrate as a workpiece, 5 is a vent hole, Reference numeral 6 denotes a concave groove.

熱処理用セッター1は、例えば、透明な結晶化ガラスである日本電気硝子(株)製の30〜750℃の温度範囲での熱膨張係数が−4×10-7/KであるネオセラムN−0板(連続使用温度が約750℃、短期使用温度が約800℃、熱衝撃強度が約800℃、ビッカース硬度がHv710)からなり、長さ2500mm、幅2200mm、厚さ5mmである。この熱処理用セッター1は、図1(A)に示すように、板状部材2と板状部材3とが接合部位4で熔着により接合された構造になっている。接合部位4には板状部材2、3とほぼ同じ割合で、β−石英の結晶が析出している。また、熱処理用セッター1は、平板部1aの載置面1bが、平坦度が0.3%以下であって、その反りの値は測定用定盤に載置した際に生じる隙間が0.3mm以内であり、かつ載置面1bの表面粗さのRa値は約0.5μmで曇りガラス状の砂刷り面である。図1(B)、(C)に示すように、平板部1aの載置面1bにはガラス基板Gとの接触面に通じて空気を導入する通気孔である貫通穴5又は凹溝6が設けられている。 The heat-treating setter 1 is, for example, Neoceram N-0 made by Nippon Electric Glass Co., Ltd., which is a transparent crystallized glass, having a thermal expansion coefficient of −4 × 10 −7 / K in the temperature range of 30 to 750 ° C. It consists of a plate (continuous use temperature is about 750 ° C., short-term use temperature is about 800 ° C., thermal shock strength is about 800 ° C., Vickers hardness is Hv 710), length 2500 mm, width 2200 mm, and thickness 5 mm. As shown in FIG. 1A, the heat treatment setter 1 has a structure in which a plate-like member 2 and a plate-like member 3 are joined at a joining portion 4 by welding. Β-quartz crystals are precipitated in the joint portion 4 at approximately the same rate as the plate-like members 2 and 3. Further, in the setter 1 for heat treatment, the mounting surface 1b of the flat plate portion 1a has a flatness of 0.3% or less, and the value of the warpage is such that the gap generated when it is mounted on the measuring platen is 0. It is within 3 mm, and the Ra value of the surface roughness of the mounting surface 1b is about 0.5 μm, which is a frosted glassy sand-printed surface. As shown in FIGS. 1B and 1C, the mounting surface 1b of the flat plate portion 1a has a through hole 5 or a concave groove 6 which is a vent hole for introducing air through the contact surface with the glass substrate G. Is provided.

次に、上記熱処理用セッター1の製造方法について、図を用いて説明する。   Next, a method for manufacturing the heat treatment setter 1 will be described with reference to the drawings.

まず、ロール製板によって6.5mmの厚さの大板に成形した後、長さ2500mm×幅1110mmの矩形に切断して、2枚のガラス板を得た。   First, a large plate having a thickness of 6.5 mm was formed by a roll plate, and then cut into a rectangle having a length of 2500 mm × a width of 1110 mm to obtain two glass plates.

次いで、図2(A)に示すように、熔着装置10のベース10a上の固定台10bとガイドレール10d上の移動台10cのそれぞれに2枚のガラス板22、23を互いに接合する端面22a、23aを対向させて、端面22aがバーナー11、12の位置になるようにセットし、図示しない留め具により固定台10bと移動台10cのそれぞれに固定した。予め、端面22a、23aは、拡大して示すように、例えば、先端のRが2mmの曲面であり、45°の面取りで表面に連なっていて、全体として尖った形状に加工を施してある。この時点で端面22a、23aを洗浄してもよく、予め先記の洗浄手段により洗浄しておいてもよい。固定台10bと移動台10cの載置面は、2枚のガラス板22、23が所定範囲の平面度内に接合されるように、高さ調整がなされている。   Next, as shown in FIG. 2 (A), an end face 22a that joins two glass plates 22 and 23 to the fixed base 10b on the base 10a of the welding apparatus 10 and the movable base 10c on the guide rail 10d, respectively. , 23a are opposed to each other, and the end surface 22a is set at the position of the burners 11 and 12, and is fixed to the fixed base 10b and the movable base 10c by fasteners (not shown). As shown in an enlarged manner, the end faces 22a and 23a are, for example, curved surfaces having a tip R of 2 mm, continuous with the surface by chamfering of 45 °, and processed into a sharp shape as a whole. At this time, the end faces 22a and 23a may be cleaned, or may be previously cleaned by the above-described cleaning means. The mounting surfaces of the fixed base 10b and the movable base 10c are adjusted in height so that the two glass plates 22 and 23 are joined within a predetermined range of flatness.

その後、図2(B)に示すように、移動台10cを移動させてガラス板22、23の端面22a、23aを突き合わせ、バーナー11、12を使用し、図2(C)に示すように、駆動部16で矢印方向に往復運動する揺動アーム15に支持したバーナー11、12をガラス板22、23の端面22a、23aに対して相対的に移動させて1300℃以上の例えば1350℃に加熱する。その後、20秒以内に約900℃以下に冷却し固化させて、図2(D)に示すような、ガラス板22、23よりも僅かに厚い熔着部24を形成して熔着ガラス板25にする。   After that, as shown in FIG. 2 (B), the moving table 10c is moved so that the end surfaces 22a and 23a of the glass plates 22 and 23 are brought into contact with each other, and the burners 11 and 12 are used, as shown in FIG. The burners 11 and 12 supported by the swing arm 15 reciprocating in the direction of the arrow by the drive unit 16 are moved relative to the end faces 22a and 23a of the glass plates 22 and 23 and heated to 1300 ° C. or higher, for example, 1350 ° C. To do. Thereafter, it is cooled to about 900 ° C. or less within 20 seconds and solidified to form a welded portion 24 slightly thicker than the glass plates 22 and 23 as shown in FIG. To.

この際、軟化部位の垂れ下がりを防止するために、熔着装置10のベース10aごとガラス板22、23を矢印で示した表裏反転する方向に回転させる。   At this time, in order to prevent the softened portion from sagging, the glass plates 22 and 23 are rotated together with the base 10a of the welding apparatus 10 in the direction of reversing the front and back indicated by arrows.

次いで、図2(D)に示すように、焼鈍バーナー13、14を用いて、熔着ガラス板25の熔着部24の両側で温度が上がっていない100〜200mm幅の部位を加熱して徐冷点である700℃以上に昇温し、その後、歪点である645℃以下まで5分以上かけて徐冷する。この際、図2(C)に示すバーナー11、12と同様に、駆動部16で矢印方向に往復運動する揺動アーム15に支持した焼鈍バーナー13、14を支持させ、熔着ガラス板25に対して相対的に移動させてもよい。   Next, as shown in FIG. 2 (D), by using annealing burners 13 and 14, the portions of 100 to 200 mm width where the temperature does not rise on both sides of the welded portion 24 of the welded glass plate 25 are gradually heated. The temperature is raised to 700 ° C or higher, which is a cold spot, and then gradually cooled to 645 ° C or lower, which is a strain point, over 5 minutes. At this time, similarly to the burners 11 and 12 shown in FIG. 2C, the annealing burners 13 and 14 supported by the swing arm 15 reciprocating in the direction of the arrow by the drive unit 16 are supported, and the welded glass plate 25 is supported. You may move relatively.

図3(A)に示すように、結晶化炉17内に、支持材18を介して熔着ガラス板25を水平に支持し、約750〜800℃でAl2Ti27、ZrO2、ZrO2・TiO2等の結晶核が析出し、約900℃でβ−石英、または約1000℃でβ−スポジュメンを析出させることで結晶化させ、熔着結晶化ガラス板26とする。この結晶化の際、熔着ガラス板25が軟化して僅かに変形を起こすので、支持材18の載置面は、ガラス板22、23が所定範囲の平面度内になるように高さを調整しておく。 As shown in FIG. 3 (A), in the crystallization furnace 17, a welded glass plate 25 is horizontally supported via a support 18, and Al 2 Ti 2 O 7 , ZrO 2 , Crystal nuclei such as ZrO 2 · TiO 2 are precipitated and crystallized by precipitating β-quartz at about 900 ° C. or β-spodumene at about 1000 ° C. to obtain a welded crystallized glass plate 26. During the crystallization, the welded glass plate 25 is softened and slightly deformed, so that the mounting surface of the support member 18 has a height so that the glass plates 22 and 23 are within a predetermined flatness. Adjust it.

最後に、図3(B)に示すように、研削機19の支持部に熔着結晶化ガラス板26を載置し、その表面をダイヤモンド砥粒のジェネレータ20を用いて切削水等のクーラント(図示省略)を塗布しながら厚さ約5.5mmの板厚に研削した後、#600の研磨砥粒を用いて片面ずつ研磨機でラッピングして表面および裏面が平坦かつ平滑に加工されている。このような加工により、熔着結晶化ガラス板26の表裏両表面は、0.3%以下の平坦度で、Ra値が0.1〜1.0μm範囲内の、例えば、0.5μmの表面粗さとされている。上記の平坦度および表面粗さは、少なくともガラス基板Gが直接載置されるセッター1の載置面1bにおいて実現されていれば足りる。また、熔着結晶化ガラス板26の端面は、ダイヤモンド砥粒の砥石車21で切削水等のクーラント(図示省略)を塗布しながら所望の面取り形状に仕上げる。このようにして、図1に示すような、従来にない長さ2500mm、幅2200mm、厚さ5mmの大型の熱処理用セッター1が得られた。   Finally, as shown in FIG. 3 (B), a welded crystallized glass plate 26 is placed on the support portion of the grinding machine 19, and the surface thereof is cooled with coolant (such as cutting water) using a generator 20 of diamond abrasive grains. After being ground to a thickness of about 5.5 mm while applying (not shown), lapping is performed on each side with a polishing machine using # 600 abrasive grains, and the front and back surfaces are processed flat and smooth. . By such processing, both the front and back surfaces of the welded crystallized glass plate 26 have a flatness of 0.3% or less and a Ra value in the range of 0.1 to 1.0 μm, for example, 0.5 μm. It is supposed to be rough. It is sufficient that the flatness and the surface roughness are realized on at least the placement surface 1b of the setter 1 on which the glass substrate G is directly placed. Further, the end surface of the welded crystallized glass plate 26 is finished into a desired chamfered shape while applying coolant (not shown) such as cutting water with a grinding wheel 21 of diamond abrasive grains. In this way, an unprecedented large heat setter 1 having a length of 2500 mm, a width of 2200 mm, and a thickness of 5 mm as shown in FIG. 1 was obtained.

このようにして作製した熱処理用セッターについて次のように評価を行った。評価試験機器の都合で厚さが3mmの熱処理用セッターから50mm×120mm×3mmに切断し、強度試験試料を作製した。No.1、2は熔着部に目視で接合面(スジ)が見えるもの、No.3、4は熔着部に目視で接合面(スジ)が見えないもの、No.5、6は非熔着の強度試験試料である。また、測定機には島津製作所製オートグラフ試験機 型式:AGS−500Dを使用し、測定条件を3点曲げ試験でスパン:100mm、クロスヘッドスピード(下降速度):0.5mm/minとした。結果を表1に示す。   The heat treatment setter thus produced was evaluated as follows. Due to the convenience of the evaluation test equipment, a heat treatment setter having a thickness of 3 mm was cut into 50 mm × 120 mm × 3 mm to prepare a strength test sample. No. Nos. 1 and 2 are those in which the joint surface (streak) can be visually observed in the welded part. Nos. 3 and 4 are those in which the joining surface (streaks) cannot be visually observed in the welded part. Reference numerals 5 and 6 are non-welding strength test samples. In addition, an autograph tester manufactured by Shimadzu Corp. Model: AGS-500D was used as a measuring machine, and the measurement conditions were set to a span of 100 mm and a crosshead speed (descent speed) of 0.5 mm / min in a three-point bending test. The results are shown in Table 1.

表1の測定数値からみて熔着部のあるNo.1〜4と熔着部のないNo.5、6とでは強度に大差は無く、若干ではあるがむしろ溶着品の方がやや強度があると分かった。   From the measured numerical values in Table 1, No. with the welded part. No. 1 to 4 and No. It was found that there was no great difference in strength between 5 and 6, and the welded product was somewhat stronger, though slightly.

次に、熱安定性試験を行った。図4に示すように、寸法210mmx300mm×3mmの熔着試料Sと非熔着試料を定盤30上で下記の方法にて表面精度を測定した。ソリ変化量の測定は、中心POの位置に移動スタンド31に固定されたダイヤルゲージ32の端子32aを当てて目盛りが0になるようにセットをする。この値を基準として、熔着試料Sのコーナーに向かってスライドさせる。コーナーから10mm手前の位置P1でストップさせ、そのときの値を読む。同じように、他のコーナーのP2〜P4も測定をする。表面が終れば、裏面の測定に入る。測定が終れば、表面を上に向けて、図5に示すような温度分布を有する熱処理炉へ投入し、1回の投入後に面精度測定し、その後、更に投入を続け、合計10回投入した後の表面精度を測定する。なお、肉厚は、コーナーから50mm手前のポイントを測定した。結果を表2に示す。   Next, a thermal stability test was performed. As shown in FIG. 4, the surface accuracy of a welded sample S and a non-welded sample having dimensions of 210 mm × 300 mm × 3 mm was measured on the surface plate 30 by the following method. The measurement of the amount of warpage is set so that the scale is zero by applying the terminal 32a of the dial gauge 32 fixed to the movable stand 31 to the position of the center PO. Based on this value, slide toward the corner of the welded sample S. Stop at position P1 10mm before the corner and read the value at that time. Similarly, the other corners P2 to P4 are also measured. When the front side is finished, the back side measurement is started. When the measurement is completed, the surface is turned up, and it is put into a heat treatment furnace having a temperature distribution as shown in FIG. 5, and surface accuracy is measured after one time of feeding. Measure later surface accuracy. The wall thickness was measured at a point 50 mm before the corner. The results are shown in Table 2.

表2の結果から、熔着試料Sと非熔着試料との間に大きな差異は認められず、ソリ等の変化量も最大でも60μm(0.06mm)、平均では10μm(0.01mm)未満であり、実用上優れた値であった。   From the results in Table 2, there is no significant difference between the welded sample S and the non-welded sample, and the amount of change such as warpage is 60 μm (0.06 mm) at maximum, and the average is less than 10 μm (0.01 mm). It was a practically excellent value.

実際に熱処理用セッター1を使用して、その平板部1aの載置面1bに、長さ2300mm、幅2000mmのガラス基板Gを650℃の温度で熱処理したところ、大型のガラス基板Gに反りを生じさせず、高い平坦性を維持したまま問題なく熱処理することができた。その熱処理後、熱処理用セッター1の載置面1bから容易にガラス基板Gを取り出すこともできた。さらに、熱処理を連続的または断続的に繰り返して行っても熱処理用セッター1の伸縮が小さく、サーマル・ショック等で破損もしないので安定して長期間使用することができた。   When the glass substrate G having a length of 2300 mm and a width of 2000 mm was heat-treated at a temperature of 650 ° C. on the mounting surface 1 b of the flat plate portion 1 a using the heat treatment setter 1, the large glass substrate G was warped. It was possible to perform the heat treatment without problems while maintaining high flatness. After the heat treatment, the glass substrate G could be easily taken out from the placement surface 1b of the heat treatment setter 1. Further, even when the heat treatment was repeated continuously or intermittently, the heat treatment setter 1 did not expand and contract and was not damaged by a thermal shock or the like, so that it could be used stably for a long time.

上記の熱膨張係数は、Dilatoメーターによって測定した。透過率は分光光度計を用いて測定した。平坦度はJIS R3202に準拠して、表面粗さRaはJIS B0601に準拠して測定した。   The thermal expansion coefficient was measured with a Dilatometer. The transmittance was measured using a spectrophotometer. The flatness was measured according to JIS R3202, and the surface roughness Ra was measured according to JIS B0601.

Figure 2005061747
Figure 2005061747

Figure 2005061747
Figure 2005061747

本発明の熱処理用セッターの構造は、大型のフィールド・エミッション・ディスプレイ(FED)用基板等の熱処理にも適用可能であり、耐熱性が求められる大型の結晶化ガラス製の耐火窓等にも応用が可能である。   The structure of the setter for heat treatment of the present invention can be applied to heat treatment of a large field emission display (FED) substrate or the like, and can also be applied to a fireproof window made of large crystallized glass that requires heat resistance. Is possible.

本発明に係る結晶化ガラス製の熱処理用セッターの説明図であって、(A)は斜視図、(B)は平板部の載置面にはガラス基板との接触面に通じて空気を導入する貫通穴を設けた熱処理用セッターの断面図、(C)は凹溝を設けた熱処理用セッターの断面図。It is explanatory drawing of the setter for heat processing made from crystallized glass concerning this invention, Comprising: (A) is a perspective view, (B) introduces air through the contact surface with a glass substrate in the mounting surface of a flat plate part. Sectional drawing of the setter for heat processing which provided the through-hole to perform, (C) is sectional drawing of the setter for heat processing which provided the ditch | groove. 本発明に係る熱処理用セッターの製造方法の説明図であって、(A)は熔着装置で2枚のガラス板を用着する直前の説明図、(B)は2枚のガラス板をバーナー炎で熔着する説明図、(C)は(B)の側面図、(D)は熔着ガラス板の熔着部の両側を加熱して徐冷点以上に昇温して徐冷する説明図。It is explanatory drawing of the manufacturing method of the setter for heat processing which concerns on this invention, Comprising: (A) is explanatory drawing just before applying two glass plates with a welding apparatus, (B) is a burner with two glass plates. Explanatory view of welding with flame, (C) is a side view of (B), (D) is an explanation of heating both sides of the welded portion of the welded glass plate to raise the temperature above the annealing point and gradually cooling it. Figure. 本発明に係る熱処理用セッターの製造方法の説明図であって、(A)は結晶化炉内に、支持材を介して熔着ガラス板を支持し熔着結晶化ガラス板とする説明図、(B)は研削機で熔着結晶化ガラス板を加工して熱処理用セッターを作製する説明図。It is explanatory drawing of the manufacturing method of the setter for heat processing which concerns on this invention, Comprising: (A) is explanatory drawing which uses a support material as a welded crystallized glass plate in a crystallization furnace, (B) is explanatory drawing which processes the welding crystallized glass plate with a grinding machine, and produces the setter for heat processing. 熱処理用セッターに関する熱安定性試験での寸法評価方法の説明図。Explanatory drawing of the dimension evaluation method in the thermal stability test regarding the setter for heat processing. 熱処理用セッターに関する熱安定性試験での熱処理炉の温度分布の説明図。Explanatory drawing of the temperature distribution of the heat processing furnace in the thermal stability test regarding the setter for heat processing.

符号の説明Explanation of symbols

1 セッター
1a 平板部
1b 載置面
1c 端面
2、3 板状部材
4 接合部位
10 熔着装置
10a ベース
10b 固定台
10c 移動台
10d ガイドレール
11、12 バーナー
13、14 焼鈍バーナー
15 揺動アーム
16 駆動部
17 結晶化炉
18 支持材
19 研削機
20 ジェネレータ
21 砥石車
22、23 ガラス板
24 熔着部
25 熔着ガラス板
26 熔着結晶化ガラス板
30 定盤
31 移動スタンド
32 ダイヤルゲージ
G ガラス基板(被処理物)
S 熔着試料
DESCRIPTION OF SYMBOLS 1 Setter 1a Flat plate part 1b Placement surface 1c End surface 2, 3 Plate-shaped member 4 Joining part 10 Welding apparatus 10a Base 10b Fixed base 10c Moving base 10d Guide rail 11, 12 Burner 13, 14 Annealing burner 15 Swing arm 16 Drive Part 17 Crystallization furnace 18 Support material 19 Grinding machine 20 Generator 21 Grinding wheel 22, 23 Glass plate 24 Welding part 25 Welded glass plate 26 Welded crystallized glass plate 30 Surface plate 31 Moving stand 32 Dial gauge G Glass substrate ( Processed material)
S welding sample

Claims (10)

被処理物を平板部の載置面に載置した状態で熱処理炉内に導入される30〜750℃の温度範囲の熱膨張係数が−10×10-7〜15×10-7/Kの結晶化ガラス製の熱処理用セッターであって、平板部が複数枚の板状部材を平面状に熔着した構造であることを特徴とする熱処理用セッター。 The thermal expansion coefficient in the temperature range of 30 to 750 ° C. introduced into the heat treatment furnace in a state where the workpiece is placed on the placement surface of the flat plate portion is −10 × 10 −7 to 15 × 10 −7 / K. A heat-treating setter made of crystallized glass, wherein the flat plate portion has a structure in which a plurality of plate-like members are welded in a planar shape. 板状部材同士の接合部位に、板状部材と同じ結晶が略同じ割合で析出していることを特徴とする請求項1に記載の熱処理用セッター。   2. The heat-treating setter according to claim 1, wherein the same crystal as the plate-like member is precipitated at substantially the same ratio at the joint portion between the plate-like members. 板状部材の抗折強度に対して接合部位の抗折強度が70%以上であることを特徴とする請求項1または請求項2に記載の熱処理用セッター。   The setter for heat treatment according to claim 1 or 2, wherein the bending strength of the joint portion is 70% or more with respect to the bending strength of the plate-like member. 平板部の載置面の平坦度が0.3%以下であり、かつ載置面の表面粗さのRa値が0.1〜1μmであることを特徴とする請求項1から3の何れかに記載の熱処理用セッター。   4. The flatness of the mounting surface of the flat plate portion is 0.3% or less, and the Ra value of the surface roughness of the mounting surface is 0.1 to 1 [mu] m. The setter for heat treatment as described in 2. 被処理物を平板部の載置面に載置した状態で熱処理炉内に導入される結晶化ガラス製の熱処理用セッターの製造方法であって、複数枚のガラス板を平面状に保持してその接合される端面を対向配置し、該端面を加熱・軟化させ熔着して熔着ガラス板とし、該熔着ガラス板を熱処理して結晶化させて熔着結晶化ガラス板とし、該熔着結晶化ガラス板を所望の寸法精度に加工することを特徴とする熱処理用セッターの製造方法。   A method of manufacturing a setter for heat treatment made of crystallized glass introduced into a heat treatment furnace in a state where an object to be processed is placed on a placement surface of a flat plate portion, and holding a plurality of glass plates in a flat shape The end surfaces to be joined are arranged opposite to each other, and the end surfaces are heated and softened and welded to form a welded glass plate. The welded glass plate is heat-treated to crystallize to form a welded crystallized glass plate, A method for producing a setter for heat treatment, characterized by processing a crystallized glass plate with a desired dimensional accuracy. ガラス板の接合される端面を1300℃以上の所定の温度に加熱・軟化させて熔着し、20秒以内に冷却固化させて熔着ガラス板にすることを特徴とする請求項5に記載の熱処理用セッターの製造方法。   The end face to which the glass plate is joined is heated and softened to a predetermined temperature of 1300 ° C. or higher and welded, and cooled and solidified within 20 seconds to form a welded glass plate. A method of manufacturing a setter for heat treatment. 対向配置された複数枚のガラス板の端面を加熱・軟化させ熔着する際に、該ガラス板を回転させることを特徴とする請求項5または請求項6に記載の熱処理用セッターの製造方法。   The method for producing a heat-treating setter according to claim 5 or 6, wherein the glass plates are rotated when the end faces of the plurality of glass plates arranged opposite to each other are heated, softened and welded. 複数枚のガラス板の端面を加熱・軟化させ熔着して熔着ガラス板とし、該熔着ガラス板の熔着部の両側を加熱して徐冷点以上に昇温し、その後、歪点以下まで徐冷することを特徴とする請求項5から7の何れかに記載の熱処理用セッターの製造方法。   Heat and soften the end faces of a plurality of glass plates to form a fused glass plate, heat both sides of the welded portion of the fused glass plate to raise the temperature above the annealing point, and then strain The method for producing a setter for heat treatment according to any one of claims 5 to 7, wherein the setter is gradually cooled to the following. 複数枚のガラス板の端面を尖らせた後、該端面を加熱・軟化させ熔着して熔着ガラス板とすることを特徴とする請求項5から8の何れかに記載の熱処理用セッターの製造方法。   The setter for heat treatment according to any one of claims 5 to 8, wherein after sharpening the end surfaces of the plurality of glass plates, the end surfaces are heated and softened and welded to form a welded glass plate. Production method. ガラス板の接合される端面を浄化した後、該端面を加熱・軟化させ熔着して熔着ガラス板とすることを特徴とする請求項5から9の何れかに記載の熱処理用セッターの製造方法。   10. The heat-treating setter according to claim 5, wherein after the end face to which the glass plate is bonded is purified, the end face is heated and softened and welded to obtain a welded glass plate. Method.
JP2003294566A 2003-08-18 2003-08-18 Heat-treating setter and its manufacturing method Withdrawn JP2005061747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003294566A JP2005061747A (en) 2003-08-18 2003-08-18 Heat-treating setter and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003294566A JP2005061747A (en) 2003-08-18 2003-08-18 Heat-treating setter and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005061747A true JP2005061747A (en) 2005-03-10

Family

ID=34371097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003294566A Withdrawn JP2005061747A (en) 2003-08-18 2003-08-18 Heat-treating setter and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005061747A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007364A (en) * 2006-06-28 2008-01-17 Nippon Electric Glass Co Ltd Glass substrate for flat panel display and its manufacturing method
US7411346B2 (en) * 2004-08-03 2008-08-12 Samsung Sdi Co., Ltd. Plasma display panel having multiple substrate parts
DE102008023826A1 (en) 2008-05-08 2009-11-12 Schott Ag Method for joining components made of glass or glass ceramic
WO2016068069A1 (en) * 2014-10-30 2016-05-06 日本電気硝子株式会社 Glass base plate heat processing method and glass base plate production method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7411346B2 (en) * 2004-08-03 2008-08-12 Samsung Sdi Co., Ltd. Plasma display panel having multiple substrate parts
JP2008007364A (en) * 2006-06-28 2008-01-17 Nippon Electric Glass Co Ltd Glass substrate for flat panel display and its manufacturing method
DE102008023826A1 (en) 2008-05-08 2009-11-12 Schott Ag Method for joining components made of glass or glass ceramic
US8293059B2 (en) 2008-05-08 2012-10-23 Schott Ag Method for generating a glass ceramic composite structure
WO2016068069A1 (en) * 2014-10-30 2016-05-06 日本電気硝子株式会社 Glass base plate heat processing method and glass base plate production method

Similar Documents

Publication Publication Date Title
JP6526090B2 (en) Apparatus and method for forming a bend in thin glass sheet without slack
EP2766315B1 (en) Reshaping thin glass sheets
JP2006008488A (en) Setter for heat treatment, method of manufacturing the same and method of heat-treating glass substrate
JP2003308792A (en) Plate glass for flat display device
JP2005061747A (en) Heat-treating setter and its manufacturing method
JP2008254962A (en) Flattening treatment method for setter
JP2002114537A (en) Setter for heat treatment of glass substrate
JP5449645B2 (en) A method of manufacturing a silicon plate for heat treatment.
JP2009137788A (en) Glass substrate for flat panel
JP2009298697A (en) Setter for heat treatment of glass substrate
JP6082434B2 (en) Glass substrate manufacturing method and glass substrate
JP2003181826A (en) Apparatus for dividing and method for dividing
JP6860831B2 (en) Disc-shaped glass and its manufacturing method
WO2014050826A1 (en) Glass-melting method, process for manufacturing glass substrate and glass-melting apparatus
JP2006008486A (en) Setter for heat treatment, method of manufacturing the same and method of heat-treating glass substrate
KR20170116613A (en) Bonding method for quartz glass
JP2016011232A (en) Manufacturing method of glass substrate
JP6403458B2 (en) Manufacturing method of glass substrate
JP2006124192A (en) Method for processing glass by laser beam irradiation and method for manufacturing glass substrate
KR20210056707A (en) The Bonding Method For The Glass Celamic Plate
JPH1081571A (en) Production of setter for thermally treating large substrate
JPH0388776A (en) Production of ceramics base plate
KR20210056705A (en) The Bonding Method For The Glass Ceramic
JP2008030977A (en) Setter for heat treatment of glass substrate and method for manufacturing the same
JP2016124746A (en) Production method of glass substrate, and production apparatus of glass substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060602

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090302