JP2005058905A - Hollow fiber membrane type body liquid treating device - Google Patents

Hollow fiber membrane type body liquid treating device Download PDF

Info

Publication number
JP2005058905A
JP2005058905A JP2003292106A JP2003292106A JP2005058905A JP 2005058905 A JP2005058905 A JP 2005058905A JP 2003292106 A JP2003292106 A JP 2003292106A JP 2003292106 A JP2003292106 A JP 2003292106A JP 2005058905 A JP2005058905 A JP 2005058905A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
blood
resin
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003292106A
Other languages
Japanese (ja)
Inventor
Shigeru Nomura
繁 野村
Susumu Kojima
進 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Kasei Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Medical Co Ltd filed Critical Asahi Kasei Medical Co Ltd
Priority to JP2003292106A priority Critical patent/JP2005058905A/en
Publication of JP2005058905A publication Critical patent/JP2005058905A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a body fluid treating device with a decreased disturbance in the flow of a liquid to be treated though hollow fiber membranes swellable by water are used, and, further, to provide a high performance hollow fiber membrane type body liquid treating device having such characteristics that it is excellent in performance of removing low molecular weight protein represented by a low molecular substance and β2-microglobulin, and also that the blood remaining after use is at a low level. <P>SOLUTION: The hollow fiber membrane type body fluid treating device is constituted in such a way that the inner diameters of hollow fiber membranes at a resin wrapping part and a resin non-wrapping part in their wet states are within specified ranges respectively in the use of hollow fiber membranes swellable by water and that the value (OD<SB>W2</SB>/OD<SB>W1</SB>) obtained when the outer diameter OD<SB>W2</SB>of the hollow fiber membrane at the resin non-wrapping part is divided by the outer diameter OD<SB>W1</SB>of the hollow fiber membrane at the resin wrapping part in the wet states is within a certain specified range. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、血液透析、血液濾過ないし血液透析濾過等に使用する中空糸膜型体液処理装置に関する。さらに詳しくは、水により膨潤する中空糸膜を用いながら、優れた低分子量物質透過性能及び低分子量蛋白質透過性能を持ち、かつ使用後の残血が少ないという特性を併せ持つ、高性能な中空糸膜型血液処理装置に関する。   The present invention relates to a hollow fiber membrane type body fluid treatment apparatus used for hemodialysis, blood filtration, hemodiafiltration and the like. More specifically, while using a hollow fiber membrane that swells with water, it has excellent low molecular weight substance permeation performance and low molecular weight protein permeation performance, and also has the characteristics of low residual blood after use. The present invention relates to a blood type blood processing apparatus.

血液透析、血液濾過ないし血液透析濾過等に使用されている中空糸膜型体液処理装置としての血液処理装置の中空糸膜には、セルロース系中空糸膜や種々の合成高分子膜が広く使用されている。セルロース系中空糸膜、とりわけ、鹸化セルロース、再生セルロース中空糸膜を使用した血液透析用の血液処理装置は、30年を越える使用実績があり、その信頼性は高く、広く使用されている。血液処理装置用のセルロース系中空糸膜の乾燥時寸法は、一般的に内径が約160μm〜200μm、膜厚が数μm〜数10μm程度であるが、セルロース系、特に鹸化セルロース、再生セルロース中空糸膜は湿潤により膨潤し、その内径は180μm〜220μmまた、その膜厚は10μm〜100μm近くまで増加する傾向がある。
血液透析療法では久しく、手根幹症候群を始めとする透析アミロイドーシスの発症に、β2マイクログロブリンの体内蓄積が大きく関与していることが明らかとなり、β2マイクログロブリンを効率良く除去できる血液処理装置が求められている。
セルロース系中空糸膜型血液処理装置でもこの課題を解決するためにより透過性能の高い中空糸膜を使用した中空糸膜型血液処理装置が要求されるようになり、その結果として中空糸膜の膨潤性はより高くなった。
中空糸膜が樹脂により包埋される時、中空糸膜は乾燥状態で包埋される。中空糸膜が血液などの被処理液等により湿潤されると、前述のように中空糸膜は膨潤する性質を有するため、樹脂包埋部では、樹脂によって中空糸膜外径方向への膨潤が規制され、膜の膨潤により内径寸法が縮小する。一方、樹脂非包埋部では樹脂により膨潤が規制されないため中空糸膜の膜厚、外径、および内径が平衡状態まで拡大する。
このような形態の中空糸膜型血液処理装置では、樹脂包埋部と樹脂非包埋部での中空糸膜の内径寸法の差異が発生し、血液導入部の中空糸膜内において樹脂包埋部から樹脂非包埋部へ血液が流れる際に流束の拡大が起こる。また、血液導出部において樹脂非包埋部から樹脂包埋部へ血液が流れる際に流束の縮小が起こる。これらが原因で血流の乱れが生じ易くなり、血液成分の活性化が引き起こされ、水により膨潤する中空糸膜を用いた血液処理装置の残血が多くなる。すなわち血液処理後の返血時に血液が残留する中空糸膜本数が多くなる要因の一つになっていた。
Cellulose hollow fiber membranes and various synthetic polymer membranes are widely used as hollow fiber membranes for blood treatment devices as hollow fiber membrane type body fluid treatment devices used for hemodialysis, blood filtration or hemodiafiltration. ing. A blood treatment apparatus for hemodialysis using cellulosic hollow fiber membranes, particularly saponified cellulose and regenerated cellulose hollow fiber membranes, has been used for over 30 years, has high reliability, and is widely used. Cellulose hollow fiber membranes for blood treatment devices generally have dimensions of about 160 μm to 200 μm in inner diameter and about several μm to several tens of μm in inner diameter. Cellulose, particularly saponified cellulose and regenerated cellulose hollow fibers The film swells when wet, and its inner diameter tends to increase to 180 μm to 220 μm and the film thickness increases to nearly 10 μm to 100 μm.
For a long time in hemodialysis therapy, it has been clarified that the accumulation of β2 microglobulin in the body of dialysis amyloidosis, including carpal trunk syndrome, has been revealed. ing.
In order to solve this problem, a hollow fiber membrane type blood treatment device using a hollow fiber membrane having higher permeation performance is required, and as a result, swelling of the hollow fiber membrane is required. Sex became higher.
When the hollow fiber membrane is embedded with a resin, the hollow fiber membrane is embedded in a dry state. When the hollow fiber membrane is wetted by a liquid to be treated such as blood, the hollow fiber membrane has a property of swelling as described above. Therefore, in the resin embedding portion, the resin swells in the outer diameter direction of the hollow fiber membrane. It is regulated and the inner diameter is reduced by the swelling of the membrane. On the other hand, since swelling is not regulated by the resin in the resin non-embedded portion, the film thickness, outer diameter, and inner diameter of the hollow fiber membrane are expanded to an equilibrium state.
In the hollow fiber membrane type blood treatment apparatus having such a configuration, a difference in the inner diameter of the hollow fiber membrane occurs between the resin embedding part and the non-resin embedding part, and the resin embedding is performed in the hollow fiber membrane of the blood introduction part. When blood flows from the part to the resin non-embedded part, the flux expands. Further, when blood flows from the resin non-embedded part to the resin embedded part in the blood outlet part, the flux is reduced. Because of these, blood flow disturbance is likely to occur, activation of blood components is caused, and residual blood in the blood processing apparatus using a hollow fiber membrane that swells with water increases. That is, it was one of the factors that increased the number of hollow fiber membranes in which blood remained when returning blood after blood treatment.

先に述べたようにβ2マイクログロブリンを効率良く除去するための透過性能の高い中空糸膜、すなわち結果的により膨潤性の高くなった中空糸膜を用いた中空糸膜型血液処理装置では、樹脂包埋部と樹脂非包埋部での中空糸膜の寸法の差異がより顕著になるため、残血がさらに増大することが指摘されていた。
低分子量蛋白質の透過性を高める為、種々の凝固方法、中空部形成剤、孔径保持剤の種類や付着量を変えて含水空孔率を上げ平均孔半径を大きくする事により、例えば血液透析療法での低分子量蛋白質除去性能の高い中空糸膜製膜技術が開示されている(特許文献1)。特許文献1に記載の発明では、中空糸膜の孔径を大きく維持する為に孔径保持剤量を多くしなければならず、この結果中空糸膜の膜厚が大きくなる。この中空糸膜は湿潤時に膜厚が更に大きくなり、特に低分子量物質の拡散透過性能の低下につながるという欠点を持っている。また、膜厚が厚いと湿潤時にさらに膜厚が厚くなり、結果として湿潤時の樹脂包埋部と樹脂非包埋部との寸法差が大きくなるので、血液処理装置の残血が多くなるという問題があった。
As described above, in a hollow fiber membrane type blood treatment apparatus using a hollow fiber membrane having a high permeation performance for efficiently removing β2 microglobulin, that is, a hollow fiber membrane having a higher swelling property as a result, It has been pointed out that residual blood further increases because the difference in dimensions of the hollow fiber membrane between the embedding part and the non-resin embedding part becomes more prominent.
In order to increase the permeability of low molecular weight proteins, various coagulation methods, hollow part forming agents, types of pore diameter retaining agents and the amount of adhesion are changed to increase the water content porosity and increase the average pore radius, for example, hemodialysis therapy Discloses a hollow fiber membrane-forming technique with high low molecular weight protein removal performance (Patent Document 1). In the invention described in Patent Document 1, in order to maintain a large pore diameter of the hollow fiber membrane, the amount of the pore diameter retaining agent must be increased, and as a result, the thickness of the hollow fiber membrane is increased. This hollow fiber membrane has the disadvantage that the film thickness is further increased when wet, leading to a decrease in the diffusion and permeation performance of low molecular weight substances. In addition, when the film thickness is thick, the film thickness further increases when wet, resulting in a large dimensional difference between the resin-embedded part and the non-resin-embedded part when wet. There was a problem.

最近、血液透析療法において、逆濾過と称する血液側の圧力分布と透析液側の圧力分布の違いから生じる圧力差により、次のような問題が発生している。すなわち、透析液側のエンドトキシンが血液側に流入し、インターロイキン・ネットワークを通じて炎症性サイトカインを誘導して、種々の生理活性が示される。たとえば、発熱等の感冒様症状や種々の透析合併症を誘発するという懸念が指摘され、透析液のエンドトキシンフリー化対策を必要としている。
この逆濾過現象を防止するためにグラジエント構造を有する中空糸膜が提案された。すなわち、β2マイクログロブリンに代表される血液中の高分子量物質の除去性能に優れ、かつ透析液中から患者体内へのエンドトキシンフラグメントの侵入を抑制し、生体適合性に優れた中空糸膜が開発されている(特許文献2)。しかしながら、特許文献2に記載の血液処理装置用中空糸膜は、特殊な凝固方法により形成された中空糸膜構造である為、湿潤時に中空糸膜の膨潤が大きく、血液処理装置の残血が大きい傾向にあった。
特開平2−135130号公報 特表平10−534087号公報
Recently, in hemodialysis therapy, the following problem has occurred due to the pressure difference caused by the difference between the pressure distribution on the blood side called reverse filtration and the pressure distribution on the dialysate side. That is, endotoxin on the dialysate side flows into the blood side, induces inflammatory cytokines through the interleukin network, and exhibits various physiological activities. For example, concerns have been raised that cold-like symptoms such as fever and various dialysis complications are induced, and measures to make the dialysis solution endotoxin-free are required.
In order to prevent this reverse filtration phenomenon, a hollow fiber membrane having a gradient structure has been proposed. That is, a hollow fiber membrane having excellent biocompatibility has been developed that is excellent in the removal performance of high molecular weight substances in blood typified by β2 microglobulin and that suppresses the entry of endotoxin fragments from the dialysate into the patient. (Patent Document 2). However, since the hollow fiber membrane for blood treatment device described in Patent Document 2 has a hollow fiber membrane structure formed by a special coagulation method, the hollow fiber membrane swells greatly when wet, and residual blood of the blood treatment device is There was a big trend.
JP-A-2-135130 Japanese National Patent Publication No. 10-534087

本発明は、前記従来技術の問題点を解決し、次のような体液処理装置を提供することを目的とする。すなわち、水により膨潤する中空糸膜を用いながら、被処理液の流れの乱れが少ない体液処理装置を提供することを目的とする。さらに、低分子量物質及びβ2マイクログロブリンに代表される低分子量蛋白質の除去性能に優れ、かつ使用後の残血が少ないという特性を併せ持つ高性能な中空糸膜型体液処理装置を提供することを目的とする。   An object of the present invention is to solve the problems of the prior art and to provide the following body fluid treatment apparatus. That is, an object of the present invention is to provide a bodily fluid treatment apparatus that uses a hollow fiber membrane that swells with water and has little disturbance in the flow of the liquid to be treated. Furthermore, it is an object to provide a high-performance hollow fiber membrane type body fluid treatment device that is excellent in the removal performance of low molecular weight substances and low molecular weight proteins typified by β2 microglobulin and has low residual blood after use. And

本発明者らは、水により膨潤する中空糸膜を用いながら、湿潤状態での樹脂包埋部および樹脂非包埋部の中空糸膜内径をそれぞれ特定の範囲にしたこと、及び湿潤状態での樹脂包埋部の中空糸膜の外径ODw1で樹脂非包埋部の中空糸膜の外径ODw2を除した値(ODw2/ODw1)をある特定の範囲にしたことにより、驚くべきほど被処理液の導入部及び導出部での被処理液の流動抵抗が改善出来、例えば被処理液が血液である場合、中空糸膜の残血を著しく少なくできることを見出し、本発明に到達した。
すなわち本発明は、以下の構成からなる。
(1)少なくとも1組の処理液入口と処理液出口とを備えた外筒容器内に、水により膨潤する中空糸膜がほぼ平行に多数本集束されて収納され、その中空糸束の両末端が中空部を開口した状態で樹脂により容器内に接着固定され、該中空糸束の両末端それぞれに液密に固定された被処理液の入口と出口を備えた中空糸膜型体液処理装置であって、
中空糸膜が湿潤された状態における樹脂包埋部の中空糸膜外径をODw1、樹脂非包埋部の中空糸膜外径をODw2とするとき、下式(1)を満たすことを特徴とする中空糸膜型体液処理装置。
1.07≦ ODw2/ODw1 ≦1.45 (1)
(2)中空糸膜が水で湿潤された状態における樹脂包埋部の中空糸膜内径が165μm〜250μm、樹脂非包埋部の中空糸膜内径が230μm〜290μmである上記(1)に記載の中空糸膜型体液処理装置。
(3)被処理液が血液である上記(1)または(2)に記載の中空糸膜型体液処理装置。
(4)チトクロムCの物質移動係数が1.0×10−5cm/sec〜7.0×10−5cm/secである上記(3)に記載の中空糸膜型体液処理装置。
(5)透水性能が10ml/m/mmHg〜100ml/m/mmHg、アルブミンのふるい係数が0.06以下である上記(3)または(4)に記載の中空糸膜型体液処理装置。
(6)下式(2)を満たすことを特徴とする上記(1)〜(5)のいずれかに記載の中空糸膜型体液処理装置。
1.35≦ ODw2/ODw1 ≦1.45 (2)
(7)中空糸膜が再生セルロースからなる上記(1)〜(6)のいずれかに記載の中空糸膜型体液処理装置。
(8)中空糸膜が下式(3)〜(7)を満たす孔径を有し、中空糸膜内部に少なくとも1つの極大部を有する上記(1)〜(7)のいずれかに記載の中空糸膜型体液処理装置。
10≦D1≦300 (3)
0.6≦(D2/D1)≦1.2 (4)
1.2≦(D3/D1) (5)
20≦ρ1≦200 (6)
20≦ρ2≦200 (7)
(ここで、D1は中空糸膜内壁表面の孔径(nm)、D2は中空糸膜外壁表面の孔径(nm)、D3は中空糸膜内部の孔径(nm)、ρ1は中空糸膜内壁層孔径増加率(%)、ρ2は中空糸膜外壁層孔径減少率を表す。)
(9)下式(3)〜(7)を満足する孔径を有し、中空糸膜内部に少なくとも1つの極大部を有する中空糸膜であって、水により膨潤された時の内径が、230μm〜290μm、透水性能が10ml/m/mmHg〜100ml/m/mmHg、チトクロムCの物質移動係数が1.0×10−5cm/sec〜7.0×10−5cm/sec、アルブミンのふるい係数が0.06以下であることを特徴とする水により膨潤する中空糸膜。
10≦D1≦300 (3)
0.6≦(D2/D1)≦1.2 (4)
1.2≦(D3/D1) (5)
20≦ρ1≦200 (6)
20≦ρ2≦200 (7)
(ここで、D1は中空糸膜内壁表面の孔径(nm)、D2は中空糸膜外壁表面の孔径(nm)、D3は中空糸膜内部の孔径(nm)、ρ1は中空糸膜内壁層孔径増加率(%)、ρ2は中空糸膜外壁層孔径減少率を表す。)
While using hollow fiber membranes that swell with water, the inventors have made the hollow fiber membrane inner diameters of the resin-embedded portion and the non-resin-embedded portion in a wet state within specific ranges, respectively, Surprisingly, the value (OD w2 / OD w1 ) obtained by dividing the outer diameter OD w2 of the hollow fiber membrane of the resin non-embedded portion by the outer diameter OD w1 of the hollow fiber membrane of the resin embedded portion is within a certain range. The flow resistance of the liquid to be treated at the introduction part and the outlet part of the liquid to be treated can be improved as much as possible. For example, when the liquid to be treated is blood, it has been found that residual blood in the hollow fiber membrane can be remarkably reduced, and the present invention has been achieved. did.
That is, this invention consists of the following structures.
(1) A large number of hollow fiber membranes swollen by water are collected and stored in an outer cylinder container having at least one set of treatment liquid inlet and treatment liquid outlet, and both ends of the hollow fiber bundle. Is a hollow fiber membrane type body fluid treatment apparatus provided with an inlet and an outlet of a liquid to be treated, which are adhesively fixed in a container with a resin with a hollow portion opened and liquid-tightly fixed to both ends of the hollow fiber bundle. There,
When the hollow fiber membrane outer diameter of the resin embedding part in the wet fiber membrane is OD w1 and the hollow fiber membrane outer diameter of the resin non-embedded part is OD w2 , the following formula (1) is satisfied. A hollow fiber membrane type bodily fluid treatment apparatus.
1.07 ≦ OD w2 / OD w1 ≦ 1.45 (1)
(2) The hollow fiber membrane has an inner diameter of 165 μm to 250 μm in the resin-embedded portion when the hollow fiber membrane is wetted with water, and the hollow fiber membrane has an inner diameter of 230 μm to 290 μm in the non-embedded resin portion. Hollow fiber membrane body fluid treatment device.
(3) The hollow fiber membrane type body fluid treatment device according to (1) or (2), wherein the liquid to be treated is blood.
(4) mass transfer coefficient of cytochrome C is a hollow fiber membrane type body fluid treatment device according to (3) is 1.0 × 10 -5 cm / sec~7.0 × 10 -5 cm / sec.
(5) The hollow fiber membrane type body fluid treatment device according to the water permeability 10ml / m 2 / mmHg~100ml / m 2 / mmHg, the sieving coefficient of albumin is 0.06 or less (3) or (4).
(6) The hollow fiber membrane type body fluid treatment device according to any one of (1) to (5), wherein the following formula (2) is satisfied.
1.35 ≦ OD w2 / OD w1 ≦ 1.45 (2)
(7) The hollow fiber membrane type body fluid treatment device according to any one of (1) to (6), wherein the hollow fiber membrane is made of regenerated cellulose.
(8) The hollow according to any one of the above (1) to (7), wherein the hollow fiber membrane has a pore diameter satisfying the following formulas (3) to (7) and has at least one maximum portion inside the hollow fiber membrane: Yarn type body fluid treatment device.
10 ≦ D1 ≦ 300 (3)
0.6 ≦ (D2 / D1) ≦ 1.2 (4)
1.2 ≦ (D3 / D1) (5)
20 ≦ ρ1 ≦ 200 (6)
20 ≦ ρ2 ≦ 200 (7)
(Where D1 is the hole diameter (nm) of the inner surface of the hollow fiber membrane, D2 is the hole diameter (nm) of the outer surface of the hollow fiber membrane, D3 is the hole diameter (nm) inside the hollow fiber membrane, and ρ1 is the hole diameter of the inner wall layer of the hollow fiber membrane. (Increase rate (%), ρ2 represents the hole diameter decrease rate of the hollow fiber membrane outer wall layer)
(9) A hollow fiber membrane having a pore size satisfying the following formulas (3) to (7) and having at least one maximum portion inside the hollow fiber membrane, and the inner diameter when swollen with water is 230 μm ~290Myuemu, water permeability 10ml / m 2 / mmHg~100ml / m 2 / mmHg, mass transfer coefficient of cytochrome C is 1.0 × 10 -5 cm / sec~7.0 × 10 -5 cm / sec, albumin A hollow fiber membrane which swells with water, characterized by having a sieving coefficient of 0.06 or less.
10 ≦ D1 ≦ 300 (3)
0.6 ≦ (D2 / D1) ≦ 1.2 (4)
1.2 ≦ (D3 / D1) (5)
20 ≦ ρ1 ≦ 200 (6)
20 ≦ ρ2 ≦ 200 (7)
(Where D1 is the hole diameter (nm) of the inner surface of the hollow fiber membrane, D2 is the hole diameter (nm) of the outer surface of the hollow fiber membrane, D3 is the hole diameter (nm) inside the hollow fiber membrane, and ρ1 is the hole diameter of the inner wall layer of the hollow fiber membrane. (Increase rate (%), ρ2 represents the hole diameter decrease rate of the hollow fiber membrane outer wall layer)

本発明の中空糸膜型体液処理装置は、水により膨潤する中空糸膜を用いながら、例えば、血液処理に用いた場合には低分子量物質及びβ2マイクログロブリンに代表される低分子量蛋白質の除去性能に優れ、かつ使用後の残血が少ないという特性を併せ持つ、高性能な中空糸膜型血液処理装置である。本発明の中空糸膜型血液処理装置は、外観での残血した中空糸膜本数を10本以下に少なくすることが出来、血液透析、血液濾過ないし血液透析濾過などに好適に用いることができる。また、尿素窒素やクレアチニンのような低分子量物質やβ2マイクログロブリンの拡散除去にも適し、β2マイクログロブリン以外の高分子量物質除去能にも優れる。しかも、血液処理特に血液透析療法におけるアルブミン等の有用蛋白質の逸失を実用上問題にならない程度に抑えることが出来る。   The hollow fiber membrane type body fluid treatment apparatus of the present invention uses a hollow fiber membrane that swells with water, but, for example, when used for blood treatment, removes low molecular weight substances and low molecular weight proteins represented by β2 microglobulin. It is a high-performance hollow fiber membrane blood treatment device that has both excellent characteristics and low residual blood after use. The hollow fiber membrane-type blood treatment apparatus of the present invention can reduce the number of remaining hollow fiber membranes in appearance to 10 or less, and can be suitably used for hemodialysis, blood filtration, hemodiafiltration and the like. . It is also suitable for diffusion removal of low molecular weight substances such as urea nitrogen and creatinine and β2 microglobulin, and has excellent ability to remove high molecular weight substances other than β2 microglobulin. In addition, the loss of useful proteins such as albumin in blood treatment, particularly hemodialysis therapy, can be suppressed to an extent that does not cause a problem in practice.

以下、本発明の体液処理装置のうち、血液処理装置を例に具体的に説明する。
血液処理装置ではその目的上、用途に応じて透水性能、物質の移動係数、物質の篩係数が所望のものとなるように要求される。
本発明でいう水により膨潤するとは、乾燥状態の中空糸膜を水で湿潤状態にしたときに、中空糸膜がその膜厚部に水を吸い込み、膜厚部の体積が増し、それにつれて外力が加わらない場合には内径、膜厚、外径共に増加することをいう。
本発明でいう湿潤、湿潤時あるいは、湿潤状態とは、37℃の純水にて1時間以上血液処理装置全体を浸漬処理した後の状態をいう。
Hereinafter, of the body fluid treatment device of the present invention, a blood treatment device will be specifically described as an example.
For the purpose of the blood processing apparatus, the water permeability, the transfer coefficient of the substance, and the sieve coefficient of the substance are required to be desired depending on the purpose.
Swelling with water as used in the present invention means that when a hollow fiber membrane in a dry state is wetted with water, the hollow fiber membrane sucks water into the film thickness portion, and the volume of the film thickness portion increases, and the external force increases accordingly. When no is added, it means that the inner diameter, film thickness, and outer diameter increase.
The wet, wet or wet state as used in the present invention refers to a state after the entire blood treatment apparatus is immersed in pure water at 37 ° C. for 1 hour or longer.

従来から慢性腎不全等により血液処理療法を継続的に受けている患者には、高頻度で貧血、高血圧、色素沈着、骨・関節障害等の合併症が認められ、最近ではこの原因物質として分子量10,000程度の物質の関与が強く示唆されている。とりわけ、分子量11,800のβ2マイクログロブリンを効率良く除去できる血液処理装置が求められる他、血液中の有用物質である分子量66,000のアルブミンの漏出を最小限に留める事ができる血液処理装置も要求性能の一つとなっている。
本発明の血液処理装置では、このβ2マイクログロブリンを効率良く除去するために、用いる中空糸膜の透水性能が少なくとも10ml/m/mmHg以上であることが必要である。より効率的にβ2マイクログロブリン等の高分子量物質を除去する為に12ml/m/mmHg以上である事が好ましい。
一方、有用物質であるアルブミンの漏出を最小限に留める為に透水性能が100ml/m/mmHg以下であることが必要である。よりアルブミンの漏出を低減する為に透水性能が60ml/m/mmHg以下である事が好ましい。
ここでいう透水性能とは、湿潤した中空糸膜の内面側と外面側に圧力差をつけ、内面側に水を通した時に、内面側から外面側に出てくる水の透過速度を規定したものである。
Patients who have traditionally received blood treatment due to chronic renal failure, etc. frequently have complications such as anemia, hypertension, pigmentation, and bone / joint disorders. It is strongly suggested that about 10,000 substances are involved. In particular, a blood processing apparatus capable of efficiently removing β2 microglobulin having a molecular weight of 11,800 is required, and a blood processing apparatus capable of minimizing leakage of albumin having a molecular weight of 66,000 which is a useful substance in blood. It is one of the required performance.
In the blood treatment apparatus of the present invention, in order to efficiently remove this β2 microglobulin, the water permeability of the hollow fiber membrane to be used needs to be at least 10 ml / m 2 / mmHg or more. In order to more efficiently remove high molecular weight substances such as β2 microglobulin, it is preferably 12 ml / m 2 / mmHg or more.
On the other hand, in order to keep leakage of albumin, which is a useful substance, to a minimum, the water permeability needs to be 100 ml / m 2 / mmHg or less. In order to further reduce the leakage of albumin, the water permeability is preferably 60 ml / m 2 / mmHg or less.
The water permeation performance here defined the permeation rate of water coming out from the inner surface side to the outer surface side when a pressure difference was made between the inner surface side and the outer surface side of the wet hollow fiber membrane and water was passed through the inner surface side. Is.

本発明の中空糸膜型血液処理装置で用いる中空糸膜においては、チトクロムCの物質移動係数が1.0×10−5cm/sec〜7.0×10−5cm/secである必要がある。本発明の中空糸膜型血液処理装置に用いる中空糸膜においては、β2マイクログロブリンを効率良く除去するために、チトクロムCの物質移動係数が1.0×10−5cm/sec以上であることが必要であり、また有用物質であるアルブミンの漏出を最小限に留める為にチトクロムCの物質移動係数が7.0×10−5cm/sec以下であることも必要である。 In the hollow fiber membrane used in the hollow fiber membrane type blood processing apparatus of the present invention, it requires the mass transfer coefficient of cytochrome C is 1.0 × 10 -5 cm / sec~7.0 × 10 -5 cm / sec is there. In the hollow fiber membrane used in the hollow fiber membrane blood treatment apparatus of the present invention, the mass transfer coefficient of cytochrome C is 1.0 × 10 −5 cm / sec or more in order to efficiently remove β2 microglobulin. In order to minimize leakage of albumin, which is a useful substance, it is also necessary that the mass transfer coefficient of cytochrome C is 7.0 × 10 −5 cm / sec or less.

本発明の血液処理装置では、血液処理療法でのふるい効果によるアルブミンの漏出を最小限に留めるために、用いる中空糸膜のアルブミンのふるい係数が0.06以下であることが必要である。アルブミンのふるい係数が0.06を越える中空糸膜を使用した血液処理装置では一回の血液処理療法で無視し得ない程度のアルブミンの漏出があり好ましくない。
ここでいうアルブミンのふるい係数とは、分子量66,000のボバインアルブミンを試薬として、湿潤した中空糸膜の内面側と外面側に圧力差をつけ、内面側にボバインアルブミン生理的食塩水溶液を通した時の、中空糸膜内面側と中空糸膜外面側のボバインアルブミン濃度を測定し、算出したものである。
篩係数=濾液のボバインアルブミン濃度/元液のボバインアルブミン濃度
In the blood processing apparatus of the present invention, in order to minimize leakage of albumin due to the sieving effect in blood processing therapy, it is necessary that the sieving coefficient of albumin of the hollow fiber membrane to be used is 0.06 or less. A blood processing apparatus using a hollow fiber membrane in which the sieving coefficient of albumin exceeds 0.06 is not preferable because albumin leaks to a degree that cannot be ignored in a single blood processing therapy.
Here, the sieving coefficient of albumin refers to a pressure difference between the inner surface and the outer surface of a wet hollow fiber membrane using bovine albumin having a molecular weight of 66,000 as a reagent, and bovine albumin physiological saline solution on the inner surface side. The bobain albumin concentration on the inner surface side of the hollow fiber membrane and the outer surface side of the hollow fiber membrane was measured and calculated.
Sieve coefficient = bobain albumin concentration in filtrate / bobain albumin concentration in original solution

本発明の中空糸膜型血液処理装置の構成を図1により説明する。例えば、前記した中空糸膜20をほぼ平行に多数本収束し、この中空糸膜を流体の入口12及び出口13を持つ外筒容器10に収納し、束の両端をウレタン、エポキシ、シリコン等の樹脂50を用いて包埋接着し、中空糸の内側空間20Aと、中空糸外側と外筒容器の間に形成される空間30とに隔離した後、接着部の両端を切断することにより中空糸膜内部空間を大気に開放し、その両端部のそれぞれに血液の入口31及び出口41を液密に固定する事により製造する事ができる。
中空糸膜のうち、樹脂により包埋されている部分を樹脂包埋部51とし、樹脂により包埋されていない部分を樹脂非包埋部20Bとしている。
The configuration of the hollow fiber membrane blood processing apparatus of the present invention will be described with reference to FIG. For example, a large number of the hollow fiber membranes 20 are converged substantially in parallel, and the hollow fiber membranes are accommodated in an outer tube container 10 having a fluid inlet 12 and an outlet 13, and both ends of the bundle are made of urethane, epoxy, silicon, or the like. After embedding and bonding using resin 50, the hollow fiber is separated by separating the inner space 20A of the hollow fiber and the space 30 formed between the outer side of the hollow fiber and the outer tube container, and then cutting both ends of the bonded portion. It can be manufactured by opening the inner space of the membrane to the atmosphere and fixing the blood inlet 31 and the outlet 41 to the respective ends of the membrane in a liquid-tight manner.
Of the hollow fiber membrane, a portion embedded in the resin is a resin embedding portion 51, and a portion not embedded in the resin is a resin non-embedding portion 20B.

本発明では、水で湿潤されたときの樹脂包埋部中空糸膜の内径が165μmから250μmの範囲にある事が必要である。樹脂包埋部における中空糸膜の内径が165μm未満では血液の流動抵抗が高くなるため残血を起こし易くなり、また250μmを越えると樹脂非包埋部における中空糸膜内径が更に大きくなるので低分子量物質の透過性(クリアランス)が低くなり、好ましくない。水で湿潤されたときの樹脂包埋部中空糸膜の内径は185μm〜230μmであることが更に好ましい。
更に本発明では、水に湿潤されたときの樹脂非包埋部中空糸膜の内径が230μm〜290μmの範囲にあることが必要である。樹脂非包埋部における中空糸膜の内径が230μm未満では樹脂包埋部に比べて中空糸膜が長いのでこの内径であっても血液流動抵抗が増加して残血を起こし易くなり、また290μmを越えると低分子量物質の透過性(クリアランス)が低くなり、好ましくない。水で湿潤されたときの樹脂非包埋部中空糸膜の内径は250μm〜270μmであることが更に好ましい。
In the present invention, the inner diameter of the resin-embedded hollow fiber membrane when wetted with water needs to be in the range of 165 μm to 250 μm. If the inner diameter of the hollow fiber membrane in the resin-embedded portion is less than 165 μm, the blood flow resistance becomes high, so that residual blood is likely to occur, and if it exceeds 250 μm, the inner diameter of the hollow fiber membrane in the non-resin-embedded portion is further increased. The permeability (clearance) of the molecular weight substance is lowered, which is not preferable. The inner diameter of the resin-embedded hollow fiber membrane when wetted with water is more preferably 185 μm to 230 μm.
Furthermore, in the present invention, the inner diameter of the resin non-embedded hollow fiber membrane when wetted with water needs to be in the range of 230 μm to 290 μm. If the inner diameter of the hollow fiber membrane in the resin non-embedded portion is less than 230 μm, the hollow fiber membrane is longer than that in the resin embedded portion, so that even with this inner diameter, blood flow resistance increases and residual blood is likely to occur, and 290 μm. If it exceeds 1, the permeability (clearance) of the low molecular weight substance is lowered, which is not preferable. The inner diameter of the resin non-embedded hollow fiber membrane when wetted with water is more preferably 250 μm to 270 μm.

本発明の中空糸膜型血液処理装置では、中空糸膜が湿潤された状態における樹脂包埋部の中空糸外径をODw1、樹脂非包埋部の中空糸外径をODw2とするとき、下式(1)を満たすことが必要である。 In the hollow fiber membrane-type blood treatment apparatus of the present invention, when the hollow fiber outer diameter of the resin embedding part is OD w1 and the hollow fiber outer diameter of the non-resin embedding part is OD w2 when the hollow fiber membrane is wet. It is necessary to satisfy the following formula (1).

1.07≦ ODw2/ODw1 ≦1.45 (1)
ODw2/ODw1はその値が小さいほど血液導入部における樹脂包埋部から樹脂非包埋部へ血液が流れる際の流束の拡大、及び、血液導出部における樹脂非包埋部から樹脂包埋部へ血液が流れる際の流束の縮小が小さくなり、血流の乱れが生じがたいが、本発明に使用する中空糸膜の樹脂包埋部中空糸の内径範囲、樹脂非包埋部中空糸の内径範囲に加えてODw2/ODw1が1.45以下であれば十分に残血を少なくできることが判った。
ODw2/ODw1が1.45を越える領域では、血液導入部における樹脂包埋部から樹脂非包埋部へ血液が流れる際の流束の拡大、及び、血液導出部における樹脂非包埋部から樹脂包埋部へ血液が流れる際の流束の縮小が大きくなり、血流の乱れが生じ易くなり、残血が多くなるので好ましくない。
一方ODw2/ODw1が1.07より小さいと透水性能が下がり、チトクロムCの物質移動係数が小さくなるので、ODw2/ODw1は1.07以上である必要がある。より好ましくは1.25以上であり、1.35以上であることが望ましい。
このような中空糸膜は、その内径は中空剤の量をコントロールすることにより、膜厚は、内径、紡糸速度、ポリマー濃度等に応じて計算した紡糸液量をコントロールすることにより作製できる。中空糸が切れないようにするためには膜厚を大きく必要があるが、透過性能を上げるためには膜厚を小さくする必要があり、これは用途に応じて調整する。また、膜厚を小さくするためには孔径保持剤量を減らすことにより実現する場合もある。
1.07 ≦ OD w2 / OD w1 ≦ 1.45 (1)
The smaller the value of OD w2 / OD w1 , the larger the flux when blood flows from the resin-embedded part to the non-resin-embedded part in the blood introduction part, and the resin wrapping from the resin non-embedded part in the blood outlet part The shrinkage of the flux when blood flows into the buried portion is reduced and the blood flow is less likely to be disturbed, but the inner diameter range of the resin-embedded hollow fiber of the hollow fiber membrane used in the present invention, the resin non-embedded portion It was found that if the OD w2 / OD w1 is 1.45 or less in addition to the inner diameter range of the hollow fiber, the residual blood can be sufficiently reduced.
In the region where OD w2 / OD w1 exceeds 1.45, the expansion of the flux when blood flows from the resin embedding part to the resin non-embedding part in the blood introduction part, and the resin non-embedding part in the blood outlet part This is not preferable because the reduction of the flux when blood flows from the resin to the resin-embedded portion becomes large, blood flow disturbance is likely to occur, and residual blood increases.
On the other hand, when OD w2 / OD w1 is smaller than 1.07, the water permeability is lowered and the mass transfer coefficient of cytochrome C is decreased. Therefore, OD w2 / OD w1 needs to be 1.07 or more. More preferably, it is 1.25 or more, and it is desirable that it is 1.35 or more.
Such a hollow fiber membrane can be produced by controlling the amount of the hollow agent with respect to the inner diameter, and controlling the amount of spinning solution calculated according to the inner diameter, spinning speed, polymer concentration and the like. In order to prevent the hollow fiber from being broken, it is necessary to increase the film thickness, but in order to improve the permeation performance, it is necessary to decrease the film thickness, and this is adjusted according to the application. Moreover, in order to make a film thickness small, it may implement | achieve by reducing the amount of pore diameter retainers.

本発明の中空糸膜型血液処理装置に用いられる中空糸膜としては、種々の素材の中空糸膜が挙げられるが、セルロース系中空糸膜が好ましい。本発明で用いられるセルロース系中空糸膜として、ニ酢酸セルロース膜、三酢酸セルロース膜等の酢酸セルロース膜、鹸化セルロース膜、及び再生セルロース膜が挙げられ、さらに鹸化セルロース、再生セルロースの中空糸膜表面を脂肪族、芳香族カルボン酸、脂肪族、芳香族アミノ酸、脂肪族、芳香族アルコール、脂肪族、芳香族アミノアルコール等で修飾した中空糸膜が挙げられる。中空糸膜表面を修飾する処理として、公知の方法(例えば、特開平3−4924号公報)を用いることができる。   Examples of the hollow fiber membrane used in the hollow fiber membrane type blood treatment apparatus of the present invention include hollow fiber membranes of various materials, and a cellulose-based hollow fiber membrane is preferable. Examples of the cellulose-based hollow fiber membrane used in the present invention include cellulose acetate membranes such as cellulose diacetate membranes and cellulose triacetate membranes, saponified cellulose membranes, and regenerated cellulose membranes. Furthermore, the surface of hollow fiber membranes of saponified cellulose and regenerated cellulose Are hollow fiber membranes modified with aliphatic, aromatic carboxylic acid, aliphatic, aromatic amino acid, aliphatic, aromatic alcohol, aliphatic, aromatic amino alcohol and the like. As a treatment for modifying the surface of the hollow fiber membrane, a known method (for example, JP-A-3-4924) can be used.

さらに、最近、血液処理膜においては、β2マイクログロブリンをさらに効率良く除去する為に、孔径をより大きくする傾向があり、中空糸膜の高透過性能化に伴い、血液処理装置において中空糸膜の中空糸膜外壁表面から中空糸膜内壁表面に物質が容易に透過するようになってきた。これは、例えば、血液透析療法においては、透析液側から血液中にエンドトキシンフラグメントが侵入する問題を有しており、この問題を排除できる中空糸膜型血液処理装置が好まれている。これに使用される中空糸膜として、中空糸膜内壁表面の孔径D1、中空糸膜外壁表面の孔径D2が共に中空糸膜内部の孔径D3より小さく、上述の膜性能を有する中空糸膜が好ましい。すなわち、このような構造を持った中空糸膜として、下記式(3)から(7)を満足する孔径を有し、中空糸膜の孔径が、中空糸膜の内壁表面から中空糸膜内部に向かって連続的に増加するとともに、中空糸膜内部から中空糸膜外壁表面に向かって連続的に減少しており、中空糸膜内部に少なくとも1つの極大部を有する中空糸膜が挙げられる。
10≦D1≦300 (3)
0.6≦(D2/D1)≦1.2 (4)
1.2≦(D3/D1) (5)
20≦ρ1≦200 (6)
20≦ρ2≦200 (7)
ここで、D1は中空糸膜内壁表面の孔径(nm)、D2は中空糸膜外壁表面の孔径(nm)、D3は中空糸膜内部の孔径(nm)、ρ1は中空糸膜内壁層孔径増加率(%)、ρ2は中空糸膜外壁層孔径減少率(%)を表す。
中空糸膜内壁表面の孔径D1が300nmを越えると、高分子量蛋白質が中空糸膜内部に侵入し易くなり、10nm未満の場合にはβ2ミクログロブリンに代表される高分子量物質の除去性能が不十分になる。より好ましい孔径は20nm以上、100nm以下である。
Furthermore, recently, in blood treatment membranes, in order to more efficiently remove β2 microglobulin, there is a tendency to increase the pore diameter. With the increase in permeation performance of hollow fiber membranes, Substances are easily permeated from the outer surface of the hollow fiber membrane to the inner wall surface of the hollow fiber membrane. For example, in hemodialysis, there is a problem that endotoxin fragments enter the blood from the dialysate side, and a hollow fiber membrane blood treatment apparatus that can eliminate this problem is preferred. As the hollow fiber membrane used for this, a hollow fiber membrane having a pore diameter D1 on the inner surface of the hollow fiber membrane and a pore diameter D2 on the outer wall surface of the hollow fiber membrane that is smaller than the pore diameter D3 inside the hollow fiber membrane and having the above-mentioned membrane performance is preferable. . That is, the hollow fiber membrane having such a structure has a pore diameter satisfying the following formulas (3) to (7), and the pore diameter of the hollow fiber membrane is from the inner wall surface of the hollow fiber membrane to the inside of the hollow fiber membrane. Examples of the hollow fiber membrane include a hollow fiber membrane that continuously increases and decreases continuously from the inside of the hollow fiber membrane toward the surface of the outer wall of the hollow fiber membrane and has at least one maximum portion inside the hollow fiber membrane.
10 ≦ D1 ≦ 300 (3)
0.6 ≦ (D2 / D1) ≦ 1.2 (4)
1.2 ≦ (D3 / D1) (5)
20 ≦ ρ1 ≦ 200 (6)
20 ≦ ρ2 ≦ 200 (7)
Here, D1 is the hole diameter (nm) of the hollow fiber membrane inner wall surface, D2 is the hole diameter (nm) of the hollow fiber membrane outer wall surface, D3 is the hole diameter (nm) inside the hollow fiber membrane, and ρ1 is the hollow fiber membrane inner wall layer hole diameter increase. The rate (%) and ρ2 represent the hollow fiber membrane outer wall layer pore diameter reduction rate (%).
When the pore diameter D1 on the inner wall surface of the hollow fiber membrane exceeds 300 nm, the high molecular weight protein easily enters the hollow fiber membrane, and when it is less than 10 nm, the removal performance of the high molecular weight substance represented by β2 microglobulin is insufficient. become. A more preferable pore size is 20 nm or more and 100 nm or less.

中空糸膜外壁表面における孔径D2が、相対的に小さい(0.6>(D2/D1))時はβ2ミクログロブリンに代表される高分子量物質の除去性能が不十分になる。逆に相対的に大きい(1.2<(D2/D1))と透析液中からエンドトキシンフラグメントがふるい効果によって中空糸膜内部に侵入し、結果として各種血液処理療法中に血液中にエンドトキシンフラグメントが侵入しやすくなる。
中空糸膜内部の孔径D3は、1.2≦(D3/D1)であることが好ましい。(D3/D1)が、1.2未満の場合、中空糸膜内部の空孔率が小さくなり、β2ミクログロブリンの除去性能が不十分になる。
When the pore diameter D2 on the surface of the outer wall of the hollow fiber membrane is relatively small (0.6> (D2 / D1)), the removal performance of the high molecular weight substance represented by β2 microglobulin becomes insufficient. Conversely, if it is relatively large (1.2 <(D2 / D1)), endotoxin fragments enter the hollow fiber membrane from the dialysate due to the sieving effect, and as a result, endotoxin fragments in the blood during various blood treatment therapies. It becomes easy to invade.
The pore diameter D3 inside the hollow fiber membrane is preferably 1.2 ≦ (D3 / D1). When (D3 / D1) is less than 1.2, the porosity inside the hollow fiber membrane becomes small, and the removal performance of β2 microglobulin becomes insufficient.

本発明でいう中空糸膜内壁層孔径増加率(ρ1)及び中空糸膜外壁層孔径減少率(ρ2)は、それぞれ、中空糸膜厚部を10等分した時の中空糸膜内壁表面と内壁表面から中空糸膜厚の3/10の間での孔径増加率及び中空糸膜外壁表面から中空糸膜厚の3/10の間での孔径減少率であり、以下の式にて定義される。ただし、DX1は中空糸膜内壁表面から膜厚の3/10の厚みにおける孔径、DX2は中空糸膜外壁表面から膜厚の3/10の厚みにおける孔径を表す。
ρ1={(DX1−D1)/D1}×100
ρ2={(DX2−D2)/D2}×100
ρ1およびρ2がそれぞれ20%未満である場合、中空糸膜内壁表面と内壁表面から中空糸膜厚の3/10の間および中空糸膜外壁表面と外壁表面から中空糸膜厚の3/10の間での高分子量物質の透過抵抗が大きくなり、高分子量物質の除去性能が不十分となる。また、ρ1が200%を越えると、血液中から物質が透過する際の透過抵抗が小さくなりすぎて、高分子量蛋白質でさえも中空糸膜内部に侵入しやすくなる。ρ2が200%を越えると、透析液中から物質が透過する場合の透過抵抗が小さくなって、エンドトキシンフラグメントが侵入しやすくなる。このため、本発明では、ρ1、ρ2は20%〜200%の範囲が好ましい。
上述のような中空糸膜内部に少なくとも1つの極大部を有する孔構造を持った中空糸膜は、血液処理療法の中では最も一般的である血液透析療法に際して、高分子量物質の優れた除去性能を維持しつつ、透析液中から血液中へのエンドトキシンフラグメントの侵入を抑制することができ、本発明の中空糸膜型血液処理装置では好ましい。
The hollow fiber membrane inner wall layer pore diameter increase rate (ρ1) and hollow fiber membrane outer wall layer pore diameter decrease rate (ρ2) referred to in the present invention are the hollow fiber membrane inner wall surface and inner wall, respectively, when the hollow fiber film thickness portion is equally divided into 10 parts. The hole diameter increase rate between the surface and 3/10 of the hollow fiber film thickness and the hole diameter decrease rate between the hollow fiber film outer wall surface and 3/10 of the hollow fiber film thickness, which are defined by the following equations . However, D X1 represents a hole diameter at a thickness of 3/10 from the inner surface of the hollow fiber membrane, and D X2 represents a hole diameter at a thickness of 3/10 from the outer wall surface of the hollow fiber membrane.
ρ1 = {(D X1 −D1) / D1} × 100
ρ2 = {(D X2 −D2) / D2} × 100
When ρ1 and ρ2 are each less than 20%, the hollow fiber membrane inner wall surface and the inner wall surface are between 3/10 of the hollow fiber film thickness and the hollow fiber membrane outer wall surface and the outer wall surface are 3/10 of the hollow fiber film thickness. The permeation resistance of the high molecular weight substance between them increases, and the removal performance of the high molecular weight substance becomes insufficient. On the other hand, if ρ1 exceeds 200%, the permeation resistance when a substance permeates from the blood becomes too small, and even a high molecular weight protein tends to enter the hollow fiber membrane. When ρ2 exceeds 200%, the permeation resistance when a substance permeates from the dialysate becomes small, and endotoxin fragments easily enter. For this reason, in the present invention, ρ1 and ρ2 are preferably in the range of 20% to 200%.
A hollow fiber membrane having a pore structure having at least one maximum portion inside the hollow fiber membrane as described above has excellent removal performance of high molecular weight substances in hemodialysis therapy, which is the most common blood treatment therapy. The endotoxin fragment can be prevented from entering the blood from the dialysate while maintaining the pH, which is preferable in the hollow fiber membrane blood processing apparatus of the present invention.

本発明の中空糸膜の製法をセルロースを例にとって説明する。
本発明の中空糸膜型血液処理装置に使用する中空糸膜は、二重環状紡糸口金の外側紡出口からポリマーとポリマーの溶媒からなる紡糸液を吐出すると共に内部紡出口から中空部形成剤を吐出し、紡糸液に対して水よりも凝固速度の速い溶液からなる1段以上の凝固浴で順次、凝固を行う事を特徴とする製造方法によって調整することができる。
中空部形成剤は、空気、窒素、二酸化炭素、アルゴン、酸素、テトラフルオロメタン、ヘキサフルオロエタン、オクタフルオロプロパン等のいわゆるフレオンガス、その他のハロゲンガス等の気体、または、紡糸液に対して非凝固性または微凝固性を示す液体である。このような液体は、紡糸液の種類によって適宜選択して用いる。例えば、パークレン、トリクレン、トリクロロフルオロエタン、メタノール、エタノール、プロパン、ポリエチレングリコール等のポリオールから選ばれる少なくとも1種を含む溶液またはこれらの混合液が好ましく用いられる。
The method for producing the hollow fiber membrane of the present invention will be described taking cellulose as an example.
The hollow fiber membrane used in the hollow fiber membrane-type blood treatment apparatus of the present invention discharges a spinning solution comprising a polymer and a polymer solvent from an outer spinning outlet of a double annular spinneret and a hollow part forming agent from an inner spinning outlet. It can be adjusted by a production method characterized in that coagulation is carried out sequentially in one or more coagulation baths made of a solution having a faster coagulation rate than water by discharging and spinning.
The hollow portion forming agent is non-solidified with respect to air, nitrogen, carbon dioxide, argon, oxygen, so-called freon gas such as tetrafluoromethane, hexafluoroethane, and octafluoropropane, other halogen gas, or spinning solution. It is a liquid exhibiting a property or microcoagulability. Such a liquid is appropriately selected depending on the type of spinning solution. For example, a solution containing at least one selected from polyols such as parkren, trichrene, trichlorofluoroethane, methanol, ethanol, propane, polyethylene glycol, or a mixed solution thereof is preferably used.

セルロース紡糸液としては、セルロースを溶解しえる溶媒にセルロースを溶解させたセルロース溶液を用いることができる。セルロース紡糸液中のセルロース濃度は、4〜12重量%が好ましい。セルロース濃度が4重量%未満の時は、得られる中空糸膜を形成する前の中空糸状成型体の力学的強度が十分ではなく、必要とする特性を持った中空糸膜が形成できない。セルロース濃度が12重量%を越えると紡糸液の溶解性が落ちる他、紡糸液の粘度が上がる為、紡糸液への溶解が困難な他、得られた中空糸膜の透過性能も低下する。セルロース紡糸液は、公知の方法によって調整する。セルロース紡糸液を中空部形成剤と共に二重紡糸口金より吐出し、非凝固性雰囲気下を通過させる。吐出された紡糸液と中空部形成剤は、単独または複数の凝固浴へと導かれる。複数の凝固浴を持つ場合には、凝固浴間に水洗の為の浴を設けても良い。凝固浴には、通常、酸、アルカリ、または中性の塩水溶液を含む溶液が用いられる。これらの内、硫酸アンモニウム、塩化アンモニウム、塩化カルシウム、塩化ナトリウム、塩酸、酢酸、硫酸、苛性ソーダが好ましく、硫酸アンモニウム、硫酸、苛性ソーダが特に好ましい。一段目と二段目あるいはそれ以降の凝固浴の溶液種は同一であっても、異なっていても良い。凝固浴は一段でも二段でも良いが、必要に応じてさらに多段の凝固浴を用いる事も出来る。
凝固された中空糸膜は、水及び無機塩類の水溶液で精錬あるいは洗浄された後に凝固で形成された空孔を保持する為、グリセリンあるいはポリエチレングリコール等の公知の膜孔径保持剤が付与され、その後、公知の条件で乾燥される。
As the cellulose spinning solution, a cellulose solution in which cellulose is dissolved in a solvent capable of dissolving cellulose can be used. The cellulose concentration in the cellulose spinning solution is preferably 4 to 12% by weight. When the cellulose concentration is less than 4% by weight, the mechanical strength of the hollow fiber-shaped molded product before forming the resulting hollow fiber membrane is not sufficient, and a hollow fiber membrane having the required characteristics cannot be formed. When the cellulose concentration exceeds 12% by weight, the solubility of the spinning solution is lowered, and the viscosity of the spinning solution is increased, so that it is difficult to dissolve in the spinning solution and the permeation performance of the obtained hollow fiber membrane is also lowered. The cellulose spinning solution is prepared by a known method. The cellulose spinning solution is discharged from the double spinneret together with the hollow portion forming agent and passed through a non-solidifying atmosphere. The discharged spinning solution and the hollow part forming agent are led to one or a plurality of coagulation baths. When a plurality of coagulation baths are provided, a bath for washing with water may be provided between the coagulation baths. For the coagulation bath, a solution containing an acid, alkali or neutral salt solution is usually used. Among these, ammonium sulfate, ammonium chloride, calcium chloride, sodium chloride, hydrochloric acid, acetic acid, sulfuric acid, and caustic soda are preferable, and ammonium sulfate, sulfuric acid, and caustic soda are particularly preferable. The solution types in the first, second and subsequent coagulation baths may be the same or different. The coagulation bath may be one stage or two stages, but a multistage coagulation bath can be used if necessary.
The coagulated hollow fiber membrane is refined or washed with an aqueous solution of water and inorganic salts, and then retained with pores formed by coagulation, so that a known membrane pore size retaining agent such as glycerin or polyethylene glycol is applied, and thereafter And dried under known conditions.

本発明による中空糸膜型血液処理装置では、多数本の中空糸膜を整束した形態でプラスチック製の容器中に収納し、束両端をシリコン系、ウレタン系、エポキシ系等の樹脂包埋剤で束の両端を固定し、モジュールとし、血液透析、血液濾過ないしは血液透析濾過に代表される血液処理装置として使用される、特に好ましい用途は血液透析である。
樹脂包埋剤としては、組立て時、洗浄時、滅菌時に樹脂から溶出してくる異物の観点、中空糸膜との接着強度の観点からウレタン系樹脂が好ましい。その後、公知の方法で養生し、樹脂包埋部を鋭利な金属で切断して中空糸膜を開口させ、さらに容器両端に血液導入導出口を持ったヘッダーを固定し、注射用蒸留水を充填した後、密封し滅菌袋で包装し、照射滅菌処理を行い、中空糸膜型血液処理装置を得ることができる。
In the hollow fiber membrane type blood treatment apparatus according to the present invention, a plurality of hollow fiber membranes are accommodated in a plastic container in a bundled form, and both ends of the bundle are resin embedding agents such as silicon, urethane, and epoxy. The bundle is fixed at both ends to form a module, which is used as a blood treatment apparatus typified by hemodialysis, hemofiltration or hemodiafiltration, and particularly preferred is hemodialysis.
As the resin embedding agent, a urethane-based resin is preferable from the viewpoint of foreign matters eluted from the resin during assembly, washing, and sterilization, and from the viewpoint of adhesive strength with the hollow fiber membrane. After that, it is cured by a known method, the resin embedding part is cut with a sharp metal to open the hollow fiber membrane, and the headers with blood introduction / extraction ports are fixed to both ends of the container, and filled with distilled water for injection. After that, it is sealed and packaged in a sterilization bag, and subjected to irradiation sterilization treatment to obtain a hollow fiber membrane blood treatment apparatus.

次に、実施例及び比較例によって本発明を説明する。尚、実施例、比較例に記載した諸数値は以下の手順に従って測定した。
[中空糸膜寸法の測定]
血液処理装置を解体して取り出した湿潤状態の中空糸膜数十本を不織布等で軽く巻き、小さな孔を開けた銅板にセットしてカミソリで該中空糸膜を切断し、中空糸膜の少なくとも片端を開口させた。当該切断面における中空糸膜内径と膜厚寸法をデジタルHDマイクロスコープVH7000(株式会社キーエンス製)で観察、計測した。乾燥した中空糸膜の寸法についても同様に観察、計測した。
Next, the present invention will be described with reference to examples and comparative examples. The numerical values described in the examples and comparative examples were measured according to the following procedure.
[Measurement of hollow fiber membrane dimensions]
Lightly wrap dozens of wet hollow fiber membranes taken out by disassembling the blood treatment device with a nonwoven fabric, etc., set on a copper plate with small holes, cut the hollow fiber membrane with a razor, and at least of the hollow fiber membranes One end was opened. The hollow fiber membrane inner diameter and film thickness dimension on the cut surface were observed and measured with a digital HD microscope VH7000 (manufactured by Keyence Corporation). The dimensions of the dried hollow fiber membrane were similarly observed and measured.

[孔径保持剤の付着率]
中空糸膜の被測定試料を約5g採取し、その後正確に秤量し、「最初の糸重量」とする。試料に正確に純水300ml加え栓をして5分間振とう機で振とうし、付着している孔径保持剤、例えばPEG400(マクロゴール400)を除去する。孔径保持剤量は、被測定試料を振とうした後の水溶液を用いて示差屈折計と標準液からマクロゴール400濃度を測定し、純水量と濃度から「孔径保持剤量」を見積もる。水溶液から試料のみを取り出し、乾燥機で105℃で12時間以上乾燥後、乾燥した試料の糸重量を測定し、「乾燥後の糸重量」とする。
以下の式から試料の孔径保持剤付着率を算出する。
試料の孔径保持剤付着率(%)=「孔径保持剤量」/「乾燥後の糸重量」×100
[Adhesion rate of pore diameter retaining agent]
About 5 g of a sample to be measured of the hollow fiber membrane is taken and then accurately weighed to obtain the “initial yarn weight”. The sample is accurately added with 300 ml of pure water, stoppered, and shaken with a shaker for 5 minutes to remove the adhering pore diameter retaining agent, for example, PEG400 (Macrogor 400). The amount of pore size retaining agent is determined by measuring the concentration of Macrogol 400 from a differential refractometer and a standard solution using an aqueous solution after shaking the sample to be measured, and estimating the amount of pore size retaining agent from the amount of pure water and the concentration. Only the sample is taken out from the aqueous solution, dried at 105 ° C. for 12 hours or more with a dryer, and the yarn weight of the dried sample is measured to obtain “the yarn weight after drying”.
From the following formula, the pore size retention agent adhesion rate of the sample is calculated.
Sample pore diameter retention agent adhesion rate (%) = “amount of pore diameter retention agent” / “weight of thread after drying” × 100

[透水性能の測定]
血液処理装置を血液側及び透析液側共に1L以上の水でプライミング後、37℃±0.5℃の下で、血液側流量200ml/分、透析側流量500ml/分で膜間圧力差(TMP)200mmHgにて透水性能を測定する。血液処理装置の膜面積は1.5mであった。透水性能は濾液流量、TMP、膜面積から算出する。
透水性能(ml/m/mmHg)=濾液流量(ml/分)×60÷膜面積(m)÷TMP(mmHg)
[Measurement of water permeability]
After priming the blood treatment device with 1 L or more of water on both the blood side and the dialysate side, the transmembrane pressure difference (TMP) at 37 ° C. ± 0.5 ° C. with a blood side flow rate of 200 ml / min and a dialysis side flow rate of 500 ml / min. ) Measure the water permeability at 200 mmHg. The membrane area of the blood treatment apparatus was 1.5 m 2 . The water permeation performance is calculated from the filtrate flow rate, TMP, and membrane area.
Permeability (ml / m 2 / mmHg) = filtrate flow rate (ml / min) × 60 ÷ membrane area (m 2 ) ÷ TMP (mmHg)

[チトクロームCの物質移動係数の測定]
使用溶液としては、分子量12,400のチトクロームCの濃度0.2g/Lの生理的食塩水溶液を調整する。測定試料としては、透水性能の測定に使用したのと同じ種類の血液処理装置を分解して取り出した湿潤状態の中空糸膜本数100本のミニモジュールを使用する。このミニモジュールを生理的食塩水に満たされたポットに入れ、37℃±0.5℃に調整する。先述したチトクロームCの濃度0.2g/Lの生理的食塩水溶液を同様に、37℃±0.5℃に調整し、3.0ml/分の流速で60分間循環する。循環終了した溶液の濃度は分光光度計で測定波長409nmにて生理的食塩水をブランクとして測定する。分光光度計で生理的食塩水、中空糸膜外面側の濃度(CDt)、中空糸膜内面側の濃度(CBt)、元液の濃度(CB0)を比色して吸光度を測定する。
物質移動係数は、以下の式を用いて計算する。なお、この計算式ではポットの体積に比較してミニモジュールの体積は著しく小さいので、ミニモジュールを1回通過しただけでは、中空糸膜内面側の入口濃度と出口濃度はほとんど変わらないと仮定して導きだしている。
Pm=2・CDt・V/A・(CB0+CBt−CD0−CDt)・Δt
Pm:物質移動係数(cm/sec)
B0:測定開始前の中空糸膜内面側の吸光度
Bt:測定終了後の中空糸膜内面側の吸光度
D0:測定開始前の中空糸膜外面側の吸光度
Dt:測定終了後の中空糸膜外面側の吸光度
A :膜面積(cm
:ポット(中空糸膜外面側を接触する容器)の体積=265(cm
Δt :採取時間=60(分)
[Measurement of mass transfer coefficient of cytochrome C]
As a working solution, a physiological saline solution having a molecular weight of 12,400 cytochrome C having a concentration of 0.2 g / L is prepared. As a measurement sample, a mini-module with 100 hollow fiber membranes in a wet state, which is obtained by disassembling and removing the same type of blood processing apparatus as used for measuring the water permeability, is used. The minimodule is placed in a pot filled with physiological saline and adjusted to 37 ° C. ± 0.5 ° C. Similarly, the physiological saline solution of cytochrome C having a concentration of 0.2 g / L is adjusted to 37 ° C. ± 0.5 ° C. and circulated for 60 minutes at a flow rate of 3.0 ml / min. The concentration of the solution after the circulation is measured with a spectrophotometer at a measurement wavelength of 409 nm using physiological saline as a blank. Using a spectrophotometer, the physiological saline, the concentration on the outer surface of the hollow fiber membrane (C Dt ), the concentration on the inner surface of the hollow fiber membrane (C Bt ), and the concentration of the original solution (C B0 ) are colorimetrically measured for absorbance. .
The mass transfer coefficient is calculated using the following formula. In this calculation formula, the volume of the mini module is significantly smaller than the volume of the pot. Therefore, it is assumed that the inlet concentration and the outlet concentration on the inner surface of the hollow fiber membrane hardly change after passing the mini module once. It has led.
Pm = 2 · C Dt · V D / A · (C B0 + C Bt −C D0 −C Dt ) · Δt
Pm: Mass transfer coefficient (cm / sec)
C B0 : Absorbance on the inner surface side of the hollow fiber membrane before the start of measurement C Bt : Absorbance on the inner surface side of the hollow fiber membrane after the end of measurement C D0 : Absorbance on the outer surface side of the hollow fiber membrane before the start of measurement C Dt : Hollow after the end of measurement Absorbance on the outer surface side of the thread membrane A: membrane area (cm 2 )
V D : Volume of pot (container contacting outer surface of hollow fiber membrane) = 265 (cm 3 )
Δt: Collection time = 60 (minutes)

[水系尿素クリアランスの測定]
使用溶液としては、分子量60の尿素を濃度1g/Lの水溶液として調製する。測定試料としては、透水量の測定に使用したのと同じ種類の血液処理装置を使用する。この血液処理装置を水に満たされた容器に入れ、37℃±0.5℃の温度になるまで放置してから、血液側流量200ml/分、透析側流量500ml/分で濾液流量=0(ml/分/m)にて測定する。循環終了した溶液の尿素濃度は屈折率計で血液処理装置血液入口側濃度(CBI)(mg/dl)、血液処理装置血液出口側濃度(CBO)(mg/dl)を、水をブランクとして測定する。この濃度と血液処理装置血液入口側流量(QBI)(ml/分)を用いてクリアランスは、以下の式を用いて計算する。
CL=(CBI−CB0)・QBI/CBI
CL:血液処理装置のクリアランス
BI:血液処理装置血液入口側濃度(mg/dl)
BO:血液処理装置血液出口側濃度(mg/dl)
BI:血液処理装置血液入口側流量(ml/分)
尿素クリアランスは、1.5mの血液処理装置において175ml/分以上であることが好ましく、上限は200ml/分である。尿素クリアランスは、178ml/分以上であることが更に好ましい。膜面積が異なる血液処理装置の場合は、通常の方法により膜面積換算して1.5mの血液処理装置の尿素クリアランスを求め、比較することができる。
[Measurement of aqueous urea clearance]
As a working solution, urea having a molecular weight of 60 is prepared as an aqueous solution having a concentration of 1 g / L. As the measurement sample, the same type of blood processing apparatus as that used for measuring the water permeability is used. This blood processing apparatus is put in a container filled with water and left to reach a temperature of 37 ° C. ± 0.5 ° C., and then a filtrate flow rate = 0 (with a blood side flow rate of 200 ml / min and a dialysis side flow rate of 500 ml / min). ml / min / m 2 ). The urea concentration of the solution after the circulation was measured using a refractometer with blood treatment device blood inlet side concentration ( CBI ) (mg / dl), blood treatment device blood outlet side concentration ( CBO ) (mg / dl), and water blank. Measure as Using this concentration and blood treatment apparatus blood inlet side flow rate (Q BI ) (ml / min), the clearance is calculated using the following equation.
CL = (C BI −C B0 ) · Q BI / C BI
CL: Clearance of blood treatment device C BI : Blood treatment device blood inlet side concentration (mg / dl)
C BO : Blood treatment apparatus blood outlet side concentration (mg / dl)
Q BI : Blood treatment apparatus blood inlet side flow rate (ml / min)
The urea clearance is preferably 175 ml / min or more in a 1.5 m 2 blood treatment apparatus, and the upper limit is 200 ml / min. The urea clearance is more preferably 178 ml / min or more. In the case of blood processing apparatuses having different membrane areas, the urea clearance of a 1.5 m 2 blood processing apparatus can be obtained and compared in terms of membrane area by a normal method.

[牛血漿系限外濾過率(UFR)の測定]
採取時の総蛋白濃度が7.2g/dLである牛血液5Lに、抗凝固剤としてCPD液を用いた。CPD液の組成と濃度は、クエン酸三ナトリウム二水和物29.97g/L、ブドウ糖23.13g/L、クエン酸一水和物3.58g/L、リン酸二水素ナトリウム二水和物2.51g/Lになるように注射用蒸留水0.614Lで調整した。そのCPD液で調整された牛全血を遠心分離し、その後浮遊物をネットで濾過した牛血漿を使用する。測定試料としては、透水量の測定に使用したのと同じ種類の血液処理装置を使用する。該牛血漿を血液側溶液温度、透析側溶液温度は、共に37℃±1.0℃とし、牛血漿系UFRの測定を行った。牛血漿系UFRの算出は、以下の式を用いて計算する。
牛血漿系UFR=60×Q/TMP
TMP=(PBI+PBO)/2−P−Δπ
UFR:限外濾過率(ml/m/mmHg)
TMP:中空糸膜間圧力差(mmHg)
BI:血液側入口圧(mmHg)
BO:血液側出口圧(mmHg)
:濾側圧(mmHg)
Δπ:膠質浸透圧(約22mmHg)
[Measurement of bovine plasma ultrafiltration rate (UFR)]
A CPD solution was used as an anticoagulant for 5 L of bovine blood having a total protein concentration of 7.2 g / dL at the time of collection. The composition and concentration of the CPD solution are: Trisodium citrate dihydrate 29.97 g / L, glucose 23.13 g / L, citric acid monohydrate 3.58 g / L, sodium dihydrogen phosphate dihydrate It adjusted with 0.614L of distilled water for injection so that it might become 2.51 g / L. The bovine whole blood prepared with the CPD solution is centrifuged, and then bovine plasma obtained by filtering the suspended matter through a net is used. As the measurement sample, the same type of blood processing apparatus as that used for measuring the water permeability is used. The bovine plasma was measured at a blood side solution temperature and a dialysis side solution temperature of 37 ° C. ± 1.0 ° C., and the bovine plasma UFR was measured. The bovine plasma UFR is calculated using the following formula.
Bovine plasma system UFR = 60 × Q F / TMP
TMP = (P BI + P BO ) / 2−P F −Δπ
UFR: Ultrafiltration rate (ml / m 2 / mmHg)
TMP: Pressure difference between hollow fiber membranes (mmHg)
P BI : Blood side inlet pressure (mmHg)
P BO : Blood side outlet pressure (mmHg)
P F : Filter side pressure (mmHg)
Δπ: Colloid osmotic pressure (about 22 mmHg)

[牛血漿系クリアランスの測定]
牛血漿系UFRの測定に使用した牛血漿を使用する。牛血漿の総蛋白濃度、CPD液組成と濃度、測定条件は牛血漿系UFRと同じである。β2マイクログロブリン濃度は1mg/Lになるように調製した。測定試料としては、透水量の測定に使用したのと同じ種類の血液処理装置を使用する。血液側入口、血液側出口のβ2マイクログロブリン濃度は、栄研化学社製のLX2200を用いて、ポリスチレンラテックス粒子の抗原抗体反応により凝集塊を結成する反応物を波長660nmLEDを光源とする透過光を測光する方法で、標準液をブランクとしてラテックス比濁法によりβ2マイクログロブリン濃度の測定を行った。牛血漿系クリアランスの算出式は、以下の式を用いて計算する。
CL=(QBI・CBI−QBO・CBO)/CBI
CL:牛血漿系クリアランス(ml/分)
BI:血液側入口流量(ml/分)
BO:血液側出口流量(ml/分)
BI:血液側入口溶質濃度(mg/L)
BO:血液側出口溶質濃度(mg/L)
[Measurement of bovine plasma clearance]
The bovine plasma used for the measurement of the bovine plasma system UFR is used. The total protein concentration, CPD solution composition and concentration, and measurement conditions of bovine plasma are the same as those of bovine plasma UFR. The β2 microglobulin concentration was adjusted to 1 mg / L. As the measurement sample, the same type of blood processing apparatus as that used for measuring the water permeability is used. The β2 microglobulin concentration at the blood side inlet and the blood side outlet is obtained by using a LX2200 manufactured by Eiken Chemical Co., Ltd., and transmitting light using a wavelength 660 nm LED as a light source for a reaction product that forms an aggregate by an antigen-antibody reaction of polystyrene latex particles. The β2 microglobulin concentration was measured by the latex nephelometry using the standard solution as a blank by the photometric method. The formula for calculating the bovine plasma clearance is calculated using the following formula.
CL = (Q BI · C BI -Q BO · C BO) / C BI
CL: Bovine plasma clearance (ml / min)
Q BI : Blood side inlet flow rate (ml / min)
Q BO : Blood side outlet flow rate (ml / min)
C BI : Blood side inlet solute concentration (mg / L)
C BO : blood side outlet solute concentration (mg / L)

[牛血漿系ふるい係数の測定]
牛血漿系UFRの測定に使用した牛血漿を使用する。牛血漿の総蛋白濃度、CPD液組成と濃度、測定条件は牛血漿系UFRと同じである。測定試料としては、透水量の測定に使用したのと同じ種類の血液処理装置を使用する。濾液流量は10ml/分で60分後〜65分後の濾液を採取して用いた。血液側入口、血液側出口のβ2マイクログロブリン濃度は、栄研化学社製のLX2200を用いて、牛血漿系クリアランスの測定と同様な方法でβ2マイクログロブリン濃度の測定を行った。アルブミン濃度については、アルブミンを抗原とした抗原抗体反応をさせて凝集塊を形成して、濁度計を用いて標準液濃度からアルブミン濃度を測定した。牛血漿系ふるい係数の算出は、以下の式を用いて計算する。
SC=2・C/(CBI+CBO
SC:牛血漿系ふるい係数(−)
:濾液側溶質濃度(mg/L)
BI:血液側入口溶質濃度(mg/L)
BO:血液側出口溶質濃度(mg/L)
[Measurement of bovine plasma sieving coefficient]
The bovine plasma used for the measurement of the bovine plasma system UFR is used. The total protein concentration, CPD solution composition and concentration, and measurement conditions of bovine plasma are the same as those of bovine plasma UFR. As the measurement sample, the same type of blood processing apparatus as that used for measuring the water permeability is used. The filtrate flow rate was 10 ml / min, and the filtrate after 60 to 65 minutes was collected and used. The β2 microglobulin concentration at the blood side inlet and the blood side outlet was measured using the LX2200 manufactured by Eiken Chemical Co., Ltd. in the same manner as the measurement of bovine plasma system clearance. Regarding the albumin concentration, an antigen-antibody reaction was performed using albumin as an antigen to form an aggregate, and the albumin concentration was measured from the standard solution concentration using a turbidimeter. The bovine plasma sieving coefficient is calculated using the following formula.
SC = 2 · C F / (C BI + C BO )
SC: Bovine plasma sieving coefficient (-)
C F : filtrate side solute concentration (mg / L)
C BI : Blood side inlet solute concentration (mg / L)
C BO : blood side outlet solute concentration (mg / L)

[残血性の評価]
測定試料としては、透水量の測定に使用したのと同じ種類の血液処理装置を使用する。該中空糸膜型血液処理装置を以下の条件で、その残血性を比較評価した。各血液処理装置を2.0Lの生理的食塩水で洗浄した後、牛新鮮血(ヘマトクリット41%、総蛋白質濃度7.2g/dL、へパリン添加量 3000IU/L)を中空糸膜間圧力差100mmHg、血液流量200ml/分の条件で、濾液は血液に戻しながら3時間循環した。一血液処理装置あたりに2.0Lの血液を使用した。その後、200mlの生理的食塩水で返血操作を行った。返血操作後、外観の残血中空糸膜本数及びヘッダー部を分解して中空糸膜固定樹脂包埋部切断面の状態を肉眼観察し、血液凝集塊の有無により判断した。
[Evaluation of residual blood]
As the measurement sample, the same type of blood processing apparatus as that used for measuring the water permeability is used. The hollow fiber membrane blood treatment apparatus was comparatively evaluated for its residual blood properties under the following conditions. After each blood treatment apparatus was washed with 2.0 L of physiological saline, fresh beef blood (41% hematocrit, total protein concentration 7.2 g / dL, heparin addition amount 3000 IU / L) was added to the pressure difference between the hollow fiber membranes. The filtrate was circulated for 3 hours while returning to blood under the conditions of 100 mmHg and blood flow rate of 200 ml / min. 2.0 L of blood was used per blood processing device. Thereafter, blood return operation was performed with 200 ml of physiological saline. After the blood return operation, the number of residual blood hollow fiber membranes and the header portion of the appearance were disassembled, and the state of the cut surface of the hollow fiber membrane fixed resin embedded portion was visually observed, and judged by the presence or absence of blood clots.

[中空糸膜の膜厚方向断面における孔径の測定]
湿潤状態の中空糸膜片を、30%、50%、70%、80%、90%、95%、各エタノール水溶液及び100%エタノール液に各々25℃、30分ずつ順次浸漬し、中空糸膜中の水分をエタノールで置換する。次いでこの膜片をエポキシ樹脂に包埋し、60℃、24時間の条件で硬化させる。その後、中空糸膜片から厚さ70nm程度の膜厚方向(半径方向)の断面部分を有する切片を作製し、この切片を0.2%クエン酸鉛水溶液にて、40℃、15分の条件で染色する。
得られる切片から断面部分の透過型電子顕微鏡(TEM)写真を得る。中空糸膜の膜厚方向の中空糸膜内壁表面から中空糸膜外壁表面に至る全断面に相当する上記TEM写真を写真上で10個の断面部分に分割して、得られる夫々の断面部分について、画像解析処理装置(旭化成(株)社製IP−1000)による中空糸膜の孔分布解析を行い、夫々の断面の孔の円相当半径(孔の面積と等しい真円の半径)を求め、その平均値を孔径とする。なお、本発明では前記10個に等分割した断面の中空糸膜内壁表面に最も近い断面部分の孔径をD1とし、また、中空糸膜外壁表面に最も近い断面部分の孔径をD2とする。
[Measurement of pore diameter in cross section of hollow fiber membrane in the film thickness direction]
A hollow fiber membrane piece is sequentially immersed in 30%, 50%, 70%, 80%, 90%, 95%, each aqueous ethanol solution and 100% ethanol solution at 25 ° C. for 30 minutes, respectively. The water inside is replaced with ethanol. Next, the film piece is embedded in an epoxy resin and cured under conditions of 60 ° C. and 24 hours. Thereafter, a section having a cross-sectional portion in the film thickness direction (radial direction) having a thickness of about 70 nm was prepared from the hollow fiber membrane piece, and this section was subjected to a condition of 40 ° C. for 15 minutes in a 0.2% aqueous lead citrate solution. Stain with
A transmission electron microscope (TEM) photograph of the cross section is obtained from the obtained slice. The above TEM photograph corresponding to the entire cross-section from the hollow fiber membrane inner wall surface to the hollow fiber membrane outer wall surface in the film thickness direction of the hollow fiber membrane is divided into 10 cross-sectional parts on the photograph, and each obtained cross-sectional part Then, the hole distribution analysis of the hollow fiber membrane by the image analysis processing device (Asahi Kasei Co., Ltd. IP-1000) is performed, and the circle equivalent radius (radius of the perfect circle equal to the area of the hole) of the hole in each cross section is obtained. The average value is defined as the pore diameter. In the present invention, the hole diameter of the cross-sectional portion closest to the inner wall surface of the hollow fiber membrane having the cross section equally divided into 10 is D1, and the hole diameter of the cross-sectional portion closest to the outer surface of the hollow fiber membrane wall is D2.

紡糸液として公知の方法にて作製されたセルロース濃度8%のキュプラアンモニウムレーヨン紡糸液、中空部形成剤としてテトラフルオロメタン(常温、常圧で気体)を二重紡糸口金より、それぞれ11.7ml/分、4.3ml/分の割合で吐出し、空中を35cm自重落下させた後、38℃、11%苛性ソーダ水溶液にて凝固せしめ、精錬工程のネットコンベアー上に導いた。この中空糸膜糸状体に強制的な機械的張力が負荷されないネットコンベアー上にて、温水、希薄硫酸水溶液、温水の順でシャワー方式の精錬を行った後にネットコンベアーより引き離し、膜孔径保持剤付与装置によるポリエチレングリコール400(日本薬局方収載「マクロゴール400」)の18%水溶液濃度での付与を経て、175℃のトンネル型乾燥機を走行させた後、90m/分の速度で巻き取り、中空糸膜とし、その後整束した。このようにして得られた中空糸膜のポリエチレングリコール400付着量は対セルロース当たり、13.0%であった。この中空糸膜束を公知の方法でプラスチック容器に収納し、日本ポリウレタン株式会社製のウレタン樹脂(主剤、硬化剤)を使用し、有効膜面積1.5mの血液処理装置を組立て、水洗後、照射滅菌処理した。該血液処理装置の残血性を評価し、該血液処理装置と同一種類の血液処理装置で水系と牛血漿系の透過性能の測定を行った。また、同一種類の血液処理装置を分解して中空糸膜を取り出し、湿潤時の樹脂包埋部の中空糸膜内径と膜厚、樹脂非包埋部の中空糸膜内径と膜厚を測定した。その測定結果を表1、2に示す。 A cupra-ammonium rayon spinning solution having a cellulose concentration of 8%, prepared by a known method as a spinning solution, and tetrafluoromethane (gas at normal temperature and normal pressure) as a hollow portion forming agent from a double spinneret, respectively, 11.7 ml / The solution was discharged at a rate of 4.3 ml / min., And dropped in the air by 35 cm, and then solidified with an aqueous 11% caustic soda solution at 38 ° C. and led to a net conveyor in the refining process. On the net conveyor where no forced mechanical tension is applied to the hollow fiber membrane filamentous body, hot water, dilute sulfuric acid aqueous solution and hot water are refined in the order of shower method, and then separated from the net conveyor to give a membrane pore size retainer. After applying polyethylene glycol 400 (“Macrogol 400” listed in Japanese Pharmacopoeia) at a concentration of 18% aqueous solution using an apparatus, a tunnel dryer at 175 ° C. was run, wound up at a speed of 90 m / min, and hollow It was set as a yarn film, and then bundled. The amount of polyethylene glycol 400 adhered to the hollow fiber membrane thus obtained was 13.0% per cellulose. This hollow fiber membrane bundle is stored in a plastic container by a known method, and a urethane treatment (main agent, curing agent) manufactured by Nippon Polyurethane Co., Ltd. is used to assemble a blood treatment device having an effective membrane area of 1.5 m 2 and after washing with water. And sterilized by irradiation. The residual blood property of the blood processing apparatus was evaluated, and the permeation performance of the water system and the bovine plasma system was measured with the same type of blood processing apparatus as the blood processing apparatus. In addition, the hollow fiber membrane was taken out by disassembling the same type of blood processing apparatus, and the hollow fiber membrane inner diameter and film thickness of the resin embedding part when wet, and the hollow fiber membrane inner diameter and film thickness of the resin non-embedded part were measured. . The measurement results are shown in Tables 1 and 2.

紡糸液として公知の方法にて作製されたセルロース濃度5.45%のキュプラアンモニウムレーヨン液、中空部形成剤としてテトラフルオロメタン(常温、常圧で気体)を二重紡糸口金より、それぞれ18.2ml/分、3.8ml/分の割合で吐出し、空中を23cm自重落下させた後、45℃、11%苛性ソーダ水溶液にて凝固せしめ、精錬工程のネットコンベアー上に導いた。実施例1と同様にネットコンベアー上にて、温水、希薄硫酸水溶液、温水の順でシャワー方式の精錬を行った後にネットコンベアーより引き離し、膜孔径保持剤付与装置によるポリエチレングリコール400(日本薬局方収載「マクロゴール400」)の16%水溶液濃度での付与を経て、180℃のトンネル型乾燥機を走行させた後、85m/分の速度で巻き取り、中空糸膜とし、その後これを整束した。
このようにして得られた中空糸膜のポリエチレングリコール400付着量は、対セルロース当たり、12.0%であった。この中空糸膜束を、実施例1と同様に血液処理装置を組立て、残血性を評価し、該血液処理装置と同じ種類の血液処理装置で水系と牛血漿系の透過性能の測定を行った。また、同じ種類の血液処理装置を分解して中空糸膜を取り出し、湿潤時の樹脂包埋部の中空糸膜内径と膜厚、樹脂非包埋部の中空糸膜内径と膜厚を測定した。その測定結果を表1、2に示す。
A cupra-ammonium rayon solution with a cellulose concentration of 5.45% prepared by a known method as a spinning solution and tetrafluoromethane (gas at normal temperature and normal pressure) as a hollow portion forming agent are each 18.2 ml from a double spinneret. After discharging at a rate of 23 cm by weight in the air, it was solidified with an aqueous 11% sodium hydroxide solution at 45 ° C. and led to a net conveyor in the refining process. In the same manner as in Example 1, after refining the shower method in the order of warm water, dilute sulfuric acid aqueous solution, and warm water on the net conveyor, it was separated from the net conveyor and polyethylene glycol 400 by the membrane pore size retaining agent applying device (listed in the Japanese Pharmacopoeia) After application of “Macrogol 400” at a concentration of 16% aqueous solution, a tunnel-type dryer at 180 ° C. was run, wound up at a speed of 85 m / min to form a hollow fiber membrane, and then bundled .
The amount of polyethylene glycol 400 adhered to the hollow fiber membrane thus obtained was 12.0% per cellulose. The hollow fiber membrane bundle was assembled with a blood treatment device in the same manner as in Example 1, the residual blood property was evaluated, and the permeation performance of the water system and the bovine plasma system was measured with the same type of blood treatment device as the blood treatment device. . In addition, the same type of blood processing apparatus was disassembled and the hollow fiber membrane was taken out, and the hollow fiber membrane inner diameter and film thickness of the resin embedding part when wet, and the hollow fiber membrane inner diameter and film thickness of the resin non-embedded part were measured. . The measurement results are shown in Tables 1 and 2.

紡糸液として公知の方法にて作製されたセルロース濃度5.45%のキュプラアンモニウムレーヨン液、中空部形成剤としてテトラフルオロメタン(常温、常圧で気体)を二重紡糸口金より、それぞれ19.7ml/分、4.5ml/分の割合で吐出し、空中を23cm自重落下させた後、実施例1と同様に凝固せしめ、精錬工程のネットコンベアー上に導いた。この中空糸膜糸状体に実施例1同様にネットコンベアー上にて、温水、希薄硫酸水溶液、温水の順でシャワー方式の精錬を行った後にネットコンベアーより引き離し、膜孔径保持剤付与装置によるポリエチレングリコール400の16%水溶液濃度での付与を経て、180℃のトンネル型乾燥機を走行させた後、90m/分の速度で巻き取り、中空糸膜とし、その後これを整束した。このようにして得られた中空糸膜のポリエチレングリコール400付着量は対セルロース当たり、9.7%であった。この中空糸膜束を用いて実施例1と同様に血液処理装置を組立て、残血性の測定を行った。該血液処理装置と同じ種類の血液処理装置で水系と牛血漿系の透過性能の測定を行った。また、同じ種類の血液処理装置を分解して中空糸膜を取り出し、湿潤時の樹脂包埋部の中空糸膜内径と膜厚、樹脂非包埋部の中空糸膜内径と膜厚を測定した。その測定結果を表1、2に示す。   A cupra ammonium rayon solution with a cellulose concentration of 5.45% prepared by a known method as a spinning solution and tetrafluoromethane (gas at normal temperature and normal pressure) as a hollow portion forming agent from a double spinneret 19.7 ml each. After being discharged at a rate of 23 cm by weight in the air, it was solidified in the same manner as in Example 1 and led onto a net conveyor in the refining process. This hollow fiber membrane filament was refined in the order of warm water, dilute sulfuric acid aqueous solution, and hot water in the order of hot water, dilute sulfuric acid solution and hot water in the same manner as in Example 1, and then separated from the net conveyor, and then polyethylene glycol by a membrane pore size retaining agent applying device. After application of 400 at a 16% aqueous solution concentration, a tunnel-type dryer at 180 ° C. was run, wound up at a speed of 90 m / min to form a hollow fiber membrane, and then bundled. The amount of polyethylene glycol 400 adhered to the hollow fiber membrane thus obtained was 9.7% per cellulose. Using this hollow fiber membrane bundle, a blood treatment apparatus was assembled in the same manner as in Example 1 to measure residual blood properties. The permeation performance of the water system and the bovine plasma system was measured with the same type of blood processing apparatus as the blood processing apparatus. In addition, the same type of blood processing apparatus was disassembled and the hollow fiber membrane was taken out, and the hollow fiber membrane inner diameter and film thickness of the resin embedding part when wet, and the hollow fiber membrane inner diameter and film thickness of the resin non-embedded part were measured. . The measurement results are shown in Tables 1 and 2.

紡糸液として公知の方法にて作製されたセルロース濃度5.45%のキュプラアンモニウムレーヨン液、中空部形成剤としてテトラフルオロメタン(常温、常圧で気体)を二重紡糸口金より、それぞれ17.0ml/分、3.4ml/分の割合で吐出し、空中を28.5cm自重落下させた後、7.0%硫酸水溶液からなり、45℃に保たれた凝固浴中を0.8m走行させ1段目の凝固を行った。続いて水洗浄後直ちに、50℃、11%苛性ソーダ水溶液中を1.3m走行させ2段目の凝固を行った。得られた中空糸状膜をネットコンベアー上に導いた。この中空糸状膜に実施例1と同様に精錬を行った後にネットコンベアーより引き離し、膜孔径保持剤付与装置によるポリエチレングリコール400(日本薬局方収載「マクロゴール400」)の24%水溶液濃度での付与を経て、180℃のトンネル型乾燥機を走行させた後、80m/分の速度で巻き取り、中空糸膜を得た後、これを整束した。このようにして得られた中空糸膜のポリエチレングリコール400付着量は対セルロース当たり、16.7%であった。この中空糸膜束を実施例1と同様に血液処理装置を組み立て、残血性の測定を行った。該血液処理装置と同じ種類の血液処理装置で水系と牛血漿系の透過性能の測定を行った。また、同じ種類の血液処理装置を分解して中空糸膜を取り出し、湿潤時の樹脂包埋部の中空糸膜内径と膜厚、樹脂非包埋部の中空糸膜内径と膜厚を測定した。その測定結果を表1、2に示す。   A cupra ammonium rayon solution with a cellulose concentration of 5.45% prepared by a known method as a spinning solution and tetrafluoromethane (gas at normal temperature and normal pressure) as a hollow portion forming agent from a double spinneret 17.0 ml each. After discharging at a rate of 28.5 cm in the air by dropping at a rate of 3.4 ml / min / min, it traveled 0.8 m in a coagulation bath made of 7.0% sulfuric acid aqueous solution and kept at 45 ° C. Stage coagulation was performed. Subsequently, immediately after washing with water, the second stage solidification was performed by running 1.3 m in an aqueous solution of 11% sodium hydroxide at 50 ° C. The obtained hollow fiber membrane was guided onto a net conveyor. After refining this hollow fiber membrane in the same manner as in Example 1, it was pulled away from the net conveyor and applied with a membrane pore size retaining agent application device in a concentration of 24% aqueous solution of polyethylene glycol 400 (“Macrogol 400” published in Japanese Pharmacopoeia). Then, the tunnel type dryer at 180 ° C. was run and wound at a speed of 80 m / min to obtain a hollow fiber membrane, which was then bundled. The amount of polyethylene glycol 400 attached to the hollow fiber membrane thus obtained was 16.7% per cellulose. A blood treatment apparatus was assembled on the hollow fiber membrane bundle in the same manner as in Example 1, and residual blood properties were measured. The permeation performance of the water system and the bovine plasma system was measured with the same type of blood processing apparatus as the blood processing apparatus. In addition, the same type of blood processing apparatus was disassembled and the hollow fiber membrane was taken out, and the hollow fiber membrane inner diameter and film thickness of the resin embedding part when wet, and the hollow fiber membrane inner diameter and film thickness of the resin non-embedded part were measured. . The measurement results are shown in Tables 1 and 2.

紡糸液、中空部形成剤を、それぞれ16.9ml/分、3.2ml/分の割合で吐出し、空中を28.5cm自重落下させた後、8.5%硫酸水溶液からなり、45℃に保たれた凝固浴中を0.8m走行させ1段目の凝固を行った。続いて水洗浄後直ちに、55℃、11%苛性ソーダ水溶液中を1.3m走行させ2段目の凝固を行った。得られた中空糸状膜を精錬工程のネットコンベアー上に導いた。この中空糸膜糸状体に実施例1と同様にネットコンベアー上にて精錬を行った後にネットコンベアーより引き離し、膜孔径保持剤付与装置によるポリエチレングリコール400(日本薬局方収載「マクロゴール400」)の25%水溶液濃度での付与を経て、180℃のトンネル型乾燥機を走行させた後、85m/分の速度で巻き取り、中空糸膜を得た後、これを整束した。このようにして得られた中空糸膜のポリエチレングリコール400付着量は対セルロース当たり、18.7%であった。この中空糸膜束を実施例1と同様に血液処理装置を組み立て残血性の測定を行った。該血液処理装置と同じ種類の血液処理装置で水系と牛血漿系の透過性能の測定を行った。また、同じ種類の血液処理装置を分解して中空糸膜を取り出し、湿潤時の樹脂包埋部の中空糸膜内径と膜厚、樹脂非包埋部の中空糸膜内径と膜厚を測定した。その測定結果を表1、2に示す。   The spinning solution and the hollow part forming agent were discharged at a rate of 16.9 ml / min and 3.2 ml / min, respectively, dropped in the air by 28.5 cm by their own weight, and then composed of an 8.5% aqueous sulfuric acid solution at 45 ° C. The first stage solidification was carried out by running 0.8 m in the maintained coagulation bath. Subsequently, immediately after washing with water, the second solidification was performed by running 1.3 m in an aqueous 11% sodium hydroxide solution at 55 ° C. The obtained hollow fiber membrane was guided onto a net conveyor in the refining process. This hollow fiber membrane filament was refined on a net conveyor in the same manner as in Example 1, and then separated from the net conveyor, and polyethylene glycol 400 (“Macrogol 400” listed in the Japanese Pharmacopoeia) using a membrane pore diameter retaining agent applying device. After application at a concentration of 25% aqueous solution, a tunnel-type dryer at 180 ° C. was run, wound up at a speed of 85 m / min to obtain a hollow fiber membrane, and then bundled. The amount of polyethylene glycol 400 adhered to the hollow fiber membrane thus obtained was 18.7% per cellulose. This hollow fiber membrane bundle was assembled with a blood treatment apparatus in the same manner as in Example 1, and the residual blood property was measured. The permeation performance of the water system and the bovine plasma system was measured with the same type of blood processing apparatus as the blood processing apparatus. In addition, the same type of blood processing apparatus was disassembled and the hollow fiber membrane was taken out, and the hollow fiber membrane inner diameter and film thickness of the resin embedding part when wet, and the hollow fiber membrane inner diameter and film thickness of the resin non-embedded part were measured. . The measurement results are shown in Tables 1 and 2.

紡糸液として公知の方法にて作製されたセルロース濃度8%のキュプラアンモニウムセルロースレーヨン紡糸液、中空部形成剤としてトリクロロトリフルオロエタン(常温、常圧で液体)を二重紡糸口金より、それぞれ13.6ml/分、5.10ml/分の割合で吐出し、空中を15cm自重落下させた後、28℃、20%硫酸アンモニウム水溶液にて凝固せしめ、精錬工程のネットコンベアー上に導いた。この中空糸膜糸状膜に実施例1と同様にネットコンベアー上にて精錬を行った後にネットコンベアーより引き離し、膜孔径保持剤付与装置による局方グリセリン(85%水溶液濃度)での付与を経て、155℃のトンネル型乾燥機を走行させた後、100m/分の速度で巻き取り、中空糸膜とし、その後整束した。このようにして得られた中空糸膜のグリセリン付着量は対セルロース当たり、10.6%であった。この中空糸膜束を公知の方法で血液処理装置容器に収納し、日本ポリウレタン株式会社製のウレタン樹脂(主剤、硬化剤)を使用し、有効膜面積1.5mの血液処理装置を組立て、水洗、組立て後、γ線滅菌処理した。該血液処理装置の残血性を評価した。該血液処理装置と同じ種類の血液処理装置で水系と牛血漿系の透過性能の測定を行った。また、同じ種類の血液処理装置を分解して中空糸膜を取り出し、湿潤時の樹脂包埋部の中空糸膜内径と膜厚、樹脂非包埋部の中空糸膜内径と膜厚を測定した。その測定結果を表1、2に示す。 12. A cupra ammonium cellulose rayon spinning solution having a cellulose concentration of 8% prepared by a known method as a spinning solution and trichlorotrifluoroethane (liquid at room temperature and normal pressure) as a hollow part forming agent from a double spinneret, respectively. After discharging at a rate of 6 ml / min and 5.10 ml / min and dropping in the air by 15 cm by weight, it was solidified with a 20% aqueous solution of ammonium sulfate at 28 ° C. and led to a net conveyor in the refining process. After refining the hollow fiber membrane filamentous membrane on the net conveyor in the same manner as in Example 1, it was pulled away from the net conveyor, and after application with glycerin (85% aqueous solution concentration) by a membrane pore diameter retaining agent application device, After running a tunnel dryer at 155 ° C., it was wound up at a speed of 100 m / min to form a hollow fiber membrane, and then bundled. The hollow fiber membrane thus obtained had a glycerin adhesion of 10.6% per cellulose. This hollow fiber membrane bundle is housed in a blood treatment device container by a known method, and a urethane treatment (main agent, curing agent) manufactured by Nippon Polyurethane Co., Ltd. is used to assemble a blood treatment device having an effective membrane area of 1.5 m 2 , After washing and assembling, γ-ray sterilization was performed. The residual blood property of the blood processing apparatus was evaluated. The permeation performance of the water system and the bovine plasma system was measured with the same type of blood processing apparatus as the blood processing apparatus. In addition, the same type of blood processing apparatus was disassembled and the hollow fiber membrane was taken out, and the hollow fiber membrane inner diameter and film thickness of the resin embedding part when wet, and the hollow fiber membrane inner diameter and film thickness of the resin non-embedded part were measured. . The measurement results are shown in Tables 1 and 2.

紡糸液として公知の方法にて作製されたセルロース濃度5.45%のキュプラアンモニウムセルロースレーヨン紡糸液、中空部形成剤としてオクタフルオロプロパン(常温、常圧で気体)を二重紡糸口金より、それぞれ14.4ml/分、3.85ml/分の割合で吐出し、空中を23cm自重落下させた後、45℃、11%苛性ソーダ水溶液にて凝固せしめ、精錬工程のネットコンベアー上に導いた。この中空糸膜糸状膜に実施例1と同様に精錬を行った後にネットコンベアーより引き離し、膜孔径保持剤付与装置によるポリエチレングリコール400(日本薬局方収載「マクロゴール400」)の16%水溶液濃度での付与を経て、180℃のトンネル型乾燥機を走行させた後、85m/分の速度で巻き取り、中空糸膜とし、その後これを整束した。このようにして得られた中空糸膜のポリエチレングリコール400付着量は対セルロース当たり、10.5%であった。この中空糸膜束を、実施例1と同様に血液処理装置を組立て、残血性の測定を行った。該血液処理装置と同じ種類の血液処理装置で水系と牛血漿系の透過性能の測定を行った。また、同じ種類の血液処理装置を分解して中空糸膜を取り出し、湿潤時の樹脂包埋部の中空糸膜内径と膜厚、樹脂非包埋部の中空糸膜内径と膜厚を測定した。その測定結果を表1、2に示す。   A cupra ammonium cellulose rayon spinning solution having a cellulose concentration of 5.45%, prepared by a known method as a spinning solution, and octafluoropropane (gas at normal temperature and normal pressure) as a hollow portion forming agent from a double spinneret, respectively. The solution was discharged at a rate of 0.4 ml / min and 3.85 ml / min, and dropped in the air by 23 cm, and then solidified with an aqueous 11% sodium hydroxide solution at 45 ° C. and led to a net conveyor in the refining process. After refining this hollow fiber membrane in the same manner as in Example 1, it was pulled away from the net conveyor, and a 16% aqueous solution concentration of polyethylene glycol 400 (“Macrogol 400” listed in the Japanese Pharmacopoeia) by a membrane pore size retaining agent applying device. After running the tunnel-type dryer at 180 ° C., the film was wound up at a speed of 85 m / min to form a hollow fiber membrane, which was then bundled. The amount of polyethylene glycol 400 adhered to the hollow fiber membrane thus obtained was 10.5% per cellulose. A blood treatment apparatus was assembled on this hollow fiber membrane bundle in the same manner as in Example 1, and residual blood properties were measured. The permeation performance of the water system and the bovine plasma system was measured with the same type of blood processing apparatus as the blood processing apparatus. In addition, the same type of blood processing apparatus was disassembled and the hollow fiber membrane was taken out, and the hollow fiber membrane inner diameter and film thickness of the resin embedding part when wet, and the hollow fiber membrane inner diameter and film thickness of the resin non-embedded part were measured. . The measurement results are shown in Tables 1 and 2.

紡糸液、中空部形成剤を、それぞれ15.2ml/分、3.3ml/分の割合で吐出し、空中を28.5cm自重落下させた後、7.0%硫酸水溶液からなり、40℃に保たれた凝固浴中を0.8m走行させ1段目の凝固を行った。続いて水洗浄後直ちに、55℃、11%苛性ソーダ水溶液中を1.3m走行させ2段目の凝固を行った。得られた中空糸状膜を実施例1と同様に精錬工程のネットコンベアー上に導いた。この中空糸膜糸状体に実施例1と同様にネットコンベアー上にて、精錬を行った後にネットコンベアーより引き離し、膜孔径保持剤付与装置によるポリエチレングリコール400(日本薬局方収載「マクロゴール400」)の25%水溶液濃度での付与を経て、180℃のトンネル型乾燥機を走行させた後、85m/分の速度で巻き取り、中空糸膜を得た後、これを整束した。このようにして得られた中空糸膜のポリエチレングリコール400付着量は対セルロース当たり、19.4%であった。この中空糸膜束を実施例1と同様に血液処理装置を組み立て、残血性の測定を行った。該血液処理装置と同じ種類の血液処理装置で水系と牛血漿系の透過性能の測定を行った。また、同じ種類の血液処理装置を分解して中空糸膜を取り出し、湿潤時の樹脂包埋部の中空糸膜内径と膜厚、樹脂非包埋部の中空糸膜内径と膜厚を測定した。その測定結果を表1、2に示す。   The spinning solution and the hollow part forming agent were discharged at a rate of 15.2 ml / min and 3.3 ml / min, respectively, dropped in the air by 28.5 cm by weight, and then composed of a 7.0% sulfuric acid aqueous solution at 40 ° C. The first stage solidification was carried out by running 0.8 m in the maintained coagulation bath. Subsequently, immediately after washing with water, the second solidification was performed by running 1.3 m in an aqueous 11% sodium hydroxide solution at 55 ° C. The obtained hollow fiber membrane was guided onto a net conveyor in the refining process in the same manner as in Example 1. The hollow fiber membrane filaments were refined on the net conveyor in the same manner as in Example 1 and then separated from the net conveyor, and then polyethylene glycol 400 (“Macrogol 400” listed in the Japanese Pharmacopoeia) using a membrane pore diameter retaining agent application device. After applying at a concentration of 25% aqueous solution, a tunnel-type dryer at 180 ° C. was run, wound at a speed of 85 m / min to obtain a hollow fiber membrane, and then bundled. The amount of polyethylene glycol 400 adhered to the hollow fiber membrane thus obtained was 19.4% per cellulose. A blood treatment apparatus was assembled on the hollow fiber membrane bundle in the same manner as in Example 1, and residual blood properties were measured. The permeation performance of the water system and the bovine plasma system was measured with the same type of blood processing apparatus as the blood processing apparatus. In addition, the same type of blood processing apparatus was disassembled and the hollow fiber membrane was taken out, and the hollow fiber membrane inner diameter and film thickness of the resin embedding part when wet, and the hollow fiber membrane inner diameter and film thickness of the resin non-embedded part were measured. . The measurement results are shown in Tables 1 and 2.

紡糸液として公知の方法にて作製されたセルロース濃度8%のキュプラアンモニウムレーヨン液、中空部形成剤としてテトラフルオロメタン(常温、常圧で気体)を二重紡糸口金より、それぞれ11.7ml/分、4.4ml/分の割合で吐出し、空中を33cm自重落下させた後、38℃、11%苛性ソーダ水溶液にて凝固せしめ、実施例1と同様にネットコンベアー法での精錬を行った後にネットコンベアーより引き離し、膜孔径保持剤付与装置によるポリエチレングリコール400の18%水溶液濃度での付与を経て、160℃のトンネル型乾燥機を走行させた後、110m/分の速度で巻き取り、中空糸膜を得て、その後これを整束した。このようにして得られた中空糸膜のポリエチレングリコール400付着量は対セルロース当たり、13.5%であった。この該中空糸膜束を実施例1と同様な方法で血液処理装置を組み立て、残血性の測定を行った。また、該血液処理装置と同じ種類の血液処理装置で水系と牛血漿系の透過性能の測定を行った。さらに、同じ種類の血液処理装置を分解して中空糸膜を取り出し、湿潤時の樹脂包埋部の中空糸膜内径と膜厚、樹脂非包埋部の中空糸膜内径と膜厚を測定した。その測定結果を表1、2に示す。この実施例9では、血液処理装置としての透過性能は良かったが、残血した中空糸膜本数が20本あった。   A cupra ammonium rayon solution having a cellulose concentration of 8% prepared by a known method as a spinning solution and tetrafluoromethane (gas at normal temperature and normal pressure) as a hollow portion forming agent from a double spinneret at 11.7 ml / min. After discharging at a rate of 4.4 ml / min and dropping in the air by 33 cm by weight, it was solidified with an aqueous solution of 11% caustic soda at 38 ° C. and refined by the net conveyor method in the same manner as in Example 1 and then the net. Pulled away from the conveyor, passed through a tunnel dryer at 160 ° C. after application of polyethylene glycol 400 at a concentration of 18% aqueous solution by a membrane pore size retention agent application device, wound up at a speed of 110 m / min, and hollow fiber membrane After that, this was bundled. The amount of polyethylene glycol 400 adhered to the hollow fiber membrane thus obtained was 13.5% per cellulose. A blood treatment apparatus was assembled from the hollow fiber membrane bundle in the same manner as in Example 1, and the residual blood property was measured. Further, the permeation performance of the water system and the bovine plasma system was measured using the same type of blood processing apparatus as the blood processing apparatus. Furthermore, the same kind of blood treatment apparatus was disassembled and the hollow fiber membrane was taken out, and the hollow fiber membrane inner diameter and film thickness of the resin embedding part when wet, and the hollow fiber membrane inner diameter and film thickness of the resin non-embedded part were measured. . The measurement results are shown in Tables 1 and 2. In Example 9, the permeation performance as a blood treatment apparatus was good, but there were 20 hollow fiber membranes remaining.

紡糸液として公知の方法にて作製されたセルロース濃度5.45%のキュプラアンモニウムレーヨン液、中空部形成剤としてテトラフルオロメタン(常温、常圧で気体)を二重紡糸口金より、それぞれ16.7ml/分、2.8ml/分の割合で吐出し、空中を23cm自重落下させた後、45℃、11%苛性ソーダ水溶液にて凝固せしめ、実施例1と同様にネットコンベアー法での精錬を行った後にネットコンベアーより引き離し、膜孔径保持剤付与装置によるポリエチレングリコール400の20%水溶液濃度での付与を経て、170℃のトンネル型乾燥機を走行させた後、100m/分の速度で巻き取り、中空糸膜を得て、その後これを整束した。このようにして得られた中空糸膜のポリエチレングリコール400付着量は対セルロース当たり、17.1%であった。この中空糸膜束を実施例1と同様な方法で血液処理装置を組立て、残血性の測定を行った。また、該血液処理装置と同じ種類の血液処理装置で水系と牛血漿系の透過性能の測定を行った。さらに、同じ種類の血液処理装置を分解して中空糸膜を取り出し、湿潤時の樹脂包埋部の中空糸膜内径と膜厚、樹脂非包埋部の中空糸膜内径と膜厚を測定した。その測定結果を表1、2に示す。この実施例10では、血液処理装置としての透過性能は良かったが、残血した中空糸膜本数が30本あった。   16.7 ml each of a cupra ammonium rayon solution having a cellulose concentration of 5.45% prepared by a known method as a spinning solution and tetrafluoromethane (gas at normal temperature and normal pressure) as a hollow portion forming agent from a double spinneret. / Min, discharged at a rate of 2.8 ml / min, dropped by 23 cm by weight in the air, solidified with an aqueous 11% sodium hydroxide solution at 45 ° C., and refined by the net conveyor method in the same manner as in Example 1. Later, it was pulled away from the net conveyor, passed through a tunnel dryer at 170 ° C. after being applied with a 20% aqueous concentration of polyethylene glycol 400 by a membrane pore size retaining agent application device, wound up at a speed of 100 m / min, and hollow A yarn membrane was obtained and then bundled. The amount of polyethylene glycol 400 adhered to the hollow fiber membrane thus obtained was 17.1% per cellulose. A blood treatment apparatus was assembled on the hollow fiber membrane bundle in the same manner as in Example 1, and the residual blood property was measured. Further, the permeation performance of the water system and the bovine plasma system was measured using the same type of blood processing apparatus as the blood processing apparatus. Furthermore, the same kind of blood treatment apparatus was disassembled and the hollow fiber membrane was taken out, and the hollow fiber membrane inner diameter and film thickness of the resin embedding part when wet, and the hollow fiber membrane inner diameter and film thickness of the resin non-embedded part were measured. . The measurement results are shown in Tables 1 and 2. In Example 10, the permeation performance as a blood treatment apparatus was good, but there were 30 hollow fiber membranes remaining in the blood.

紡糸液として公知の方法にて作製されたセルロース濃度5.45%のキュプラアンモニウムレーヨン液、中空部形成剤としてテトラフルオロメタン(常温、常圧で気体)を二重紡糸口金より、それぞれ21.3ml/分、5.3ml/分の割合で吐出し、空中を23cm自重落下させた後、45℃、11%苛性ソーダ水溶液にて凝固せしめ、実施例1と同様にネットコンベアー法での精錬を行った後にネットコンベアーより引き離し、膜孔径保持剤付与装置によるポリエチレングリコール400の20%水溶液濃度での付与を経て、180℃のトンネル型乾燥機を走行させた後、90m/分の速度で巻き取り、中空糸膜を得て、その後これを整束した。このようにして得られた中空糸膜のポリエチレングリコール400付着量は対セルロース当たり、12.2%であった。この中空糸膜束を実施例1と同様な方法で血液処理装置を組み立て、残血性の測定を行った。また、該血液処理装置と同じ種類の血液処理装置で水系と牛血漿系の透過性能の測定を行った。さらに、同じ種類の血液処理装置を分解して中空糸膜を取り出し、湿潤時の樹脂包埋部の中空糸膜内径と膜厚、樹脂非包埋部の中空糸膜内径と膜厚を測定した。その測定結果を表1、2に示す。この実施例11では、血液処理装置としての残血した中空糸膜本数が良好な結果であったが、水系の尿素クリアランスが低かった。   A cupra ammonium rayon solution with a cellulose concentration of 5.45% prepared by a known method as a spinning solution and tetrafluoromethane (gas at normal temperature and normal pressure) as a hollow portion forming agent from a double spinneret 21.3 ml each. / Min, discharged at a rate of 5.3 ml / min, dropped in the air by 23 cm by weight, solidified with an aqueous 11% sodium hydroxide solution at 45 ° C., and refined by the net conveyor method in the same manner as in Example 1. Later, it was pulled away from the net conveyor, passed through a 20% aqueous solution of polyethylene glycol 400 using a membrane pore size retaining device, run through a tunnel dryer at 180 ° C., wound up at a speed of 90 m / min, and hollow A yarn membrane was obtained and then bundled. The amount of polyethylene glycol 400 adhered to the hollow fiber membrane thus obtained was 12.2% per cellulose. A blood treatment apparatus was assembled on the hollow fiber membrane bundle in the same manner as in Example 1, and the residual blood property was measured. Further, the permeation performance of the water system and the bovine plasma system was measured using the same type of blood processing apparatus as the blood processing apparatus. Furthermore, the same kind of blood treatment apparatus was disassembled and the hollow fiber membrane was taken out, and the hollow fiber membrane inner diameter and film thickness of the resin embedding part when wet, and the hollow fiber membrane inner diameter and film thickness of the resin non-embedded part were measured. . The measurement results are shown in Tables 1 and 2. In Example 11, the number of remaining hollow fiber membranes as a blood treatment apparatus was a good result, but the aqueous urea clearance was low.

比較例1Comparative Example 1

紡糸液として公知の方法にて作製されたセルロース濃度5.45%のキュプラアンモニウムレーヨン紡糸液、中空部形成剤を、それぞれ17.5ml/分、2.9ml/分の割合で吐出し、空中を28.5cm自重落下させた後、7.0%硫酸水溶液からなり、50℃に保たれた凝固浴中を0.77m走行させ1段目の凝固を行った。続いて水洗浄後直ちに、60℃、11%苛性ソーダ水溶液中を1.0m走行させ2段目の凝固をして、実施例1と同様にネットコンベアー法での精錬を行った後にネットコンベアーより引き離し、ポリエチレングリコール400の20%水溶液濃度付与を経て、175℃のトンネル型乾燥機を走行させた後、100m/分の速度で巻き取り、中空糸膜を得て、その後これを整束した。このようにして得られた中空糸膜のポリエチレングリコール400付着量は対セルロース当たり、18.6%であった。この中空糸膜束を実施例1と同様に血液処理装置を組立て、残血性の測定を行った。該血液処理装置と同じ種類の血液処理装置で水系と牛血漿系の透過性能の測定を行った。また、同じ種類の血液処理装置を分解して中空糸膜を取り出し、湿潤時の樹脂包埋部の中空糸膜内径と膜厚、樹脂非包埋部の中空糸膜内径と膜厚を測定した。その測定結果を表1、2に示す。この比較例1では、血液処理装置としての透過性能は良かったが、残血した中空糸膜本数が100本と多かった。   A cupra ammonium rayon spinning solution having a cellulose concentration of 5.45% and a hollow portion forming agent prepared by a known method as a spinning solution were discharged at a rate of 17.5 ml / min and 2.9 ml / min, respectively, After dropping by its own weight of 28.5 cm, the solidification of the first stage was performed by running 0.77 m in a coagulation bath made of 7.0% sulfuric acid aqueous solution and kept at 50 ° C. Subsequently, immediately after washing with water, it was run for 1.0 m in an aqueous solution of 11% caustic soda at 60 ° C. and solidified in the second stage. After refining by the net conveyor method as in Example 1, it was separated from the net conveyor. After passing a 20% aqueous solution concentration of polyethylene glycol 400, a tunnel type dryer at 175 ° C. was run, and then wound up at a speed of 100 m / min to obtain a hollow fiber membrane, which was then bundled. The amount of polyethylene glycol 400 adhered to the hollow fiber membrane thus obtained was 18.6% per cellulose. A blood treatment apparatus was assembled on the hollow fiber membrane bundle in the same manner as in Example 1, and the residual blood property was measured. The permeation performance of the water system and the bovine plasma system was measured with the same type of blood processing apparatus as the blood processing apparatus. In addition, the same type of blood processing apparatus was disassembled and the hollow fiber membrane was taken out, and the hollow fiber membrane inner diameter and film thickness of the resin embedding part when wet, and the hollow fiber membrane inner diameter and film thickness of the resin non-embedded part were measured. . The measurement results are shown in Tables 1 and 2. In Comparative Example 1, the permeation performance as a blood treatment apparatus was good, but the number of remaining hollow fiber membranes was as high as 100.

本発明の中空糸膜型体液処理装置は、水により膨潤する中空糸膜を用いながら、低分子量物質及びβ2マイクログロブリンに代表される低分子量蛋白質の除去性能に優れ、かつ使用後の残血が少ないという特性を併せ持つ、高性能な中空糸膜型体液処理装置を提供することができる。その結果、血液透析、血液濾過ないし血液透析濾過などの中空糸膜型血液処理に好適に用いることができる。   The hollow fiber membrane type body fluid treatment apparatus of the present invention is excellent in the removal performance of low molecular weight substances and low molecular weight proteins typified by β2 microglobulin while using a hollow fiber membrane that swells with water, and residual blood after use. It is possible to provide a high-performance hollow fiber membrane-type body fluid treatment apparatus that has a few characteristics. As a result, it can be suitably used for hollow fiber membrane blood treatment such as hemodialysis, hemofiltration or hemodiafiltration.

本発明の中空糸膜型血液処理装置の構成を示した説明図である。It is explanatory drawing which showed the structure of the hollow fiber membrane type blood processing apparatus of this invention.

符号の説明Explanation of symbols

10 外筒容器
12 流体の入口
13 流体の出口
20 中空糸膜
20A 中空糸の内側空間
20B 樹脂非包埋部
30 中空糸外側と外筒容器の間に形成される空間
31 血液の入口
41 血液の出口
50 樹脂
51 樹脂包埋部
DESCRIPTION OF SYMBOLS 10 Outer cylinder container 12 Fluid inlet 13 Fluid outlet 20 Hollow fiber membrane 20A Hollow fiber inner space 20B Resin non-embedding part 30 Space formed between hollow fiber outer side and outer cylinder container 31 Blood inlet 41 Blood Outlet 50 Resin 51 Resin embedding part

Claims (9)

少なくとも1組の処理液入口と処理液出口とを備えた外筒容器内に、水により膨潤する中空糸膜がほぼ平行に多数本集束されて収納され、その中空糸束の両末端が中空部を開口した状態で樹脂により容器内に接着固定され、該中空糸束の両末端それぞれに液密に固定された被処理液の入口と出口とを備えた中空糸膜型体液処理装置であって、
中空糸膜が湿潤された状態における樹脂包埋部の中空糸膜外径をODw1、樹脂非包埋部の中空糸膜外径をODw2とするとき、下式(1)を満たすことを特徴とする中空糸膜型体液処理装置。
1.07≦ ODw2/ODw1 ≦1.45 (1)
A plurality of hollow fiber membranes swollen by water are collected and stored in an outer cylinder container having at least one set of treatment liquid inlet and treatment liquid outlet, and both ends of the hollow fiber bundle are hollow portions. A hollow fiber membrane-type body fluid treatment apparatus comprising an inlet and an outlet for a liquid to be treated, which are adhesively fixed in a container with a resin in an open state and are liquid-tightly fixed to both ends of the hollow fiber bundle. ,
When the hollow fiber membrane outer diameter of the resin embedding part in the wet fiber membrane is OD w1 and the hollow fiber membrane outer diameter of the resin non-embedded part is OD w2 , the following formula (1) is satisfied. A hollow fiber membrane type bodily fluid treatment apparatus.
1.07 ≦ OD w2 / OD w1 ≦ 1.45 (1)
中空糸膜が水で湿潤された状態における樹脂包埋部の中空糸膜内径が165μm〜250μm、樹脂非包埋部の中空糸膜内径が230μm〜290μmである請求項1に記載の中空糸膜型体液処理装置。   2. The hollow fiber membrane according to claim 1, wherein the hollow fiber membrane has an inner diameter of 165 μm to 250 μm in the resin-embedded portion when the hollow fiber membrane is wet with water, and an inner diameter of the hollow fiber membrane of the resin non-embedded portion is 230 μm to 290 μm. Mold body fluid treatment device. 被処理液が血液である請求項1または2に記載の中空糸膜型体液処理装置。   The hollow fiber membrane type body fluid treatment apparatus according to claim 1 or 2, wherein the liquid to be treated is blood. チトクロムCの物質移動係数が1.0×10−5cm/sec〜7.0×10−5cm/secである請求項3に記載の中空糸膜型体液処理装置。 The hollow fiber membrane type body fluid treatment device according to claim 3, wherein the mass transfer coefficient of cytochrome C is 1.0 x 10 -5 cm / sec to 7.0 x 10 -5 cm / sec. 透水性能が10ml/m/mmHg〜100ml/m/mmHg、アルブミンのふるい係数が0.06以下である請求項3または4に記載の中空糸膜型体液処理装置。 Water permeability hollow fiber membrane type body fluid treatment device according to claim 3 or 4 10ml / m 2 / mmHg~100ml / m 2 / mmHg, the sieving coefficient of albumin is 0.06 or less. 下式(2)を満たすことを特徴とする請求項1〜5のいずれかに記載の中空糸膜型体液処理装置。
1.35≦ ODw2/ODw1 ≦1.45 (2)
The hollow fiber membrane type body fluid treatment device according to any one of claims 1 to 5, wherein the following formula (2) is satisfied.
1.35 ≦ OD w2 / OD w1 ≦ 1.45 (2)
中空糸膜が再生セルロースからなる請求項1〜6のいずれかに記載の中空糸膜型体液処理装置。   The hollow fiber membrane type body fluid treatment apparatus according to any one of claims 1 to 6, wherein the hollow fiber membrane is made of regenerated cellulose. 中空糸膜が下式(3)〜(7)を満たす孔径を有し、中空糸膜内部に少なくとも1つの孔径極大部を有する請求項1〜7のいずれかに記載の中空糸膜型体液処理装置。
10≦D1≦300 (3)
0.6≦(D2/D1)≦1.2 (4)
1.2≦(D3/D1) (5)
20≦ρ1≦200 (6)
20≦ρ2≦200 (7)
(ここで、D1は中空糸膜内壁表面の孔径(nm)、D2は中空糸膜外壁表面の孔径(nm)、D3は中空糸膜内部の孔径(nm)、ρ1は中空糸膜内壁層孔径増加率(%)、ρ2は中空糸膜外壁層孔径減少率を表す。)
The hollow fiber membrane body fluid treatment according to any one of claims 1 to 7, wherein the hollow fiber membrane has a pore diameter satisfying the following formulas (3) to (7), and has at least one pore diameter maximum portion inside the hollow fiber membrane. apparatus.
10 ≦ D1 ≦ 300 (3)
0.6 ≦ (D2 / D1) ≦ 1.2 (4)
1.2 ≦ (D3 / D1) (5)
20 ≦ ρ1 ≦ 200 (6)
20 ≦ ρ2 ≦ 200 (7)
(Where D1 is the hole diameter (nm) of the inner surface of the hollow fiber membrane, D2 is the hole diameter (nm) of the outer surface of the hollow fiber membrane, D3 is the hole diameter (nm) inside the hollow fiber membrane, and ρ1 is the hole diameter of the inner wall layer of the hollow fiber membrane. (Increase rate (%), ρ2 represents the hole diameter decrease rate of the hollow fiber membrane outer wall layer)
下式(3)〜(7)を満足する孔径を有し、中空糸膜内部に少なくとも1つの孔径極大部を有する中空糸膜であって、水により膨潤された時の内径が、230μm〜290μm、透水性能が10ml/m/mmHg〜100ml/m/mmHg、チトクロムCの物質移動係数が1.0×10−5cm/sec〜7.0×10−5cm/sec、アルブミンのふるい係数が0.06以下であることを特徴とする水により膨潤する中空糸膜。
10≦D1≦300 (3)
0.6≦(D2/D1)≦1.2 (4)
1.2≦(D3/D1) (5)
20≦ρ1≦200 (6)
20≦ρ2≦200 (7)
(ここで、D1は中空糸膜内壁表面の孔径(nm)、D2は中空糸膜外壁表面の孔径(nm)、D3は中空糸膜内部の孔径(nm)、ρ1は中空糸膜内壁層孔径増加率(%)、ρ2は中空糸膜外壁層孔径減少率を表す。)
A hollow fiber membrane having a pore diameter satisfying the following formulas (3) to (7) and having at least one pore diameter maximum portion inside the hollow fiber membrane, and the inner diameter when swollen with water is 230 μm to 290 μm , water permeability 10ml / m 2 / mmHg~100ml / m 2 / mmHg, mass transfer coefficient of cytochrome C is 1.0 × 10 -5 cm / sec~7.0 × 10 -5 cm / sec, sieve albumin A hollow fiber membrane which swells with water, characterized by having a coefficient of 0.06 or less.
10 ≦ D1 ≦ 300 (3)
0.6 ≦ (D2 / D1) ≦ 1.2 (4)
1.2 ≦ (D3 / D1) (5)
20 ≦ ρ1 ≦ 200 (6)
20 ≦ ρ2 ≦ 200 (7)
(Where D1 is the hole diameter (nm) of the inner surface of the hollow fiber membrane, D2 is the hole diameter (nm) of the outer surface of the hollow fiber membrane, D3 is the hole diameter (nm) inside the hollow fiber membrane, and ρ1 is the hole diameter of the inner wall layer of the hollow fiber membrane. (Increase rate (%), ρ2 represents the hole diameter decrease rate of the hollow fiber membrane outer wall layer)
JP2003292106A 2003-08-12 2003-08-12 Hollow fiber membrane type body liquid treating device Withdrawn JP2005058905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003292106A JP2005058905A (en) 2003-08-12 2003-08-12 Hollow fiber membrane type body liquid treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003292106A JP2005058905A (en) 2003-08-12 2003-08-12 Hollow fiber membrane type body liquid treating device

Publications (1)

Publication Number Publication Date
JP2005058905A true JP2005058905A (en) 2005-03-10

Family

ID=34369567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003292106A Withdrawn JP2005058905A (en) 2003-08-12 2003-08-12 Hollow fiber membrane type body liquid treating device

Country Status (1)

Country Link
JP (1) JP2005058905A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010090174A1 (en) * 2009-02-04 2010-08-12 東洋紡績株式会社 Hollow-fiber membrane, process for producing same, and blood purification module
JPWO2016072409A1 (en) * 2014-11-04 2017-08-10 旭化成メディカル株式会社 Hollow fiber filtration membrane

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010090174A1 (en) * 2009-02-04 2010-08-12 東洋紡績株式会社 Hollow-fiber membrane, process for producing same, and blood purification module
US8840788B2 (en) 2009-02-04 2014-09-23 Toyo Boseki Kabushiki Kaisha Hollow fiber membrane, method for manufacturing the same, and blood purification module
JP5720249B2 (en) * 2009-02-04 2015-05-20 東洋紡株式会社 Hollow fiber membrane, method for producing the same, and blood purification module
JPWO2016072409A1 (en) * 2014-11-04 2017-08-10 旭化成メディカル株式会社 Hollow fiber filtration membrane

Similar Documents

Publication Publication Date Title
EP1572330B1 (en) Perm selective asymmetric hollow fibre membrane for the separation of toxic mediators from blood
US5258149A (en) Process of making a membrane for high efficiency removal of low density lipoprotein-cholesterol from whole blood
JP3474205B2 (en) Polysulfone hollow fiber type blood purification membrane and method for producing the same
US5236644A (en) Process of making membrane for removal of low density lipoprotein-cholesterol from whole blood
US5418061A (en) Microporous polysulfone supports suitable for removal of low density lipoprotein-cholesterol
US6042783A (en) Hollow yarn membrane used for blood purification and blood purifier
JPS63109871A (en) Blood dialytic membrane
JPH10108907A (en) Membrane for hemocatharsis, its preparation and module for hemocatharsis
US5643452A (en) High-flux hollow-fiber membrane with enhanced transport capability and process for making same
JP2005058905A (en) Hollow fiber membrane type body liquid treating device
JPH0194902A (en) Polysulfone hollow fibrous membrane and production thereof
JP3281363B1 (en) Blood purification membrane
JPH0970431A (en) Production of polysulfone hollow fiber type artificial kidney and artificial kidney
JP4055634B2 (en) Hemodialysis membrane and method for producing the same
JP4190361B2 (en) Hollow fiber type body fluid treatment device, hollow fiber bundle used therefor, and method for producing them
JPH06269500A (en) Microporous polysulfone carrier suitable for eliminating low-density lipoprotein-choresterol
JPH0947645A (en) Hollow fiber separating membrane and blood purifier
JP3228758B2 (en) Hollow fiber membrane and method for producing the same
JPH10263375A (en) Selective permeable hollow fiber membrane
JP3020016B2 (en) Hollow fiber membrane
JP2003175321A (en) Method for manufacturing hollow fiber membrane
JP2003033632A (en) Method for producing blood purifying membrane
JP2003275300A (en) Regenerated cellulose hollow fiber membrane for blood purification, its manufacturing method, and blood purifying apparatus
JPH09308684A (en) Selective separating membrane
JP2002186667A (en) Hollow fiber type hemodialyzer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061107