JP2005061691A - Heat exchanging element - Google Patents

Heat exchanging element Download PDF

Info

Publication number
JP2005061691A
JP2005061691A JP2003290776A JP2003290776A JP2005061691A JP 2005061691 A JP2005061691 A JP 2005061691A JP 2003290776 A JP2003290776 A JP 2003290776A JP 2003290776 A JP2003290776 A JP 2003290776A JP 2005061691 A JP2005061691 A JP 2005061691A
Authority
JP
Japan
Prior art keywords
air
cooling
heat exchange
elements
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003290776A
Other languages
Japanese (ja)
Other versions
JP4289071B2 (en
Inventor
Yoshihisa Sueoka
敬久 末岡
Akira Jinno
亮 神野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2003290776A priority Critical patent/JP4289071B2/en
Publication of JP2005061691A publication Critical patent/JP2005061691A/en
Application granted granted Critical
Publication of JP4289071B2 publication Critical patent/JP4289071B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0081Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by a single plate-like element ; the conduits for one heat-exchange medium being integrated in one single plate-like element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/02Fastening; Joining by using bonding materials; by embedding elements in particular materials
    • F28F2275/025Fastening; Joining by using bonding materials; by embedding elements in particular materials by using adhesives

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve heat exchanging efficiency by reducing pressure loss in a flow-in opening when air flows into an inside air passage, in regards to a heat exchanging element formed by laminating flat rectangular first elements 11 respectively formed with a passage 16 for the first air Aa and flat rectangular second elements 20 respectively formed with a passage 24 for the second air Ab each other and formed with air flow-in/out openings 17, 18, etc. in a pair of opposite side surfaces of each of the first elements 11 and in a pair of opposite side surfaces of each of the second elements 20 so that the first air Aa and the second air Ab flow in directions crossing each other. <P>SOLUTION: In each of the cooling elements 20, a laminate part 43 for guiding the cooling air Ab to the second flow-in opening 25 is formed in a side surface of the humidity adjusting element 11 on a side provided with a first flow-in opening 17 for the humidity adjusting air Aa. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、熱交換素子に関し、特に空気通路の圧力損失対策に係るものである。   The present invention relates to a heat exchange element, and particularly relates to measures against pressure loss in an air passage.

従来より、換気装置などの各種の空気調和装置には、第1空気と第2空気とを熱交換させる熱交換素子を備えたものがある(例えば、特許文献1参照)。   Conventionally, various air conditioners such as a ventilator include a heat exchange element that exchanges heat between the first air and the second air (see, for example, Patent Document 1).

上記熱交換素子(110)は、図10に示すように、第1空気(Aa)の通路が形成された扁平な矩形状の複数の第1の要素(111)と第2空気(Ab)の通路が形成された扁平な矩形状の複数の第2の要素(120)とが交互に積層され、第1空気(Aa)及び第2空気(Ab)が交差する方向に流れるように、各第1の要素(111)の対向する一対の側面と各第2の要素(120)の対向する一対の側面とにそれぞれ空気流出入用の開口(117,125,…)が形成されている。   As shown in FIG. 10, the heat exchange element (110) includes a plurality of flat rectangular first elements (111) in which a passage for the first air (Aa) is formed and the second air (Ab). A plurality of flat rectangular second elements (120) formed with passages are alternately stacked so that the first air (Aa) and the second air (Ab) flow in directions intersecting each other. Air inflow / outflow openings (117, 125,...) Are respectively formed on a pair of opposing side surfaces of one element (111) and a pair of opposing side surfaces of each second element (120).

特開平9−133386号公報JP-A-9-133386

ところで、従来の熱交換素子(110)では、その第1空気(Aa)の流入側側面(131)において、約半分の面積を各第1の要素(111)の開口(117)が占め、残る半分を該開口(117)に隣り合う第2の要素の両側側面(127)が占めている。この側面(127)が単に切断したままの平坦面に形成されているため、第1空気(Aa)の多くは第2の要素(120)の両側側面(127)に衝突するので、その流れを阻害されてしまう。また、熱交換素子(110)における第2空気(Ab)の流入側側面(133)において、約半分の面積を各第2の要素(120)の開口(125)が占め、残る半分を該開口(125)に隣り合う第1の要素(111)の両側側面(140)が占めている。この側面(140)も単に切断したままの平坦面に形成されているため、上記第2空気(Ab)の多くも第1の要素(111)の両側側面(140)に衝突するので、その流れを阻害されてしまう。   By the way, in the conventional heat exchange element (110), the opening (117) of each first element (111) occupies about half the area on the inflow side surface (131) of the first air (Aa) and remains. Half occupies the sides (127) of the second element adjacent to the opening (117). Since this side surface (127) is formed into a flat surface that is simply cut, most of the first air (Aa) collides with both side surfaces (127) of the second element (120). It will be disturbed. In addition, on the inflow side surface (133) of the second air (Ab) in the heat exchange element (110), about half the area is occupied by the opening (125) of each second element (120), and the remaining half is the opening. Both side surfaces (140) of the first element (111) adjacent to (125) occupy. Since this side surface (140) is also formed as a flat surface that is simply cut, most of the second air (Ab) also collides with both side surfaces (140) of the first element (111). Will be disturbed.

したがって、従来の熱交換素子(110)において、第1空気(Aa)及び第2空気(Ab)の流入用開口(117,125)における圧力損失が大きく、その機能を損ねるという問題があった。   Therefore, in the conventional heat exchange element (110), there is a problem that the pressure loss at the inflow openings (117, 125) for the first air (Aa) and the second air (Ab) is large and the function thereof is impaired.

特に、図11に示すように、第2の要素(120)の開口(125)側の第1の要素(111)の両側側面(140)に空気漏れを防止するためのシリコンゴム(142)を充填したような場合には、第2空気(Ab)の流入用開口(125)における圧力損失が顕著となる。すなわち、シリコンゴム(142)の充填時の圧力によって第2の要素(120)の端面板(121)が変形して上記開口(125)が狭められると、シリコンゴム(142)に衝突する第2空気(Ab)の割合が高くなり、その通路の流入用開口(125)における圧力損失が大きくなるという問題がある。   In particular, as shown in FIG. 11, silicon rubber (142) for preventing air leakage is provided on both side surfaces (140) of the first element (111) on the opening (125) side of the second element (120). In such a case, the pressure loss in the inflow opening (125) for the second air (Ab) becomes significant. That is, when the end face plate (121) of the second element (120) is deformed by the pressure at the time of filling the silicon rubber (142) and the opening (125) is narrowed, the second collision with the silicon rubber (142) occurs. There is a problem that the ratio of air (Ab) increases, and the pressure loss in the inflow opening (125) of the passage increases.

本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、内部の空気通路に流入するときの流入用開口における圧力損失を軽減して熱交換率を向上させることにある。   The present invention has been made in view of such points, and an object of the present invention is to reduce the pressure loss in the inflow opening when flowing into the internal air passage and to improve the heat exchange rate. .

上記の目的を達成するために、請求項1の発明では、第1空気(Aa)の通路(16)が形成された扁平な矩形状の第1の要素(11)と第2空気(Ab)の通路(24)が形成された扁平な矩形状の第2の要素(20)とが交互に積層され、上記第1空気(Aa)及び第2空気(Ab)が交差する方向に流れるように、各第1の要素(11)の対向する一対の側面と各第2の要素(20)の対向する一対の側面とにそれぞれ空気流出入用の開口(17,18,…)が形成された熱交換素子を対象とする。   In order to achieve the above object, according to the first aspect of the present invention, a flat rectangular first element (11) having a passage (16) for the first air (Aa) and the second air (Ab) are formed. The flat rectangular second elements (20) in which the passages (24) are formed are alternately stacked so that the first air (Aa) and the second air (Ab) flow in a crossing direction. In addition, air inflow / outflow openings (17, 18,...) Are formed on a pair of opposing side surfaces of each first element (11) and a pair of opposing side surfaces of each second element (20). Intended for heat exchange elements.

そして、上記各第2の要素(20)における第1の要素(11)の第1空気(Aa)流入用の開口(17)側の側面と上記各第1の要素(11)における第2の要素(20)の第2空気(Ab)流入用の開口(25)側の側面とのうち少なくとも一方の側面には、空気を隣り合う空気流入用の開口(17,25)に誘導するためのガイド手段(43)が形成されている。   Then, the side surface of the first element (11) on the first air (Aa) inflow opening (17) side of the second element (20) and the second side of the first element (11) At least one side surface of the element (20) on the side of the second air (Ab) inflow opening (25) side is for guiding air to the adjacent air inflow opening (17, 25). Guide means (43) is formed.

上記の構成によると、第1空気(Aa)は、各第1の要素(11)の対向する一対の側面の一方に設けられた第1空気(Aa)の流入用開口(17)から通路(16)内に流入し、他方の流出用開口(18)から流出する。第2空気(Ab)は、各第2の要素(20)の対向する一対の側面の一方に設けられた第2空気(Ab)の流入用開口(25)から通路(24)内に流入して上記第1空気(Aa)と交差する方向に流れ、他方の流出用開口(26)から流出する。このとき、第1空気(Aa)と第2空気(Ab)との間で熱交換が行われる。   According to said structure, 1st air (Aa) is a channel | path from the inflow opening (17) of 1st air (Aa) provided in one of a pair of side surface which each 1st element (11) opposes. 16) flows in and flows out from the other outlet opening (18). The second air (Ab) flows into the passage (24) from the inflow opening (25) for the second air (Ab) provided on one of a pair of opposing side surfaces of each second element (20). It flows in the direction intersecting the first air (Aa) and flows out from the other outlet opening (26). At this time, heat exchange is performed between the first air (Aa) and the second air (Ab).

上記各第2の要素(20)における第1の要素(11)の第1空気(Aa)の流入用開口(17)側の側面にガイド手段(43)が形成されているときには、このガイド手段(43)によって第1空気(Aa)が第1空気(Aa)の流入用開口(17)に誘導される。上記各第1の要素(11)における第2の要素(20)の第2空気(Ab)の流入用開口(25)側の側面にガイド手段(43)が形成されているときには、このガイド手段(43)によって第2空気(Ab)が第2空気(Ab)の流入用開口(25)に誘導される。いずれの場合においても、空気がガイド手段(43)によって滑らかに流入用開口(25)に誘導されるので、各要素(11,20)内部の空気通路(16,24)に流入するときの流入用開口(17,25)における圧力損失が軽減される。   When the guide means (43) is formed on the side surface of the first element (11) on the side of the inflow opening (17) of the first air (Aa) in each of the second elements (20), the guide means (43) is formed. The first air (Aa) is guided to the inflow opening (17) for the first air (Aa) by (43). When the guide means (43) is formed on the side surface of the second element (20) on the side of the opening (25) for the second air (Ab) of each first element (11), the guide means (43) is formed. The second air (Ab) is guided to the inflow opening (25) for the second air (Ab) by (43). In any case, since air is smoothly guided to the inflow opening (25) by the guide means (43), the inflow when flowing into the air passage (16, 24) inside each element (11, 20) Pressure loss at the service opening (17, 25) is reduced.

請求項2の発明では、上記各第1要素(11)又は各第2の要素(20)の少なくとも一方は、2枚の平板(12)とこの平板(12)の間に設けられた波板(13)とを備え、上記ガイド手段(43)は、2枚の平板(12)の間を袋状に閉じられ、断面三角形状のガイド片(44)と、このガイド片(44)の先端から突出する突出片(45)とを備え、上記開口(17,25)よりも外側に位置するように構成されている。   In the invention of claim 2, at least one of the first element (11) or the second element (20) is a corrugated plate provided between two flat plates (12) and the flat plate (12). (13), the guide means (43) is closed in a bag shape between the two flat plates (12), and has a triangular cross-section guide piece (44) and the tip of the guide piece (44). And a protruding piece (45) protruding from the opening (17, 25).

上記の構成によると、ガイド片(44)と突出片(45)とが空気の流入用開口(17,25)よりも外側に位置しているので、空気は、突出片(45)によって分岐されると共に、ガイド片(44)のテーパ面によってガイドされた後、滑らかに開口(17,25)に流入することができる。また、平板(12)が袋状に閉じられているので、その側面から空気が出入りするのを防止することができる。   According to the above configuration, since the guide piece (44) and the protruding piece (45) are located outside the air inflow opening (17, 25), the air is branched by the protruding piece (45). In addition, after being guided by the tapered surface of the guide piece (44), it can smoothly flow into the openings (17, 25). Moreover, since the flat plate (12) is closed in a bag shape, air can be prevented from entering and exiting from the side surface.

請求項3の発明では、上記ガイド手段(43)は、上記開口(17,25)よりも外側に突出し、かつテーパ面を有する別部材のガイド部材が設けられて構成されている。   According to a third aspect of the present invention, the guide means (43) includes a separate guide member that protrudes outward from the opening (17, 25) and has a tapered surface.

上記の構成によると、別部材であるガイド部材を開口(17,25)よりも外側に突出するように設け、空気をテーパ面に沿って誘導することにより、空気が滑らかに流入用開口(17,25)に誘導される。   According to said structure, the guide member which is another member is provided so that it may protrude outside opening (17,25), and air is guide | induced along a taper surface, the opening for air inflow (17 , 25).

請求項4の発明では、上記ガイド手段(43)の突出片(45)は、各要素(11,20)の厚さ方向中央部に位置している。   In the invention of claim 4, the projecting piece (45) of the guide means (43) is located at the center in the thickness direction of each element (11, 20).

上記の構成によると、流入してきた空気が突出片(45)によって均等に分岐されて流入用開口(17,25)に誘導されるので、流入用開口(17,25)における圧力損失が更に軽減される。   According to the above configuration, the inflowing air is evenly branched by the projecting piece (45) and guided to the inflow opening (17, 25), so the pressure loss at the inflow opening (17, 25) is further reduced. Is done.

請求項5の発明では、上記ガイド手段(43)は、上記2枚の平板(12)が互いに溶着されて構成されている。   In the invention of claim 5, the guide means (43) is constituted by welding the two flat plates (12) to each other.

上記の構成によると、2枚の平板(12)を、例えば、熱溶着法又は超音波溶着法等によって溶着することができるので、溶着の自動化を行うことができ、その製造が容易である。   According to the above configuration, the two flat plates (12) can be welded by, for example, a thermal welding method or an ultrasonic welding method, so that the welding can be automated and the manufacture thereof is easy.

請求項6の発明では、上記各第1の要素(11)の平板(12)と波板(13)とは多孔質基材(14)によって構成され、この多孔質基材(14)には、吸着剤が担持されており、上記各第1の要素(11)に上記ガイド手段(43)が設けられている。   In the invention of claim 6, the flat plate (12) and the corrugated plate (13) of each of the first elements (11) are constituted by a porous base material (14), and the porous base material (14) The adsorbent is supported, and the first element (11) is provided with the guide means (43).

上記の構成によると、多孔質基材(14)は内部に空間を多量に有しているので、第1空気(Aa)の通路(16)を狭めることなく多くの吸着剤を担持させることができる。一方、多孔質基材(14)は空気を通し易いために空気が漏れ易いが、本発明では、各第1の要素(11)の側面にガイド手段(43)が形成されているので、多孔質基材(14)を通過して第1空気(Aa)と第2空気(Ab)とが混ざり合うことはない。   According to the above configuration, the porous base material (14) has a large amount of space inside, so that a large amount of adsorbent can be supported without narrowing the passage (16) of the first air (Aa). it can. On the other hand, since the porous base material (14) easily allows air to pass therethrough, air easily leaks out. However, in the present invention, since the guide means (43) is formed on the side surface of each first element (11), The first air (Aa) and the second air (Ab) do not mix through the porous base material (14).

そして、第1空気(Aa)は、第1の要素(11)内を流れる間にその水蒸気が平板(12)及び波板(13)の多孔質基材(14)に担持された吸着剤に吸着除去され、除湿される。このとき、第1の要素(11)内では、吸着熱が発生する。第2空気(Ab)は、第1の要素(11)のガイド手段(43)によって、その流入用開口(25)に滑らかにガイドされるので、この第2空気(Ab)が第2の要素(20)を流れる間に上記吸着熱を効果的に奪うことができる。   The first air (Aa) is adsorbed on the adsorbent in which the water vapor is carried on the porous substrate (14) of the flat plate (12) and the corrugated plate (13) while flowing in the first element (11). Removed by adsorption and dehumidified. At this time, heat of adsorption is generated in the first element (11). Since the second air (Ab) is smoothly guided to the inflow opening (25) by the guide means (43) of the first element (11), the second air (Ab) is the second element (11). The heat of adsorption can be effectively removed while flowing through (20).

請求項7の発明では、上記ガイド手段(43)側の空気流入用の開口(17,25)の側面は内側に向かって切り込まれている。   In the invention of claim 7, the side surface of the air inflow opening (17, 25) on the guide means (43) side is cut inward.

上記の構成によると、ガイド手段(43)側の空気流入用の開口(17,25)の側面を内側に向かって切り込んでいるので、ガイド手段(43)を熱交換素子の側面(31,33)から突出させなくても、上記開口(17,25)よりも外側に位置するように構成することができる。   According to the above configuration, since the side surface of the air inflow opening (17, 25) on the guide means (43) side is cut inward, the guide means (43) is connected to the side surface (31, 33) of the heat exchange element. ) Without projecting from the opening (17, 25).

以上説明したように、請求項1の発明の熱交換素子では、各第2の要素(20)における第1の要素(11)の第1空気(Aa)流入用の開口(17)側の側面と各第1の要素(11)における第2の要素(20)の第2空気(Ab)流入用の開口(25)側の側面とのうち少なくとも一方の側面に、空気を隣り合う開口(17,25)に誘導するためのガイド手段(43)を形成している。このため、各要素(11,20)内部の空気通路(16,24)に流入するときの流入用開口(17,25)における圧力損失が軽減されるので、従来の熱交換素子に比べて熱交換率を向上させることができる。   As described above, in the heat exchange element according to the first aspect of the present invention, the side surface of the first element (11) on the first air (Aa) inflow opening (17) side of each second element (20). And at least one side surface of the first element (11) and the side surface of the second element (20) on the second air (Ab) inflow opening (25) side adjacent to the opening (17 , 25), guide means (43) are formed for guiding. For this reason, the pressure loss at the inflow opening (17, 25) when flowing into the air passage (16, 24) inside each element (11, 20) is reduced, so that heat is higher than that of the conventional heat exchange element. The exchange rate can be improved.

請求項2の発明では、ガイド手段(43)を2枚の平板(12)を袋状に閉じてガイド片(44)と突出片(45)とを上記開口(17,25)よりも外側に位置するように形成している。このため、空気が滑らかに開口(17,25)に流入し、熱交換率を向上させることができる。   In the invention of claim 2, the guide means (43) is formed by closing the two flat plates (12) in a bag shape, and the guide piece (44) and the protruding piece (45) are located outside the opening (17, 25). It is formed to be located. For this reason, air can smoothly flow into the openings (17, 25), and the heat exchange rate can be improved.

請求項3の発明では、開口(17,25)よりも外側に突出し、かつテーパ面を有する別部材のガイド部材を設けている。つまり、別部材のガイド手段(43)を設けることによっても同様の作用効果が得られる。   According to the third aspect of the present invention, there is provided a separate guide member that projects outward from the opening (17, 25) and has a tapered surface. That is, the same effect can be obtained by providing the guide means (43) as another member.

請求項4の発明では、ガイド手段(43)の突出片(45)を各要素(11,20)の厚さ方向中央部に位置付けている。このため、流入用開口(17,25)での圧力損失が更に軽減され、熱交換率を向上させることができる。   In the invention of claim 4, the projecting piece (45) of the guide means (43) is positioned at the center in the thickness direction of each element (11, 20). For this reason, the pressure loss in the inflow opening (17, 25) is further reduced, and the heat exchange rate can be improved.

請求項5の発明では、2枚の平板(12)を互いに溶着させてガイド手段(43)を構成している。このため、その製造が容易となり、製造コストが軽減される。   In the invention of claim 5, the guide means (43) is constituted by welding two flat plates (12) to each other. For this reason, the manufacture becomes easy and the manufacturing cost is reduced.

請求項6の発明では、各第1の要素(11)における平板(12)及び波板(13)の多孔質基材(14)に吸着剤を担持し、かつ各第1の要素(11)にガイド手段(43)を設けている。このため、第2空気(Ab)が第1の要素(11)で発生した吸着熱を効果的に奪うことができるので、調湿機能を向上させることができる。   In invention of Claim 6, adsorbent is carry | supported by the porous base material (14) of the flat plate (12) and corrugated sheet (13) in each 1st element (11), and each 1st element (11) Is provided with guide means (43). For this reason, since the second air (Ab) can effectively take away the heat of adsorption generated in the first element (11), the humidity control function can be improved.

請求項7の発明では、ガイド手段(43)側の空気流入用の開口(17,25)の側面を内側に向かって切り込んでいる。このため、熱交換素子の省スペース化を図ることができる。   In the invention of claim 7, the side surface of the air inflow opening (17, 25) on the guide means (43) side is cut inward. For this reason, space saving of a heat exchange element can be achieved.

以下、本発明の実施形態を図面に基づいて説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物や用途の範囲を制限することを意図するものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the following embodiment is an essentially preferable illustration, Comprising: It does not intend restrict | limiting the range of this invention, its application thing, or a use.

図1及び図2に示すように、本実施形態では、熱交換素子は冷却吸着素子(10)で構成されている。この冷却吸着素子(10)は、例えば、調湿装置等に用いられ、複数の調湿要素(11)と複数の冷却要素(20)とを交互に積層して形成されている。   As shown in FIG.1 and FIG.2, in this embodiment, the heat exchange element is comprised with the cooling adsorption element (10). The cooling adsorption element (10) is used, for example, in a humidity control device or the like, and is formed by alternately stacking a plurality of humidity control elements (11) and a plurality of cooling elements (20).

上記冷却吸着素子(10)は、冷却要素(20)を通る冷却用空気(Ab)が調湿要素(11)を冷却しつつ該調湿要素(11)が調湿用空気(Aa)の水蒸気を吸着し、該調湿用空気(Aa)を除湿するように構成されている。上記調湿要素(11)が第1の要素を構成し、冷却要素(20)が第2の要素を構成している。また、上記調湿用空気(Aa)が第1空気を構成し、冷却用空気(Ab)が第2空気を構成している。   The cooling adsorbing element (10) is configured such that the cooling air (Ab) passing through the cooling element (20) cools the humidity adjusting element (11), and the humidity adjusting element (11) is water vapor of the humidity adjusting air (Aa). Is adsorbed to dehumidify the air for conditioning (Aa). The humidity control element (11) constitutes a first element, and the cooling element (20) constitutes a second element. The humidity adjusting air (Aa) constitutes the first air, and the cooling air (Ab) constitutes the second air.

上記各調湿要素(11)及び各冷却要素(20)は、それぞれ扁平な矩形状に形成されている。具体的には、薄い正方形の直方体に形成され、冷却吸着素子(10)が全体として積層方向に長い直方体に形成されている。図3に示すように、この直方体の4つの角部には、枠体(35)がそれぞれ設けられて、冷却吸着素子(10)の各要素(11,20)が固定されている。   Each said humidity control element (11) and each cooling element (20) are each formed in the flat rectangular shape. Specifically, it is formed in a thin square rectangular parallelepiped, and the cooling adsorption element (10) is formed in a rectangular parallelepiped that is long in the stacking direction as a whole. As shown in FIG. 3, a frame (35) is provided at each of the four corners of the rectangular parallelepiped, and the elements (11, 20) of the cooling adsorption element (10) are fixed.

図4にも示すように、上記各調湿要素(11)は、2枚の平板(12)と、該2枚の平板(12)の間に設けた波板(13)とで構成されている。上記2枚の平板(12)及び波板(13)は、それぞれシート状の多孔質基材(14)からなり、例えば、ガラス繊維紙、難燃紙及び不織布のうちのいずれか1つからなる。そして、上記2枚の平板(12)の多孔質基材(14)の内側の表面及び波板(13)の多孔質基材(14)の両表面には、水蒸気を吸着するための吸着剤が担持されている。この吸着剤としては、例えば、シリカゲル、ゼオライト、イオン交換樹脂等が用いられている。   As shown in FIG. 4, each humidity control element (11) is composed of two flat plates (12) and a corrugated plate (13) provided between the two flat plates (12). Yes. The two flat plates (12) and corrugated plates (13) are each made of a sheet-like porous base material (14), for example, any one of glass fiber paper, flame retardant paper, and nonwoven fabric. . An adsorbent for adsorbing water vapor on the inner surface of the porous substrate (14) of the two flat plates (12) and the both surfaces of the porous substrate (14) of the corrugated plate (13). Is carried. As this adsorbent, for example, silica gel, zeolite, ion exchange resin or the like is used.

図5に示すように、上記各調湿要素(11)の各平板(12)における隣接する冷却要素(20)に対向する面には、空気を通さないアルミ箔(15)が設けられている。具体的には、各平板(12)の多孔質基材(14)の外面に熱可塑性樹脂(19)を介してアルミ箔(15)が貼り付けられている。この熱可塑性樹脂(19)には、ポリエチレン、EVA(エチレンと酢酸ビニルの共重合体)、ポリプロピレン等が用いられる。   As shown in FIG. 5, an aluminum foil (15) that does not allow air to pass is provided on the surface of each flat plate (12) of each humidity control element (11) facing the adjacent cooling element (20). . Specifically, the aluminum foil (15) is bonded to the outer surface of the porous base material (14) of each flat plate (12) via a thermoplastic resin (19). For this thermoplastic resin (19), polyethylene, EVA (copolymer of ethylene and vinyl acetate), polypropylene or the like is used.

図1に示すように、上記調湿要素(11)は、厚さ方向の両側面が平行になるように2つの平板(12)が平行に形成され、全体に均一厚さに形成されている。また、上記調湿要素(11)は、波板(13)の稜線方向が調湿用空気(Aa)が流れる調湿通路(16)に形成され、波板(13)の稜線方向の両端の開口が調湿用空気(Aa)の第1流入口(17)と第1流出口(18)とに構成されている。つまり、上記調湿要素(11)は、1つの側面が調湿用空気(Aa)の第1流入口(17)に形成され、該第1流入口(17)と対向する他の側面が調湿用空気(Aa)の第1流出口(18)に形成されている。   As shown in FIG. 1, the humidity control element (11) has two flat plates (12) formed in parallel so that both side surfaces in the thickness direction are parallel to each other, and is formed to have a uniform thickness as a whole. . In addition, the humidity control element (11) is formed in the humidity control passage (16) in which the ridge line direction of the corrugated plate (13) flows through the humidity control air (Aa), and the ridge line direction of the corrugated plate (13) Openings are formed in the first inflow port (17) and the first outflow port (18) of the humidity control air (Aa). That is, the humidity control element (11) has one side surface formed at the first inlet (17) of the humidity control air (Aa) and the other side facing the first inlet (17). It is formed at the first outlet (18) of the humid air (Aa).

一方、図6に示すように、上記各冷却要素(20)は、厚さ方向の両側面が平行になるように2つの端面板(21)が平行に形成され、全体に均一厚さに形成されている。2枚の平行な端面板(21)には、複数のガイド板(22)が設けられている。   On the other hand, as shown in FIG. 6, each cooling element (20) has two end face plates (21) formed in parallel so that both side surfaces in the thickness direction are parallel to each other. Has been. A plurality of guide plates (22) are provided on the two parallel end face plates (21).

上記冷却要素(20)における開口のある両側面には、上記ガイド板(22)の延びる方向に向かって内側に切り欠かれた切欠部(27)がそれぞれ形成されている。冷却要素(20)は、プラスチック段ボールなどの合成樹脂で構成され、打ち抜き法等によって製作されている。なお、冷却吸着素子(10)では、上記冷却要素(20)の切欠部(27)が設けられた側面の切欠部(27)以外の部分は上記枠体(35)に覆われていて、この部分には、冷却用空気(Ab)は流れない。   On both side surfaces of the cooling element (20) having openings, cutout portions (27) cut out inward in the extending direction of the guide plate (22) are formed. The cooling element (20) is made of a synthetic resin such as plastic corrugated cardboard, and is manufactured by a punching method or the like. The cooling adsorption element (10) is covered with the frame (35) except for the side notch (27) provided with the notch (27) of the cooling element (20). Cooling air (Ab) does not flow through the part.

上記ガイド板(22)は、両端面板(21)に亘って形成されかつ両端面板(21)に垂直に連続しており、冷却用空気(Ab)の流れる方向に延びている。そして、上記2枚の端面板(21)及びガイド板(22)には、吸着剤が塗布されておらず、単に冷却用空気(Ab)が流れるように形成されている。上記ガイド板(22)は、2枚の平板(21)の間隙を保持するために設けられている。   The guide plate (22) is formed across the both end surface plates (21) and is continuous to the both end surface plates (21) perpendicularly, and extends in the direction in which the cooling air (Ab) flows. And the adsorbent is not applied to the two end face plates (21) and the guide plate (22), and the cooling air (Ab) is simply formed to flow therethrough. The guide plate (22) is provided to maintain a gap between the two flat plates (21).

上記冷却要素(20)は、ガイド板(22)の延びる方向が冷却通路(24)に形成され、ガイド板(22)の延びる方向の両端が冷却用空気(Ab)の第2流入口(25)と第2流出口(26)とに構成されている。つまり、上記冷却要素(20)は、1つの側面が冷却用空気(Ab)の第2流入口(25)に形成され、該第2流入口(25)と対向する他の側面が冷却用空気(Ab)の第2流出口(26)に形成されている。   In the cooling element (20), the extending direction of the guide plate (22) is formed in the cooling passage (24), and both ends of the extending direction of the guide plate (22) are the second inlets (25) of the cooling air (Ab). ) And the second outlet (26). That is, the cooling element (20) has one side surface formed at the second inlet (25) of the cooling air (Ab), and the other side facing the second inlet (25) is the cooling air. It is formed at the second outlet (26) of (Ab).

そして、図1及び図2に示すように、上記調湿要素(11)の平板(12)と冷却要素(20)の平板(21)とが接着剤などで密着されて積層された直方体の冷却吸着素子(10)に構成されている。この冷却吸着素子(10)の4側面のうち、調湿用空気(Aa)の第1流入口(17)の並んだ側面が調湿側流入側面(31)となり、調湿用空気(Aa)の第1流出口(18)の並んだ側面が調湿側流出側面(32)となる。更に、上記冷却吸着素子(10)の残り2側面のうち、冷却要素(20)における冷却用空気(Ab)の第2流入口(25)の並んだ側面が冷却側流入側面(33)となり、冷却用空気(Ab)の第2流出口(26)の並んだ側面が冷却側流出側面(34)となる。このようにして、冷却吸着素子(10)内に調湿用空気(Aa)及び冷却用空気(Ab)が直交する方向に流れるように構成されている。   Then, as shown in FIGS. 1 and 2, cooling of the rectangular parallelepiped in which the flat plate (12) of the humidity control element (11) and the flat plate (21) of the cooling element (20) are adhered and laminated with an adhesive or the like. It is comprised by the adsorption | suction element (10). Of the four side surfaces of the cooling adsorption element (10), the side surface where the first inlet (17) of the humidity control air (Aa) is arranged becomes the humidity control side inflow side surface (31), and the humidity control air (Aa) The side surface in which the first outlets (18) are lined up becomes the humidity-control-side outflow side surface (32). Furthermore, of the remaining two side surfaces of the cooling adsorption element (10), the side surface where the second inlets (25) of the cooling air (Ab) in the cooling element (20) are arranged becomes the cooling side inflow side surface (33), The side surface where the second outflow ports (26) of the cooling air (Ab) are arranged becomes the cooling side outflow side surface (34). In this manner, the humidity adjusting air (Aa) and the cooling air (Ab) are configured to flow in the orthogonal directions in the cooling adsorption element (10).

上記冷却吸着素子(10)において、上記各調湿要素(11)における上記冷却側流入側面(33)及び冷却側流出側面(34)側の側面は、全長に亘ってガイド手段としてのラミネート部(43)が設けられている。   In the cooling adsorbing element (10), the side surfaces on the cooling side inflow side surface (33) and the cooling side outflow side surface (34) side of the humidity control elements (11) are laminated portions as guide means over the entire length ( 43) is provided.

すなわち、図1及び図7に示すように、上記各調湿要素(11)のラミネート部(43)は、2枚の平板(12)の間を袋状に閉じるように構成されている。具体的に、上記ラミネート部(43)は、各調湿要素(11)の厚さ方向中央部で上記2枚の平板(12)の端部を密着して形成され、断面三角形状のガイド片(44)と、該ガイド片(44)の先端から突出するよう平板(12)が重合された突出片(45)とを備えている。このラミネート部(43)によって冷却用空気(Ab)が隣接する上記第2流入口(25)に誘導される。   That is, as shown in FIG.1 and FIG.7, the laminated part (43) of each said humidity control element (11) is comprised so that the space between two flat plates (12) may be closed in a bag shape. Specifically, the laminate portion (43) is formed by closely contacting the end portions of the two flat plates (12) at the central portion in the thickness direction of each humidity control element (11), and has a triangular cross section. (44) and a protruding piece (45) in which the flat plate (12) is superposed so as to protrude from the tip of the guide piece (44). The laminating portion (43) guides the cooling air (Ab) to the adjacent second inlet (25).

上記切欠部(27)にある第2流入口(25)は、冷却側流入側面(33)の内側に設けられているので、ガイド片(44)と突出片(45)とは、冷却側流入側面(33)から突出することなく第2流入口(25)よりも外側に位置付けられている。同様に上記切欠部(27)にある第2流出口(26)は、冷却側流出側面(34)の内側に設けられているので、ガイド片(44)と突出片(45)とは、冷却側流出側面(34)から突出することなく第2流出口(26)よりも外側に位置付けられている。   Since the second inlet (25) in the notch (27) is provided inside the cooling side inflow side surface (33), the guide piece (44) and the protruding piece (45) are connected to the cooling side inflow. It is positioned outside the second inflow port (25) without protruding from the side surface (33). Similarly, since the second outlet (26) in the notch (27) is provided inside the cooling side outflow side surface (34), the guide piece (44) and the protruding piece (45) are cooled. It is positioned outside the second outlet (26) without protruding from the side outflow side surface (34).

図5で示したように、上記アルミ箔(15)は、各調湿要素(11)における各平板(12)の多孔質基材(14)に熱可塑性樹脂(19)を介して貼り付けられている。上記ラミネート部(43)は、各調湿要素(11)の上記2枚の平板(12)の熱可塑性樹脂(19)が例えば自動化された熱溶着法又は超音波溶着法等によって互いに溶着されて形成されている。   As shown in FIG. 5, the aluminum foil (15) is attached to the porous substrate (14) of each flat plate (12) in each humidity control element (11) via a thermoplastic resin (19). ing. In the laminate part (43), the thermoplastic resin (19) of the two flat plates (12) of each humidity control element (11) is welded to each other by, for example, an automated thermal welding method or an ultrasonic welding method. Is formed.

−運転動作−
上記冷却吸着素子(10)を調湿装置などに用いたときには、例えば以下のような動作になる。調湿用空気(Aa)は、冷却吸着素子(10)の調湿側流入側面(31)から各調湿要素(11)の第1流入口(17)を通って調湿要素(11)内の調湿通路(16)を流れる。この調湿通路(16)を流れる間に調湿用空気(Aa)の水蒸気が平板(12)及び波板(13)の多孔質基材(14)に担持された吸着剤に吸着除去され、除湿された調湿用空気(Aa)が第1流出口(18)を通って調湿側流出側面(32)から室内に供給される。
-Driving action-
When the cooling adsorption element (10) is used in a humidity control device or the like, for example, the following operation is performed. Humidity adjustment air (Aa) passes from the humidity adjustment side inflow side surface (31) of the cooling adsorption element (10) through the first inlet (17) of each humidity adjustment element (11) into the humidity adjustment element (11). Flows through the humidity control passage (16). During the flow through the humidity control passage (16), the water vapor of the humidity control air (Aa) is adsorbed and removed by the adsorbent carried on the porous substrate (14) of the flat plate (12) and the corrugated plate (13), The dehumidified humidity control air (Aa) is supplied into the room from the humidity control side outflow side surface (32) through the first outlet (18).

一方、冷却用空気(Ab)は、冷却吸着素子(10)の冷却側流入側面(33)から各冷却要素(20)の第2流入口(25)を通って冷却通路(24)を流れる。この冷却通路(24)を流れる間に調湿要素(11)で生じる吸着熱が奪われ、加熱された冷却用空気(Ab)が第2流出口(26)を通って冷却側流出側面(34)から室外に放出される。   On the other hand, the cooling air (Ab) flows through the cooling passage (24) from the cooling side inflow side surface (33) of the cooling adsorption element (10) through the second inlet (25) of each cooling element (20). The heat of adsorption generated in the humidity control element (11) is lost while flowing through the cooling passage (24), and the heated cooling air (Ab) passes through the second outlet (26) to the cooling side outflow side (34). ) To the outside of the room.

この調湿動作時において、図7及び図8に示すように、冷却用空気(Ab)は、まず、ラミネート部(43)の突出片(45)によって上下に分岐される。そして、分岐された冷却用空気(Ab)は、ガイド片(44)のテーパ面によってスムーズに上下の第2流入口(25)に導かれる。   During the humidity control operation, as shown in FIGS. 7 and 8, the cooling air (Ab) is first branched up and down by the protruding piece (45) of the laminate portion (43). The branched cooling air (Ab) is smoothly guided to the upper and lower second inflow ports (25) by the tapered surface of the guide piece (44).

なお、図9に示すように、各冷却要素(20)に切欠部(27)が設けられていないと、突出片(45)とガイド片(44)とが第2流入口(25)よりも内側に位置してしまい、分岐された冷却用空気(Ab)が冷却要素(20)の端面板(21)に衝突して圧力損失が生じてしまう。したがって、ガイド片(44)は、上記切欠部(27)を設けることで第2流入口(25)よりも外側に位置付けられている。   In addition, as shown in FIG. 9, if each cooling element (20) is not provided with a notch (27), the protruding piece (45) and the guide piece (44) are located more than the second inlet (25). The cooling air (Ab) that is branched because it is located inside collides with the end face plate (21) of the cooling element (20), resulting in a pressure loss. Therefore, the guide piece (44) is positioned outside the second inflow port (25) by providing the cutout portion (27).

−実施形態の効果−
本実施形態に係る熱交換素子では、各調湿要素(11)における冷却要素(20)の冷却用空気(Ab)の第2流入口(25)側の側面に、冷却用空気(Ab)を上記第2流入口(25)に誘導するためのラミネート部(43)を形成している。このため、各冷却要素(20)内部の冷却通路(24)に流入するときの第2流入口(25)における圧力損失が軽減されるので、従来の熱交換素子に比べて熱交換率を向上させることができる。
-Effect of the embodiment-
In the heat exchange element according to the present embodiment, the cooling air (Ab) is provided on the side surface on the second inlet (25) side of the cooling air (Ab) of the cooling element (20) in each humidity control element (11). A laminate part (43) for guiding to the second inflow port (25) is formed. This reduces pressure loss at the second inlet (25) when flowing into the cooling passage (24) inside each cooling element (20), thus improving the heat exchange rate compared to conventional heat exchange elements. Can be made.

また、本実施形態では、ラミネート部(43)を2枚の平板(12)を袋状に閉じてガイド片(44)と突出片(45)とを上記第2流入口(25)よりも外側に位置するように形成している。このため、冷却用空気(Ab)が滑らかに第2流入口(25)に流入し、熱交換率を向上させることができる。   In the present embodiment, the laminating portion (43) is formed by closing the two flat plates (12) in a bag shape, and the guide piece (44) and the protruding piece (45) are located outside the second inflow port (25). It forms so that it may be located in. For this reason, the cooling air (Ab) smoothly flows into the second inflow port (25), and the heat exchange rate can be improved.

また、本実施形態では、ラミネート部(43)の突出片(45)を各要素(11,20)の厚さ方向中央部に位置付けている。このため、第2流入口(25)での圧力損失が更に軽減され、熱交換率を向上させることができる。   Moreover, in this embodiment, the protrusion piece (45) of the lamination part (43) is located in the thickness direction center part of each element (11,20). For this reason, the pressure loss at the second inlet (25) is further reduced, and the heat exchange rate can be improved.

また、本実施形態では、各調湿要素(11)における平板(12)及び波板(13)の多孔質基材(14)に吸着剤を担持し、かつ各調湿要素(11)にラミネート部(43)を設けている。このため、冷却用空気(Ab)が調湿要素(11)で発生した吸着熱を効果的に奪うことができるので、調湿機能を向上させることができる。   In the present embodiment, the adsorbent is supported on the porous base material (14) of the flat plate (12) and the corrugated plate (13) in each humidity control element (11), and laminated on each humidity control element (11). A portion (43) is provided. For this reason, since the cooling air (Ab) can effectively take away the heat of adsorption generated in the humidity control element (11), the humidity control function can be improved.

また、本実施形態では、ラミネート部(43)側の冷却要素(20)の第2流入口(25)の側面を内側に向かって切り込んでいる。このため、熱交換素子の省スペース化を図ることができる。   In the present embodiment, the side surface of the second inlet (25) of the cooling element (20) on the laminate part (43) side is cut inward. For this reason, space saving of a heat exchange element can be achieved.

また、本実施形態では、2枚の平板(12)の間を袋状に閉じるように両平板(12)の端部を密着したので、この2枚の平板(12)によって各調湿要素(11)における冷却要素(20)の冷却用空気(Ab)の第2流入口(25)側の側面から空気が出入りするのを防止することができる。なお、上記アルミ箔(15)によってラミネート部(43)のシール効果が更に向上される。   Moreover, in this embodiment, since the edge part of both flat plates (12) was closely_contact | adhered so that between two flat plates (12) might be closed in a bag shape, each humidity control element ( It is possible to prevent air from entering and exiting from the side surface on the second inlet (25) side of the cooling air (Ab) of the cooling element (20) in 11). In addition, the sealing effect of the laminate part (43) is further improved by the aluminum foil (15).

本実施形態の冷却吸着素子(10)では、上記各調湿要素(11)の平板(12)におけるアルミ箔(15)の裏面に熱可塑性樹脂(19)が介在しているので、新たに接着剤を用いなくてもアルミ箔(15)の上から加熱することにより、上記熱可塑性樹脂(19)を溶かして各調湿要素(11)における冷却要素(20)の冷却用空気(Ab)の第2流入口(25)側の側面の平板(12)を容易に密着させることができる。このため、その製造が容易となり、製造コストが軽減される。このとき、溶着に要する時間が長くなるような場合でも、平板(12)の表面にアルミ箔(15)が貼り付けられているので、表面が溶けることはない。   In the cooling adsorption element (10) of the present embodiment, since the thermoplastic resin (19) is interposed on the back surface of the aluminum foil (15) in the flat plate (12) of each humidity control element (11), it is newly bonded. Heating from the top of the aluminum foil (15) without using an agent dissolves the thermoplastic resin (19), and the cooling air (Ab) of the cooling element (20) in each humidity control element (11) The flat plate (12) on the side surface on the second inflow port (25) side can be easily adhered. For this reason, the manufacture becomes easy and the manufacturing cost is reduced. At this time, even when the time required for welding becomes long, the surface does not melt because the aluminum foil (15) is adhered to the surface of the flat plate (12).

また、調湿要素(11)が多数積層されているような場合には、各調湿要素(11)毎に溶着を行うと工数が増えてコストの上昇につながるが、本実施形態の冷却吸着素子(10)によると、2枚の平板(12)を挟み込んで例えば熱溶着法又は超音波溶着法によって溶着を自動的に行うことができるので、材料コストを軽減することができると共に、作業工数を削減することができる。   In addition, when a large number of humidity control elements (11) are stacked, welding each humidity control element (11) increases man-hours and leads to an increase in cost. According to the element (10), since the two flat plates (12) can be sandwiched and the welding can be automatically performed by, for example, a thermal welding method or an ultrasonic welding method, the material cost can be reduced and the number of work steps can be reduced. Can be reduced.

(その他の実施形態)
本発明は、上記実施形態について、以下の構成とすることができる。すなわち、上記実施形態では、熱交換素子を冷却吸着素子(10)としたが、第1の要素に高温の空気が流れ、冷却要素に低温の空気が流れ、上記端面板(21)を介して高温の空気と低温の空気との間で熱交換を行う熱交換器、いわゆる全熱交換器としてもよい。
(Other embodiments)
The present invention can be configured as follows for the above embodiment. That is, in the above embodiment, the heat exchange element is the cooling adsorption element (10). However, high-temperature air flows through the first element, and low-temperature air flows through the cooling element, via the end face plate (21). It is good also as a heat exchanger which performs heat exchange between high temperature air and low temperature air, what is called a total heat exchanger.

また、上記実施形態では、冷却要素を内側に切り欠いて形成したが、第2流入口(25)よりも外側に突出し、かつテーパ面を有する別部材のガイド部材を突設してもよい。この場合でも上記実施形態と同様の作用効果が得られる。また、冷却要素(20)の切欠部(27)を設けずにラミネート部(43)を各側面(31,32)から突出させて開口(25,26)よりも外側に位置するように構成してもよい。   Moreover, in the said embodiment, although the cooling element was notched and formed inside, you may project the other guide member which protrudes outside the 2nd inflow port (25), and has a taper surface. Even in this case, the same effect as that of the above embodiment can be obtained. In addition, the laminating part (43) is protruded from each side face (31, 32) without providing the notch part (27) of the cooling element (20) and is located outside the opening (25, 26). May be.

さらに、上記実施形態では、調湿要素(11)にのみラミネート部(43)を設けたが、冷却要素(20)にもラミネート部(43)を設けると更に効果が上がる。このときには、調湿要素(11)の側面も内側に向かって切り込むとよい。   Furthermore, in the said embodiment, although the lamination part (43) was provided only in the humidity control element (11), if a lamination part (43) is provided also in the cooling element (20), an effect will increase further. At this time, the side surface of the humidity control element (11) may be cut inward.

また、上記実施形態では、上記ラミネート部(43)は調湿要素(11)における冷却要素(20)の冷却用空気(Ab)の第2流入口(25)側の側面に設けたが、調湿要素(11)の冷却側流入側面(33)側の側面にのみ設けてもよい。   Moreover, in the said embodiment, although the said laminate part (43) was provided in the side surface at the side of the 2nd inlet (25) of the cooling air (Ab) of the cooling element (20) in a humidity control element (11), it is adjusted. You may provide only in the side surface by the side of the cooling side inflow side surface (33) of a moisture element (11).

また、冷却要素(20)の形状を平面視枠状にして内部で一部の冷却通路(24)を互いに合流させるようにしてもよい。   Further, the shape of the cooling element (20) may be a frame in plan view, and some of the cooling passages (24) may be joined together.

また、上記各調湿要素(11)及び各冷却要素(20)をそれぞれ扁平な菱形状に形成し、調湿用空気(Aa)及び冷却用空気(Ab)を90°以外の角度を持って交差するように流してもよく、この場合も上記実施形態と同様の作用効果が得られる。   In addition, each of the humidity control elements (11) and the cooling elements (20) is formed in a flat diamond shape, and the humidity control air (Aa) and the cooling air (Ab) are at angles other than 90 °. It may flow so that it intersects, and in this case as well, the same effect as in the above embodiment can be obtained.

さらに、各冷却要素(20)の形状も上記調湿要素(11)と同様に2枚の平板(12)と該平板(12)の間に設けられた波板(13)とを備えるものとしてもよい。   Further, the shape of each cooling element (20) is also provided with two flat plates (12) and a corrugated plate (13) provided between the flat plates (12) in the same manner as the humidity control element (11). Also good.

以上説明したように、本発明は、空気の湿度調節又は温度調節を行う熱交換素子について有用である。   As described above, the present invention is useful for a heat exchange element that adjusts the humidity or temperature of air.

本発明の実施形態に係る冷却吸着素子の分解斜視図である。It is a disassembled perspective view of the cooling adsorption element which concerns on embodiment of this invention. 冷却吸着素子の斜視図である。It is a perspective view of a cooling adsorption element. 冷却吸着素子に枠体を取り付ける様子を示す平面図である。It is a top view which shows a mode that a frame is attached to a cooling adsorption element. 調湿要素の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of a humidity control element. 調湿要素の平板の拡大断面図である。It is an expanded sectional view of the flat plate of a humidity control element. 冷却要素の斜視図である。FIG. 3 is a perspective view of a cooling element. 冷却吸着素子を側方から見た断面図である。It is sectional drawing which looked at the cooling adsorption element from the side. 冷却吸着素子の側面図である。It is a side view of a cooling adsorption element. 切欠部を設けないときの図7相当図である。FIG. 8 is a view corresponding to FIG. 7 when a notch is not provided. 従来技術に係る熱交換素子の斜視図である。It is a perspective view of the heat exchange element which concerns on a prior art. 従来技術に係る熱交換素子を側方から見た断面図である。It is sectional drawing which looked at the heat exchange element which concerns on a prior art from the side.

符号の説明Explanation of symbols

(10) 冷却吸着素子(熱交換素子)
(11) 調湿要素(第1の要素)
(12) 平板
(13) 波板
(14) 多孔質基材
(16) 調湿通路(第1空気の通路)
(17) 第1流入口(第1空気流入用の開口)
(18) 第1流出口
(20) 冷却要素(冷却要素)
(24) 冷却通路(第2空気の通路)
(25) 第2流入口(第2空気流入用の開口)
(26) 第2流出口
(27) 切欠部
(43) ラミネート部(ガイド手段)
(44) ガイド片
(45) 突出片
(Aa) 調湿用空気(第1空気)
(Ab) 冷却用空気(第2空気)
(10) Cooling adsorption element (heat exchange element)
(11) Humidity control element (first element)
(12) Flat plate (13) Corrugated plate (14) Porous substrate (16) Humidity adjustment passage (first air passage)
(17) First inlet (first air inflow opening)
(18) First outlet (20) Cooling element (cooling element)
(24) Cooling passage (second air passage)
(25) Second inlet (second air inlet opening)
(26) Second outlet (27) Notch (43) Laminate (guide means)
(44) Guide piece (45) Projection piece (Aa) Humidity conditioning air (first air)
(Ab) Cooling air (second air)

Claims (7)

第1空気(Aa)の通路(16)が形成された扁平な矩形状の第1の要素(11)と第2空気(Ab)の通路(24)が形成された扁平な矩形状の第2の要素(20)とが交互に積層され、
上記第1空気(Aa)及び第2空気(Ab)が交差する方向に流れるように、各第1の要素(11)の対向する一対の側面と各第2の要素(20)の対向する一対の側面とにそれぞれ空気流出入用の開口(17,18,…)が形成された熱交換素子であって、
上記各第2の要素(20)における第1の要素(11)の第1空気(Aa)流入用の開口(17)側の側面と上記各第1の要素(11)における第2の要素(20)の第2空気(Ab)流入用の開口(25)側の側面とのうち少なくとも一方の側面には、空気を隣り合う空気流入用の開口(17,25)に誘導するためのガイド手段(43)が形成されていることを特徴とする熱交換素子。
A flat rectangular first element (11) in which a passage (16) for the first air (Aa) is formed and a flat rectangular second in which a passage (24) for the second air (Ab) is formed. Are alternately stacked with the elements (20)
A pair of opposing side surfaces of each first element (11) and a pair of opposing each second element (20) so that the first air (Aa) and the second air (Ab) flow in a crossing direction. Each of which has openings (17, 18,...) For air inflow and inflow on the side surfaces thereof,
In each of the second elements (20), the side surface of the first element (11) on the first air (Aa) inflow opening (17) side and the second element in each of the first elements (11) ( 20) Guide means for guiding air to the adjacent air inflow opening (17, 25) on at least one of the side surfaces of the second air (Ab) inflow opening (25) side. (43) is formed, The heat exchange element characterized by the above-mentioned.
請求項1に記載の熱交換素子において、
上記各第1の要素(11)又は各第2の要素(20)の少なくとも一方は、2枚の平板(12)と該平板(12)の間に設けられた波板(13)とを備え、
上記ガイド手段(43)は、上記2枚の平板(12)の間を袋状に閉じられ、断面三角形状のガイド片(44)と、該ガイド片(44)の先端から突出する突出片(45)とを備え、上記開口(17,25)よりも外側に位置するように構成されていることを特徴とする熱交換素子。
The heat exchange element according to claim 1,
At least one of the first elements (11) or the second elements (20) includes two flat plates (12) and a corrugated plate (13) provided between the flat plates (12). ,
The guide means (43) is closed in a bag shape between the two flat plates (12), and has a triangular cross-section guide piece (44) and a protruding piece protruding from the tip of the guide piece (44) ( 45), and is configured to be located outside the opening (17, 25).
請求項1に記載の熱交換素子において、
上記ガイド手段(43)は、上記開口(17,25)よりも外側に突出し、かつテーパ面を有する別部材のガイド部材が設けられて構成されていることを特徴とする熱交換素子。
The heat exchange element according to claim 1,
The heat exchanger element, wherein the guide means (43) is provided with a separate guide member that protrudes outward from the opening (17, 25) and has a tapered surface.
請求項2に記載の熱交換素子において、
上記ガイド手段(43)の突出片(45)は、各要素(11,20)の厚さ方向中央部に位置していることを特徴とする熱交換素子。
The heat exchange element according to claim 2,
The projecting piece (45) of the guide means (43) is located at the center in the thickness direction of each element (11, 20).
請求項2又は4に記載の熱交換素子において、
上記ガイド手段(43)は、上記2枚の平板(12)が互いに溶着されて構成されていることを特徴とする熱交換素子。
The heat exchange element according to claim 2 or 4,
The heat exchanger element, wherein the guide means (43) is constructed by welding the two flat plates (12) to each other.
請求項2,4又は5のいずれか1つに記載の熱交換素子において、
上記各第1の要素(11)の平板(12)と波板(13)とは多孔質基材(14)によって構成され、
上記多孔質基材(14)には、吸着剤が担持されており、
上記各第1の要素(11)に上記ガイド手段(43)が設けられていることを特徴とする熱交換素子。
In the heat exchange element according to any one of claims 2, 4 and 5,
The flat plate (12) and the corrugated plate (13) of each first element (11) are constituted by a porous substrate (14),
The porous base material (14) carries an adsorbent,
The heat exchange element, wherein each of the first elements (11) is provided with the guide means (43).
請求項2〜6のいずれか1つに記載の熱交換素子において、
上記ガイド手段(43)側の空気流入用の開口(17,25)の側面は内側に向かって切り込まれていることを特徴とする熱交換素子。
In the heat exchange element as described in any one of Claims 2-6,
A heat exchange element, wherein a side surface of the air inflow opening (17, 25) on the guide means (43) side is cut inward.
JP2003290776A 2003-08-08 2003-08-08 Heat exchange element Expired - Fee Related JP4289071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003290776A JP4289071B2 (en) 2003-08-08 2003-08-08 Heat exchange element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003290776A JP4289071B2 (en) 2003-08-08 2003-08-08 Heat exchange element

Publications (2)

Publication Number Publication Date
JP2005061691A true JP2005061691A (en) 2005-03-10
JP4289071B2 JP4289071B2 (en) 2009-07-01

Family

ID=34368696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003290776A Expired - Fee Related JP4289071B2 (en) 2003-08-08 2003-08-08 Heat exchange element

Country Status (1)

Country Link
JP (1) JP4289071B2 (en)

Also Published As

Publication number Publication date
JP4289071B2 (en) 2009-07-01

Similar Documents

Publication Publication Date Title
AU2018236791B2 (en) Membrane-integrated energy exchange assembly
JP4816517B2 (en) Heat exchange element
CN105765309A (en) Methods and systems for turbulent, corrosion resistant heat exchangers
JPH09184692A (en) Heat exchanging element
JP2006329499A (en) Heat exchanger
JP2017521629A (en) Air guide integrated evaporative cooler and manufacturing method thereof
JP2009150632A5 (en)
JP7392314B2 (en) humidifier
JP6126875B2 (en) Heat exchange element
JP7333875B2 (en) Total heat exchange element and ventilator
JP4289071B2 (en) Heat exchange element
JP2003262487A (en) Heat exchange element
JP4269843B2 (en) Cooling adsorption element
US9863710B2 (en) Laminated total heat exchange element
JPH08313186A (en) Heat exchanger
JP6801734B2 (en) Heat exchanger
JPH0875385A (en) Heat exchanging element
JP2005291618A (en) Total enthalpy heat exchange element and total enthalpy heat exchanger
JP3546574B2 (en) Heat exchanger
WO2020129130A1 (en) Thermal exchange element and thermal exchange ventilation device
JP2006097958A (en) Heat exchanger
JP2006064342A (en) Heat exchange element
JP3835223B2 (en) Cooling adsorption element
JP2023081459A (en) Heat exchanger and ventilation device
JP6801735B2 (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees