JP2005060762A - Method and apparatus for manufacturing iron ore pellet - Google Patents

Method and apparatus for manufacturing iron ore pellet Download PDF

Info

Publication number
JP2005060762A
JP2005060762A JP2003291499A JP2003291499A JP2005060762A JP 2005060762 A JP2005060762 A JP 2005060762A JP 2003291499 A JP2003291499 A JP 2003291499A JP 2003291499 A JP2003291499 A JP 2003291499A JP 2005060762 A JP2005060762 A JP 2005060762A
Authority
JP
Japan
Prior art keywords
preheating chamber
kiln
pulverized coal
iron ore
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003291499A
Other languages
Japanese (ja)
Inventor
Mitsuru Sakamoto
充 坂本
Wakanori Matsuo
和賀徳 松尾
Nobuyuki Iwasaki
伸之 岩崎
Yasutaka Komai
泰隆 駒井
Shinobu Nakayama
忍 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003291499A priority Critical patent/JP2005060762A/en
Publication of JP2005060762A publication Critical patent/JP2005060762A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a pellet, which inhibits the generation of a thermal NOx while reducing a manufacturing cost of the pellet in an iron-ore-pellettizing process using a grate-kiln system, and to provide an apparatus for manufacturing the pellet. <P>SOLUTION: The manufacturing apparatus has sets of a plurality of pulverized coal burners 21 for raising the temperature of the flue gas of a kiln by blowing pulverized coal into a preheating chamber 5, and burning the pulverized coal with remaining oxygen in the flue gas of the kiln, arranged on each of opposing longitudinal walls 5a of the preheating chamber 5 with pitches of 0.14 to 0.4 times of the whole length of the preheating chamber 5 in a region between 1/3 and 0.98 of the whole length of the preheating chamber 5 starting from a preheating chamber entry 5b. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高炉用原料などに使用される鉄鉱石ペレットを製造するグレートキルン方式による鉄鉱石ペレット製造技術に関する。   The present invention relates to a technology for producing iron ore pellets by a great kiln system for producing iron ore pellets used for blast furnace raw materials and the like.

鉄鉱石ペレットをつくる製造工程は、乾燥、予熱、焼成および冷却の各工程からなり、この製造工程の実施に用いられるグレートキルン方式鉄鉱石ペレット製造装置(以下、単に「グレートキルン方式焼成装置」という。)として、従来、図10の縦断面図に示すようなものが知られている。同図に示すように、このグレートキルン方式焼成装置は、グレート炉1、キルン燃焼排ガス昇温手段としての予熱室バーナ8、ロータリキルン(以下、単に「キルン」ともいう。)9およびアニュラクーラ11を備えている。   The production process for producing iron ore pellets consists of drying, preheating, firing and cooling processes, and a great kiln type iron ore pellet production apparatus (hereinafter simply referred to as “the great kiln type firing apparatus”) used for carrying out this production process. .) Is conventionally known as shown in the longitudinal sectional view of FIG. As shown in the figure, this great kiln type firing apparatus includes a great furnace 1, a preheating chamber burner 8 as a kiln combustion exhaust gas temperature raising means, a rotary kiln (hereinafter also simply referred to as “kiln”) 9, and an annunculus 11. I have.

グレート炉1は、無端状をなすトラベリング・グレート(以下、単に「グレート」という。)2によりこのグレート2のパレット上に敷かれた生ペレットGPを、乾燥室3、離水室4、予熱室5の順に各室の長手方向に移動させつつ、後述する加熱用ガスの下向き通風によって乾燥・予熱するものである。なお、離水室4は鉱石中に結晶水を含む場合に設置される。   The great furnace 1 is composed of a raw pellet GP laid on a pallet of the Great 2 by an endless traveling great (hereinafter simply referred to as “Great”) 2, a drying chamber 3, a water separation chamber 4, and a preheating chamber 5. While being moved in the longitudinal direction of each chamber in this order, drying and preheating are performed by downward ventilation of the heating gas described later. The water separation chamber 4 is installed when the ore contains crystal water.

6は予熱室用風箱群である。グレート2の下方空間はペレット移動方向に沿って複数個の部屋に仕切られており、これらの部屋が風箱と呼ばれている。つまり、予熱室用風箱群6は複数個の風箱よりなるものであり、予熱室5に対してその長手方向(ペレット移動方向)に沿って一列に例えば9個の風箱が並設されている。7は予熱室用吸引ファンで、吸引風量(下向通風量)調節用のファンダンパ(図示省略)を有し、後述のロータリキルン9からのペレット焼成用に使用された高温のキルン燃焼排ガスを加熱用ガスとして予熱室5内に導き、この加熱用ガスをグレート2のパレット上のペレット層、風箱群6を通して下向きに吸引し、次の離水質4内へ送り出すものである。   Reference numeral 6 denotes a preheating chamber wind box group. The space below Great 2 is partitioned into a plurality of rooms along the pellet movement direction, and these rooms are called wind boxes. In other words, the preheating chamber windbox group 6 is composed of a plurality of windboxes, and nine windboxes, for example, are arranged in a row along the longitudinal direction (pellet movement direction) with respect to the preheating chamber 5. ing. Reference numeral 7 denotes a preheating chamber suction fan, which has a fan damper (not shown) for adjusting the suction air volume (downward air flow), and is used for the high temperature kiln combustion exhaust gas used for pellet firing from the rotary kiln 9 described later. The heating gas is introduced into the preheating chamber 5, and the heating gas is sucked downward through the pellet layer on the pallet of the great 2 and the wind box group 6 and sent out into the next water separation quality 4.

ロータリキルン9は、このグレート炉1に直結されており、勾配をつけた円筒状回転炉であって、出口側に配設されたキルンバーナ10による燃焼により、グレート炉1の予熱室5から装入された前記乾燥・予熱されたペレットを焼成する一方、そのペレット焼成用に使用された高温の燃焼排ガスを加熱用ガスとして予熱室5へ送り込むものである。従来は、キルンバーナ10により微粉炭、コークス炉ガス等の燃料をロータリキルン9内に吹き込み、燃焼用空気とともに燃焼させるようにしている。   The rotary kiln 9 is directly connected to the great furnace 1 and is a cylindrical rotary furnace with a gradient. The rotary kiln 9 is charged from the preheating chamber 5 of the great furnace 1 by combustion by the kiln burner 10 disposed on the outlet side. While the dried and preheated pellets are fired, the high-temperature combustion exhaust gas used for firing the pellets is fed into the preheating chamber 5 as a heating gas. Conventionally, fuel such as pulverized coal and coke oven gas is blown into the rotary kiln 9 by the kiln burner 10 and burned together with combustion air.

また、予熱室5には、ロータリキルン9からのキルン燃焼排ガスを昇温させるためのキルン燃焼排ガス昇温手段としての予熱室バーナ8が設けられている。   The preheating chamber 5 is provided with a preheating chamber burner 8 as a kiln combustion exhaust gas temperature raising means for raising the temperature of the kiln combustion exhaust gas from the rotary kiln 9.

従来は、予熱室バーナ8の燃料としてコークス炉ガス(以下、「COG」と略称する。)が用いられ、予熱室5内でこのCOGをキルン燃焼排ガス中の残留酸素で燃焼させることにより、キルン燃焼排ガスを昇温させるようにしている。こうすることで、予熱されたペレット(以下、「予熱ペレット」という。)の強度を高めることができ、操業不安定の原因となるロータリキルン9内におけるキルンリング(ペレット粉化物がキルン内壁レンガ表面に岩状に付着したもの)の発生を防止するようにしている(特許文献1,2参照)。   Conventionally, coke oven gas (hereinafter abbreviated as “COG”) is used as the fuel for the preheating chamber burner 8, and the COG is burned with residual oxygen in the kiln combustion exhaust gas in the preheating chamber 5, whereby the kiln. The temperature of the combustion exhaust gas is raised. By doing so, the strength of the preheated pellets (hereinafter referred to as “preheat pellets”) can be increased, and the kiln ring in the rotary kiln 9 causing the unstable operation (the pelletized powder is the kiln inner wall brick surface) In the shape of rocks) (see Patent Documents 1 and 2).

また、予熱室バーナ8の燃料として石炭のガス化ガスを用いる提案もなされている(特許文献3参照)。
特公平7−116528号公報(第2頁) 特開平11−325740号公報(段落[0015]〜[0019]) 特開平3−281736号公報(第2〜3頁)
In addition, a proposal has been made to use coal gasification gas as fuel for the preheating chamber burner 8 (see Patent Document 3).
Japanese Examined Patent Publication No. 7-116528 (page 2) JP 11-325740 A (paragraphs [0015] to [0019]) JP-A-3-281736 (pages 2 to 3)

従来、予熱室バーナ8の燃料としてCOGや石炭ガス化ガス等のガス燃料が用いられ、微粉炭が用いられなかったのは、微粉炭を予熱室5内に吹き込むと予熱室5内壁に石炭アッシュ(以下、単に「アッシュ」ともいう。)が付着したり、予熱ペレットにアッシュが付着してキルン9内に持ち込まれてキルンリングの原因となることが懸念されたためである。   Conventionally, gas fuel such as COG or coal gasification gas has been used as fuel for the preheating chamber burner 8 and pulverized coal has not been used. When pulverized coal is blown into the preheating chamber 5, coal ash is introduced into the inner wall of the preheating chamber 5. (Hereinafter, also simply referred to as “ash”), or the ash adheres to the preheated pellet and is brought into the kiln 9 to cause a kiln ring.

一方、ペレットの生産量を増加させるためには、グレート炉1でのペレットの滞留時間の不足を加熱用ガス温度の上昇で補うべく予熱室バーナのガス燃料燃焼量を増加する必要がある。そうするとガス燃料の燃焼によるサーマルNOxの発生量が増加し、グレート炉1から大気中に排出される排ガス中のNOx濃度およびNOx総量が増加する。このため、環境規制による制約によりペレットの生産量に限界があった。   On the other hand, in order to increase the production amount of pellets, it is necessary to increase the amount of gas fuel burned in the preheating chamber burner in order to compensate for the shortage of the pellet residence time in the great furnace 1 by increasing the heating gas temperature. Then, the amount of thermal NOx generated by the combustion of the gas fuel increases, and the NOx concentration and the total NOx amount in the exhaust gas discharged from the great furnace 1 into the atmosphere increase. For this reason, there was a limit to the amount of pellets produced due to restrictions imposed by environmental regulations.

さらに、COGは微粉炭に比べコストが高く、また石炭ガス化ガスはガスの原料として低コストの石炭を使用できるものの高価なガス化装置を別途必要とすることから設備コストが高く、いずれもペレット製造コストが高くなる問題があった。   In addition, COG is more expensive than pulverized coal, and coal gasification gas can use low-cost coal as a raw material for gas, but requires an expensive gasifier separately, so the equipment cost is high. There was a problem that the manufacturing cost was high.

そこで本発明は、ペレット製造コストを低減しつつ、NOxの発生が抑制できるペレット製造方法および製造装置を提供することを目的とする。   Then, an object of this invention is to provide the pellet manufacturing method and manufacturing apparatus which can suppress generation | occurrence | production of NOx, reducing a pellet manufacturing cost.

請求項1に記載の発明は、鉄鉱石ペレットをトラベリング・グレートで移動させつつ、乾燥室、予熱室で加熱した後、キルンバーナを備えたロータリキルンで焼成するグレートキルン方式の鉄鉱石ペレット製造方法において、前記予熱室へ微粉炭を吹き込み、この微粉炭をキルン燃焼排ガス中の残留酸素で燃焼させて前記ロータリキルンからの燃焼排ガス温度を昇温させることを特徴とする鉄鉱石ペレットの製造方法である。   The invention according to claim 1 is a method for producing iron ore pellets of a great kiln system in which iron ore pellets are moved by a traveling grate, heated in a drying chamber and a preheating chamber, and then fired in a rotary kiln equipped with a kiln burner. A method for producing iron ore pellets, characterized in that pulverized coal is blown into the preheating chamber and the pulverized coal is burned with residual oxygen in the kiln combustion exhaust gas to raise the temperature of the combustion exhaust gas from the rotary kiln. .

請求項2に記載の発明は、前記微粉炭の吹込みが、前記予熱室の相対向する長手方向壁それぞれに複数本ずつ設けられた微粉炭バーナにより行われる請求項1に記載の鉄鉱石ペレットの製造方法である。   The invention according to claim 2 is the iron ore pellet according to claim 1, wherein the blowing of the pulverized coal is performed by a plurality of pulverized coal burners provided on each of the opposing longitudinal walls of the preheating chamber. It is a manufacturing method.

請求項3に記載の発明は、前記微粉炭バーナが、前記予熱室入口を基点として前記予熱室全長の1/3〜0.98の間に設置されたものである請求項2に記載の鉄鉱石ペレットの製造方法である。   The invention according to claim 3 is the iron ore according to claim 2, wherein the pulverized coal burner is installed between 1/3 and 0.98 of the total length of the preheating chamber with the inlet of the preheating chamber as a base point. This is a method for producing stone pellets.

請求項4に記載の発明は、一方の長手方向壁に設置された隣接する微粉炭バーナの間隔が、前記予熱室全長の0.14〜0.4である請求項2または3に記載の鉄鉱石ペレットの製造方法である。   Invention of Claim 4 is the iron ore of Claim 2 or 3 whose space | interval of the adjacent pulverized coal burner installed in one longitudinal direction wall is 0.14-0.4 of the said preheating chamber full length. This is a method for producing stone pellets.

請求項5に記載の発明は、前記予熱室の長手方向壁からの前記微粉炭バーナの突き出し長さが、前記予熱室幅の0.25〜0.5である請求項2〜4のいずれか1項に記載の鉄鉱石ペレットの製造方法である。   In the invention according to claim 5, the protruding length of the pulverized coal burner from the longitudinal wall of the preheating chamber is 0.25 to 0.5 of the width of the preheating chamber. It is a manufacturing method of the iron ore pellet of 1 item | term.

請求項6に記載の発明は、鉄鉱石ペレットを乾燥室、予熱室の順にトラベリング・グレートで移動させつつ、加熱用ガスの下向き通風により乾燥、予熱するグレート炉と、キルンバーナによる燃焼により、前記クレート炉から装入された前記乾燥・予熱されたペレットを焼成する一方、そのペレット焼成用に使用されたキルン燃焼排ガスを前記加熱用ガスとして前記予熱室へ送り込むロータリキルンとを備えたグレートキルン方式鉄鉱石ペレット製造装置において、前記予熱室へ微粉炭を吹き込み、この微粉炭を前記キルン燃焼排ガス中の残留酸素で燃焼させて前記キルン燃焼排ガスを昇温させる微粉炭バーナが、前記予熱室の相対向する長手方向壁それぞれに複数本ずつ、前記予熱室入口を基点として前記予熱室全長の1/3〜0.98の間に、前記予熱室全長の0.14〜0.4の間隔をあけて配置されてなるものであることを特徴とする鉄鉱石ペレットの製造装置である。   The invention as set forth in claim 6 is characterized in that the iron ore pellets are moved by a traveling grate in the order of the drying chamber and the preheating chamber, and are dried and preheated by downward ventilation of the heating gas, and the crate is burned by the kiln burner. Great kiln type iron ore comprising a rotary kiln for firing the dried and preheated pellets charged from a furnace while feeding the kiln combustion exhaust gas used for the pellet firing as the heating gas to the preheating chamber In the stone pellet manufacturing apparatus, a pulverized coal burner that blows pulverized coal into the preheating chamber and burns the pulverized coal with residual oxygen in the kiln combustion exhaust gas to raise the temperature of the kiln combustion exhaust gas is opposed to the preheating chamber. A plurality of longitudinal walls, each having a length of 1/3 to 0.98 of the total length of the preheating chamber from the inlet of the preheating chamber. In an apparatus for producing iron ore pellets, characterized in that it is made are spaced of 0.14 to 0.4 of the preheating chamber length.

本発明は以上のように構成されているので、ペレット製造コストが低減でき、かつ、サーマルNOxの発生を抑制できる。   Since this invention is comprised as mentioned above, the pellet manufacturing cost can be reduced and generation | occurrence | production of thermal NOx can be suppressed.

以下、本発明の実施の形態について図を参照しつつ詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の実施に係るグレートキルン方式鉄鉱石ペレット製造装置の一例を示す縦断面図、図2は図1に示す製造装置の要部を示す平面図、図3は図2中の予熱室を説明するための横断面図である。ここで、本例において、キルン燃焼排ガス昇温手段が異なっている点以外は、前記図10に示す従来装置の構成と同一であるので、同一部分には図10と同一の符号を付して説明を省略し、異なる点について説明する。   FIG. 1 is a longitudinal sectional view showing an example of a great kiln type iron ore pellet manufacturing apparatus according to an embodiment of the present invention, FIG. 2 is a plan view showing the main part of the manufacturing apparatus shown in FIG. 1, and FIG. 3 is a preheat in FIG. It is a cross-sectional view for demonstrating a chamber. Here, in this example, the configuration of the conventional apparatus shown in FIG. 10 is the same except that the kiln combustion exhaust gas temperature raising means is different. A description will be omitted, and different points will be described.

図1〜図3に示すように、ロータリキルン9からの燃焼排ガスを昇温させるためのキルン燃焼排ガス昇温手段として、予熱室5には、微粉炭を予熱室5内に吹き込むための微粉炭バーナ(以下、単に「バーナ」ともいう。)21を設けている。予熱室5内に従来のCOGに代えて微粉炭を吹き込むと、この微粉炭がキルン燃焼排ガス中の残留酸素で燃焼してできるバーナフレームの輝度が、COGのバーナフレームの輝度より高いため輻射伝熱量が従来より増加し、従来と同様の伝熱量をペレットに与えるのにCOGより低い燃焼温度でよく、その結果としてサーマルNOxの発生が抑制される。また、COGに比べて安価な微粉炭を用いることができるので、ペレット製造コストが低減できる。   As shown in FIGS. 1 to 3, pulverized coal for blowing pulverized coal into the preheating chamber 5 is used as a kiln combustion exhaust gas temperature raising means for raising the temperature of the combustion exhaust gas from the rotary kiln 9. A burner (hereinafter simply referred to as “burner”) 21 is provided. When pulverized coal is blown into the preheating chamber 5 instead of the conventional COG, the brightness of the burner frame formed by burning the pulverized coal with residual oxygen in the kiln combustion exhaust gas is higher than the brightness of the burner frame of the COG, so that radiation transmission is performed. The amount of heat increases compared to the conventional case, and a combustion temperature lower than that of COG is sufficient to give the same amount of heat transfer to the pellet as a result, and as a result, generation of thermal NOx is suppressed. Moreover, since pulverized coal cheaper than COG can be used, the pellet manufacturing cost can be reduced.

微粉炭バーナ21は、図2および図3に示すように、予熱室5の相対向する両方の長手方向壁(以下、「側壁」ともいう。)5aそれぞれに、予熱室5長手方向に沿って所定間隔をあけて一列に並べて配置することが望ましい。これにより、予熱室用吸引ファン7による吸引でグレート2に向かう加熱用ガスの下向き流れの中に、複数の微粉炭バーナ21のバーナフレームが位置することとなり、予熱室天井壁が過熱されることがない。このため、この天井壁等にキルン排ガス中に含有される石炭アッシュ等が付着することがなく、予熱室5の加熱用ガスを所要温度に昇温できる。   As shown in FIG. 2 and FIG. 3, the pulverized coal burner 21 extends along the longitudinal direction of the preheating chamber 5 on each of the opposing longitudinal walls (hereinafter also referred to as “side walls”) 5 a of the preheating chamber 5. It is desirable to arrange them in a line at a predetermined interval. As a result, the burner frames of the plurality of pulverized coal burners 21 are positioned in the downward flow of the heating gas directed toward the Great 2 by suction by the preheating chamber suction fan 7, and the preheating chamber ceiling wall is overheated. There is no. For this reason, coal ash contained in the kiln exhaust gas does not adhere to the ceiling wall or the like, and the heating gas in the preheating chamber 5 can be raised to a required temperature.

また、ペレット移動方向と直角な予熱室幅方向における加熱用ガスの温度調整は、微粉炭バーナ21の総燃料吹込量を調整することにより、容易に行うことができ、予熱室5幅方向における加熱用ガスの温度差をほぼなくすことができる。さらに、各微粉炭バーナ21ごとの燃料吹込量を調整することにより予熱室5長手方向においても最適なペレット加熱パターンを実現することができる。   Further, the temperature adjustment of the heating gas in the preheating chamber width direction perpendicular to the pellet moving direction can be easily performed by adjusting the total fuel injection amount of the pulverized coal burner 21, and heating in the preheating chamber 5 width direction is possible. The temperature difference of the working gas can be almost eliminated. Furthermore, an optimum pellet heating pattern can be realized also in the longitudinal direction of the preheating chamber 5 by adjusting the fuel injection amount for each pulverized coal burner 21.

そして、高さ方向におけるグレート2と各微粉炭バーナ21との距離hは、上述のように天井壁を過熱させないために、予熱室5の高さHの半分以下となるように、グレート2に近接して位置させることが望ましい。   Then, the distance 2 between the great 2 and each pulverized coal burner 21 in the height direction is set to the great 2 so that it is not more than half of the height H of the preheating chamber 5 so as not to overheat the ceiling wall as described above. It is desirable to place them close together.

また、複数本の微粉炭バーナ21は、予熱室入口5bを基点として(1/3)L〜0.98L(L:予熱室の長手方向の有効長さ=予熱室全長)の間に配設することが望ましい。図4に示すように、予熱室入口5bを基点として(1/3)L未満の位置に微粉炭バーナ21を設置すると、予熱室入口壁(離水室4と予熱室5とを仕切る隔壁)5bに石炭アッシュが付着し始めるためである。一方、表1に示すように、予熱室入口5bを基点として0.98Lを超える位置(すなわち、予熱室出口を基点として0.02L未満の位置)にバーナ21を設置すると、キルン9から予熱室5に流入する高温ガス流に直接曝されてバーナ21が折損されやすくなるためである。
The plurality of pulverized coal burners 21 are disposed between (1/3) L and 0.98L (L: effective length in the longitudinal direction of the preheating chamber = total length of the preheating chamber) with the preheating chamber inlet 5b as a base point. It is desirable to do. As shown in FIG. 4, when the pulverized coal burner 21 is installed at a position less than (1/3) L from the preheating chamber inlet 5b as a base point, the preheating chamber inlet wall (a partition wall separating the water separation chamber 4 and the preheating chamber 5) 5b This is because coal ash begins to adhere to the surface. On the other hand, as shown in Table 1, when the burner 21 is installed at a position exceeding 0.98 L from the preheating chamber inlet 5b (that is, a position less than 0.02 L from the preheating chamber outlet), the kiln 9 starts the preheating chamber. This is because the burner 21 is easily broken by being directly exposed to the high-temperature gas flow flowing into the gas.

また、一方の長手方向壁(側壁)に設置された隣接するバーナ21の間隔は、0.14L〜0.4Lとすることが望ましい。0.14L未満では隣接するバーナ21のフレームの輻射熱によりバーナが溶損することがあり、一方、0.4Lを超えるとバーナ21の総設置本数が少なくなりすぎてバーナ1本当たりの微粉炭吹込み量が過大となり、バーナフレームが長大化して対面側の予熱室側壁5a耐火物の溶損や当該耐火物への石炭アッシュの付着等の問題が生じやすくなるためである。   Moreover, it is desirable that the interval between adjacent burners 21 installed on one longitudinal wall (side wall) be 0.14L to 0.4L. If it is less than 0.14L, the burner may melt due to the radiant heat of the frame of the adjacent burner 21, while if it exceeds 0.4L, the total number of burners 21 installed will be too small and pulverized coal will be injected per burner. This is because the amount becomes excessive, the burner frame becomes long, and problems such as melting of the facing preheating chamber side wall 5a refractory and adhesion of coal ash to the refractory tend to occur.

また、バーナ21の予熱室側壁5aからの突き出し長さyは、0.25W〜0.5W(W:予熱室5の有効幅=予熱室幅)とすることが望ましい。図5に示すように、0.25W未満になるとバーナ取付側の側壁に石炭アッシュが付着し始めるためであり、一方、0.5Wを超えるとバーナ21の対面側の側壁に石炭アッシュが付着し始めるためである。   Further, it is desirable that the protruding length y of the burner 21 from the preheating chamber side wall 5a is 0.25 W to 0.5 W (W: effective width of the preheating chamber 5 = preheating chamber width). As shown in FIG. 5, coal ash starts to adhere to the side wall on the burner mounting side when it becomes less than 0.25 W, while coal ash adheres to the side wall on the opposite side of the burner 21 when it exceeds 0.5 W. To get started.

上記のようにして、予熱室5に設置した微粉炭バーナ21で加熱ガス温度を上昇させることにより、ペレットが十分に予熱され、予熱ペレットの強度が高まる。この強度の高い予熱ペレットはキルン9内で転動を受けても粉化しにくく、キルンリングの生成が防止されることとなる。   By raising the heating gas temperature with the pulverized coal burner 21 installed in the preheating chamber 5 as described above, the pellets are sufficiently preheated and the strength of the preheated pellets is increased. This high-strength preheated pellet is not easily pulverized even if it is rolled in the kiln 9, and the generation of the kiln ring is prevented.

なお、予熱室5に設けた微粉炭バーナ21による燃焼で発生する石炭アッシュは、加熱ガスとともにグレート2上のペレット層内を通過する際にその一部がペレット表面に付着し、予熱ペレットとともにキルン9内に持ち込まれる。このため、前述したように、従来はキルン9内壁に石炭アッシュが付着してキルンリングの発生が助長されることを懸念して、予熱バーナ8の燃料としてCOGが用いられていた。しかしながら、キルン9内に予熱ペレットとともに装入された石炭アッシュは、キルン9内壁に石炭アッシュが付着するようなキルン9内の高温域にペレットが到達する前に、ペレットの転動によりペレット表面から剥離され、キルン排ガス流に乗って再度予熱室5内に戻ってくるものと考えられる。そして、最終的に予熱室用風箱群6に設けられた集塵機でほぼ全量が捕捉される(後述の実施例参照)。したがって、予熱室5のバーナ21の燃料として微粉炭を用いても、キルンリングの発生が助長されることがなく、従来と同様、安定したペレットの製造ができる。   Note that the coal ash generated by the combustion by the pulverized coal burner 21 provided in the preheating chamber 5 partially adheres to the pellet surface when passing through the pellet layer on the great 2 together with the heating gas, and the kiln together with the preheating pellets. 9 is brought in. For this reason, as described above, conventionally, COG has been used as the fuel for the preheating burner 8 in consideration of the fact that coal ash adheres to the inner wall of the kiln 9 and promotes the generation of the kiln ring. However, the coal ash charged with the preheated pellets in the kiln 9 is moved from the pellet surface by rolling of the pellets before the pellets reach the high temperature region in the kiln 9 where the coal ash adheres to the inner wall of the kiln 9. It is considered that they are peeled off and return to the preheating chamber 5 again on the kiln exhaust gas flow. And finally, almost the entire amount is captured by the dust collector provided in the preheating chamber wind box group 6 (see the examples described later). Therefore, even if pulverized coal is used as the fuel for the burner 21 of the preheating chamber 5, the generation of kiln rings is not promoted, and stable pellets can be produced as in the conventional case.

本発明の効果を確認するため、実機の鉄鉱石ペレット製造装置を用いて以下の試験操業を実施した。   In order to confirm the effect of the present invention, the following test operation was performed using an actual iron ore pellet manufacturing apparatus.

用いた実機の鉄鉱石ペレット製造装置の予熱室の有効幅Wは4.6m、長手方向の有効長さ(予熱室全長)Lは27.45mである。また、予熱室の長手方向に沿って予熱室全長Lの間に9つの風箱(風箱番号12〜20)からなる予熱室用風箱群が設けられている。試験期間中のペレットの製造量は下記比較例、実施例とも約11600t/日であった。   The effective width W of the preheating chamber of the actual iron ore pellet manufacturing apparatus used is 4.6 m, and the effective length (total length of the preheating chamber) L in the longitudinal direction is 27.45 m. In addition, a preheating chamber wind box group including nine wind boxes (wind box numbers 12 to 20) is provided between the preheating chamber full length L along the longitudinal direction of the preheating chamber. The production amount of pellets during the test period was about 11600 t / day in both the following comparative examples and examples.

[比較例]
比較例として、予熱室バーナの燃料としてCOGを用いた試験操業を行った。予熱室バーナ(COGバーナ)は、予熱室側壁両側にそれぞれ3本ずつ配設した。試験操業期間中のCOG総吹込み量は6300〜6500m3(標準状態)/hであった。
[Comparative example]
As a comparative example, a test operation using COG as the fuel for the preheating chamber burner was performed. Three preheating chamber burners (COG burners) were arranged on each side of the preheating chamber side wall. The total COG blowing amount during the test operation period was 6300 to 6500 m 3 (standard state) / h.

[実施例]
次に、実施例として、上記COGバーナと異なる位置に微粉炭バーナを配設した。微粉炭バーナは、予熱室側壁両側にそれぞれ4本ずつ、予熱室入口から14.5m(0.528L)、19.8m(0.719L)、23.6m(0.860L)、26.6m(0.969L)の位置に水平に設置した。また、各微粉炭バーナは、グレート上面から1.2m(0.27H)の高さに設置した。さらに、各微粉炭バーナの予熱室側壁からの突き出し長さは、1.2m(0.26W)とした。試験操業期間中の微粉炭総吹込み量は2.2〜3.2t/hであった。
[Example]
Next, as an example, a pulverized coal burner was disposed at a position different from the COG burner. There are four pulverized coal burners on each side of the side wall of the preheating chamber, 14.5 m (0.528 L), 19.8 m (0.719 L), 23.6 m (0.860 L), 26.6 m from the preheating chamber entrance ( 0.969 L) was installed horizontally. Each pulverized coal burner was installed at a height of 1.2 m (0.27 H) from the top surface of the great. Furthermore, the protrusion length from the preheating chamber side wall of each pulverized coal burner was 1.2 m (0.26 W). The total amount of pulverized coal blown during the test operation period was 2.2 to 3.2 t / h.

[試験結果]
(1)NOx排出量
本発明によるNOx(サーマルNOx)発生の抑制効果を確認するため、比較例の試験操業条件から実施例の試験操業条件へと変更したときのグレート炉排ガス中のNOx濃度を測定することによりグレート炉からのNOx排出量を求め、その変化の様子を図6(a)に示す。同図に示すように、グレート炉からのNOx排出量は、比較例の期間中では平均113m3(標準状態)/hであったのが、実施例の期間中では平均96m3(標準状態)/hへと大幅に低下した。なお、同様にして求めたSOx排出量は、図6(b)に示すように、比較例の期間中では平均57m3(標準状態)/hであったのが、実施例の期間中では平均63m3(標準状態)/hであり実質的に変化はなく、問題はなかった。
[Test results]
(1) NOx emission amount In order to confirm the effect of suppressing NOx (thermal NOx) generation according to the present invention, the NOx concentration in the exhaust gas from the great furnace when the test operation condition of the comparative example is changed to the test operation condition of the example is used. The NOx emission amount from the great furnace is obtained by measurement, and the change is shown in FIG. As shown in the figure, the NOx emissions from the Great Furnace averaged 113 m 3 (standard state) / h during the period of the comparative example, but averaged 96 m 3 (standard state) during the period of the example. / H significantly decreased. In addition, as shown in FIG. 6B, the SOx emission amount obtained in the same manner was 57 m 3 (standard state) / h on average during the period of the comparative example, but averaged during the period of the example. It was 63 m 3 (standard state) / h and there was no substantial change, and there was no problem.

(2)石炭アッシュのバランス
実施例の試験操業期間において、石炭アッシュのバランスを、石炭アッシュの主要成分であるSiO2に基づいて計算することにより調査した。その結果、予熱室に吹き込んだ微粉炭中のアッシュ量が216kg/hであったのに対し、グレート通過後に集塵機で捕集されたダスト中のアッシュ量は249kg/hであった。キルンバーナの燃料にも微粉炭を用いていることから、キルン排ガス中にもともと含有されるアッシュ量を考慮すると、予熱室の微粉炭バーナでの燃焼により発生したアッシュ量のほぼ全量がグレート炉で回収されていることになり、予熱室に吹き込まれた微粉炭由来の石炭アッシュのキルン内への蓄積は実質的にないものと考えられる。また、比較例および実施例の両試験操業期間中(それぞれ約3ヶ月間)ともキルンリングの発生は見られなかった。
(2) Coal ash balance During the test operation period of the examples, the balance of coal ash was investigated by calculating based on SiO 2 which is the main component of coal ash. As a result, the ash amount in the pulverized coal blown into the preheating chamber was 216 kg / h, whereas the ash amount in the dust collected by the dust collector after passing through the great was 249 kg / h. Since pulverized coal is used as the fuel for the kiln burner, considering the amount of ash originally contained in the kiln exhaust gas, almost all of the ash generated by combustion in the pulverized coal burner in the preheating chamber is recovered in the Great Furnace. Therefore, it is considered that there is substantially no accumulation of coal ash derived from pulverized coal blown into the preheating chamber in the kiln. In addition, no kiln ring was observed during both test operations of the comparative example and the example (approximately 3 months each).

(3)微粉炭の燃焼性
実施例の試験操業期間において、微粉炭バーナで予熱室に吹き込まれた微粉炭の燃焼性をCバランスにより調査した。その結果、予熱室に吹き込まれた微粉炭中のC量が2625kg/hであったのに対し、グレート通過後に集塵機で捕捉されたダスト中のC量は48kg/hであり、微粉炭の燃焼率は98%と高く、予熱室に吹き込まれた微粉炭のほぼ全量が燃焼していることが確認された。
(3) Combustibility of pulverized coal During the test operation period of the example, the flammability of the pulverized coal blown into the preheating chamber with a pulverized coal burner was investigated by C balance. As a result, while the amount of C in the pulverized coal blown into the preheating chamber was 2625 kg / h, the amount of C in the dust captured by the dust collector after passing through the Great was 48 kg / h, and the combustion of the pulverized coal The rate was as high as 98%, and it was confirmed that almost all of the pulverized coal blown into the preheating chamber was burning.

(4)予熱室側壁温度
図8に示すように、予熱室の側壁温度は、実施例の期間においては比較例の期間に比べ、最大で約70℃上昇したものの、依然として耐火物の使用温度範囲内であり、耐火物の溶損や壁面への石炭アッシュの付着等も認められず、問題はなかった。
(4) Side wall temperature of preheating chamber As shown in FIG. 8, the side wall temperature of the preheating chamber increased by about 70 ° C. at the maximum in the period of the example compared to the period of the comparative example, but still remains in the operating temperature range of the refractory There was no problem because the refractory was not melted or coal ash adhered to the wall.

(5)予熱ペレットの強度
図9に示すように、ペレット層内温度曲線は、比較例の期間と実施例の期間とで、ほとんど変化はなく、その結果、図10に示すように、比較例の期間と実施例の期間とで、予熱ペレットの圧潰強度にほとんど変化は見られず、キルン内での転動に耐えられる十分な強度が維持されていた。
(5) Strength of preheated pellet As shown in FIG. 9, the temperature curve in the pellet layer hardly changed between the period of the comparative example and the period of the example. As a result, as shown in FIG. There was almost no change in the crushing strength of the preheated pellets during this period and the period of the example, and sufficient strength to withstand rolling in the kiln was maintained.

本発明の実施に係るグレートキルン方式鉄鉱石ペレット製造装置の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of the great kiln system iron ore pellet manufacturing apparatus which concerns on implementation of this invention. 図1に示すグレートキルン方式鉄鉱石ペレット製造装置の要部を示す平面図である。It is a top view which shows the principal part of the great kiln system iron ore pellet manufacturing apparatus shown in FIG. 図2中の予熱室を説明するための横断面図である。It is a cross-sectional view for demonstrating the preheating chamber in FIG. 予熱室入口から当該入口に最近接のバーナまでの距離と隔壁へのアッシュの付着量との関係を示すグラフ図である。It is a graph which shows the relationship between the distance from a preheating chamber entrance to the burner nearest to the entrance, and the adhesion amount of the ash to a partition. 予熱室側壁からバーナ先端までの突き出し長さと予熱室側壁へのアッシュの付着量との関係を示すグラフ図である。It is a graph which shows the relationship between the protrusion length from a preheating chamber side wall to a burner front-end | tip, and the adhesion amount of the ash to the preheating chamber side wall. グレート炉からの(a)NOx排出量および(b)SOx排出量の経時変化を示すグラフ図である。It is a graph which shows a time-dependent change of (a) NOx discharge | emission amount and (b) SOx discharge | emission amount from a great furnace. 予熱室長手方向位置と予熱室側壁温度との関係を示すグラフ図である。It is a graph which shows the relationship between a preheating chamber longitudinal direction position and preheating chamber side wall temperature. グレート炉長手方向位置とペレット層内温度との関係を示すグラフ図である。It is a graph which shows the relationship between a great furnace longitudinal direction position and the temperature in a pellet layer. 予熱ペレットの圧潰強度の経時変化を示すグラフ図である。It is a graph which shows a time-dependent change of the crushing strength of a preheating pellet. 従来のグレートキルン方式鉄鉱石ペレット製造装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the conventional great kiln system iron ore pellet manufacturing apparatus.

符号の説明Explanation of symbols

1…グレート炉 2…トラベリング・グレート
3…乾燥室 4…離水室
5…予熱室 5a…予熱室長手方向壁
5b…予熱室入口壁(予熱室入口)
6…予熱室用風箱群 7…予熱室用吸引ファン
8…予熱室バーナ(COGバーナ) 9…ロータリキルン
10…キルンバーナ 11…アニュラクーラ
21…微粉炭バーナ
GP…生ペレット

DESCRIPTION OF SYMBOLS 1 ... Great furnace 2 ... Traveling and great 3 ... Drying chamber 4 ... Dewatering chamber 5 ... Preheating chamber 5a ... Preheating chamber longitudinal wall 5b ... Preheating chamber inlet wall (preheating chamber inlet)
6 ... Preheating chamber wind box group 7 ... Preheating chamber suction fan 8 ... Preheating chamber burner (COG burner) 9 ... Rotary kiln 10 ... Kiln burner 11 ... Annula Laura 21 ... Pulverized coal burner GP ... Raw pellet

Claims (6)

鉄鉱石ペレットをトラベリング・グレートで移動させつつ、乾燥室、予熱室で加熱した後、キルンバーナを備えたロータリキルンで焼成するグレートキルン方式の鉄鉱石ペレット製造方法において、前記予熱室へ微粉炭を吹き込み、この微粉炭をキルン燃焼排ガス中の残留酸素で燃焼させて前記ロータリキルンからの燃焼排ガス温度を昇温させることを特徴とする鉄鉱石ペレットの製造方法。 In a method for producing iron ore pellets of the great kiln type, in which the iron ore pellets are moved in a traveling / grating, heated in a drying chamber and a preheating chamber, and then fired in a rotary kiln equipped with a kiln burner, pulverized coal is blown into the preheating chamber. A method for producing iron ore pellets, characterized in that the pulverized coal is burned with residual oxygen in the kiln combustion exhaust gas to raise the temperature of the combustion exhaust gas from the rotary kiln. 前記微粉炭の吹込みが、前記予熱室の相対向する長手方向壁それぞれに複数本ずつ設けられた微粉炭バーナにより行われる請求項1に記載の鉄鉱石ペレットの製造方法。 The method for producing iron ore pellets according to claim 1, wherein the blowing of the pulverized coal is performed by a plurality of pulverized coal burners provided on each of the opposing longitudinal walls of the preheating chamber. 前記微粉炭バーナが、前記予熱室入口を基点として前記予熱室全長の1/3〜0.98の間に設置されたものである請求項2に記載の鉄鉱石ペレットの製造方法。 3. The method for producing iron ore pellets according to claim 2, wherein the pulverized coal burner is installed between 1/3 and 0.98 of the entire length of the preheating chamber with the inlet of the preheating chamber as a base point. 一方の長手方向壁に設置された隣接する微粉炭バーナの間隔が、前記予熱室全長の0.14〜0.4である請求項2または3に記載の鉄鉱石ペレットの製造方法。 The method for producing iron ore pellets according to claim 2 or 3, wherein an interval between adjacent pulverized coal burners installed on one longitudinal wall is 0.14 to 0.4 of the total length of the preheating chamber. 前記予熱室の長手方向壁からの前記微粉炭バーナの突き出し長さが、前記予熱室幅の0.25〜0.5である請求項2〜4のいずれか1項に記載の鉄鉱石ペレットの製造方法。 The protruding length of the pulverized coal burner from the longitudinal wall of the preheating chamber is 0.25 to 0.5 of the width of the preheating chamber, The iron ore pellets according to any one of claims 2 to 4 Production method. 鉄鉱石ペレットを乾燥室、予熱室の順にトラベリング・グレートで移動させつつ、加熱用ガスの下向き通風により乾燥、予熱するグレート炉と、キルンバーナによる燃焼により、前記クレート炉から装入された前記乾燥・予熱されたペレットを焼成する一方、そのペレット焼成用に使用されたキルン燃焼排ガスを前記加熱用ガスとして前記予熱室へ送り込むロータリキルンとを備えたグレートキルン方式鉄鉱石ペレット製造装置において、
前記予熱室へ微粉炭を吹き込み、この微粉炭を前記キルン燃焼排ガス中の残留酸素で燃焼させて前記キルン燃焼排ガスを昇温させる微粉炭バーナが、前記予熱室の相対向する長手方向壁それぞれに複数本ずつ、前記予熱室入口を基点として前記予熱室全長の1/3〜0.98の間に、前記予熱室全長の0.14〜0.4の間隔をあけて配置されてなるものであることを特徴とする鉄鉱石ペレットの製造装置。

The iron ore pellets are moved in the order of the drying chamber and the preheating chamber in the order of traveling and grate, and the grate furnace that is dried and preheated by the downward ventilation of the heating gas, and the drying and charging that is charged from the crate furnace by combustion with the kiln burner In a great kiln type iron ore pellet manufacturing apparatus comprising a rotary kiln for firing preheated pellets, while feeding a kiln combustion exhaust gas used for the pellet firing to the preheating chamber as the heating gas,
A pulverized coal burner that blows pulverized coal into the preheating chamber and burns the pulverized coal with residual oxygen in the kiln combustion exhaust gas to raise the temperature of the kiln combustion exhaust gas is formed on each of the opposing longitudinal walls of the preheating chamber. A plurality of them are arranged at intervals of 0.14 to 0.4 of the total length of the preheating chamber, between 1/3 and 0.98 of the total length of the preheating chamber, starting from the inlet of the preheating chamber. An apparatus for producing iron ore pellets.

JP2003291499A 2003-08-11 2003-08-11 Method and apparatus for manufacturing iron ore pellet Pending JP2005060762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003291499A JP2005060762A (en) 2003-08-11 2003-08-11 Method and apparatus for manufacturing iron ore pellet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003291499A JP2005060762A (en) 2003-08-11 2003-08-11 Method and apparatus for manufacturing iron ore pellet

Publications (1)

Publication Number Publication Date
JP2005060762A true JP2005060762A (en) 2005-03-10

Family

ID=34369164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003291499A Pending JP2005060762A (en) 2003-08-11 2003-08-11 Method and apparatus for manufacturing iron ore pellet

Country Status (1)

Country Link
JP (1) JP2005060762A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119291A1 (en) * 2008-03-27 2009-10-01 株式会社神戸製鋼所 Method for producing iron ore pellet
JP2009264694A (en) * 2008-04-28 2009-11-12 Jfe Steel Corp Sintering machine and method for operating the same
JP2011127175A (en) * 2009-12-17 2011-06-30 Kobe Steel Ltd Method for manufacturing iron ore pellet
CN102645105A (en) * 2012-05-21 2012-08-22 邹岳明 High-temperature material heat recovery system
CN104634124A (en) * 2012-05-21 2015-05-20 吴昊 Working method of high-temperature material thermal energy recovery system capable of reducing greenhouse gas emission
CN104634125A (en) * 2012-05-21 2015-05-20 吴昊 Working method of high-temperature material thermal energy recovering system
CN104654813A (en) * 2012-05-21 2015-05-27 吴昊 Working method of high-temperature material heat energy recovery system with higher recovery rate
CN104713372A (en) * 2012-05-21 2015-06-17 吴昊 Working method of high temperature material heat recovery system capable of lowering energy consumption greatly
CN109595930A (en) * 2019-01-10 2019-04-09 烟台龙源电力技术股份有限公司 A kind of rotary kiln drying grate and its method of denitration
CN110564949A (en) * 2019-10-22 2019-12-13 山西太钢不锈钢股份有限公司 Method for reducing powder content of alkaline pellet
WO2023035050A1 (en) 2021-09-09 2023-03-16 Fct Holdings Pty Ltd Low nox emission burner and operating method for reducing nox formation applied to an iron ore pellet sintering and/or hardening method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119291A1 (en) * 2008-03-27 2009-10-01 株式会社神戸製鋼所 Method for producing iron ore pellet
JP2009264694A (en) * 2008-04-28 2009-11-12 Jfe Steel Corp Sintering machine and method for operating the same
JP2011127175A (en) * 2009-12-17 2011-06-30 Kobe Steel Ltd Method for manufacturing iron ore pellet
CN102645105A (en) * 2012-05-21 2012-08-22 邹岳明 High-temperature material heat recovery system
CN104634124A (en) * 2012-05-21 2015-05-20 吴昊 Working method of high-temperature material thermal energy recovery system capable of reducing greenhouse gas emission
CN104634125A (en) * 2012-05-21 2015-05-20 吴昊 Working method of high-temperature material thermal energy recovering system
CN104654813A (en) * 2012-05-21 2015-05-27 吴昊 Working method of high-temperature material heat energy recovery system with higher recovery rate
CN104713372A (en) * 2012-05-21 2015-06-17 吴昊 Working method of high temperature material heat recovery system capable of lowering energy consumption greatly
CN104634125B (en) * 2012-05-21 2016-09-21 江苏德龙镍业有限公司 The method of work of Heat-energy recovery system of high-temperature material
CN104634124B (en) * 2012-05-21 2016-11-30 中海沥青(泰州)有限责任公司 The method of work of the Heat-energy recovery system of high-temperature material of greenhouse gas emission can be reduced
CN109595930A (en) * 2019-01-10 2019-04-09 烟台龙源电力技术股份有限公司 A kind of rotary kiln drying grate and its method of denitration
CN110564949A (en) * 2019-10-22 2019-12-13 山西太钢不锈钢股份有限公司 Method for reducing powder content of alkaline pellet
CN110564949B (en) * 2019-10-22 2021-02-19 山西太钢不锈钢股份有限公司 Method for reducing powder content of alkaline pellet
WO2023035050A1 (en) 2021-09-09 2023-03-16 Fct Holdings Pty Ltd Low nox emission burner and operating method for reducing nox formation applied to an iron ore pellet sintering and/or hardening method

Similar Documents

Publication Publication Date Title
US9250018B2 (en) Apparatus and methods for achieving low NOx in a grate-kiln pelletizing furnace
JP4355748B2 (en) Method for producing iron ore pellets
US8961650B2 (en) Partially-reduced iron producing method and partially-reduced iron producing apparatus
JP2005060762A (en) Method and apparatus for manufacturing iron ore pellet
US4373946A (en) Process of heat-treating pellets
JPH11325740A (en) Grate kiln iron ore pellet firing device
JPS6311608A (en) Method for blowing power fuel into blast furnace
US3732062A (en) Method of and apparatus for reducing air pollution in the thermal processing of ores and other materials
JP2006207911A (en) Operation method of waste melting furnace
CA1159647A (en) Calcining furnace with gas-permeable wall structure
CN218523947U (en) Novel sintering ignition furnace
JPH08152118A (en) Combustion temperature control method in melting furnace of wastes based on shaft furnace system
KR101189408B1 (en) Rotary kiln calciner and it&#39;s operation method
JP2629111B2 (en) Waste melting furnace
JP4893290B2 (en) Hot metal production method using vertical scrap melting furnace
US726114A (en) Furnace.
JP2016191079A (en) Recycling method of oil-containing sludge
JP2010126774A (en) Method for manufacturing sintered ore
JPH04254534A (en) Sintering method using pulverized fuel-containing gas
KR20010062899A (en) Method for improving dedman permeability by injecting steam and oxygen in blast furnace tuyere
JP5601688B2 (en) Blow-off elimination method in shaft furnace type gasification melting furnace
RU2214572C2 (en) Installation for roasting and sintering of mineral raw material
SU1100476A1 (en) Device for producing melted cement clinker
JPH03281736A (en) Combustion method in grate kiln for producing iron-ore pellet
JPS63113216A (en) Heating furnace for ash containing fuel combustion