JP2005058802A - Coating gun - Google Patents

Coating gun Download PDF

Info

Publication number
JP2005058802A
JP2005058802A JP2003206876A JP2003206876A JP2005058802A JP 2005058802 A JP2005058802 A JP 2005058802A JP 2003206876 A JP2003206876 A JP 2003206876A JP 2003206876 A JP2003206876 A JP 2003206876A JP 2005058802 A JP2005058802 A JP 2005058802A
Authority
JP
Japan
Prior art keywords
atomizing head
rotary atomizing
storage chamber
annular gap
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003206876A
Other languages
Japanese (ja)
Inventor
Kenji Murata
賢二 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Sunac Corp
Original Assignee
Asahi Sunac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Sunac Corp filed Critical Asahi Sunac Corp
Priority to JP2003206876A priority Critical patent/JP2005058802A/en
Publication of JP2005058802A publication Critical patent/JP2005058802A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coating gun capable of preventing the intrusion of liquid supplied to a storage chamber of a rotary atomizing head into the back side of the inner part of a body. <P>SOLUTION: A discharge path 37 which is communicated with an annular clearance 27, is opened outside the body 10 and is nearly radial is disposed on the back side from the annular clearance 27 between the outer periphery of a passage pipe 12 and the inner periphery of a center hole 26 of the rotary atomizing head 11. The liquid passes through the annular clearance 27 from the storage chamber 17 of the rotary atomizing head 11, advances to the discharge path 37 thereon, is imparted with a centrifugal force through the rotation of the rotary atomizing head 11 and is discharged outside the body 10 by the centrifugal force. As a result, there is no fear that the liquid is intruded into the interior of the back side in the inner part of the body 10. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、回転霧化頭を有する塗装ガンに関するものである。
【0002】
【従来の技術】
先端に回転霧化頭を有する塗装ガンは、ボディ内中心に塗料及びシンナーの流路となる流路管を固定し、ボディの前端部に流路管と同心に回転駆動されるカップ状の回転霧化頭を支持した構造になる。流路管の前端は、回転霧化頭の中心孔を貫通して回転霧化頭内に設けた貯留室に臨んでいる。流路管から貯留室に供給された塗料又はシンナーは、貯留室の前面壁の小孔を通過して回転霧化頭のテーパ面に送り出され、遠心力によりテーパ面に沿って中心側から外周側へ放射状に広がり、外周縁から霧化状に放出される。尚、回転霧化頭を備える塗装ガンとしては、特許文献1に開示されているものがある。
【0003】
【特許文献1】
特開平10−216567号公報
【0004】
【発明が解決しようとする課題】
上記のような塗装ガンの場合、回転霧化頭は高速回転するので、流路管の前端部外周と中心孔の内周との間にシール部材を介装することができない。そのため、図8に示すように、流路管100の前端部外周と中心孔101の内周との間には、僅かではあるが環状隙間102が空いている。このような環状隙間102が空いていると、貯留室103に送り込まれた塗料やシンナーが、図8に矢線で示すように、環状隙間102を通り、流路管100の外周に沿いつつボディ104の内部を後方に向かって浸入する虞がある。特に、洗浄効率を高めるために大量のシンナーを流した場合には、貯留室103内がシンナーで充満して溢れるため、後方への浸入が著しい。
【0005】
本願発明は上記事情に鑑みて創案され、回転霧化頭の貯留室に供給された液体がボディ内部後方へ浸入するのを防止することを目的としている。
【0006】
【課題を解決するための手段】
請求項1の発明は、ボディ内に流路管が固定され、前記ボディの前端部に前記流路管と同心に回転駆動されるカップ状の回転霧化頭が設けられ、前記流路管の前端部が、前記回転霧化頭の中心孔に貫通されるとともに前記回転霧化頭内の貯留室に臨み、前記流路管から前記貯留室に供給された液体が、前記貯留室の前面壁の小孔を通過して遠心力により前記回転霧化頭のテーパ面に沿いつつその外周縁から霧化状に放出されるようにした塗装ガンにおいて、前記流路管の外周と前記中心孔の内周との間の環状隙間よりも後方に位置し、且つ前記環状隙間に連通するとともに前記ボディ外へ開放された形態の概ね放射状をなす排出路が設けられ、前記排出路内に浸入した液体には前記回転霧化頭の回転によって遠心力が付与される構成とした。
【0007】
請求項2の発明は、請求項1の発明において、前記排出路に連通するとともに前記流路管の外周に沿って後方へ延びる空間には、エアが前記排出路側へ向かって供給されている構成とした。
請求項3の発明は、請求項1又は請求項2の発明において、前記排出路における前記環状隙間との連通部分には、前記流路管と直交する断面積が前記環状隙間の断面積よりも大きい減圧室が設けられている構成とした。
【0008】
請求項4の発明は、請求項1乃至請求項3のいずれかの発明において、前記排出路には、前記回転霧化頭と一体回転することで前記排出路内の液体を概ね周方向へ流動させるフィンが設けられている構成とした。
請求項5の発明は、請求項1乃至請求項4のいずれかの発明において、前記排出路における前記ボディ外への開口部が、前記回転霧化頭の外周縁における前記テーパ面とは反対側の外周面に臨んでいる構成とした。
【0009】
【発明の作用及び効果】
[請求項1の発明]
貯留室に供給された液体が、流路管の外周と中心孔の内周との間の環状隙間を通過して排出路へ進入しても、その液体は、遠心力によりボディ外へ排出されるので、液体がボディの後方奥まで浸入する虞はない。
[請求項2の発明]
エアの圧力により、液体の後方への侵入がより確実に抑制又は防止される。また、エアが排出路を通ってボディの外周へ流出することにより、排出路内の液体は流出エアに乗じて確実にボディ外へ排出される。
【0010】
[請求項3の発明]
貯留室内に充満することによって加圧された状態で環状隙間を通過した液体は、減圧室と環状隙間との断面積の差により減圧室への流入に伴なって減圧される。したがって、ボディ後方への浸入が抑制又は確実に防止される。
[請求項4の発明]
排出路内の液体は、フィンによって略周方向へ流動させられるため、蓄勢される遠心力が増大し、ボディ外への排出効率が向上する。
【0011】
[請求項5の発明]
回転霧化頭の外周縁におけるテーパ面とは反対側の外周面に付着した塗料は、排出路から排出されたシンナーによって洗浄することができる。
【0012】
【発明の実施の形態】
[実施形態1]
以下、本発明を具体化した実施形態1を図1乃至図6を参照して説明する。
本実施形態の塗装ガンは、ボディ10の前端部(図1における左端部)に、回転霧化頭11を設けたものである。ボディ10の内部には、軸線を前後方向に向けた円筒形をなす細長い流路管12が固定されている。流路管12の内径は全長に亘って一定であるが、外径については前端部だけ同心状に且つ段差状に小さくなっており、この外径の小さくなった前端部は縮径部13となっている。この流路管12の後端部には、塗装ガンの外部に設けられている塗料供給源(図示せず)とシンナー供給源(図示せず)とが接続されており、塗装を行う際には、塗料供給源から液体塗料Pが流路管12に供給され、塗装後や色替えなどの段取り替えの際にはシンナー供給源から洗浄用のシンナーTが流路管12に供給されるようになっている。
【0013】
また、ボディ10内には、流路管12の外周面との間に環状空間16を空け、流路管12と同心の円筒状をなす回転軸14が回転可能に支持されている。回転軸14は、その外周に設けたタービン翼15に対するタービンエアAtの吹き付けにより高速で回転駆動されるようになっている。また、タービンエアAtの一部は、流路管12の外周と回転軸14の内周との間の環状空間16内を前方へ進むようになっている。
【0014】
回転軸14の前端部には、回転軸14と同心の円形をなし、前方に開いたカップ状(皿状)をなす回転霧化頭11が一体回転するように取り付けられている。回転霧化頭11の内部には、回転霧化頭11と同心円形であって前後方向の寸法が小さい扁平な貯留室17が形成されている。貯留室17の前面壁18における中央位置は、後方へ略円錐状に突起部19が形成され、貯留室17の後面壁20の周縁部には、前方へ湾曲して前面壁18の周縁に対して鋭角に連なる誘導面21が形成されている。
【0015】
回転霧化頭11の前面には同心円形の皿状をなす凹部22が形成され、凹部22の内周は、前方に向かって拡径したテーパ面23となっている。貯留室17の前面壁18は、貯留室17と凹部22とを仕切る隔壁となっている。この前面壁18には、貯留室17の周縁からテーパ面23に貫通する小孔24が周方向に間隔を空けて複数形成されている。小孔24は、貯留室17の後面壁20の誘導面21に沿う方向に貫通している。また、突起部19においても、貯留室17から凹部22の中心に開口する小径の連通孔25が形成されている。
【0016】
貯留室17の後面壁20には、回転霧化頭11と同心の円形をなし、且つ内径が流路管12の縮径部13の外径よりも僅かに大きい中心孔26が前後方向に貫通して形成されている。この中心孔26には縮径部13が貫通し、この縮径部13の前端部は、貯留室17内に臨み、突起部19に対して同心状に対向している。縮径部13の外周と中心孔26の内周とは非接触の状態が保たれ、これにより、回転霧化頭11と回転軸14が円滑に高速回転できるようになっている。この縮径部13の外周と中心孔26の内周との間には、円環形をなすとともに貯留室17と環状空間16との間を連通させる環状隙間27が空いている。
【0017】
回転霧化頭11を高速回転させた状態で流路管12に液体塗料Pを供給すると、その液体塗料Pは、流路管12の前端から貯留室17内に滴下され、図2及び図4に示すように、遠心力により貯留室17の周縁部へ移動し、小孔24を通ってテーパ面23に送られ、同じく遠心力によりテーパ面23を前方へ移動しつつ周方向に拡散され、テーパ面23(回転霧化頭11)の外周縁から霧化状となって放射状に放出されるようになっている。尚、貯留室17に供給された液体塗料Pの一部は突起部19の連通孔25を通って凹部22内に送られ、遠心力によってテーパ面23へ移動する。
【0018】
また、塗装の終了時又は色替えなどの段取り替えの際には、洗浄のために流路管12にシンナーTが供給されるが、洗浄効率向上のために、シンナーTの供給量は塗料Pの供給量よりも大量となっている。したがって、流路管12の前端から貯留室17に流入したシンナーTは、図5に示すように、貯留室17内に充満し、加圧された状態で小孔24及び連通孔25を通って凹部22に至り、遠心力によりテーパ面23上を流れてその外周縁から放出される。このようにしてシンナーTの通過経路が洗浄される。
【0019】
また、回転霧化頭11の外周のうち前端(テーパ面23の外周縁)から前後方向における略中央位置に至る略前半領域は、後方に向かって次第に縮径したテーパ状外周面28となっており、回転霧化頭11の外周のうち略後半領域は、外径が一定の定径外周面29となっている。定径外周面29の外径寸法は、テーパ状外周面28の後端の外径(テーパ状外周面28の最小外径)と同じ寸法であり、したがって、テーパ状外周面28と定径外周面29とは段差を介さずに連なっている。
【0020】
さらに、回転霧化頭11には、回転霧化頭11と同心円形のカップ状をなすカバー30が一体回転し得るように固定されている。カバー30の内周のうち略前半部分は、回転霧化頭11のテーパ状外周面28よりも僅かに径が大きく且つテーパの勾配がテーパ状外周面28と同じ角度とされたテーパ状内周面31となっており、このテーパ状内周面31とテーパ状外周面28との間には、全周に亘って連続する円形のテーパ状流路32が形成されている。このテーパ状流路32は後述する排出路37を構成する。また、カバー30の内周には、回転霧化頭11の定径外周面29の外径よりも径が大きく、且つテーパ状内周面31の後端に連なる定径内周面33が形成されている。この定径内周面33と定径外周面29との間には、全周に亘って連続する円環形の環状流路34が形成されている。この環状流路34も排出路37を構成する。かかるカバー30は、その内周後端部を回転霧化頭11の定径外周面29の後端部に密着させた形態で、回転霧化頭11に固定されている。
【0021】
ボディ10の前端部には、回転霧化頭11の最外径よりも大径で且つ同士の円形スリット状をなす噴出口35が、テーパ面23の外周縁(回転霧化頭11の前端)よりも後方に位置して形成されている。この噴出口35は、ボディ10内の供給路36に連通しており、この供給路36の後端には、エア供給源(図示せず)が接続されている。このエア供給源から圧送されたエアは、噴出口35から回転霧化頭11の外周縁に向かってシェーピングエアAsとして前方へ噴出し、回転霧化頭11(テーパ面23)の外周縁から放出された霧化塗料Pは、シェーピングエアAsの吹き付けにより中心に向って絞られつつ所定のパターンに成形されるようになっている。
【0022】
さて、上記のように流路管12と中心孔26との間に環状隙間27が空いている構造の場合、貯留室17に送り込まれた塗料PやシンナーTが、環状隙間27を通り、流路管12の外周に沿いつつ環状空間16内をボディ10内部後方(図1〜図5における右方)へ浸入していくことが懸念される。そこで、その対策として、本実施形態では、環状隙間27よりも後方に位置し、且つ環状隙間27に連通するとともにボディ10外へ開放された形態の概ね放射状をなす排出路37が設けられている。
【0023】
排出路37は、中心側から外周側に向かって順に配した減圧室38、放射孔39、環状流路34及びテーパ状流路32から構成されている。
減圧室38は、環状隙間27と同心の円形をなし、全周に亘って連続した形態であって、その中心部分が環状隙間27の後端と連通している。この減圧室38の内径は、環状隙間27の内径よりも大きいため、減圧室38の横断面積、即ち流路管12の軸方向(前後方向)と直交する断面積は、環状隙間27の横断面積よりも十分に大きい。また、減圧室38は、流路管12の外周と回転軸14の内周との間の環状空間16の前端と連通している。したがって、この環状空間16内に送り込まれたタービンエアAtは、減圧室38内に流入するようになっている。
【0024】
放射孔39は、減圧室38の内周面から径方向へ真っ直ぐ外側へ延びた細長い円形孔であり、周方向において等角度間隔(本実施形態では60°)を空けて複数形成されている。放射孔39は、回転霧化頭11の定径外周面29に開口されており、したがって、環状流路34と連通している。この環状流路34の前端部には、テーパ状流路32の後端(即ち、最小径部)が連通している。テーパ状流路32は前方に向かって拡径するテーパ状をなし、その前端は回転霧化頭11の外周前端部に開口されている。
【0025】
また、テーパ状流路32を構成するカバー30の前端は、回転霧化頭11の前端よりも後方であり且つ噴出口35よりも前方に位置している。したがって、テーパ状流路32の前端における開口部40(即ち、排出路37におけるボディ10外への開口部40)は、回転霧化頭11の外周縁におけるテーパ面23とは反対側の外周面(テーパ状外周面28)に臨んでいる。また、その開口部40の開口方向は、回転霧化頭11のテーパ状外周面28に沿った方向、即ちラッパ状に広がる方向となる。
【0026】
次に、本実施形態の作用を説明する。
流路管12から貯留室17に供給された液体(塗料P又はシンナーT)が、環状隙間27を通って回転霧化頭11の凹部22とは反対(後方)の減圧室38へ浸入すると、その液体は、図5に示すように、回転霧化頭11の高速回転により遠心力を付与される。即ち、液体は、減圧室38の内面との間の摩擦抵抗により連れ回りすることによって遠心力を付与される。そして、液体は、遠心力により減圧室38の内周に押し付けられて放射孔39を外周側へ流れ、環状流路34を経て、テーパ状流路32内を斜め前外方へ移動し、その前端の開口部40からボディ10の外へ排出される。したがって、貯留室17内の液体が環状隙間27を通って後方へ漏出しても、ボディ10の内部、即ち環状空間16内を通って後方へ侵入していくことが抑制又は防止される。
【0027】
しかも、流路管12の外周に沿って後方へ延びる環状空間16には、タービンエアAtが排出路37側(減圧室38)へ向かって(前方へ)送り込まれているので、このタービンエアAtの圧力により、液体の後方への侵入がより確実に抑制又は防止される。さらに、タービンエアAtは排出路37、即ち減圧室38、放射孔39、環状流路34及びテーパ状流路32を順に通ってボディ10の外周へ流出するので、排出路37内の液体はタービンエアAtに乗じて確実にボディ10外へ排出される。
【0028】
また、排出路37における環状隙間27との連通部分には、流路管12と直交する断面積が環状隙間27の断面積よりも大きい減圧室38が設けられているので、貯留室17内に充満することによって加圧された状態で環状隙間27を通過した液体(特に、シンナーT)は、減圧室38と環状隙間27との断面積の差により減圧室38への流入に伴なって減圧される。したがって、液体が環状空間16内をボディ10後方へ浸入することが抑制又は確実に防止される。
【0029】
また、排出路37におけるボディ10外への開口部が、回転霧化頭11の外周縁におけるテーパ面23とは反対側のテーパ状外周面28に臨んでいるので、回転霧化頭11のテーパ状外周面28に付着した塗料Pは、排出路37から排出されたシンナーTによって洗浄することができる。しかも、排出路37の開口部40はテーパ状外周面28上に開放され、且つその開口部40の開口方向はテーパ状外周面28に沿った方向なので、シンナーTによる洗浄効果が高い。
【0030】
[実施形態2]
次に、本発明を具体化した実施形態2を図7を参照して説明する。
本実施形態2は、実施形態1において排出路37を構成する減圧室38の内部にフィン41を設けたものである。フィン41は、減圧室38の内周面から径方向内側(流路管12の縮径部13の中心に向かう方向)へほぼ真っ直ぐ延び、板面を回転霧化頭11の回転方向とほぼ直角に向けた板状をなす。また、フィン41は、各放射孔39の開口縁のうち回転霧化頭11の回転方向後方の縁部(図7においては、放射孔39の中心に対して反時計回り方向へずれて位置する縁部)に沿って配置されている。減圧室38内に浸入した液体(塗料P又はシンナーT)は、図7の時計回り方向へ回転霧化頭11が回転することにより遠心力を付与されるが、このときに、液体はフィン41によって周方向に強く押されるので、減圧室38の内面との間の摩擦抵抗により連れ回りすることによって遠心力を付与される場合に比べると、強い遠心力が付与され、その分、液体の排出効率に優れている。尚、上記以外の構成については上記実施形態1と同じであるため、同じ構成については、同一符号を付し、構造、作用及び効果の説明は省略する。
【0031】
[他の実施形態]
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施態様も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
(1)上記実施形態では排出路に連通するとともに流路管の外周に沿って後方へ延びる空間に、エアが排出路側へ向かって供給されるようにしたが、本発明によれば、このようなエアを供給しない構成としてもよい。
【0032】
(2)上記実施形態では排出路における環状隙間との連通部分に流路管と直交する断面積が環状隙間の断面積よりも大きい減圧室を設けたが、本発明によれば、このような減圧室を設けない構成としてもよい。
(3)上記実施形態では排出路に向かって送り込まれるエアは、回転霧化頭を回転駆動するためのタービンエアとしたが、本発明によれば、タービンエアを流用せず、専用のエアを供給してもよい。
【0033】
(4)上記実施形態では排出路が回転霧化頭の内部に設けられているが、本発明によれば、排出路の少なくても一部が回転霧化頭とボディとの間に形成されていてもよい。
【図面の簡単な説明】
【図1】実施形態1における塗装ガンの縦断面図
【図2】回転霧化頭の拡大縦断面図
【図3】図2の部分拡大図
【図4】回転霧化頭に塗料が供給されている状態をあらわす拡大縦断面図
【図5】回転霧化頭にシンナーが供給されている状態をあらわす縦拡大断面図
【図6】排出路を構成する減圧室と放射孔をあらわす拡大横断面図
【図7】実施形態2の排出路を構成する減圧室と放射孔をあらわす拡大横断面図
【図8】従来例の断面図
【符号の説明】
10…ボディ
11…回転霧化頭
12…流路管
17…貯留室
18…前面壁
23…テーパ面
24…小孔
26…中心孔
27…環状隙間
28…テーパ状外周面(回転霧化頭のテーパ面とは反対側の外周面)
38…排出路
39…減圧室
40…排出路の開口部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a coating gun having a rotary atomizing head.
[0002]
[Prior art]
A coating gun with a rotary atomizing head at the tip has a cup-shaped rotation that is fixed to the center of the body and serves as a flow path for paint and thinner. The structure supports the atomizing head. The front end of the flow channel pipe passes through the central hole of the rotary atomizing head and faces a storage chamber provided in the rotary atomizing head. The paint or thinner supplied from the flow pipe to the storage chamber passes through a small hole in the front wall of the storage chamber, and is sent to the tapered surface of the rotary atomizing head. It spreads radially to the side and is emitted in an atomized form from the outer periphery. In addition, there exists a thing currently disclosed by patent document 1 as a coating gun provided with a rotary atomization head.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-216567
[Problems to be solved by the invention]
In the case of the coating gun as described above, since the rotary atomizing head rotates at a high speed, a seal member cannot be interposed between the outer periphery of the front end portion of the flow path tube and the inner periphery of the center hole. Therefore, as shown in FIG. 8, an annular gap 102 is slightly formed between the outer periphery of the front end portion of the flow channel tube 100 and the inner periphery of the center hole 101. When such an annular gap 102 is vacant, the paint or thinner fed into the storage chamber 103 passes through the annular gap 102 and follows the outer periphery of the flow channel pipe 100 as shown by the arrow in FIG. There is a risk that the inside of 104 may invade backward. In particular, when a large amount of thinner is flowed in order to increase the cleaning efficiency, the interior of the storage chamber 103 is filled with thinner and overflows, so that the intrusion to the rear is remarkable.
[0005]
The present invention has been made in view of the above circumstances, and aims to prevent the liquid supplied to the storage chamber of the rotary atomizing head from entering the rear of the body.
[0006]
[Means for Solving the Problems]
According to the first aspect of the present invention, a flow path pipe is fixed in the body, and a cup-shaped rotary atomizing head that is rotationally driven concentrically with the flow path pipe is provided at the front end of the body. The front end portion penetrates the central hole of the rotary atomizing head and faces the storage chamber in the rotary atomizing head, and the liquid supplied from the flow channel pipe to the storage chamber is the front wall of the storage chamber In the coating gun which passes along the tapered surface of the rotary atomizing head by centrifugal force and is discharged in an atomized form from the outer periphery thereof, the outer periphery of the flow path tube and the center hole A liquid that is located behind the annular gap between the inner circumference and communicates with the annular gap and that is open to the outside of the body and has a generally radial discharge path, and enters the discharge path. In the configuration, centrifugal force is applied by the rotation of the rotary atomizing head.
[0007]
According to a second aspect of the present invention, in the first aspect of the invention, air is supplied toward the discharge path side in a space communicating with the discharge path and extending rearward along the outer periphery of the flow path pipe. It was.
According to a third aspect of the present invention, in the first or second aspect of the present invention, the cross-sectional area perpendicular to the flow path pipe is larger than the cross-sectional area of the annular gap in the communicating portion of the discharge passage with the annular gap. A large decompression chamber was provided.
[0008]
According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the liquid in the discharge path flows in the circumferential direction in the discharge path by rotating integrally with the rotary atomizing head. It was set as the structure provided with the fin to be made.
According to a fifth aspect of the present invention, in the invention according to any one of the first to fourth aspects, the opening to the outside of the body in the discharge passage is opposite to the tapered surface at the outer peripheral edge of the rotary atomizing head. It was set as the structure which faces the outer peripheral surface.
[0009]
[Action and effect of the invention]
[Invention of Claim 1]
Even if the liquid supplied to the storage chamber passes through the annular gap between the outer periphery of the flow channel tube and the inner periphery of the center hole and enters the discharge path, the liquid is discharged out of the body by centrifugal force. Therefore, there is no possibility that the liquid may penetrate into the back of the body.
[Invention of claim 2]
By the pressure of air, the penetration | invasion to the back of a liquid is suppressed or prevented more reliably. Further, when the air flows out to the outer periphery of the body through the discharge path, the liquid in the discharge path is reliably discharged out of the body by multiplying the outflow air.
[0010]
[Invention of claim 3]
The liquid that has passed through the annular gap while being pressurized by filling the storage chamber is decompressed as it flows into the decompression chamber due to the difference in cross-sectional area between the decompression chamber and the annular gap. Therefore, intrusion into the rear of the body is suppressed or reliably prevented.
[Invention of claim 4]
Since the liquid in the discharge path is caused to flow in the substantially circumferential direction by the fins, the accumulated centrifugal force is increased, and the discharge efficiency to the outside of the body is improved.
[0011]
[Invention of claim 5]
The paint adhering to the outer peripheral surface opposite to the tapered surface at the outer peripheral edge of the rotary atomizing head can be cleaned by the thinner discharged from the discharge passage.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
[Embodiment 1]
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
The coating gun of this embodiment is provided with a rotary atomizing head 11 at the front end portion (left end portion in FIG. 1) of the body 10. Inside the body 10, a slender channel pipe 12 having a cylindrical shape with an axis line directed in the front-rear direction is fixed. The inner diameter of the channel tube 12 is constant over the entire length, but the outer diameter is reduced concentrically and stepwise only at the front end, and the front end with the reduced outer diameter is the reduced diameter portion 13 and It has become. A paint supply source (not shown) and a thinner supply source (not shown) provided outside the coating gun are connected to the rear end portion of the flow path pipe 12 when painting. The liquid paint P is supplied from the paint supply source to the flow path pipe 12, and the thinner T for cleaning is supplied from the thinner supply source to the flow path pipe 12 at the time of changeover after painting or color change. It has become.
[0013]
In addition, an annular space 16 is formed between the body 10 and the outer peripheral surface of the flow channel tube 12, and a rotating shaft 14 having a cylindrical shape concentric with the flow channel tube 12 is rotatably supported. The rotary shaft 14 is driven to rotate at high speed by blowing turbine air At to the turbine blades 15 provided on the outer periphery thereof. Further, a part of the turbine air At advances forward in the annular space 16 between the outer periphery of the flow channel tube 12 and the inner periphery of the rotary shaft 14.
[0014]
A rotary atomizing head 11 having a cup shape (dish shape) opened forward is attached to a front end portion of the rotary shaft 14 so as to rotate integrally with the rotary shaft 14. A flat storage chamber 17 that is concentric with the rotary atomizing head 11 and has a small size in the front-rear direction is formed inside the rotary atomizing head 11. A projection 19 is formed at the central position of the front wall 18 of the storage chamber 17 in a substantially conical shape to the rear, and the peripheral portion of the rear wall 20 of the storage chamber 17 is curved forward to the periphery of the front wall 18. Thus, a guide surface 21 that is continuous with an acute angle is formed.
[0015]
A concentric circular dish-shaped recess 22 is formed on the front surface of the rotary atomizing head 11, and the inner periphery of the recess 22 is a tapered surface 23 whose diameter increases toward the front. The front wall 18 of the storage chamber 17 is a partition that partitions the storage chamber 17 and the recess 22. A plurality of small holes 24 penetrating from the peripheral edge of the storage chamber 17 to the tapered surface 23 are formed in the front wall 18 at intervals in the circumferential direction. The small hole 24 penetrates in the direction along the guide surface 21 of the rear wall 20 of the storage chamber 17. In the protrusion 19, a small-diameter communication hole 25 that opens from the storage chamber 17 to the center of the recess 22 is also formed.
[0016]
A central hole 26 having a circular shape concentric with the rotary atomizing head 11 and having an inner diameter slightly larger than the outer diameter of the reduced diameter portion 13 of the flow path tube 12 penetrates the rear wall 20 of the storage chamber 17 in the front-rear direction. Is formed. The reduced diameter portion 13 passes through the center hole 26, and the front end portion of the reduced diameter portion 13 faces the storage chamber 17 and concentrically faces the protrusion 19. The outer periphery of the reduced diameter portion 13 and the inner periphery of the center hole 26 are kept in a non-contact state, so that the rotary atomizing head 11 and the rotary shaft 14 can smoothly rotate at high speed. An annular gap 27 is formed between the outer periphery of the reduced diameter portion 13 and the inner periphery of the center hole 26 and forms an annular shape and communicates between the storage chamber 17 and the annular space 16.
[0017]
When the liquid paint P is supplied to the flow path pipe 12 with the rotary atomizing head 11 rotated at a high speed, the liquid paint P is dropped into the storage chamber 17 from the front end of the flow path pipe 12, and FIGS. As shown in FIG. 2, the centrifugal force moves to the peripheral portion of the storage chamber 17, passes through the small hole 24, is sent to the tapered surface 23, and is also diffused in the circumferential direction while moving forward through the tapered surface 23 by centrifugal force. From the outer peripheral edge of the taper surface 23 (rotating atomizing head 11), it is atomized and discharged radially. A part of the liquid paint P supplied to the storage chamber 17 is fed into the recess 22 through the communication hole 25 of the protrusion 19 and moves to the tapered surface 23 by centrifugal force.
[0018]
Further, at the end of painting or at the time of setup change such as color change, the thinner T is supplied to the flow path pipe 12 for cleaning. However, in order to improve the cleaning efficiency, the supply amount of the thinner T is the paint P It is larger than the supply amount. Accordingly, the thinner T that has flowed into the storage chamber 17 from the front end of the flow path pipe 12 fills the storage chamber 17 and passes through the small hole 24 and the communication hole 25 in a pressurized state, as shown in FIG. It reaches the recess 22, flows on the tapered surface 23 by centrifugal force, and is discharged from the outer periphery. In this way, the passage route of the thinner T is cleaned.
[0019]
In addition, a substantially front half region from the front end (outer peripheral edge of the tapered surface 23) to the substantially center position in the front-rear direction of the outer periphery of the rotary atomizing head 11 is a tapered outer peripheral surface 28 that is gradually reduced in diameter toward the rear. The substantially second half region of the outer periphery of the rotary atomizing head 11 is a constant-diameter outer peripheral surface 29 having a constant outer diameter. The outer diameter of the constant-diameter outer peripheral surface 29 is the same as the outer diameter of the rear end of the tapered outer peripheral surface 28 (the minimum outer diameter of the tapered outer peripheral surface 28). The surface 29 continues without a step.
[0020]
Further, a cover 30 having a cup shape concentric with the rotary atomizing head 11 is fixed to the rotary atomizing head 11 so as to be integrally rotatable. A substantially first half portion of the inner periphery of the cover 30 has a tapered inner periphery whose diameter is slightly larger than that of the tapered outer peripheral surface 28 of the rotary atomizing head 11 and whose taper gradient is the same angle as the tapered outer peripheral surface 28. A circular tapered channel 32 that is continuous over the entire circumference is formed between the tapered inner peripheral surface 31 and the tapered outer peripheral surface 28. The tapered channel 32 constitutes a discharge channel 37 which will be described later. A constant-diameter inner peripheral surface 33 that is larger than the outer diameter of the constant-diameter outer peripheral surface 29 of the rotary atomizing head 11 and that is continuous with the rear end of the tapered inner peripheral surface 31 is formed on the inner periphery of the cover 30. Has been. Between the constant-diameter inner peripheral surface 33 and the constant-diameter outer peripheral surface 29, an annular annular channel 34 that is continuous over the entire circumference is formed. This annular flow path 34 also constitutes a discharge path 37. The cover 30 is fixed to the rotary atomizing head 11 in such a form that its inner peripheral rear end is in close contact with the rear end of the constant diameter outer peripheral surface 29 of the rotary atomizing head 11.
[0021]
At the front end portion of the body 10, a jet port 35 having a diameter larger than the outermost diameter of the rotary atomizing head 11 and forming a circular slit shape between them is an outer peripheral edge of the tapered surface 23 (front end of the rotary atomizing head 11). It is formed to be located rearward. The ejection port 35 communicates with a supply path 36 in the body 10, and an air supply source (not shown) is connected to the rear end of the supply path 36. The air pressure-fed from the air supply source is ejected forward as the shaping air As from the ejection port 35 toward the outer peripheral edge of the rotary atomizing head 11 and discharged from the outer peripheral edge of the rotary atomizing head 11 (tapered surface 23). The atomized paint P thus formed is shaped into a predetermined pattern while being squeezed toward the center by blowing the shaping air As.
[0022]
Now, in the case of the structure in which the annular gap 27 is vacant between the flow channel pipe 12 and the center hole 26 as described above, the paint P and the thinner T fed into the storage chamber 17 pass through the annular gap 27 and flow. There is a concern that the inside of the annular space 16 may enter the rear side of the body 10 (to the right in FIGS. 1 to 5) along the outer periphery of the road pipe 12. Therefore, as a countermeasure, in the present embodiment, there is provided a discharge path 37 having a generally radial shape that is located behind the annular gap 27, communicates with the annular gap 27, and is open to the outside of the body 10. .
[0023]
The discharge path 37 includes a decompression chamber 38, a radiation hole 39, an annular flow path 34, and a tapered flow path 32 arranged in order from the center side toward the outer peripheral side.
The decompression chamber 38 has a circular shape concentric with the annular gap 27 and is continuous over the entire circumference, and its central portion communicates with the rear end of the annular gap 27. Since the inner diameter of the decompression chamber 38 is larger than the inner diameter of the annular gap 27, the cross-sectional area of the decompression chamber 38, that is, the cross-sectional area perpendicular to the axial direction (front-rear direction) of the flow path pipe 12 is the transverse area of the annular gap 27. Big enough than. The decompression chamber 38 communicates with the front end of the annular space 16 between the outer periphery of the flow channel tube 12 and the inner periphery of the rotating shaft 14. Therefore, the turbine air At sent into the annular space 16 flows into the decompression chamber 38.
[0024]
The radiation holes 39 are elongate circular holes that extend straight outward from the inner peripheral surface of the decompression chamber 38 in the radial direction, and a plurality of the radiation holes 39 are formed at equal angular intervals (60 ° in the present embodiment) in the circumferential direction. The radiation hole 39 is opened in the constant-diameter outer peripheral surface 29 of the rotary atomizing head 11 and thus communicates with the annular flow path 34. The rear end (that is, the minimum diameter portion) of the tapered channel 32 communicates with the front end portion of the annular channel 34. The tapered flow path 32 has a tapered shape whose diameter increases toward the front, and the front end thereof is opened at the outer peripheral front end of the rotary atomizing head 11.
[0025]
Further, the front end of the cover 30 constituting the tapered flow path 32 is located behind the front end of the rotary atomizing head 11 and ahead of the ejection port 35. Therefore, the opening 40 at the front end of the tapered flow path 32 (that is, the opening 40 to the outside of the body 10 in the discharge passage 37) is the outer peripheral surface on the opposite side of the outer peripheral edge of the rotary atomizing head 11 from the tapered surface 23. It faces (tapered outer peripheral surface 28). The opening direction of the opening 40 is a direction along the tapered outer peripheral surface 28 of the rotary atomizing head 11, that is, a direction spreading in a trumpet shape.
[0026]
Next, the operation of this embodiment will be described.
When the liquid (paint P or thinner T) supplied from the channel pipe 12 to the storage chamber 17 enters the decompression chamber 38 opposite (rear) from the recess 22 of the rotary atomizing head 11 through the annular gap 27, As shown in FIG. 5, the liquid is given a centrifugal force by high-speed rotation of the rotary atomizing head 11. That is, the liquid is given a centrifugal force by being rotated by the frictional resistance between the liquid and the inner surface of the decompression chamber 38. Then, the liquid is pressed against the inner periphery of the decompression chamber 38 by centrifugal force, flows through the radiation hole 39 to the outer periphery side, moves through the annular channel 34, and moves obliquely forward and outward in the tapered channel 32. It is discharged out of the body 10 through the opening 40 at the front end. Therefore, even if the liquid in the storage chamber 17 leaks rearward through the annular gap 27, it is suppressed or prevented from entering the rear through the inside of the body 10, that is, the annular space 16.
[0027]
In addition, since the turbine air At is fed (forward) toward the discharge passage 37 side (decompression chamber 38) into the annular space 16 extending rearward along the outer periphery of the flow channel pipe 12, this turbine air At. By the pressure, the penetration of the liquid into the rear is more reliably suppressed or prevented. Further, since the turbine air At flows out to the outer periphery of the body 10 through the discharge passage 37, that is, the decompression chamber 38, the radiation hole 39, the annular flow passage 34, and the tapered flow passage 32 in this order, the liquid in the discharge passage 37 flows into the turbine. The air At is multiplied and reliably discharged out of the body 10.
[0028]
In addition, a decompression chamber 38 having a cross-sectional area perpendicular to the flow path pipe 12 larger than the cross-sectional area of the annular gap 27 is provided in a portion of the discharge passage 37 that communicates with the annular gap 27. The liquid (particularly the thinner T) that has passed through the annular gap 27 while being pressurized by being filled is reduced in pressure as it flows into the decompression chamber 38 due to the difference in cross-sectional area between the decompression chamber 38 and the annular gap 27. Is done. Therefore, the liquid can be suppressed or reliably prevented from entering the annular space 16 toward the rear of the body 10.
[0029]
Further, since the opening to the outside of the body 10 in the discharge passage 37 faces the tapered outer peripheral surface 28 on the opposite side of the outer peripheral edge of the rotary atomizing head 11, the taper of the rotary atomizing head 11. The paint P adhering to the outer peripheral surface 28 can be cleaned by the thinner T discharged from the discharge passage 37. Moreover, since the opening 40 of the discharge passage 37 is opened on the tapered outer peripheral surface 28 and the opening direction of the opening 40 is along the tapered outer peripheral surface 28, the cleaning effect by the thinner T is high.
[0030]
[Embodiment 2]
Next, a second embodiment of the present invention will be described with reference to FIG.
In the second embodiment, fins 41 are provided inside the decompression chamber 38 constituting the discharge passage 37 in the first embodiment. The fins 41 extend almost straight from the inner peripheral surface of the decompression chamber 38 to the radially inner side (the direction toward the center of the reduced diameter portion 13 of the flow path tube 12), and the plate surface is substantially perpendicular to the rotational direction of the rotary atomizing head 11. Make a plate-like shape. Further, the fin 41 is located at the edge of the opening edge of each radiation hole 39 that is behind the rotational direction of the rotary atomizing head 11 (in FIG. 7, it is shifted in the counterclockwise direction with respect to the center of the radiation hole 39). Edge). The liquid (paint P or thinner T) that has entered the decompression chamber 38 is given a centrifugal force by the rotation of the rotary atomizing head 11 in the clockwise direction in FIG. Therefore, a stronger centrifugal force is applied compared to the case where the centrifugal force is applied by the frictional resistance between the inner surface of the decompression chamber 38 and the discharge of the liquid. Excellent efficiency. In addition, since it is the same as that of the said Embodiment 1 about the structure except the above, the same code | symbol is attached | subjected about the same structure and description of a structure, an effect | action, and an effect is abbreviate | omitted.
[0031]
[Other Embodiments]
The present invention is not limited to the embodiment described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention, and further, within the scope not departing from the gist of the invention other than the following. Various modifications can be made.
(1) In the above embodiment, the air is supplied toward the discharge path side in the space communicating with the discharge path and extending rearward along the outer periphery of the flow path tube. It is good also as a structure which does not supply new air.
[0032]
(2) In the above-described embodiment, the decompression chamber having a cross-sectional area perpendicular to the flow channel pipe larger than the cross-sectional area of the annular gap is provided at the communicating portion with the annular gap in the discharge passage. It is good also as a structure which does not provide a decompression chamber.
(3) In the above embodiment, the air fed toward the discharge path is turbine air for rotationally driving the rotary atomizing head. However, according to the present invention, the turbine air is not diverted and dedicated air is used. You may supply.
[0033]
(4) In the above embodiment, the discharge path is provided inside the rotary atomizing head. However, according to the present invention, at least a part of the discharge path is formed between the rotary atomizing head and the body. It may be.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a coating gun in Embodiment 1. FIG. 2 is an enlarged longitudinal sectional view of a rotary atomizing head. FIG. 3 is a partially enlarged view of FIG. Fig. 5 is an enlarged vertical cross-sectional view showing a state where thinner is supplied to the rotary atomizing head. Fig. 6 is an enlarged cross-sectional view showing a decompression chamber and a radiation hole constituting the discharge passage. FIG. 7 is an enlarged cross-sectional view showing a decompression chamber and a radiation hole constituting the discharge path of Embodiment 2. FIG. 8 is a cross-sectional view of a conventional example.
DESCRIPTION OF SYMBOLS 10 ... Body 11 ... Rotary atomization head 12 ... Channel pipe 17 ... Storage chamber 18 ... Front wall 23 ... Tapered surface 24 ... Small hole 26 ... Center hole 27 ... Annular gap 28 ... Tapered outer peripheral surface (rotating atomization head (Outer peripheral surface opposite to taper surface)
38 ... discharge path 39 ... decompression chamber 40 ... opening of discharge path

Claims (5)

ボディ内に流路管が固定され、
前記ボディの前端部に前記流路管と同心に回転駆動されるカップ状の回転霧化頭が設けられ、
前記流路管の前端部が、前記回転霧化頭の中心孔に貫通されるとともに前記回転霧化頭内の貯留室に臨み、
前記流路管から前記貯留室に供給された液体が、前記貯留室の前面壁の小孔を通過して遠心力により前記回転霧化頭のテーパ面に沿いつつその外周縁から霧化状に放出されるようにした塗装ガンにおいて、
前記流路管の外周と前記中心孔の内周との間の環状隙間よりも後方に位置し、且つ前記環状隙間に連通するとともに前記ボディ外へ開放された形態の概ね放射状をなす排出路が設けられ、
前記排出路内に浸入した液体には前記回転霧化頭の回転によって遠心力が付与される構成としたことを特徴とする塗装ガン。
A channel pipe is fixed in the body,
A cup-shaped rotary atomizing head that is rotationally driven concentrically with the flow channel pipe is provided at the front end of the body,
The front end portion of the flow channel pipe passes through the central hole of the rotary atomizing head and faces the storage chamber in the rotary atomizing head,
The liquid supplied from the channel pipe to the storage chamber passes through a small hole in the front wall of the storage chamber and is atomized from the outer periphery thereof along the tapered surface of the rotary atomizing head by centrifugal force. In the paint gun that is supposed to be released,
There is a substantially radial discharge path located behind the annular gap between the outer periphery of the flow channel pipe and the inner circumference of the center hole and communicating with the annular gap and opened to the outside of the body. Provided,
A coating gun characterized in that a centrifugal force is applied to the liquid that has entered the discharge passage by the rotation of the rotary atomizing head.
前記排出路に連通するとともに前記流路管の外周に沿って後方へ延びる空間には、エアが前記排出路側へ向かって供給されていることを特徴とする請求項1記載の塗装ガン。The coating gun according to claim 1, wherein air is supplied toward the discharge path side in a space communicating with the discharge path and extending rearward along the outer periphery of the flow path pipe. 前記排出路における前記環状隙間との連通部分には、前記流路管と直交する断面積が前記環状隙間の断面積よりも大きい減圧室が設けられていることを特徴とする請求項1又は請求項2記載の塗装ガン。The decompression chamber having a cross-sectional area perpendicular to the flow path pipe larger than a cross-sectional area of the annular gap is provided at a portion of the discharge passage that communicates with the annular gap. Item 2. The paint gun according to item 2. 前記排出路には、前記回転霧化頭と一体回転することで前記排出路内の液体を概ね周方向へ流動させるフィンが設けられていることを特徴とする請求項1乃至請求項3のいずれかに記載の塗装ガン。4. The fin according to claim 1, wherein the discharge passage is provided with fins that rotate integrally with the rotary atomizing head to cause the liquid in the discharge passage to flow in a generally circumferential direction. 5. The paint gun described in Crab. 前記排出路における前記ボディ外への開口部が、前記回転霧化頭の外周縁における前記テーパ面とは反対側の外周面に臨んでいることを特徴とする請求項1乃至請求項4のいずれかに記載の塗装ガン。The opening to the outside of the body in the discharge path faces the outer peripheral surface of the outer peripheral edge of the rotary atomizing head opposite to the tapered surface. The paint gun described in Crab.
JP2003206876A 2003-08-08 2003-08-08 Coating gun Pending JP2005058802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003206876A JP2005058802A (en) 2003-08-08 2003-08-08 Coating gun

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003206876A JP2005058802A (en) 2003-08-08 2003-08-08 Coating gun

Publications (1)

Publication Number Publication Date
JP2005058802A true JP2005058802A (en) 2005-03-10

Family

ID=34363578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003206876A Pending JP2005058802A (en) 2003-08-08 2003-08-08 Coating gun

Country Status (1)

Country Link
JP (1) JP2005058802A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083677A1 (en) * 2006-01-19 2007-07-26 Abb K.K. Rotary spraying head type painting device
CN105772263A (en) * 2016-05-24 2016-07-20 四川晟翔晟智能科技有限公司 Shaping device for paint spraying rotating cup
WO2019066041A1 (en) * 2017-09-29 2019-04-04 本田技研工業株式会社 Coating device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083677A1 (en) * 2006-01-19 2007-07-26 Abb K.K. Rotary spraying head type painting device
US7861945B2 (en) 2006-01-19 2011-01-04 Abb K.K. Rotary spraying head type painting device
CN105772263A (en) * 2016-05-24 2016-07-20 四川晟翔晟智能科技有限公司 Shaping device for paint spraying rotating cup
CN105772263B (en) * 2016-05-24 2018-11-02 四川晟翔晟智能科技有限公司 Coating spray coating rotary cup apparatus for shaping
WO2019066041A1 (en) * 2017-09-29 2019-04-04 本田技研工業株式会社 Coating device
JPWO2019066041A1 (en) * 2017-09-29 2020-10-22 本田技研工業株式会社 Painting equipment

Similar Documents

Publication Publication Date Title
EP1974824B1 (en) Rotary spraying head type painting device
US5078321A (en) Rotary atomizer cup
US9687863B2 (en) Rotary atomizing head type coating machine
JP2928368B2 (en) Coating product spraying device having a rotary spraying member
JP6467505B2 (en) Painting equipment
JPH0899052A (en) Rotary atomizing head-type coating apparatus
WO2005115629A1 (en) Coating machine and rotary atomizing head thereof
US5137215A (en) Centrifugal device for atomizing a coating product, particularly for application by electrostatic spraying
EP3593905B1 (en) Rotary atomizing head-type coating machine
JP2022509414A (en) Bowls for spraying coated products, rotary spraying devices containing such bowls, and methods for cleaning such spraying devices.
JP2005058802A (en) Coating gun
JP4516133B2 (en) Coating machine cleaning mechanism
JP2007023783A (en) Spindle unit with air turbine
JP3762888B2 (en) Electrostatic coating machine and electrostatic coating method
JP4729183B2 (en) Painting gun
JP6973356B2 (en) Bell type painting device
JP2001104490A (en) Atomizer for endoscope
JP5342600B2 (en) Rotary atomization coating equipment
JP4957219B2 (en) Atomizing head of rotary atomizing coating equipment
JP2005034703A (en) Coating gun
JP6525318B2 (en) Painting machine and rotary atomizing head used therefor
JP7220730B2 (en) Rotary atomization type coating equipment
JP2005034704A (en) Coating apparatus
US20230097329A1 (en) Rotary atomizing coating device
US20220362787A1 (en) Rotary atomization type painting apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060607

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090907

RD04 Notification of resignation of power of attorney

Effective date: 20090907

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091006