JP2005061565A - Laminated rubber support - Google Patents

Laminated rubber support Download PDF

Info

Publication number
JP2005061565A
JP2005061565A JP2003295011A JP2003295011A JP2005061565A JP 2005061565 A JP2005061565 A JP 2005061565A JP 2003295011 A JP2003295011 A JP 2003295011A JP 2003295011 A JP2003295011 A JP 2003295011A JP 2005061565 A JP2005061565 A JP 2005061565A
Authority
JP
Japan
Prior art keywords
laminated rubber
flange
tensile force
peripheral
joined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003295011A
Other languages
Japanese (ja)
Other versions
JP4207713B2 (en
Inventor
Yasuo Takenaka
康雄 竹中
Shunichi Yamada
俊一 山田
Kaoru Ueno
薫 上野
Hajime Saito
一 齋藤
Kazuhiko Yamada
和彦 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2003295011A priority Critical patent/JP4207713B2/en
Publication of JP2005061565A publication Critical patent/JP2005061565A/en
Application granted granted Critical
Publication of JP4207713B2 publication Critical patent/JP4207713B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To control the action of tensile force on a laminated rubber in accompany with floating while securing the sufficient floating allowance and the resistance force to the floating of an upper structure in a laminated rubber support used in a structure on which the tensile force is axially acted, or a specific part in the structure. <P>SOLUTION: In this laminated rubber support 1 composed of the laminated rubber 2 and flanges 3, 4 integrated with upper and lower parts of the laminated rubber, the flexural rigidity of a part 3a (4a) excluding a part directly or indirectly overlapped to the laminated rubber 2, of at least one of the upper and lower flanges 3, 4, is determined to generate out-of-plane bending deformation by the axial tensile force smaller than the axial tensile force of a degree damaging the laminated rubber 2. At least one of the flanges 4 is divided into a central part 41 directly or indirectly overlapped to the laminated rubber 2 and joining the laminated rubber 2, and a peripheral part 42 located at the periphery of the central part 41 and relatively thinner than the central part 41, and the central part 41 and the peripheral part 42 are separatably joined each other. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は軸方向に引張力が作用し得る構造物や構造物内の特定の部位に使用される積層ゴム支承に関するものである。   The present invention relates to a structure in which a tensile force can act in the axial direction and a laminated rubber bearing used in a specific part in the structure.

建物や橋梁等の免震装置として最も一般的に使用される積層ゴムは軸方向圧縮力に対しては高い耐力を発揮するものの、引張力に対する耐力が非常に小さいため、積層ゴムとそれに一体化するフランジを含めた積層ゴム支承は積層ゴムに引張力を生じさせないように、すなわち地震等による変動軸力が常時の長期鉛直軸力を上回らないように設計される。   Laminated rubber, which is most commonly used as a seismic isolation device for buildings and bridges, exhibits high strength against axial compressive force, but has extremely low strength against tensile force, so it is integrated with laminated rubber. The laminated rubber bearing including the flange is designed so as not to generate a tensile force on the laminated rubber, that is, the variable axial force due to an earthquake or the like does not exceed the normal long-term vertical axial force.

しかしながら、塔状比(建物の幅に対する高さの比)が大きいために、または建物の平面形状自体に起因するために建物の水平方向の振動に伴って鉛直方向に大きい引張力が生ずる建物に使用される積層ゴムの他、連層耐震壁の直下に設置される積層ゴムにおいては軸方向に過大な引張力が生ずることが避けられず、積層ゴムを破断等、損傷させる可能性がある。   However, because of the large tower ratio (the ratio of the height to the width of the building) or due to the planar shape of the building itself, the building will generate a large tensile force in the vertical direction due to the horizontal vibration of the building. In addition to the laminated rubber used, laminated rubber installed immediately below the multi-layer earthquake resistant wall inevitably generates an excessive tensile force in the axial direction, which may damage the laminated rubber, such as breaking.

このような場合、上部構造の下面に定着された上部ベースプレートに積層ゴム支承の上部フランジを接合するボルトの頭部と上部フランジの下面との間に10数mm程度の空隙を設けることにより、この空隙分の上部構造の浮き上がりを許容し、積層ゴムに引張力を作用させない方法がある(非特許文献1参照)。この場合、空隙分の浮き上がりが生じたときにも上部フランジと上部ベースプレートが水平に係止し、両者間でせん断力の伝達が行われるよう、上部ベースプレートの下面に溝が形成され、溝内に上部フランジが差し込まれる。   In such a case, by providing a gap of about several tens of millimeters between the head of the bolt that joins the upper flange of the laminated rubber bearing to the upper base plate fixed to the lower surface of the upper structure and the lower surface of the upper flange. There is a method that allows the upper structure to lift up the gap and does not apply a tensile force to the laminated rubber (see Non-Patent Document 1). In this case, a groove is formed on the lower surface of the upper base plate so that the upper flange and the upper base plate are horizontally locked even when the gap is lifted, and shear force is transmitted between the two. The upper flange is inserted.

この他、免震装置を構成する積層ゴムを上下に分離させ、分離した両積層ゴムの端面に鋼板を接合し、両鋼板間に両者に水平に係止するシアキーを介在させると共に、両鋼板を接合しないことにより分離した積層ゴム間で水平力を伝達させながら、分離した積層ゴムが離れようとする向きの変位を許容し、積層ゴムに引張力を作用させない方法(特許文献1参照)、フランジの、積層ゴムに重なる部分以外の部分の肉厚を積層ゴムと重なる部分の肉厚より小さくし、積層ゴムに重なる部分以外の部分に変形を集中させることで積層ゴムに引張力を作用させない方法(特許文献2参照)がある。
「MENSHIN NO.38 2002/11」、日本免震構造協会、平成14年11月、第38号、p.12〜13 特開平10−317715号公報 特開2002−195327号公報
In addition, the laminated rubber constituting the seismic isolation device is separated into upper and lower parts, steel plates are joined to the end faces of both separated laminated rubbers, and a shear key is horizontally interposed between the two steel plates. A method in which a horizontal force is transmitted between separated laminated rubbers by not joining them, and a displacement in a direction in which the separated laminated rubbers are separated from each other is allowed, and a tensile force is not applied to the laminated rubber (see Patent Document 1), flange A method in which the thickness of the portion other than the portion overlapping the laminated rubber is made smaller than the thickness of the portion overlapping the laminated rubber, and the deformation is concentrated on the portion other than the portion overlapping the laminated rubber so that the tensile force is not applied to the laminated rubber. (See Patent Document 2).
"MENSHIN NO. 38 2002/11", Japan Seismic Isolation Structure Association, November 2002, No. 38, p. 12-13 Japanese Patent Laid-Open No. 10-317715 JP 2002-195327 A

非特許文献1の方法は10数mm程度の上部構造の浮き上がりを許容するのみであり、許容量を超える浮き上がりが生じようとすれば、上部フランジが上部ベースプレートに接触し、その後に積層ゴムに代わって引張力に抵抗できる要素はないため、積層ゴムに軸方向引張力を作用させ、積層ゴムに損傷を与えることになる。   The method of Non-Patent Document 1 only allows the lifting of the upper structure of about several tens of millimeters. If the lifting exceeds the allowable amount, the upper flange comes into contact with the upper base plate, and then the laminated rubber is used instead. Therefore, since there is no element that can resist the tensile force, an axial tensile force is applied to the laminated rubber, and the laminated rubber is damaged.

浮き上がり許容量を増大させようとすれば、上部ベースプレートと上部フランジの肉厚を増し、ボルトを長くすることが必要になるが、下部構造と上部構造間の空間の高さも拡大することになるため、その空間に余裕がなければ免震装置を設置することができず、上部フランジ下面からのボルトの突出量も大きくなるため、積層ゴムのせん断変形時に積層ゴムがボルトに衝突する可能性が高くなる。   Increasing the lift allowance increases the thickness of the upper base plate and upper flange and requires longer bolts, but also increases the height of the space between the lower structure and the upper structure. If there is not enough room, the seismic isolation device cannot be installed, and the amount of protrusion of the bolt from the lower surface of the upper flange also increases, so there is a high possibility that the laminated rubber will collide with the bolt during shear deformation of the laminated rubber. Become.

特許文献1の方法は鋼板とシアキーが係止した状態を維持できる範囲で上部構造の浮き上がりを許容するため、鋼板とシアキーが係止できる量を超える浮き上がりが生ずれば、シアキーが鋼板から離脱し、積層ゴムが機能できなくなる。   Since the method of Patent Document 1 allows the upper structure to lift up within a range in which the state where the steel plate and the shear key are locked can be maintained, if the lift exceeds the amount that the steel plate and the shear key can be locked, the shear key is detached from the steel plate. The laminated rubber cannot function.

また浮き上がり時の引張力に対しては鋼板やシアキーは抵抗し得ないため、免震装置に軸方向引張力が作用したときにも上下に分離した積層ゴムにせん断変形を生じさせるには、鋼板とシアキーが常に係止した状態を維持する必要があり、浮き上がり許容量を増大させようとすれば、非特許文献1と同様にシアキーの高さを大きくする必要があるため、下部構造と上部構造間の空間に十分な高さがなければ、設置することができない。   In addition, since steel plates and shear keys cannot resist the tensile force at the time of lifting, in order to cause shear deformation in laminated rubber separated vertically when an axial tensile force acts on the seismic isolation device, It is necessary to maintain the state where the shear key is always locked, and if it is intended to increase the allowable floating amount, it is necessary to increase the height of the shear key as in Non-Patent Document 1, so the lower structure and the upper structure If the space between them is not high enough, it cannot be installed.

特許文献2の方法では積層ゴムに重なる部分以外の部分と積層ゴムと重なる部分からなるフランジが連続した1枚の板であるため、上部構造の浮き上がりに伴い、薄肉部分に曲げ変形が生じたときに積層ゴムと重なる部分にも変形が及ぶ可能性がある。また積層ゴム本体に生ずる水平力を安全に伝えなければならないため、フランジを薄肉にするには限界があり、その限界に伴い、引張変形能力の大幅な向上が期待できない。   In the method of Patent Document 2, since the flange consisting of a portion other than the portion overlapping the laminated rubber and the portion overlapping the laminated rubber is a continuous plate, when bending deformation occurs in the thin portion as the upper structure is lifted In addition, there is a possibility that the portion overlapping the laminated rubber may also be deformed. In addition, since the horizontal force generated in the laminated rubber body must be transmitted safely, there is a limit to making the flange thin, and with this limit, a significant improvement in tensile deformation capacity cannot be expected.

この発明は上記背景より、上部構造の十分な浮き上がり許容量と、浮き上がりに対する抵抗力を確保しながらも、浮き上がりに伴う積層ゴムに対する引張力の作用を抑える積層ゴム支承を提案するものである。   In view of the above background, the present invention proposes a laminated rubber bearing that suppresses the action of a tensile force on the laminated rubber that accompanies the lifting while ensuring a sufficient allowance for lifting of the superstructure and a resistance to lifting.

請求項1に記載の発明では積層ゴムとその上下に一体化し、上部構造と下部構造に接合されるフランジからなる積層ゴム支承において、上下のフランジの内、少なくともいずれか一方のフランジの、積層ゴムと直接、もしくは間接的に重なる部分以外の部分の曲げ剛性を、積層ゴムが損傷する程度の軸方向引張力より小さい軸方向引張力によって面外曲げ変形を生じ得る大きさにすることにより、上部構造の十分な浮き上がり許容量と、浮き上がりに対する抵抗力を確保しながらも、浮き上がりに伴う積層ゴムに対する引張力の作用を抑える。   In the invention according to claim 1, in the laminated rubber bearing comprising the laminated rubber and the flange integrated with the upper and lower parts and joined to the upper structure and the lower structure, the laminated rubber of at least one of the upper and lower flanges By making the flexural rigidity of the part other than the part directly or indirectly overlapping with the upper part by making the bending rigidity small enough to cause out-of-plane bending deformation by the axial tensile force that is smaller than the axial tensile force that damages the laminated rubber, While securing a sufficient lifting allowance of the structure and resistance to lifting, the action of tensile force on the laminated rubber accompanying lifting is suppressed.

フランジの、積層ゴムと重なる部分以外の部分の曲げ剛性が、積層ゴムが損傷する程度の軸方向引張力より小さい軸方向引張力によって面外曲げ変形を生じ得る大きさである、とは例えば図1−(a)、図2に示すように積層ゴム周面から、フランジを上部構造や下部構造に定着させるためのボルトまでの距離が積層ゴムと重なる部分の幅と半分程度以上であることにより、またはフランジ自身が円形や正方形ではなく、十字形のような凹多角形の形状をし、その中心部に積層ゴムと重なる部分が位置する等により、フランジの、積層ゴムと重なる部分以外の部分の面外剛性が積層ゴムと重なる部分の面外剛性より小さいことを意味し、面外方向には積層ゴムと重なる部分以外の部分に変形が集中して起こることを言う。   The bending rigidity of the portion of the flange other than the portion overlapping the laminated rubber is a size that can cause an out-of-plane bending deformation by an axial tensile force that is smaller than the axial tensile force that damages the laminated rubber. 1- (a), as shown in FIG. 2, the distance from the circumferential surface of the laminated rubber to the bolt for fixing the flange to the upper structure or the lower structure is about half or more the width of the portion overlapping the laminated rubber. Or, the flange itself is not a circle or square, but has a concave polygonal shape such as a cross, and the part of the flange other than the part overlapping the laminated rubber is located at the center of the flange. This means that the out-of-plane rigidity is smaller than the out-of-plane rigidity of the portion overlapping with the laminated rubber, and the deformation concentrates on the portion other than the portion overlapping with the laminated rubber in the out-of-plane direction.

フランジの、積層ゴムと重なる部分以外の部分の曲げ剛性が、積層ゴムが損傷する程度の軸方向引張力より小さい軸方向引張力によって面外曲げ変形を生じ得る大きさであることは限定的に言えば、積層ゴムが損傷、あるいは降伏する程度の軸方向引張力により生ずる積層ゴムの引張軸変形を超える引張変形がフランジに生ずること、と換言することができる。ここで言う軸方向引張力はゴムの材質によっても異なるが、ゴムの断面積で除した引張面圧が1.0N/mm程度の大きさとなる。 It is limited that the bending rigidity of the flange other than the portion overlapping with the laminated rubber is such that it can cause out-of-plane bending deformation by an axial tensile force that is smaller than the axial tensile force that would damage the laminated rubber. In other words, it can be said that a tensile deformation exceeding the tensile axial deformation of the laminated rubber caused by the axial tensile force to the extent that the laminated rubber is damaged or yielded occurs in the flange. The axial tensile force referred to here varies depending on the material of the rubber, but the tensile surface pressure divided by the cross-sectional area of the rubber is about 1.0 N / mm 2 .

またフランジの、積層ゴムと重なる部分以外の部分の曲げ剛性を上記のように低下させるために設定される積層ゴム周面からボルトまでの距離は必ずしも積層ゴムの直径の大きさには直接関係はなく、積層ゴム自体の、設計上必要とされる引張変形能力の程度で決まるため、積層ゴムの直径に関係なく、300mm以上確保されれば足りる。後述のように例えば積層ゴムの直径が1500mmの場合、500〜1000mmに設定される。   In addition, the distance from the laminated rubber peripheral surface to the bolt that is set to reduce the bending rigidity of the flange other than the portion overlapping the laminated rubber as described above is not necessarily directly related to the diameter of the laminated rubber. However, since it is determined by the degree of tensile deformation capacity required for the design of the laminated rubber itself, it is sufficient that 300 mm or more is secured regardless of the diameter of the laminated rubber. As will be described later, for example, when the diameter of the laminated rubber is 1500 mm, it is set to 500 to 1000 mm.

従って前記の積層ゴム周面からボルトまでの距離が積層ゴムと重なる部分の幅と半分程度以上である、の半分程度とは積層ゴムの直径に関係なく300mmであると言えるため、フランジの、積層ゴムと重なる部分以外の部分の曲げ剛性が、積層ゴムが損傷する程度の軸方向引張力より小さい軸方向引張力によって面外曲げ変形を生じ得る大きさであることは、積層ゴム周面から、フランジを上部構造や下部構造に定着させるためのボルトまでの最短平面距離が300mm以上である、と換言することもできる。   Therefore, the distance from the circumferential surface of the laminated rubber to the bolt is about half or more of the width of the portion overlapping the laminated rubber, and about half of the distance is 300 mm regardless of the diameter of the laminated rubber. From the laminated rubber peripheral surface, the bending rigidity of the portion other than the portion overlapping with the rubber is a magnitude that can cause an out-of-plane bending deformation by an axial tensile force that is smaller than an axial tensile force that damages the laminated rubber. In other words, the shortest plane distance to the bolt for fixing the flange to the upper structure or lower structure is 300 mm or more.

フランジはそれが接合される上部構造や下部構造との間で、積層ゴムが負担するせん断力と、積層ゴムのせん断変形に伴う曲げモーメントに加え、上部構造の浮き上がりに伴う軸方向引張力を伝達する必要があることから、積層ゴム周面からボルトまでの距離を積層ゴムと重なる部分の幅と半分程度以上にする場合には、そのフランジが位置する上部構造と積層ゴムとの間、または積層ゴムと下部構造との間でせん断力を伝達しつつ、曲げ変形しながら曲げモーメントと軸方向引張力を負担し得る機能を発揮するように決められる。   In addition to the shearing force borne by the laminated rubber and the bending moment accompanying the shear deformation of the laminated rubber, the flange transmits the axial tensile force accompanying the lifting of the superstructure between the superstructure and the substructure to which it is joined. Therefore, when the distance from the circumferential surface of the laminated rubber to the bolt is about half the width of the portion overlapping the laminated rubber, or between the superstructure where the flange is located and the laminated rubber The shearing force is transmitted between the rubber and the substructure, and the bending moment and the axial tensile force can be borne while bending deformation is performed.

面外剛性を小さくしたフランジの変形能力は積層ゴム周面からボルトまでの距離が大きい程高く、肉厚が小さい程高くなるが、薄肉にすれば面外座屈を起こし易くなり、積層ゴムのせん断復元力特性を阻害する結果を招き、上部構造や下部構造との間でせん断力を伝達する等の必要な機能を果たせなくなることから、薄肉化することには限界がある。   The deformation capacity of the flange with reduced out-of-plane rigidity increases as the distance from the circumferential surface of the laminated rubber to the bolt increases, and increases as the wall thickness decreases.However, if the thickness is reduced, out-of-plane buckling is likely to occur. The result is that the shear restoring force characteristic is hindered, and a necessary function such as transmission of the shear force between the upper structure and the lower structure cannot be performed.

従ってフランジの前記機能を維持しながら変形能力を高めるには、上記のように積層ゴム周面からボルトまでの距離を大きくするか、フランジ自身を凹多角形にすることにより積層ゴムと重なる部分以外の部分の曲げ剛性を積層ゴムと重なる部分の曲げ剛性より小さくすることが有効である。   Therefore, in order to increase the deformation capability while maintaining the function of the flange, the distance from the laminated rubber peripheral surface to the bolt is increased as described above, or the flange itself is made into a concave polygon, so that the portion other than the portion overlapping the laminated rubber. It is effective to make the bending rigidity of this part smaller than the bending rigidity of the part overlapping the laminated rubber.

積層ゴム周面からボルトまでの距離を大きくすれば、積層ゴムと重なる部分は積層ゴムと接着された状態を維持する限り、その部分の剛性に積層ゴムの剛性が付加されることにより積層ゴムと重なる部分以外の部分の剛性より相対的に大きくなり、フランジ自身を凹多角形にし、その中心部に積層ゴムと重なる部分を配置すれば、積層ゴムと重なる部分以外の部分の剛性が相対的に低下するため、いずれの場合も積層ゴムと重なる部分以外の部分の曲げ剛性が積層ゴムと重なる部分の曲げ剛性より小さくなり、変形能力が向上する。   If the distance from the circumferential surface of the laminated rubber to the bolt is increased, as long as the portion that overlaps the laminated rubber remains bonded to the laminated rubber, the stiffness of the laminated rubber is added to the stiffness of that portion. If the flange itself is made a concave polygon and the part that overlaps the laminated rubber is placed at the center, the rigidity of the parts other than the part that overlaps the laminated rubber will be relatively greater. Therefore, in any case, the bending rigidity of the portion other than the portion overlapping with the laminated rubber becomes smaller than the bending rigidity of the portion overlapping with the laminated rubber, and the deformability is improved.

フランジの、積層ゴムと重なる部分以外の部分の曲げ剛性が、積層ゴムが損傷する程度の軸方向引張力より小さい軸方向引張力によって面外曲げ変形を生じ得る大きさであることで、下部構造に対する上部構造の相対水平変位に伴う鉛直方向上向きの変位(浮き上がり)が生じたときには、積層ゴムが損傷する程の軸方向引張力が積層ゴムに作用する以前に、フランジの、積層ゴムと重なる部分以外の部分がその鉛直変位に応じた抵抗力を発揮しながら、曲げ変形を起こすため、積層ゴムに引張力が作用することがなくなるか、作用しても積層ゴムが負担する引張力が軽減される。   Since the bending rigidity of the portion of the flange other than the portion overlapping with the laminated rubber is large enough to cause out-of-plane bending deformation by an axial tensile force that is smaller than the axial tensile force that would damage the laminated rubber, When a vertical upward displacement (lifting) occurs due to the relative horizontal displacement of the superstructure relative to the flange, the portion of the flange that overlaps the laminated rubber before the axial tensile force that would damage the laminated rubber acts on the laminated rubber Other parts exhibit resistance force according to the vertical displacement and cause bending deformation, so tensile force does not act on the laminated rubber, or even if it acts, the tensile force borne by the laminated rubber is reduced. The

フランジの、積層ゴムと重なる部分以外の部分は曲げ降伏するまでは軸方向引張力による曲げモーメントを負担しながら曲げ変形可能であり、変形可能な範囲で上部構造の浮き上がり許容されるため、上部構造の十分な浮き上がり許容量と、浮き上がりに対する抵抗力が確保され、併せて浮き上がりに伴う積層ゴムに対する引張力の作用を抑えることが可能になる。   The part of the flange other than the part that overlaps the laminated rubber can be bent and deformed while bearing the bending moment due to the axial tensile force until bending yielding, and the upper structure can be lifted within the deformable range. Thus, a sufficient allowance for lifting and resistance to lifting are ensured, and at the same time, the action of tensile force on the laminated rubber accompanying lifting can be suppressed.

フランジの、積層ゴムと重なる部分以外の部分が上部構造の浮き上がり量に応じた抵抗力を発揮したときに塑性変形を生ずれば、フランジは上部構造の浮き上がり時と沈み込み時の衝撃を緩和する緩衝の機能も果たすことになる。   If the part of the flange other than the part that overlaps the laminated rubber exerts a resistance according to the amount of lift of the superstructure, if the plastic deformation occurs, the flange will alleviate the impact when the superstructure lifts and sinks It will also serve as a buffer.

上下のフランジの内、いずれか一方のフランジによって上部構造の十分な浮き上がり許容量が確保されることで、必ずしも両フランジ共、積層ゴムと重なる部分以外の部分の曲げ剛性を低下させる必要はないが、両フランジの積層ゴムと重なる部分以外の部分の曲げ剛性を低下させれば、一方のみの場合の2倍の浮き上がり許容量が確保される。   It is not always necessary to reduce the bending rigidity of parts other than the part that overlaps with the laminated rubber by ensuring that the upper structure has a sufficient allowance for raising the upper structure by either one of the upper and lower flanges. If the bending rigidity of the portion other than the portion that overlaps the laminated rubber of both flanges is lowered, the allowable lifting amount is doubled as compared with the case of only one.

フランジの、積層ゴムと重なる部分以外の部分が曲げ変形することに伴い、積層ゴムと重なる部分に曲げ変形が及ぶ可能性があるが、その場合には請求項2に記載のように上下のフランジの内、少なくともいずれか一方の曲げ変形させようとするフランジを積層ゴムに直接、もしくは間接的に重なって積層ゴムに接合される中心部と、その周辺に位置し、上部構造と下部構造のいずれかに接合される、中心部より相対的に薄肉の周辺部とに分割し、中心部と周辺部を互いに分離自在に接合することにより、積層ゴム支承に軸方向引張力が作用したときに積層ゴムと重なる部分以外の部分である周辺部に曲げ変形を集中させ、積層ゴムと重なる部分である中心部に曲げ変形が及ばないようにすることが可能である。   As the portion of the flange other than the portion overlapping the laminated rubber is bent and deformed, the portion overlapping the laminated rubber may be bent and deformed. In this case, the upper and lower flanges as described in claim 2. Among them, at least one of the flanges to be bent and deformed is directly or indirectly overlapped with the laminated rubber, and the central part is joined to the laminated rubber, and the upper part or the lower structure is located in the periphery thereof. It is divided into a peripheral part that is relatively thin-walled from the central part, and the central part and the peripheral part are joined to each other so that they can be separated from each other. It is possible to concentrate the bending deformation on the peripheral portion which is a portion other than the portion overlapping with the rubber so that the bending deformation does not reach the central portion which is the portion overlapping with the laminated rubber.

この場合、図3に示すように上部構造、または下部構造に接合される周辺部が積層ゴムに接合される中心部に対し、ボルト等により周方向に部分的に接合されることと、中心部より薄肉であることで、図4に示すように積層ゴム支承にせん断力と共に軸方向引張力が作用したときには相対的に薄肉の周辺部に曲げ変形が起こるため、相対的に厚肉の中心部に曲げ変形が起こる可能性が低い。   In this case, as shown in FIG. 3, the peripheral part joined to the upper structure or the lower structure is partially joined in the circumferential direction by bolts or the like to the central part joined to the laminated rubber, and the central part As shown in FIG. 4, when the axial tensile force is applied together with the shearing force to the laminated rubber support, bending deformation occurs in the peripheral portion of the relatively thin wall as shown in FIG. The possibility of bending deformation is low.

加えて周辺部が中心部に対し、周方向に部分的に接合されることと、中心部と周辺部の接合部分が分離していることで、積層ゴム支承の使用状態では中心部と周辺部が接合されながらも、周辺部に生ずる曲げ変形の影響が中心部に及ぶことがないため、積層ゴムと重なる部分に曲げ変形が生ずる可能性と、それに伴う積層ゴムへの損傷が回避される。   In addition, the peripheral part is partially joined to the central part in the circumferential direction, and the central part and the peripheral part are separated. Even though these are joined, the influence of the bending deformation occurring in the peripheral portion does not reach the central portion, so that the bending deformation may occur in the portion overlapping with the laminated rubber and the damage to the laminated rubber associated therewith is avoided.

図5に、図4に示す積層ゴム支承の下部のフランジの軸方向引張力と変形量の関係を細線で、積層ゴムとフランジを含めた積層ゴム支承全体の軸方向引張力と変形量の関係を太線で示す。図4は下部のフランジを中心部と周辺部とに分割した場合を示す。   Fig. 5 shows the relationship between the axial tensile force and deformation amount of the lower flange of the laminated rubber bearing shown in Fig. 4 with a thin line, and the relationship between the axial tensile force and deformation amount of the entire laminated rubber bearing including the laminated rubber and flange. Is indicated by a bold line. FIG. 4 shows a case where the lower flange is divided into a central portion and a peripheral portion.

破線で示す従来の積層ゴム支承の場合には積層ゴムに直接引張力が作用する結果、早い時期に積層ゴムが引張降伏し、まもなく破断に至るが、請求項2に記載の発明では下部のフランジの周辺部に引張力による変形が集中する結果、積層ゴムに生ずる変形は小さいため、フランジの周辺部が降伏するまでは積層ゴムが健全に保たれる。   In the case of the conventional laminated rubber bearing indicated by the broken line, the laminated rubber is tensile yielded at an early stage as a result of direct tensile force acting on the laminated rubber, and soon breaks. In the invention according to claim 2, the lower flange As a result of the concentration of the deformation due to the tensile force on the periphery of the rubber, the deformation generated in the laminated rubber is small, so that the laminated rubber is kept healthy until the peripheral part of the flange yields.

周辺部はまた、中心部にボルト等により分離自在に接合されるため、図4に示すように周辺部が塑性変形し、交換の必要が生じたときには周辺部を中心部から切り離すことにより容易に交換することが可能である。この場合、周辺部における塑性化領域を限定するために、または周辺部の塑性変形能力を高めるために、フランジ全体、または周辺部の形状を調整し、あるいは周辺部の一部に孔や溝を形成しておくことも有効である。   Since the peripheral portion is also separably joined to the central portion with a bolt or the like, the peripheral portion is plastically deformed as shown in FIG. 4, and when replacement is necessary, the peripheral portion can be easily separated from the central portion. It is possible to exchange. In this case, in order to limit the plasticizing region in the peripheral part or to increase the plastic deformation capacity of the peripheral part, the shape of the entire flange or the peripheral part is adjusted, or a hole or a groove is formed in a part of the peripheral part. It is also effective to form it.

図3−(b)は請求項2記載発明の積層ゴム支承の平面を示すが、ここに示すように請求項2記載発明における周辺部は必ずしも中心部と相似形である必要はなく、また周辺部が1枚である必要もない。図3は中心部に対して複数枚の周辺部を分離自在に接合し、複数枚の周辺部が集合して十字形の凹多角形となるように組み合わせた場合を示している。   FIG. 3 (b) shows the plane of the laminated rubber bearing of the invention according to claim 2, but the peripheral part in the invention according to claim 2 does not necessarily have to be similar to the central part as shown here. There is no need for one part. FIG. 3 shows a case where a plurality of peripheral parts are joined to the central part so as to be separable, and the peripheral parts are combined to form a cruciform concave polygon.

請求項2に記載の発明においても上下のフランジの内、いずれか一方のフランジによって上部構造の十分な浮き上がり許容量が確保されるため、必ずしも両フランジ共、厚肉の中心部と薄肉の周辺部とに分割する必要はないが、両フランジ共、中心部と周辺部とに分割した場合には一方のみの場合の2倍の浮き上がり許容量が確保される。   Also in the invention according to claim 2, since either one of the upper and lower flanges secures a sufficient allowance for lifting of the upper structure, both of the flanges are not necessarily thicker and thinner. However, when both flanges are divided into a central portion and a peripheral portion, a floating allowance twice as large as that in the case of only one is ensured.

請求項3に記載の発明では図9−(a)に示すように請求項2記載発明の2個の積層ゴム支承を、中心部と周辺部からなるそれぞれのフランジを互いに重ね、両周辺部をその周囲において接合して積層ゴム支承を構成することにより、請求項2記載発明の2倍の浮き上がり許容量を確保する。   In the invention described in claim 3, as shown in FIG. 9- (a), the two laminated rubber bearings of the invention described in claim 2 are overlapped with each other, and the flanges composed of the central portion and the peripheral portion are overlapped with each other. The laminated rubber bearing is constructed by joining at the periphery thereof, thereby securing a floating allowance twice that of the invention of claim 2.

この場合、請求項2記載発明の2個の積層ゴム支承が直列に配置され、そのときに上部と下部に位置するフランジがそれぞれ上部構造と下部構造に接合される。   In this case, the two laminated rubber bearings according to the second aspect of the invention are arranged in series, and at that time, the flanges located at the upper part and the lower part are joined to the upper structure and the lower structure, respectively.

2個の積層ゴム支承の対向する周辺部がその周囲において互いに接合されることで、積層ゴム支承に軸方向引張力が作用したときには、図9−(b)に示すように対向するフランジの両中心部が分離し、両周辺部が曲げ変形することにより上部構造の浮き上がりに追従するため、請求項2記載発明の積層ゴム支承の2倍の浮き上がり許容量が確保される。   When opposing peripheral portions of the two laminated rubber bearings are joined to each other at the periphery thereof, when an axial tensile force acts on the laminated rubber bearing, both of the opposing flanges as shown in FIG. 9- (b). Since the central portion is separated and both peripheral portions are bent and deformed to follow the lifting of the superstructure, a lifting allowance twice as large as that of the laminated rubber bearing according to claim 2 is secured.

請求項1記載の発明では上下のフランジの内、少なくともいずれか一方のフランジの、積層ゴムと重なる部分以外の部分の曲げ剛性を、積層ゴムが損傷する程度の軸方向引張力より小さい軸方向引張力によって面外曲げ変形を生じ得る大きさにすることで、上部構造に浮き上がりが生じたときに、積層ゴムが損傷する程の軸方向引張力が積層ゴムに作用する以前に、フランジの、積層ゴムと重なる部分以外の部分がその鉛直変位に応じた抵抗力を発揮しながら、曲げ変形を起こすことができるため、積層ゴムに引張力が作用することを解消する、または軽減することができる。   In the first aspect of the invention, the bending rigidity of at least one of the upper and lower flanges other than the portion overlapping with the laminated rubber is smaller than the axial tensile force to the extent that the laminated rubber is damaged. By setting the size that can cause out-of-plane bending deformation due to force, when the superstructure is lifted, the axial tension force that can damage the laminated rubber is applied to the laminated rubber before it is laminated. Since a portion other than the portion overlapping with the rubber can bend and deform while exhibiting a resistance force corresponding to the vertical displacement, it is possible to eliminate or reduce the action of the tensile force on the laminated rubber.

この結果、上部構造の十分な浮き上がり許容量と、浮き上がりに対する抵抗力を確保しながらも、浮き上がりに伴う積層ゴムに対する引張力の作用を抑えることが可能になる。   As a result, it is possible to suppress the action of the tensile force on the laminated rubber that accompanies the lifting while ensuring a sufficient lifting allowance of the upper structure and a resistance to the lifting.

請求項2記載の発明では上下のフランジの内、少なくともいずれか一方のフランジを積層ゴムに重なって積層ゴムに接合される中心部と、その周辺に位置し、上部構造と下部構造のいずれかに接合される、中心部より相対的に薄肉の周辺部とに分割し、中心部と周辺部を互いに分離自在に接合するため、積層ゴム支承にせん断力と共に軸方向引張力が作用したときに積層ゴムと重なる部分以外の部分である周辺部に曲げ変形を集中させ、積層ゴムと重なる部分である中心部に曲げ変形が及ばないようにすることができる。特に中心部と周辺部の接合部分が分離していることで、周辺部に生ずる曲げ変形の影響が中心部に及ぶことがないため、積層ゴムと重なる部分に曲げ変形が生ずる可能性と、それに伴う積層ゴムへの損傷が回避される。   In the invention according to claim 2, at least one of the upper and lower flanges is positioned at the center portion where the flange is overlapped with the laminated rubber and joined to the laminated rubber, and the upper structure or the lower structure. It is divided into a peripheral part that is thinner than the central part, and the central part and the peripheral part are joined to each other so that they can be separated from each other. It is possible to concentrate the bending deformation on the peripheral portion which is a portion other than the portion overlapping with the rubber so that the bending deformation does not reach the central portion which is the portion overlapping with the laminated rubber. In particular, since the joint between the central part and the peripheral part is separated, the influence of the bending deformation that occurs in the peripheral part does not reach the central part. The accompanying damage to the laminated rubber is avoided.

また周辺部は中心部に分離自在に接合されるため、周辺部が塑性変形し、その交換の必要が生じたときには周辺部を中心部から切り離すことにより容易に交換することが可能である。   In addition, since the peripheral portion is separably joined to the central portion, the peripheral portion is plastically deformed, and when the replacement is necessary, it can be easily replaced by separating the peripheral portion from the central portion.

請求項3記載の発明では請求項2記載発明の2個の積層ゴム支承を直列に配置し、対向する周辺部をその周囲において互いに接合することで、積層ゴム支承に軸方向引張力が作用したときに両周辺部が曲げ変形することにより上部構造の浮き上がりに追従できるため、請求項2記載発明の積層ゴム支承の2倍の浮き上がり許容量を確保することができる。   In the invention described in claim 3, the two laminated rubber bearings of the invention described in claim 2 are arranged in series, and the opposing peripheral portions are joined to each other at the periphery thereof, whereby an axial tensile force acts on the laminated rubber bearing. Since the two peripheral portions sometimes bend and deform to follow the uplift of the superstructure, it is possible to ensure a lift up to twice that of the laminated rubber bearing according to the second aspect of the invention.

請求項1に記載の発明は図1、図2に示すように積層ゴム2とその上下に一体化し、上部構造6と下部構造7に接合されるフランジ3、4からなり、上下のフランジ3、4の内、少なくともいずれか一方のフランジ3(4)の、積層ゴム2と直接、もしくは間接的に重なる部分以外の部分3a(4a)の曲げ剛性を、積層ゴム2が損傷する程度の軸方向引張力より小さい軸方向引張力によって面外曲げ変形を生じ得る大きさにした積層ゴム支承1である。   As shown in FIGS. 1 and 2, the invention described in claim 1 comprises a laminated rubber 2 and flanges 3 and 4 that are integrated with the upper and lower parts thereof and joined to an upper structure 6 and a lower structure 7. Axial direction in which at least one of the flanges 3 (4) has a bending rigidity of a portion 3a (4a) other than a portion that directly or indirectly overlaps the laminated rubber 2 to the extent that the laminated rubber 2 is damaged. The laminated rubber bearing 1 is sized so as to be capable of causing out-of-plane bending deformation by an axial tensile force smaller than the tensile force.

積層ゴム支承1は図1−(b)に示すように上部のフランジ3を貫通するボルト5により上部構造6に直接、もしくはベースプレート等を挟んで間接的に接合され、下部のフランジ4を貫通するボルト5により下部構造7に直接、もしくはベースプレート等を挟んで間接的に接合される。   As shown in FIG. 1B, the laminated rubber bearing 1 is joined to the upper structure 6 directly or indirectly with a base plate or the like by a bolt 5 passing through the upper flange 3 and passes through the lower flange 4. The bolt 5 is joined directly to the lower structure 7 or indirectly with a base plate or the like interposed therebetween.

フランジ3(4)の、積層ゴム2と重なる部分以外の部分3a(4a)と積層ゴム2と重なる部分3b(4b)の各剛性は、フランジ3(4)の、積層ゴム2周面から、フランジ3(4)を上部構造6(下部構造7)に接合するボルト5までの距離を積層ゴム2と重なる部分3b(4b)の幅と半分程度以上にするか、またはフランジ3(4)自身を十字形のような凹多角形の形状にし、その中心部に積層ゴム2と重なる部分3b(4b)を配置する等により、積層ゴム2と重なる部分以外の部分3a(4a)の曲げ剛性が積層ゴム2と重なる部分3b(4b)の曲げ剛性より小さくなるように調整される。   The rigidity of the portion 3a (4a) of the flange 3 (4) other than the portion overlapping the laminated rubber 2 and the portion 3b (4b) overlapping the laminated rubber 2 are determined from the circumferential surface of the laminated rubber 2 of the flange 3 (4). The distance to the bolt 5 that joins the flange 3 (4) to the upper structure 6 (lower structure 7) should be more than half the width of the portion 3b (4b) that overlaps the laminated rubber 2, or the flange 3 (4) itself The bending rigidity of the portion 3a (4a) other than the portion that overlaps the laminated rubber 2 is made by making the shape of a concave polygon like a cross and placing the portion 3b (4b) that overlaps the laminated rubber 2 at the center. It is adjusted to be smaller than the bending rigidity of the portion 3b (4b) overlapping the laminated rubber 2.

積層ゴム2周面からボルト5までの距離を大きくする場合は、それだけで積層ゴム2と重なる部分以外の部分3a(4a)の曲げ剛性を低下させることができることから、そのフランジ3(4)の形状は問われないため、フランジ3(4)は円形や凸多角形等に形成される他、凹多角形に形成される。   When the distance from the circumferential surface of the laminated rubber 2 to the bolt 5 is increased, the bending rigidity of the portion 3a (4a) other than the portion overlapping with the laminated rubber 2 can be reduced by itself. Since the shape is not limited, the flange 3 (4) is formed in a concave polygon as well as in a circular shape or a convex polygon.

積層ゴム2周面からボルト5までの距離を積層ゴム2と重なる部分の幅と半分程度以上にする場合は、例えば一つの目安として積層ゴム2の直径が1500mm(設計長期軸力が20000kN程度)、フランジ3、4の厚さが50mmの場合、通常は積層ゴム2の周面からボルト5までの距離が100mm(フランジの外径が1900mm)程度となるところ、請求項1記載発明ではフランジ3(4)に100mm程度の引張による曲げ変形能力を持たせるために、積層ゴム2の周面からボルト5までの距離を500〜1000mm程度確保することが適当である。   When the distance from the circumferential surface of the laminated rubber 2 to the bolt 5 is about half or more the width of the portion overlapping the laminated rubber 2, for example, the diameter of the laminated rubber 2 is 1500 mm (design long-term axial force is about 20000 kN). When the thickness of the flanges 3 and 4 is 50 mm, the distance from the peripheral surface of the laminated rubber 2 to the bolt 5 is usually about 100 mm (the outer diameter of the flange is 1900 mm). In order to give (4) the ability to bend and deform by tension of about 100 mm, it is appropriate to secure a distance from the peripheral surface of the laminated rubber 2 to the bolt 5 of about 500 to 1000 mm.

この積層ゴム2の周面からボルト5までの距離は、フランジ3、4が上部構造6や下部構造7との間でせん断力と曲げモーメント、及び軸方向引張力を伝達する機能を維持できる範囲で決められるが、フランジ3(4)が円形であるか正方形であるか等、フランジ3(4)の形状によって異なり、またフランジ3(4)の変形能力は積層ゴム2の周面からボルト5までの距離の他、フランジ3(4)の肉厚によっても相違するため、フランジ3(4)の形状と肉厚を含め、総合的に積層ゴム2の周面からボルト5までの距離が決められる。   The distance from the peripheral surface of the laminated rubber 2 to the bolt 5 is a range in which the flanges 3 and 4 can maintain the function of transmitting shearing force, bending moment, and axial tensile force between the upper structure 6 and the lower structure 7. However, the flange 3 (4) is different in shape depending on the shape of the flange 3 (4), for example, whether the flange 3 (4) is circular or square. The distance from the peripheral surface of the laminated rubber 2 to the bolt 5 is determined comprehensively, including the shape and thickness of the flange 3 (4). It is done.

図1は上下のフランジ3、4が積層ゴム2の上下面に直接重なって接着されるタイプにおいて、両フランジ3、4の、積層ゴム2周面からボルト5までの距離を積層ゴム2と重なる部分の幅と半分程度にした場合、図2は上下のフランジ3、4が積層ゴム2の上下面に直接接着されず、積層ゴム2の上下面に直接接着されている内側フランジ2a、2bにボルト等により分離自在に接合されるタイプにおいて、下部のフランジ4の、積層ゴム2周面からボルト5までの距離を積層ゴム2と重なる部分の幅と半分程度にした場合である。   1 shows a type in which the upper and lower flanges 3 and 4 are directly overlapped and bonded to the upper and lower surfaces of the laminated rubber 2, and the distance from the circumferential surface of the laminated rubber 2 to the bolt 5 of both flanges 3 and 4 overlaps with the laminated rubber 2. FIG. 2 shows that the upper and lower flanges 3, 4 are not directly bonded to the upper and lower surfaces of the laminated rubber 2 but are directly bonded to the upper and lower surfaces of the laminated rubber 2. This is a case where the distance from the circumferential surface of the laminated rubber 2 to the bolt 5 of the lower flange 4 is about half the width of the portion overlapping the laminated rubber 2 in the type that is separably joined by a bolt or the like.

図1はフランジ3(4)が積層ゴム2に直接重なる場合、図2は積層ゴム2に間接的に重なる場合であり、いずれのタイプにおいてもフランジ3、4自身を凹多角形にし、その中心部に積層ゴム2と重なる部分3b(4b)を配置することもある。   FIG. 1 shows a case where the flange 3 (4) directly overlaps the laminated rubber 2, and FIG. 2 shows a case where the flange 3 (4) indirectly overlaps the laminated rubber 2. A portion 3b (4b) that overlaps the laminated rubber 2 may be disposed in the portion.

図1−(b)は(a)に示す積層ゴム支承1が上部構造6の浮き上がりを伴う水平変位により軸方向引張力とせん断力を負担したときの様子を示す。ここに示すように積層ゴム支承1が軸方向引張力とせん断力を負担したときには、積層ゴム2と重なる部分3b(4b)が積層ゴム2に接着された状態を維持したまま、積層ゴム2と重なる部分以外の部分3a(4a)が曲げ変形を起こすことにより上部構造6の浮き上がりを伴う水平変位に追従する。   FIG. 1- (b) shows a state in which the laminated rubber bearing 1 shown in FIG. 1 (a) bears an axial tensile force and a shearing force due to a horizontal displacement accompanied by lifting of the upper structure 6. As shown here, when the laminated rubber bearing 1 bears an axial tensile force and a shearing force, the laminated rubber 2 and the laminated rubber 2 are kept in a state where the portion 3b (4b) overlapping the laminated rubber 2 is adhered to the laminated rubber 2. The portion 3a (4a) other than the overlapping portion undergoes bending deformation to follow the horizontal displacement accompanied by the lifting of the upper structure 6.

請求項2に記載の発明は図3に示すように積層ゴム2とその上下に一体化し、上部構造6と下部構造7に接合されるフランジ3、4からなり、上下のフランジ3、4の内、少なくともいずれか一方のフランジ4(3)を積層ゴム2に直接、もしくは間接的に重なって積層ゴム2に接合される中心部41(31)と、その周辺に位置し、上部構造6と下部構造7のいずれかに接合される、中心部より相対的に薄肉の周辺部42(32)とに分割し、中心部41(31)と周辺部42(32)を互いに分離自在に接合した積層ゴム支承1である。   As shown in FIG. 3, the invention described in claim 2 comprises a laminated rubber 2 and upper and lower flanges 3 and 4 which are integrated with each other and joined to an upper structure 6 and a lower structure 7. , At least one of the flanges 4 (3) is directly or indirectly overlapped with the laminated rubber 2 and joined to the laminated rubber 2, and a central portion 41 (31), and the upper structure 6 and the lower portion A laminate that is joined to one of the structures 7 and is divided into a peripheral portion 42 (32) that is relatively thinner than the central portion, and the central portion 41 (31) and the peripheral portion 42 (32) are joined in a separable manner. Rubber bearing 1.

積層ゴム支承1は請求項1記載発明と同じく上部のフランジ3を貫通するボルト5により上部構造6に直接、もしくはベースプレート等を挟んで間接的に接合され、下部のフランジ4を貫通するボルト5により下部構造7に直接、もしくはベースプレート等を挟んで間接的に接合される。   The laminated rubber bearing 1 is joined to the upper structure 6 directly or indirectly with a base plate or the like by a bolt 5 penetrating the upper flange 3 as in the first aspect of the invention, and by a bolt 5 penetrating the lower flange 4. It is joined directly to the lower structure 7 or indirectly with a base plate or the like interposed therebetween.

中心部41(31)は請求項1記載発明における積層ゴム2と重なる部分4b(3b)に相当し、周辺部42(32)は積層ゴム2と重なる部分以外の部分4a(3a)に相当する。請求項2記載発明においても上下のフランジ3、4が積層ゴム2の上下面に直接接着されるタイプと、直接接着されないタイプがある。   The central portion 41 (31) corresponds to the portion 4b (3b) overlapping the laminated rubber 2 in the first aspect of the invention, and the peripheral portion 42 (32) corresponds to the portion 4a (3a) other than the portion overlapping the laminated rubber 2. . In the second aspect of the invention, there are a type in which the upper and lower flanges 3 and 4 are directly bonded to the upper and lower surfaces of the laminated rubber 2 and a type in which the upper and lower surfaces are not directly bonded.

図3、図4では下部のフランジ4を中心部41と周辺部42に分割した場合を示しているため、図面には中心部31と周辺部32は表れていないが、上部のフランジ3のみを中心部31と周辺部32に分割する場合の他、上下のフランジ3、4を共に中心部31、41と周辺部32、42に分割する場合もある。   3 and 4 show the case where the lower flange 4 is divided into the central portion 41 and the peripheral portion 42, the central portion 31 and the peripheral portion 32 do not appear in the drawings, but only the upper flange 3 is shown. In addition to the case where the center portion 31 and the peripheral portion 32 are divided, the upper and lower flanges 3 and 4 may be divided into the center portions 31 and 41 and the peripheral portions 32 and 42.

図3は下部のフランジ4を、1枚の正方形状の中心部41と4枚の長方形状の周辺部42とに分割し、周辺部42を中心部41にボルト8により接合し、フランジ4が全体として十字形の凹多角形状となるようにした場合を示す。   In FIG. 3, the lower flange 4 is divided into one square central portion 41 and four rectangular peripheral portions 42, and the peripheral portion 42 is joined to the central portion 41 with bolts 8. The case where it becomes a cross-shaped concave polygon shape as a whole is shown.

周辺部42は例えば図3に示すように相対的に厚肉の中心部41の側面に突き当たる当接部42aを持ち、ボルト8が当接部42aを貫通し、中心部41に螺入することにより中心部41に接合される。中心部41の形状と、周辺部42の枚数及び形状は主に積層ゴム2の断面形状によって決まるが、例えば積層ゴム2が円形断面で、中心部41が円形の場合にも当接部42aの、中心部41との接触面を曲面状に形成することで、正方形の場合と同様に周辺部42を中心部41に接合することができる。積層ゴム2が円形断面の場合には、中心部41を必ずしも円形にする必要はなく、正方形や多角形にすることもある。   For example, as shown in FIG. 3, the peripheral portion 42 has a contact portion 42 a that abuts against the side surface of the relatively thick central portion 41, and the bolt 8 passes through the contact portion 42 a and is screwed into the central portion 41. To be joined to the central portion 41. The shape of the central portion 41 and the number and shape of the peripheral portions 42 are mainly determined by the cross-sectional shape of the laminated rubber 2. For example, even when the laminated rubber 2 has a circular cross section and the central portion 41 is circular, the contact portion 42a By forming the contact surface with the central portion 41 in a curved shape, the peripheral portion 42 can be joined to the central portion 41 as in the case of a square. When the laminated rubber 2 has a circular cross section, the central portion 41 is not necessarily circular, and may be square or polygonal.

図6は積層ゴム2と上下のフランジ3A、4Aからなる、標準的なサイズの積層ゴム支承1Aを、フランジ3A、4Aの大きさや形状を変更することなくそのまま請求項2記載発明の積層ゴム支承1として用いた場合を示す。   FIG. 6 shows a laminated rubber bearing 1A of a standard size comprising a laminated rubber 2 and upper and lower flanges 3A, 4A without changing the size and shape of the flanges 3A, 4A. The case where it uses as 1 is shown.

この場合は、積層ゴム2に上下のフランジ3A、4Aが接着された状態のまま、既製品の積層ゴム支承1Aを請求項2記載発明の積層ゴム支承1として用いるために、少なくともいずれか一方、例えば下部のフランジ4Aに、中心部41と周辺部42からなるフランジ4の中心部41を重ね、フランジ4Aを貫通して中心部41に螺入するボルト5によってフランジ4Aをフランジ4に接合することになる。積層ゴム支承1Aの上部のフランジ3Aはそのまま積層ゴム支承1の上部のフランジ3として利用される。図6はフランジ4が積層ゴム2に間接的に重なる場合に当たる。   In this case, in order to use the ready-made laminated rubber bearing 1A as the laminated rubber bearing 1 according to claim 2, with the upper and lower flanges 3A, 4A being bonded to the laminated rubber 2, at least one of For example, the center part 41 of the flange 4 composed of the center part 41 and the peripheral part 42 is overlapped on the lower flange 4A, and the flange 4A is joined to the flange 4 by the bolt 5 that passes through the flange 4A and is screwed into the center part 41. become. The upper flange 3A of the laminated rubber bearing 1A is used as the upper flange 3 of the laminated rubber bearing 1 as it is. FIG. 6 corresponds to the case where the flange 4 indirectly overlaps the laminated rubber 2.

図7は図3に示す下部のフランジ4を構成する1枚の周辺部42の形状例を示す。42bは下部構造7にボルト5で接合されるためのボルト孔を示す。(a)は周辺部42を図3で用いている基本的な形状にした場合であり、(b)は周辺部42の下部構造7へのボルト5による接合部分の幅を拡張し、その接合部分の引張耐力を向上させた形にした場合、(c)は中心部41への接合部分と下部構造7への接合部分の、断面欠損となるボルト孔42bの形成位置における塑性化を回避し、破断を防止する形にした場合である。   FIG. 7 shows an example of the shape of one peripheral portion 42 constituting the lower flange 4 shown in FIG. Reference numeral 42 b denotes a bolt hole for joining to the lower structure 7 with the bolt 5. (a) is a case where the peripheral portion 42 is formed in the basic shape used in FIG. In the case where the tensile strength of the portion is improved, (c) avoids plasticization at the formation position of the bolt hole 42b that becomes a cross-sectional defect in the joint portion to the central portion 41 and the joint portion to the lower structure 7. In this case, the shape is to prevent breakage.

請求項2記載発明では周辺部42の曲げ剛性が中心部41の曲げ剛性より小さくなればよく、必ずしもフランジ4全体が凹多角形状となる必要はないため、フランジ4全体が凸多角形状となる場合もある。   In the second aspect of the invention, the bending rigidity of the peripheral portion 42 only needs to be smaller than the bending rigidity of the central portion 41, and the entire flange 4 does not necessarily have a concave polygonal shape. There is also.

図8は図3以外の、周辺部42と中心部41のボルト8による接合例を示す。(a)は当接部42aを屈曲、もしくは湾曲させる一方、中心部41の、当接部42aと重なる部分を傾斜、もしくは湾曲させ、ボルト8を当接部42a側から中心部41に螺入させた場合、(b)、(c)は当接部42aを含めて周辺部42全体を平板状にし、その中心部41寄りの当接部42aを中心部41に重ねて接合した場合である。(b)は周辺部42を中心部41の上側に配置した場合、(c)は中心部41周囲の下面側を切り欠き、この切欠き部分に当接部42aを配置し、中心部41側からボルト8を螺入させた場合である。   FIG. 8 shows an example of joining the peripheral portion 42 and the central portion 41 with the bolts 8 other than FIG. (a) bends or curves the abutting portion 42a, while tilting or curving the portion of the central portion 41 that overlaps the abutting portion 42a, and screwing the bolt 8 into the central portion 41 from the abutting portion 42a side. In this case, (b) and (c) are cases where the entire peripheral portion 42 including the contact portion 42a is formed in a flat plate shape, and the contact portion 42a near the center portion 41 is overlapped and joined to the center portion 41. . (b) When the peripheral part 42 is arranged on the upper side of the central part 41, (c) is notched on the lower surface side around the central part 41, and the abutting part 42a is arranged on this notched part, and the central part 41 side In this case, the bolt 8 is screwed.

図9は図3の変形例として周辺部42を正方形状の中心部41の隅角部に配置した場合を示す。この場合、周辺部42の一隅角部に2方向を向いた当接部42aが形成され、周辺部42はこの当接部42aにおいて中心部41に2方向に接合される。   FIG. 9 shows a case where the peripheral portion 42 is arranged at the corner portion of the square central portion 41 as a modified example of FIG. In this case, a contact portion 42a facing in two directions is formed at one corner of the peripheral portion 42, and the peripheral portion 42 is joined to the central portion 41 in two directions at the contact portion 42a.

各周辺部42が中心部41に2方向に接合されることで、図3−(b)の場合より周辺部42の鉛直方向の引張耐力、すなわち積層ゴム支承1としての引張耐力が大きくなることと、中心部41の対角線方向に水平力が作用したときの、周辺部42の配置位置による特性の差が小さくなることが考えられる。ここでは周辺部42の変形時の衝突を回避するために隣接する周辺部42、42間に隙間を確保しているが、必ずしもその必要はない。   By joining each peripheral portion 42 to the central portion 41 in two directions, the tensile strength in the vertical direction of the peripheral portion 42, that is, the tensile strength as the laminated rubber bearing 1 is increased as compared with the case of FIG. It is conceivable that the difference in characteristics depending on the arrangement position of the peripheral portion 42 when the horizontal force acts in the diagonal direction of the central portion 41 becomes small. Here, in order to avoid a collision at the time of deformation of the peripheral portion 42, a gap is secured between the adjacent peripheral portions 42, 42, but this is not always necessary.

請求項3に記載の発明は図10−(a)に示すように請求項2記載発明の2個の積層ゴム支承1、1を、中心部41(31)と周辺部42(32)からなるそれぞれのフランジ4(3)を互いに重ね、両周辺部42(32)、42(32)をその周囲において接合して構成される積層ゴム支承10である。   As shown in FIG. 10- (a), the invention according to claim 3 comprises the two laminated rubber bearings 1 and 1 according to the invention according to claim 2 comprising a central portion 41 (31) and a peripheral portion 42 (32). This is a laminated rubber bearing 10 configured such that each flange 4 (3) is overlapped with each other and both peripheral portions 42 (32) and 42 (32) are joined in the periphery.

図10−(a)では図3に示す、下部のフランジ4のみを中心部41と周辺部42に分割した2個の積層ゴム支承1、1から積層ゴム支承10を構成しているため、それぞれのフランジ4、4が互いに重なった形になるが、上下のフランジ3、4の双方を中心部31、41と周辺部32、42に分割した積層ゴム支承1、1を重ねる場合もある。   In FIG. 10- (a), since the laminated rubber bearing 10 is composed of two laminated rubber bearings 1 and 1 in which only the lower flange 4 shown in FIG. 3 is divided into a central portion 41 and a peripheral portion 42, respectively. The laminated rubber bearings 1 and 1 in which both the upper and lower flanges 3 and 4 are divided into the center portions 31 and 41 and the peripheral portions 32 and 42 may be overlapped.

積層ゴム支承10は図10−(b)に示すように2個の積層ゴム支承1、1を積み重ねたときに上側に位置するフランジ3において上部構造6に接合され、下側に位置するフランジ3において下部構造7に接合され、互いに重なったフランジ4、4は上部構造6と下部構造7には接合されない。   As shown in FIG. 10- (b), the laminated rubber support 10 is joined to the upper structure 6 at the upper flange 3 when the two laminated rubber supports 1, 1 are stacked, and the lower flange 3 is located. The flanges 4 and 4 which are joined to the lower structure 7 and overlap each other are not joined to the upper structure 6 and the lower structure 7.

図10−(a)は図3に示す2個の積層ゴム支承1、1を積み重ね、互いに重なった周辺部42、42を、両者を貫通するボルト9で連結した場合を示す。周辺部42は中心部41にボルト8等により分離自在に接合されていることで、周辺部42が塑性変形し、周辺部42を交換する必要が生じたときにはその周辺部42のみを中心部41から切り離すことができるため、重なった周辺部42、42同士を必ずしもボルト9により接合する必要はなく、溶接によって接合しても一体化している周辺部42、42を中心部41から切り離すことができる。   FIG. 10- (a) shows a case where the two laminated rubber supports 1 and 1 shown in FIG. 3 are stacked, and the peripheral portions 42 and 42 which are overlapped with each other are connected by bolts 9 penetrating them. Since the peripheral portion 42 is detachably joined to the central portion 41 with bolts 8 or the like, when the peripheral portion 42 is plastically deformed and it becomes necessary to replace the peripheral portion 42, only the peripheral portion 42 is centered 41. Therefore, it is not always necessary to join the overlapping peripheral portions 42 and 42 with the bolt 9, and the peripheral portions 42 and 42 that are integrated can be separated from the central portion 41 even if they are joined by welding. .

図10−(b)は積層ゴム支承10にせん断力と共に軸方向引張力が作用したときの各積層ゴム2、2の変形状態を示すが、ここに示すように積層ゴム支承10は対向するフランジ4、4の両中心部41、41が分離し、両周辺部42、42が曲げ変形することにより上部構造6の浮き上がりに追従する。   FIG. 10- (b) shows the deformation state of each laminated rubber 2 and 2 when an axial tensile force as well as a shearing force is applied to the laminated rubber support 10. As shown here, the laminated rubber support 10 has an opposing flange. Both the central portions 41 and 41 of 4 and 4 are separated, and the peripheral portions 42 and 42 are bent and deformed to follow the rising of the upper structure 6.

(a)は請求項1に記載の発明の積層ゴム支承の例を示した立面図、(b)は(a)の積層ゴム支承に軸方向引張力とせん断力が作用したときの様子を示した立面図である。(a) is an elevation view showing an example of the laminated rubber bearing of the invention described in claim 1, and (b) is a state when axial tensile force and shearing force are applied to the laminated rubber bearing of (a). FIG. 請求項1に記載の発明の他の積層ゴム支承の例を示した立面図である。It is the elevation which showed the example of the other laminated rubber bearing of the invention of Claim 1. (a)は請求項2に記載の発明の積層ゴム支承の例を示した立面図、(b)は(a)の平面図である。(a) is an elevation view showing an example of a laminated rubber bearing according to the invention described in claim 2, and (b) is a plan view of (a). 図3に示す積層ゴム支承に軸方向引張力とせん断力が作用したときの様子を示した立面図である。FIG. 4 is an elevational view showing a state when an axial tensile force and a shearing force act on the laminated rubber bearing shown in FIG. 3. 図3に示す積層ゴム支承の軸方向引張力と引張変形の関係を示したグラフである。FIG. 4 is a graph showing the relationship between the axial tensile force and tensile deformation of the laminated rubber bearing shown in FIG. 3. 標準的なサイズの積層ゴム支承を請求項2記載発明の積層ゴム支承として用いた場合を示した立面図である。FIG. 5 is an elevational view showing a case where a standard size laminated rubber bearing is used as the laminated rubber bearing of the second aspect of the invention. 図3−(b)に示す下部のフランジを構成する1枚の周辺部の形状例を示した平面図である。It is the top view which showed the example of the shape of one peripheral part which comprises the lower flange shown to FIG. 3- (b). (a)〜(c)は図3以外の、周辺部と中心部のボルトによる接合例を示した断面図である。(a)-(c) is sectional drawing which showed the example of joining by the volt | bolt of a peripheral part and center parts other than FIG. 図3の変形例を示した平面図である。It is the top view which showed the modification of FIG. (a)は請求項3に記載の発明の積層ゴム支承の例を示した立面図、(b)は(a)の積層ゴム支承に軸方向引張力とせん断力が作用したときの様子を示した立面図である。(a) is an elevation view showing an example of the laminated rubber bearing of the invention described in claim 3, and (b) is a state when axial tensile force and shearing force are applied to the laminated rubber bearing of (a). FIG.

符号の説明Explanation of symbols

1……積層ゴム支承、2……積層ゴム、2a,2b……内側フランジ、
3……上部のフランジ、3a……積層ゴムと重なる部分以外の部分、3b……積層ゴムと重なる部分、
4……下部のフランジ、4a……積層ゴムと重なる部分以外の部分、4b……積層ゴムと重なる部分、41……中心部、42……周辺部、42a……当接部、42b……ボルト孔、
1A……標準的なサイズの積層ゴム支承、3A……上部のフランジ、4A……下部のフランジ、
5……ボルト(3−6、4−7)、6……上部構造、7……下部構造、
8……ボルト(42−41)、9……ボルト(42−42)、
10……積層ゴム支承(請求項3)。
1 ... Laminated rubber support, 2 ... Laminated rubber, 2a, 2b ... Inner flange,
3 …… Upper flange, 3a …… Parts other than the part overlapping the laminated rubber, 3b …… Parts overlapping the laminated rubber,
4 …… Lower flange, 4a …… Parts other than the part overlapping the laminated rubber, 4b …… Parts overlapping the laminated rubber, 41 …… Center part, 42 …… Peripheral part, 42a …… Abutting part, 42b …… Bolt holes,
1A …… Standard size laminated rubber bearing, 3A …… Upper flange, 4A …… Lower flange,
5 ... Bolt (3-6, 4-7), 6 ... Upper structure, 7 ... Lower structure,
8 ... Bolt (42-41), 9 ... Bolt (42-42),
10 …… Laminated rubber bearing (Claim 3).

Claims (3)

積層ゴムとその上下に一体化し、上部構造と下部構造に接合されるフランジからなる積層ゴム支承において、上下のフランジの内、少なくともいずれか一方のフランジの、積層ゴムと直接、もしくは間接的に重なる部分以外の部分の曲げ剛性を、積層ゴムが損傷する程度の軸方向引張力より小さい軸方向引張力によって面外曲げ変形を生じ得る大きさとすることを特徴とする積層ゴム支承。   In a laminated rubber bearing consisting of a laminated rubber and a flange that is integrated above and below and joined to the upper structure and the lower structure, at least one of the upper and lower flanges directly or indirectly overlaps the laminated rubber A laminated rubber bearing, characterized in that a bending rigidity of a portion other than the portion is set to a magnitude capable of causing an out-of-plane bending deformation by an axial tensile force smaller than an axial tensile force that damages the laminated rubber. 積層ゴムとその上下に一体化し、上部構造と下部構造に接合されるフランジからなる積層ゴム支承において、上下のフランジの内、少なくともいずれか一方のフランジは積層ゴムに直接、もしくは間接的に重なって積層ゴムに接合される中心部と、その周辺に位置し、上部構造と下部構造のいずれかに接合される、中心部より相対的に薄肉の周辺部とに分割され、中心部と周辺部は互いに分離自在に接合されていることを特徴とする積層ゴム支承。   In a laminated rubber bearing consisting of a laminated rubber and a flange that is integrated above and below and joined to the upper structure and the lower structure, at least one of the upper and lower flanges directly or indirectly overlaps the laminated rubber. It is divided into a central part that is bonded to the laminated rubber, and a peripheral part that is located in the periphery of the rubber and is relatively thinner than the central part, and is connected to either the upper structure or the lower structure. Laminated rubber bearing characterized by being separably joined to each other. 請求項2記載の2個の積層ゴム支承を、中心部と周辺部からなるそれぞれのフランジを互いに重ね、両周辺部をその周囲において接合して構成されることを特徴とする積層ゴム支承。



3. A laminated rubber bearing according to claim 2, wherein the two laminated rubber bearings are constructed by superimposing flanges each having a central portion and a peripheral portion, and joining the peripheral portions at the periphery thereof.



JP2003295011A 2003-08-19 2003-08-19 Laminated rubber support Expired - Lifetime JP4207713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003295011A JP4207713B2 (en) 2003-08-19 2003-08-19 Laminated rubber support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003295011A JP4207713B2 (en) 2003-08-19 2003-08-19 Laminated rubber support

Publications (2)

Publication Number Publication Date
JP2005061565A true JP2005061565A (en) 2005-03-10
JP4207713B2 JP4207713B2 (en) 2009-01-14

Family

ID=34371382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003295011A Expired - Lifetime JP4207713B2 (en) 2003-08-19 2003-08-19 Laminated rubber support

Country Status (1)

Country Link
JP (1) JP4207713B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI623674B (en) * 2014-11-25 2018-05-11 Mitsubishi Hitachi Power Sys Support structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI623674B (en) * 2014-11-25 2018-05-11 Mitsubishi Hitachi Power Sys Support structure
US10100546B2 (en) 2014-11-25 2018-10-16 Mitsubishi Hitachi Power Systems, Ltd. Support structure

Also Published As

Publication number Publication date
JP4207713B2 (en) 2009-01-14

Similar Documents

Publication Publication Date Title
TWI544128B (en) Mounting structure for laminated rubber body and structure with the mounting structure
JP4394661B2 (en) Fixed bearing device for structures
JP2005061565A (en) Laminated rubber support
JP4680877B2 (en) Horizontal bearing device
JP2004211837A (en) Base-isolation device
JP2006077395A (en) Supporting device for bridge
JP4758683B2 (en) Reinforcement structure of unit building
JP2018091081A (en) Reinforcement structure of beam-column joint
JP2008133644A (en) Fixed bearing structure for bridge
KR20160109284A (en) Elasticity support for bridge
JP2006226387A (en) Laminated rubber bearing
JP4488383B1 (en) Bridge bearing device
JP2009068654A (en) Lateral support mechanism of vertical pipe in building
JP2005146680A (en) Laminated rubber bearing device including lead core material
JP4312026B2 (en) Support side block
JP2005282230A (en) Vibration-control structure of building
JPH1162313A (en) Lead bearing
JP5053554B2 (en) Vibration control device
JP6557033B2 (en) Bearing structure
JP2006249765A (en) Expansion joint for floor
JP2024004176A (en) Vibration control structure
JP7070900B2 (en) Seismic isolated building
JPH08326813A (en) Layered rubber support body
JP2008175006A (en) Reinforcing structure of concrete beam having opening, method of manufacturing concrete beam having opening, beam structure and opening reinforcing steel pipe
JP2011246917A (en) Bearing structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081013

R150 Certificate of patent or registration of utility model

Ref document number: 4207713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141031

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term