JP2005056855A - Electroluminescent element and manufacturing method of the same - Google Patents

Electroluminescent element and manufacturing method of the same Download PDF

Info

Publication number
JP2005056855A
JP2005056855A JP2004264442A JP2004264442A JP2005056855A JP 2005056855 A JP2005056855 A JP 2005056855A JP 2004264442 A JP2004264442 A JP 2004264442A JP 2004264442 A JP2004264442 A JP 2004264442A JP 2005056855 A JP2005056855 A JP 2005056855A
Authority
JP
Japan
Prior art keywords
conversion film
fluorescence conversion
precursor
fluorescent
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004264442A
Other languages
Japanese (ja)
Inventor
Hiroshi Kiguchi
浩史 木口
Hidekazu Kobayashi
英和 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004264442A priority Critical patent/JP2005056855A/en
Publication of JP2005056855A publication Critical patent/JP2005056855A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing technology for forming a fluorescent converting film without using a lithography process in a manufacturing method for an electroluminescent element. <P>SOLUTION: The method comprises a process of forming a partition member 20 having an opening corresponding to a pixel area on a substrate 10; a process of discharging fluorescent converting film precursors 40a, 40b, 40c into the opening by using a liquid droplet discharging head 2; and a process of solidifying the precursors 40a, 40b, 40c discharged onto the substrate 10 to form fluorescent converting films 40A, 40B, 40C. According to this method, the precursors 40a, 40b, 40c can be discharged while appropriately adjusting doping ratios of color conversion components of the precursors 40a, 40b, 40c on the spot and the color adjustment of the fluorescent converting film 40A, 40B, 40C is facilitated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はエレクトロルミネッセンス(EL)素子の製造方法に関する。特に、リソグラフィ工程を用いずに蛍光変換膜(CCM:color change media)を形成する工程を含む当該素子の製造技術に関する。   The present invention relates to a method for manufacturing an electroluminescence (EL) element. In particular, the present invention relates to a manufacturing technique of the element including a step of forming a fluorescence conversion film (CCM: color change media) without using a lithography process.

EL素子には有機EL素子と無機EL素子がある。有機EL素子は蛍光性有機化合物を電気的に励起して発光させる自発光型素子である。この素子は高輝度、高速応答、高視野角、面発光、薄型で多色発光が可能であり、しかも数ボルトという低電圧の直流印加で発光する全固体素子であり、かつ、低温において特性の変化が少ないという特徴を有している。発光材料として有機物質を用いたEL素子は発光層と蛍光変換膜を組み合わせた構造とし、当該発光層の材料と蛍光変換膜の選択により、容易に可視域を全てカバーできることから、フルカラーフラットパネルディスプレイへの応用が盛んに行われている。特に、このようなEL素子のフルカラー化の方式として、例えば、白色の発光を蛍光変換する方式(白色発光/蛍光変換方式)、青色の発光を蛍光変換する方式(青色発光/蛍光変換方式)等が知られている。   The EL element includes an organic EL element and an inorganic EL element. The organic EL element is a self-luminous element that emits light by electrically exciting a fluorescent organic compound. This device is an all-solid-state device that emits light when applied with a low voltage of several volts, with high brightness, high-speed response, high viewing angle, surface emission, thin and capable of multicolor emission, and has characteristics at low temperatures. It has the feature that there is little change. An EL element using an organic substance as a light emitting material has a structure in which a light emitting layer and a fluorescence conversion film are combined, and the entire visible range can be easily covered by selecting the material of the light emitting layer and the fluorescence conversion film. Application to is actively performed. In particular, as a method for full colorization of such EL elements, for example, a method of converting white light emission into fluorescence (white light emission / fluorescence conversion method), a method of converting blue light emission into fluorescence (blue light emission / fluorescence conversion method), etc. It has been known.

しかし、EL素子のフルカラー化のために白色発光/蛍光変換方式、青色発光/蛍光変換方式等を採用する構造を作製する際には、従来では蛍光変換膜を成膜し、画素領域に対応する形状にリソグラフィ工程を経てパターニングしていた。このように、リソグラフィ工程を用いて基板上に蛍光変換膜を形成すると、蛍光変換膜材料の無駄が多く、製造コストが増大する。また、蛍光変換膜材料に感光性が必要となるので材料の選択の幅が狭まる。さらに、リソグラフィ工程に必要な設備のランニングコストが高く、設備スペースも広くなる問題がある。   However, when a structure employing a white light emission / fluorescence conversion method, a blue light emission / fluorescence conversion method, or the like for full colorization of an EL element is manufactured, conventionally, a fluorescence conversion film is formed to correspond to a pixel region. The shape was patterned through a lithography process. Thus, when a fluorescence conversion film is formed on a substrate using a lithography process, the fluorescence conversion film material is wasted and the manufacturing cost is increased. Further, since the fluorescence conversion film material needs photosensitivity, the selection range of the material is narrowed. Furthermore, there is a problem that the running cost of equipment required for the lithography process is high and the equipment space is widened.

EL素子は、将来のフルカラーフラットパネルディスプレイへの応用が期待されているため、製造費の低コスト化は必要不可欠の課題である。
本発明は上記問題点に鑑みてなされたもので、その課題とするところは、発光膜と蛍光変換膜とを備えた構造のエレクトロルミネッセンス素子を製造する方法であって、リソグラフィ工程を経ずに蛍光変換膜を製造する方法、及び、この方法で製造される高性能のエレクトロルミネッセンス素子を提供することである。
Since EL devices are expected to be applied to future full-color flat panel displays, reduction of manufacturing costs is an indispensable issue.
The present invention has been made in view of the above-mentioned problems, and a problem to be solved by the present invention is a method of manufacturing an electroluminescent device having a structure including a light emitting film and a fluorescence conversion film, without passing through a lithography process. The present invention provides a method for producing a fluorescence conversion film and a high-performance electroluminescent device produced by this method.

本発明のエレクトロルミネッセンス素子は基板上に画素領域に対応する複数の第1の電極と、前記第1の電極間を仕切り、画素領域に開口部を有する仕切部材と、前記第1の電極上に形成された蛍光変換膜と、前記蛍光変換膜を覆うように形成された発光層と前記発光層上に形成された第2の電極を有することを特徴とする。また、本発明のエレクトロルミネッセンス素子は前記蛍光変換膜が導電性を有することが好ましい。また、本発明のエレクトロルミネッセンス素子は、前記仕切り部材が遮光性を有することが好ましい。   The electroluminescence element of the present invention has a plurality of first electrodes corresponding to a pixel region on a substrate, a partition member that partitions the first electrodes and has an opening in the pixel region, and the first electrode. It has a fluorescence conversion film formed, a light emitting layer formed so as to cover the fluorescence conversion film, and a second electrode formed on the light emitting layer. In the electroluminescence element of the present invention, it is preferable that the fluorescence conversion film has conductivity. In the electroluminescence element of the present invention, it is preferable that the partition member has a light shielding property.

本発明の第1のエレクトロルミネッセンス素子の製造方法は、発光層を間に介して位置する陽極と陰極間に所望の電圧を印加することで発光層を発光させ、この光を画素領域毎に形成された蛍光変換膜で波長変換することで可視光を得るエレクトロルミネッセンス素子の製造方法であって、画素領域に対応した開口部を備える仕切部材を基板上に形成する第1の工程と、この開口部内に液滴吐出ヘッドを用いて蛍光変換膜前駆体を吐出する第2の工程と、基板上に吐出された蛍光変換膜前駆体を固化して蛍光変換膜を形成する第3の工程とを備える。   In the first method of manufacturing an electroluminescent element of the present invention, a desired voltage is applied between an anode and a cathode located between the light emitting layers to cause the light emitting layers to emit light, and this light is formed for each pixel region. A method for manufacturing an electroluminescence element that obtains visible light by performing wavelength conversion using a converted fluorescent conversion film, the first step of forming a partition member having an opening corresponding to a pixel region on a substrate, and the opening A second step of discharging the fluorescent conversion film precursor into the portion using a droplet discharge head, and a third step of solidifying the fluorescent conversion film precursor discharged onto the substrate to form a fluorescent conversion film. Prepare.

上記第1の方法では、特に、第2の工程は蛍光変換膜前駆体の色変換成分のドーピング比を調整しながら蛍光変換膜前駆体を吐出する工程とすることが好ましい。   In the first method, in particular, the second step is preferably a step of discharging the fluorescent conversion film precursor while adjusting the doping ratio of the color conversion component of the fluorescent conversion film precursor.

また、蛍光変換膜前駆体は、赤色蛍光変換膜、緑色蛍光変換膜又は青色蛍光変換膜のうち何れかの蛍光変換膜の前駆体である。この場合、赤色蛍光変換膜の前駆体の組成としては、シアニン系色素、ピリジン系色素、キサンテン系色素、又はオキサジン系色素のうち何れかを採用することが好ましい。   The fluorescence conversion film precursor is a precursor of any one of the red fluorescence conversion film, the green fluorescence conversion film, and the blue fluorescence conversion film. In this case, it is preferable to employ any one of a cyanine dye, a pyridine dye, a xanthene dye, or an oxazine dye as the composition of the precursor of the red fluorescence conversion film.

また、前記赤色蛍光変換膜の前駆体の組成としては、例えば、(a)ローダミン系蛍光顔料と、(b)青色領域の光を吸収し、且つ、前記ローダミン系蛍光顔料へのエネルギー移動又は再吸収を誘起する蛍光顔料と、を光透過性媒体に分散したものを採用することができる。また、前記緑色蛍光変換膜の前駆体の組成としては、例えば、スチルベン系化合物及びクマリン系化合物を採用することができる。また、青色蛍光変換膜の前駆体の組成としては、例えば、クマリン色素を採用することができる。   The composition of the precursor of the red fluorescent conversion film may be, for example, (a) a rhodamine fluorescent pigment and (b) absorbing light in the blue region and transferring or transferring energy to the rhodamine fluorescent pigment. A fluorescent pigment that induces absorption and dispersed in a light-transmitting medium can be employed. Moreover, as a composition of the precursor of the said green fluorescence conversion film, a stilbene type compound and a coumarin type compound are employable, for example. Moreover, as a composition of the precursor of a blue fluorescence conversion film, a coumarin dye is employable, for example.

上記第1の方法では、上記の蛍光変換膜を形成する工程(第3の工程)以降に、蛍光変換膜より上層側に塗布法又は蒸着法により発光層を形成することが好ましい。   In the first method, it is preferable that after the step of forming the fluorescence conversion film (third step), the light emitting layer is formed on the upper layer side of the fluorescence conversion film by a coating method or a vapor deposition method.

本発明の第2のエレクトロルミネッセンス素子の製造方法は、発光層を間に介して位置する陽極と陰極間に所望の電圧を印加することで発光層を発光させ、この光を画素領域毎に形成された蛍光変換膜で波長変換することで可視光を得るエレクトロルミネッセンス素子の製造方法であって、基板上の前記画素領域に対応する位置に陽極を形成する第1の工程と、陽極間を仕切り、前記画素領域に対応する位置に開口部を有する仕切部材を形成する第2の工程と、液滴吐出ヘッドを用いて前記開口部内に蛍光変換膜前駆体を吐出し、前記陽極上に蛍光変換膜前駆体を充填する第3の工程と、蛍光変換膜前駆体を固化して蛍光変換膜を形成する第4の工程とを備える。   In the second method for producing an electroluminescent element of the present invention, a desired voltage is applied between an anode and a cathode located between the light emitting layers to cause the light emitting layers to emit light, and this light is formed for each pixel region. A method for manufacturing an electroluminescence element that obtains visible light by wavelength conversion using a converted fluorescent conversion film, the first step of forming an anode at a position corresponding to the pixel region on the substrate, and partitioning the anode A second step of forming a partition member having an opening at a position corresponding to the pixel region; and a phosphor conversion film precursor is discharged into the opening using a droplet discharge head, and fluorescence conversion is performed on the anode. A third step of filling the film precursor; and a fourth step of solidifying the fluorescence conversion film precursor to form a fluorescence conversion film.

上記第2の方法では、特に、第3の工程は、蛍光変換膜前駆体の色変換成分のドーピング比を調整しながら蛍光変換膜前駆体を吐出する工程とすることが好ましい。
また、蛍光変換膜前駆体は導電性を有し、赤色蛍光変換膜、緑色蛍光変換膜又は青色蛍光変換膜のうち何れかの蛍光変換膜の前駆体である。
In the second method, in particular, the third step is preferably a step of discharging the fluorescence conversion film precursor while adjusting the doping ratio of the color conversion component of the fluorescence conversion film precursor.
Further, the fluorescence conversion film precursor has conductivity, and is a precursor of any one of the red fluorescence conversion film, the green fluorescence conversion film, and the blue fluorescence conversion film.

上記第2の方法では、上記の蛍光変換膜を形成する工程(第4の工程)以降に、蛍光変換膜より上層側に塗布法又は蒸着法により発光層を形成することが好ましい。   In the second method, it is preferable that after the step (fourth step) of forming the fluorescence conversion film, a light emitting layer is formed on the upper layer side of the fluorescence conversion film by a coating method or a vapor deposition method.

上記第1及び第2の方法において、液滴吐出ヘッドのノズル面を構成する材料と蛍光変換膜前駆体との接触角を30deg〜170degの範囲とすることが好ましい。また、光変換膜前駆体の粘度を1cp〜20cpの範囲とすることが好ましい。また、光変換膜前駆体の表面張力を20dyne/cm〜70dyne/cmの範囲とすることが好ましい。液滴吐出ヘッドとしては、蛍光変換膜前駆体を貯蔵する加圧室を備える加圧室基板と、加圧室を加圧することができる位置に取り付けられた圧電体薄膜素子とを備えるものを用いることが好ましい。   In the first and second methods, the contact angle between the material constituting the nozzle surface of the droplet discharge head and the fluorescent conversion film precursor is preferably in the range of 30 deg to 170 deg. The viscosity of the light conversion film precursor is preferably in the range of 1 cp to 20 cp. Moreover, it is preferable to make the surface tension of a light conversion film precursor into the range of 20 dyne / cm-70 dyne / cm. As the droplet discharge head, a head including a pressurization chamber substrate having a pressurization chamber for storing the fluorescence conversion film precursor and a piezoelectric thin film element attached at a position where the pressurization chamber can be pressurized is used. It is preferable.

更に本発明によれば、発光層を間に介して位置する陽極と陰極間に所望の電圧を印加することで発光層を発光させ、この光を画素領域毎に形成された蛍光変換膜で波長変換することで可視光を得るエレクトロルミネッセンス素子であって、陽極と陰極間に蛍光変換膜を備える。例えば、陰極/発光層/蛍光変換膜/陽極の積層構造とする。特に、蛍光変換膜は導電性を有し、赤色蛍光変換膜、緑色蛍光変換膜又は青色蛍光変換膜のうち何れかの蛍光変換膜である。   Further, according to the present invention, a desired voltage is applied between the anode and the cathode located between the light emitting layers to cause the light emitting layers to emit light, and this light is emitted by the fluorescence conversion film formed for each pixel region. An electroluminescence element that obtains visible light by conversion, and includes a fluorescence conversion film between an anode and a cathode. For example, a laminated structure of cathode / light emitting layer / fluorescence conversion film / anode is adopted. In particular, the fluorescence conversion film has conductivity, and is a fluorescence conversion film of any one of a red fluorescence conversion film, a green fluorescence conversion film, and a blue fluorescence conversion film.

以下、本発明の実施形態について、図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[実施形態1]
実施形態1にかかるEL素子の構造とその製造方法について図1を参照して説明する。
[Embodiment 1]
The structure of the EL element according to Embodiment 1 and the manufacturing method thereof will be described with reference to FIG.

(EL素子の構造)
図1(C)に青色発光/蛍光変換方式のEL素子の構造を示す。基板10上には赤色蛍光変換膜40A、緑色蛍光変換膜40B、青色蛍光変換膜40Cが形成されており、光透過性の保護膜90で被覆されている。保護膜90上には蛍光変換膜40A〜40Cに対応する位置にITO(Indium Thin Oxide)から成る陽極30が形成されている。陽極30と陰極60間に直流電圧を印加すると、発光層50中で電子と正孔が再結合することで青色光が得られる。この青色光を蛍光変換膜40A〜40Cにより赤色(R)、緑色(G)、青色(B)に変換してRGB3色の光又は画像を得るものである。
尚、発光層50の青色発光で充分な場合には、青色の蛍光変換膜40Cは不要である。
(EL element structure)
FIG. 1C shows a structure of a blue light emission / fluorescence conversion type EL element. A red fluorescence conversion film 40A, a green fluorescence conversion film 40B, and a blue fluorescence conversion film 40C are formed on the substrate 10, and are covered with a light-transmitting protective film 90. On the protective film 90, an anode 30 made of ITO (Indium Thin Oxide) is formed at a position corresponding to the fluorescence conversion films 40A to 40C. When a DC voltage is applied between the anode 30 and the cathode 60, blue light is obtained by recombination of electrons and holes in the light emitting layer 50. The blue light is converted into red (R), green (G), and blue (B) by the fluorescence conversion films 40A to 40C to obtain light or an image of RGB three colors.
In addition, when the blue light emission of the light emitting layer 50 is sufficient, the blue fluorescence conversion film 40C is unnecessary.

(EL素子の製造工程)
本実施形態にかかるEL素子の製造工程を図1を参照して説明する。
(EL element manufacturing process)
The manufacturing process of the EL element according to this embodiment will be described with reference to FIG.

蛍光変換膜前駆体吐出工程(図1(A))
本工程はガラス基板10上に蛍光変換膜前駆体を吐出する工程である。ガラス基板10としては、例えば、300mm×300mm×0.7mm程度の平坦な透明ガラス基板を用意する。この透明ガラス基板としては、350℃の熱に耐えられ、酸やアルカリ等の薬品に侵されにくく、量産可能であるものを用いることが好ましい。
Fluorescence conversion film precursor discharge process (FIG. 1A)
This step is a step of discharging the fluorescent conversion film precursor onto the glass substrate 10. As the glass substrate 10, for example, a flat transparent glass substrate of about 300 mm × 300 mm × 0.7 mm is prepared. As this transparent glass substrate, it is preferable to use a substrate that can withstand heat at 350 ° C., is resistant to chemicals such as acid and alkali, and can be mass-produced.

まず、蛍光変換膜をガラス基板10上の所望の位置に所望の形状で形成しやすくするため、ガラス基板10上に仕切部材(バンク)20を形成する。この仕切部材20は、画素領域に対応した開口部を備えた形状をしている。この仕切部材20の材質としては、例えばアクリル樹脂、ポリイミド樹脂等である。仕切部材20の高さは0.5μm乃至2μm程度であり、必要に応じて調節される。この仕切部材20に弗素系の樹脂や弗素系の界面活性剤をブレンドしたり、或いは、仕切部材20をCF4でプラズマ処理すると良い。このようにすると、インクとの濡れ性が低下し、仕切部材20上でのインクの混色を防止することができる。   First, a partition member (bank) 20 is formed on the glass substrate 10 in order to easily form the fluorescence conversion film in a desired shape at a desired position on the glass substrate 10. The partition member 20 has a shape having an opening corresponding to the pixel region. Examples of the material of the partition member 20 include acrylic resin and polyimide resin. The height of the partition member 20 is about 0.5 μm to 2 μm, and is adjusted as necessary. The partition member 20 may be blended with a fluorine-based resin or a fluorine-based surfactant, or the partition member 20 may be plasma-treated with CF4. If it does in this way, wettability with ink will fall and it can prevent color mixing of the ink on the partition member 20. FIG.

仕切部材20間の開口部に蛍光変換膜の前駆体を吐出により供給する。かかる蛍光体変換膜の前駆体の吐出は、液滴吐出ヘッド2を用いて行う。液滴吐出ヘッド2はピエゾジェット方式でもよく、発熱による気泡発生で吐出する方式でもよい。ピエゾジェット方式では、ヘッド2には加圧室を備える加圧室基板にノズルプレートと圧電体薄膜素子が備えられている。圧電体薄膜素子を駆動することで、加圧室に充填されている流動体(この場合、蛍光変換膜前駆体)が瞬時に加圧され、ノズルを介して所定の領域に選択的に吐出される。発熱による気泡発生で吐出する方式では、ヘッド2にはノズルに通ずる加圧室に発熱体が設けられている。この発熱体を加熱させることでノズル近傍の流動体を沸騰させ、この際に発生した気泡による体積膨張により流動体を吐出するものである。加熱による蛍光変換膜前駆体の変質が無い点でピエゾジェット方式を採用することが好ましい。   The precursor of the fluorescence conversion film is supplied to the openings between the partition members 20 by discharging. The precursor of the phosphor conversion film is discharged using the droplet discharge head 2. The droplet discharge head 2 may be a piezo jet method or a method that discharges by generating bubbles due to heat generation. In the piezo jet method, the head 2 is provided with a nozzle plate and a piezoelectric thin film element on a pressure chamber substrate having a pressure chamber. By driving the piezoelectric thin film element, the fluid filled in the pressurizing chamber (in this case, the fluorescent conversion film precursor) is instantaneously pressurized and selectively discharged to a predetermined region through the nozzle. The In the method of discharging by generation of bubbles due to heat generation, the head 2 is provided with a heating element in a pressurizing chamber that communicates with the nozzle. By heating the heating element, the fluid in the vicinity of the nozzle is boiled, and the fluid is discharged by volume expansion due to bubbles generated at this time. It is preferable to adopt the piezo jet method in that there is no alteration of the fluorescent conversion film precursor due to heating.

具体的には、まず同図に示すように、基板10上の画素領域に対応する位置(赤色画素に対応する領域)に赤色蛍光変換膜の前駆体40aを吐出する。赤色蛍光変換膜の前駆体としては、(a)ローダミン系蛍光顔料と、(b)青色領域に吸収を有し、且つ、ローダミン系蛍光顔料へのエネルギー移動又は再吸収を誘起する蛍光顔料と、を含むものを用いることが好ましい。   Specifically, as shown in the figure, first, a red fluorescent conversion film precursor 40a is discharged to a position corresponding to a pixel region on the substrate 10 (region corresponding to a red pixel). As a precursor of a red fluorescent conversion film, (a) a rhodamine fluorescent pigment, (b) a fluorescent pigment having absorption in the blue region and inducing energy transfer or reabsorption to the rhodamine fluorescent pigment, It is preferable to use those containing.

蛍光顔料は520nm以下の青色領域に吸収を有し、且つ、420nm〜490nmにOD1.0以上の吸収を持つものが良い。また、上記のローダミン系蛍光顔料にはナフタルイミド系蛍光顔料若しくはクマリン系蛍光顔料を含むものを用いることが好ましい。これらの組成により、青色発光層の発光色を33%以上の高効率で赤色に変換することができる。   The fluorescent pigment preferably has an absorption in a blue region of 520 nm or less and an absorption of OD1.0 or more at 420 nm to 490 nm. Moreover, it is preferable to use the said rhodamine type fluorescent pigment containing a naphthalimide type fluorescent pigment or a coumarin type fluorescent pigment. With these compositions, the emission color of the blue light-emitting layer can be converted to red with a high efficiency of 33% or more.

次いで、基板10上の画素領域に対応する位置(緑色画素に対応する領域)に緑色蛍光変換膜の前駆体40bを吐出する。緑色蛍光変換膜の前駆体40bとしては、スチルベン系化合物及びクマリン系化合物の色素を含むものを用いることが好ましい。   Next, the precursor 40b of the green fluorescent conversion film is discharged to a position corresponding to the pixel region on the substrate 10 (region corresponding to the green pixel). As the green fluorescent conversion film precursor 40b, a precursor containing a stilbene compound and a coumarin compound pigment is preferably used.

更に必要に応じて、基板10上の画素領域に対応する位置に青色蛍光変換膜の前駆体40cを吐出する。青色蛍光変換膜の前駆体40cとしては、クマリン系の色素を含むものを用いることが好ましい。但し、発光層50の発色光(青色)で十分である場合にはこの工程は不要である。   Further, as necessary, the blue fluorescent conversion film precursor 40c is discharged to a position corresponding to the pixel region on the substrate 10. As the blue fluorescent conversion film precursor 40c, a precursor containing a coumarin-based dye is preferably used. However, this step is not necessary when the colored light (blue) of the light emitting layer 50 is sufficient.

上記の方法によれば、蛍光変換膜の色変換成分のドーピング比を調整しながら蛍光変換膜の前駆体を吐出することができるため、色調整が容易にできる。
また、これら蛍光変換膜前駆体の物性値(接触角、粘度、表面張力)は以下の値であることが好ましい。
According to the above method, since the precursor of the fluorescence conversion film can be discharged while adjusting the doping ratio of the color conversion component of the fluorescence conversion film, color adjustment can be facilitated.
The physical property values (contact angle, viscosity, surface tension) of these fluorescent conversion film precursors are preferably the following values.

(1)接触角
液滴吐出ヘッドのノズル面を構成する材料と蛍光変換膜前駆体との接触角は30deg〜170degの範囲に設定することが好ましい。この接触角は、水、NMP、DMI、エタノール、ジエチレングリコール等の量を適宜加減することで調整することができ、特に、35deg〜65degの範囲に設定することが好ましい。
(1) Contact angle The contact angle between the material constituting the nozzle surface of the droplet discharge head and the phosphor conversion film precursor is preferably set in the range of 30 deg to 170 deg. This contact angle can be adjusted by appropriately adjusting the amount of water, NMP, DMI, ethanol, diethylene glycol and the like, and is particularly preferably set in the range of 35 deg to 65 deg.

蛍光変換膜前駆体が吐出ヘッドのノズル面においてこの範囲の接触角をもつことによって吐出時の飛行曲がりを抑制することができ、精密な吐出制御が可能になる。接触角が30deg未満の場合、蛍光変換膜前駆体のノズル面における濡れ性が増大し、蛍光変換膜前駆体を吐出する際に、蛍光変換膜前駆体がノズル孔の周囲に非対称に付着することがある。この場合、ノズル孔に付着した蛍光変換膜前駆体と吐出しようとする蛍光変換膜前駆体との相互間に引力が働くため、蛍光変換膜前駆体は不均一な力により吐出されることになり、飛行曲がりが生じ、目標位置に着弾できない恐れがあり、また飛行曲がり頻度が多くなる。一方、接触角が170degを超えると、蛍光変換膜前駆体とノズル孔との相互作用が極小となり、ノズル先端でのメニスカスの形状が安定しないため蛍光変換膜前駆体の吐出量及び吐出タイミングの制御が困難になる恐れがある。   When the fluorescent conversion film precursor has a contact angle in this range on the nozzle surface of the discharge head, flight bending at the time of discharge can be suppressed, and precise discharge control becomes possible. When the contact angle is less than 30 deg, the wettability of the fluorescent conversion film precursor on the nozzle surface increases, and when the fluorescent conversion film precursor is discharged, the fluorescent conversion film precursor adheres asymmetrically around the nozzle holes. There is. In this case, since the attractive force acts between the fluorescent conversion film precursor attached to the nozzle holes and the fluorescent conversion film precursor to be discharged, the fluorescent conversion film precursor is discharged by non-uniform force. If a flight curve occurs, there is a fear that the target position cannot be landed, and the flight curve frequency increases. On the other hand, when the contact angle exceeds 170 deg, the interaction between the fluorescent conversion film precursor and the nozzle hole becomes minimal, and the meniscus shape at the nozzle tip is not stable, so the discharge amount and discharge timing of the fluorescent conversion film precursor are controlled. May be difficult.

尚、本発明において、飛行曲がりとは、蛍光変換膜前駆体をノズル孔から吐出させたとき、蛍光体換膜前駆体の着弾位置が目標位置に対して30μm以上のずれを生じることをいう。また、飛行曲がり頻度とは、液滴吐出ヘッドの圧電体薄膜素子の振動周波数、例えば、14.4kHzで連続吐出したときの飛行曲がりが生じるまでの時点をいう。   In the present invention, the flight curve means that when the phosphor conversion film precursor is ejected from the nozzle hole, the landing position of the phosphor exchange film precursor deviates from the target position by 30 μm or more. Further, the flight curve frequency refers to a point in time until the flight curve occurs when continuous ejection is performed at a vibration frequency of the piezoelectric thin film element of the droplet discharge head, for example, 14.4 kHz.

(2)粘度
蛍光変換膜前駆体の粘度は1cq〜20cpの範囲とすることが好ましい。この粘度はグリセリン、エチレングリコール等の量を適宜変えることで調整することができ、特に、2cp〜4cpの範囲に設定することが好ましい。
(2) Viscosity The viscosity of the fluorescent conversion film precursor is preferably in the range of 1 cq to 20 cp. This viscosity can be adjusted by appropriately changing the amount of glycerin, ethylene glycol and the like, and is particularly preferably set in the range of 2 cp to 4 cp.

蛍光変換膜前駆体の粘度が1cp未満の場合、ノズル孔における蛍光変換膜前駆体のメニスカスが安定せず、前駆体の吐出制御が困難となる恐れがある。一方、粘度が20cpを超えると、ノズル孔から蛍光変換膜前駆体を円滑に吐出させることができず、ノズル孔を大きくする等の液滴吐出ヘッドの仕様を変更しない限り、蛍光変換膜前駆体の吐出が困難となる恐れがある。さらに、粘度が大きい場合、蛍光変換膜前駆体中の固形成分が析出しやすくなり、ノズル孔の目詰まり頻度が高くなる恐れがある。   When the viscosity of the fluorescent conversion film precursor is less than 1 cp, the meniscus of the fluorescent conversion film precursor in the nozzle hole is not stable, and it may be difficult to control the discharge of the precursor. On the other hand, if the viscosity exceeds 20 cp, the fluorescent conversion film precursor cannot be smoothly discharged from the nozzle hole, and unless the specifications of the droplet discharge head such as increasing the nozzle hole are changed, the fluorescent conversion film precursor is not changed. There is a risk that it will be difficult to discharge. Furthermore, when the viscosity is large, the solid component in the fluorescent conversion film precursor is likely to be precipitated, and the nozzle hole may be clogged frequently.

(3)表面張力
蛍光変換膜前駆体の表面張力は20dyne/cm〜70dyne/cmの範囲に設定することが好ましい。この表面張力は水、NMP、DMI、エタノール、ジエチレングリコール、グリセリン、キシレン、テトラリン等、又は、それらの溶剤の混合物の量を適宜変えることで調整することができ、特に、25dyne/cm〜60dyne/cmの範囲内に設定することが好ましい。
(3) Surface tension The surface tension of the fluorescent conversion film precursor is preferably set in the range of 20 dyne / cm to 70 dyne / cm. This surface tension can be adjusted by appropriately changing the amount of water, NMP, DMI, ethanol, diethylene glycol, glycerin, xylene, tetralin or the like, or a mixture of these solvents, and in particular 25 dyne / cm to 60 dyne / cm. It is preferable to set within the range.

この範囲内の表面張力に設定することにより、上述した接触角と同様、飛行曲がりを抑制し、飛行曲がり頻度を低減することができる。表面張力が70dyne/cm以上になると、ノズル先端でメニスカス形状が安定しないため、蛍光変換膜前駆体の吐出量、吐出タイミングの制御が困難となる恐れがある。一方、表面張力が20dyne/cm未満であると、ノズル面の構成材料に対する蛍光変換膜前駆体の濡れ性が増大するため、上記接触角の場合と同様、飛行曲がりが生じ、飛行曲がり頻度が高くなる恐れがある。   By setting the surface tension within this range, the flight bending can be suppressed and the flight bending frequency can be reduced as in the case of the contact angle described above. When the surface tension is 70 dyne / cm or more, the meniscus shape is not stable at the tip of the nozzle, which may make it difficult to control the discharge amount and discharge timing of the fluorescent conversion film precursor. On the other hand, if the surface tension is less than 20 dyne / cm, the wettability of the fluorescent conversion film precursor with respect to the constituent material of the nozzle surface increases, so that the flight bending occurs and the flight bending frequency is high as in the case of the contact angle. There is a fear.

この飛行曲がりは、主にノズル孔の濡れ性が不均一である場合や、蛍光変換膜前駆体の固形成分の付着による目詰まり等によって発生するが、液滴吐出ヘッドをクリーニングする(以下、「フッラッシング」という。)ことによって解消することができる。このフッラッシングは通常、液滴吐出ヘッド機構にそのような機能を付与して目詰まりや飛行曲がりを防止するもので、蛍光変換膜前駆体の吐出が一定時間(以下、「フラッシング時間」という。)行われなくなると、所定量の蛍光変換膜前駆体を強制的に吐出させる仕組みになっている。このフラッシング時間は、蛍光変換膜前駆体を吐出していないノズルが乾燥し、飛行曲がりを起こすまでの時間を意味し、蛍光変換膜前駆体の特性を示す指標となる。フラッシング時間が長い程、インクジェットの印刷技法に適しているといえるため、長時間安定して蛍光変換膜前駆体を吐出することができる。   This flight bend mainly occurs when the wettability of the nozzle holes is not uniform or due to clogging due to the adhesion of the solid component of the fluorescent conversion film precursor, but the droplet discharge head is cleaned (hereinafter referred to as “ This is called “flashing”). This flushing usually gives such a function to the droplet discharge head mechanism to prevent clogging and flight bending, and discharge of the phosphor conversion film precursor is performed for a certain time (hereinafter referred to as “flushing time”). ) When no longer performed, a predetermined amount of the fluorescent conversion film precursor is forcibly discharged. This flushing time means the time from when the nozzle that has not ejected the fluorescent conversion film precursor is dried to cause the flight curve, and is an index indicating the characteristics of the fluorescent conversion film precursor. Since it can be said that the longer the flushing time is, the more suitable it is for the ink jet printing technique, and therefore the fluorescent conversion film precursor can be stably discharged for a long time.

従って、蛍光変換膜前駆体が上記の物性値を有することで、フラッシング時間を長くすることができ、大気と蛍光変換膜前駆体の界面をよりフレッシュな状態に保持することができる。また、吐出される蛍光変換膜前駆体のドットの濃度を吐出時点によらず均一にすることができるので蛍光変換膜の色ムラの発生等を防止することができる。さらに、前駆体の吐出の際の飛行直進性に優れるため、液滴吐出ヘッドの制御が容易となり、製造装置を簡易な構成とすることができる。
尚、上記物性値の範囲は20℃の温度条件下における好適な範囲である。
基板10上に蛍光変換膜前駆体を選択的に吐出により供給した後、蛍光変換膜前駆体を加熱処理で固化する。この工程により溶媒成分を蒸発させて蛍光変換膜40A、40B、40Cを得る。
Therefore, when the fluorescence conversion film precursor has the above physical property values, the flushing time can be extended, and the interface between the atmosphere and the fluorescence conversion film precursor can be kept fresher. In addition, since the density of the dots of the phosphor conversion film precursor to be ejected can be made uniform regardless of the time of ejection, the occurrence of color unevenness in the fluorescence conversion film can be prevented. Furthermore, since it is excellent in straight flight performance when the precursor is discharged, the droplet discharge head can be easily controlled, and the manufacturing apparatus can be simplified.
In addition, the range of the said physical-property value is a suitable range in 20 degreeC temperature conditions.
After the fluorescent conversion film precursor is selectively supplied onto the substrate 10 by discharging, the fluorescent conversion film precursor is solidified by heat treatment. Through this step, the solvent component is evaporated to obtain the fluorescence conversion films 40A, 40B, and 40C.

保護膜及び陽極形成工程(同図(B))
本工程では、蛍光変換膜40A、40B、40Cが形成された基板10上に保護膜90及び陽極30を形成する。
Protective film and anode formation process ((B) in the figure)
In this step, the protective film 90 and the anode 30 are formed on the substrate 10 on which the fluorescence conversion films 40A, 40B, and 40C are formed.

保護膜90として光透過性の有る材質、例えば、アクリルレジン等をスピンコート法、バーコート法、印刷法、インクジェット法等の成膜法で成膜する。膜厚は2μmとする。次いで、保護膜90の表面上に陽極30を形成する。陽極の材質として光透過性のある導電性材料、例えば、ITO、酸化インジウムと酸化亜鉛の複合酸化物等を用いる。特に、ITOは仕事関数が大きく、正孔を青色発光層に注入するための正極として機能するため、陽極として好ましい特性を有する。本工程では、スパッタ法でITOを0.15μmの厚さに成膜し、蛍光変換膜40A〜40Cに対応する形状にパターニングする。   As the protective film 90, a light-transmitting material, for example, an acrylic resin is formed by a film forming method such as a spin coating method, a bar coating method, a printing method, or an ink jet method. The film thickness is 2 μm. Next, the anode 30 is formed on the surface of the protective film 90. As the material of the anode, a light-transmitting conductive material, for example, ITO, a composite oxide of indium oxide and zinc oxide, or the like is used. In particular, ITO has a large work function and functions as a positive electrode for injecting holes into the blue light-emitting layer, and thus has preferable characteristics as an anode. In this step, ITO is formed to a thickness of 0.15 μm by sputtering and patterned into a shape corresponding to the fluorescence conversion films 40A to 40C.

青色発光層及び陰極形成工程(同図(C))
本工程では、陽極30を覆うように保護膜90上に青色発光層50及び陰極60を形成する。有機EL素子における発光材料として、低分子である色素分子と共役高分子である導電性高分子を採用することができる。低分子系材料を用いる場合主として蒸着法により、高分子系材料を用いる場合スピンコート法等の塗布法により有機薄膜を成膜することができる。同図には示していないが、青色発光層50を挟むように正孔輸送層と電子輸送層を形成し、ダブルヘテロ構造としてもよい。
Blue light emitting layer and cathode formation process ((C) in the figure)
In this step, the blue light emitting layer 50 and the cathode 60 are formed on the protective film 90 so as to cover the anode 30. As a light-emitting material in the organic EL element, a low molecular weight dye molecule and a conductive polymer that is a conjugated polymer can be employed. When a low molecular material is used, an organic thin film can be formed mainly by a vapor deposition method, and when a high molecular material is used, an organic thin film can be formed by a coating method such as a spin coating method. Although not shown in the figure, a double heterostructure may be formed by forming a hole transport layer and an electron transport layer so as to sandwich the blue light emitting layer 50.

具体的な成膜法の例を以下に記す。モリブデン製抵抗加熱用ボードに4−4’ビス(N−フェニル−N−(3−メチルフェニル)アミノ)ビフェニル(TPD)を200mg入れ、他のモリブデン製抵抗加熱用ボードに4−4’ビス(2,2−ジフェニルビニル)ビフェニル(DPVBi)及びトリス(8−キノリノール)アルミニウム(Alq)を200mg入れて真空チャンバー内を減圧する。TPD入りのボードを215〜220℃まで加熱し、TPDを0.1nm/s〜0.3nm/sの蒸着速度で基板上に堆積させ、膜厚60nmの正札輸送層を成膜する。このときの基板温度は室温である。次いで、DPVBiをボード温度250℃、0.1nm/s〜0.2nm/sの蒸着速度で堆積し、膜厚40nmの青色発光層50を成膜する。次いで、Alqをボード温度250℃、0.1nm/s〜0.3nm/sの蒸着速度でさらに堆積させ、膜厚20nmの電子輸送層を成膜する。   The example of the specific film-forming method is described below. 200 mg of 4-4′bis (N-phenyl-N- (3-methylphenyl) amino) biphenyl (TPD) was placed on a molybdenum resistance heating board, and 4-4′bis ( 200 mg of 2,2-diphenylvinyl) biphenyl (DPVBi) and tris (8-quinolinol) aluminum (Alq) are added, and the inside of the vacuum chamber is decompressed. The board containing TPD is heated to 215 to 220 ° C., and TPD is deposited on the substrate at a deposition rate of 0.1 nm / s to 0.3 nm / s to form a 60 nm-thick bill transport layer. The substrate temperature at this time is room temperature. Next, DPVBi is deposited at a board temperature of 250 ° C. and an evaporation rate of 0.1 nm / s to 0.2 nm / s to form a blue light emitting layer 50 having a thickness of 40 nm. Next, Alq is further deposited at a board temperature of 250 ° C. and a deposition rate of 0.1 nm / s to 0.3 nm / s to form an electron transport layer having a thickness of 20 nm.

この他、青色発光層50の材質として、アントラセン、Zn(OXZ)2、PPCP、ジスチルベンゼン(DSB)、その誘導体(PESB)等の色素分子を用いることができる。これらは有機分子線蒸着法(OMDB:organicmolecular beam deposition)で成膜できる。この方法によれば、分子オーダーの膜厚制御が可能である。また、青色発光層50の材質として、有機薄膜に限らず、セリウムを添加した硫化ストロンチウム等の無機薄膜でもよい。これらの無機薄膜として、絶縁耐圧が高く、適切な発光色を持つ発光中心があり、且つ、発光を阻害する不純物、欠陥が無いものが好ましい。   In addition, as the material of the blue light emitting layer 50, dye molecules such as anthracene, Zn (OXZ) 2, PPCP, distilbenzene (DSB), and a derivative thereof (PESB) can be used. These can be formed by organic molecular beam deposition (OMDB). According to this method, film thickness control on the molecular order is possible. Further, the material of the blue light emitting layer 50 is not limited to an organic thin film, but may be an inorganic thin film such as strontium sulfide to which cerium is added. As these inorganic thin films, those having a high withstand voltage, having a light emission center having an appropriate light emission color, and having no impurities or defects that hinder light emission are preferable.

次に、青色発光層50上に陰極60を成膜する。陰極の材質としては、仕事関数の小さなものが良く、特に、アルカリ金属、アルカリ土類金属等が好ましい。例えば、Mg/Ag、Al/Li等の合金がよい。具体的な成膜法の例は以下の通りである。ダングステンバスケットに銀ワイヤーを0.5g入れ、モリブデン製ボードにマグネシウムリボン1gを入れる。真空チャンバー内を減圧し、銀(蒸着速度0.1nm/s)とマグネシウム(蒸着速度0.8nm/s)を同時に蒸着し、陰極60を成膜する。
以上の工程を経て青色発光/蛍光変換方式のEL素子が完成する。
Next, the cathode 60 is formed on the blue light emitting layer 50. As the material of the cathode, a material having a small work function is preferable, and alkali metals, alkaline earth metals and the like are particularly preferable. For example, an alloy such as Mg / Ag or Al / Li is preferable. The example of the specific film-forming method is as follows. Put 0.5g of silver wire in the dungsten basket and 1g of magnesium ribbon on the molybdenum board. The inside of the vacuum chamber is depressurized, and silver (evaporation rate 0.1 nm / s) and magnesium (evaporation rate 0.8 nm / s) are vapor-deposited simultaneously to form the cathode 60.
Through the above steps, a blue light emission / fluorescence conversion type EL element is completed.

本実施形態によれば、リソグラフィ工程を経ずに蛍光変換膜を形成することができるため、当該蛍光変換膜を備えた構造のEL素子の製造コストを下げることができる。また、蛍光変換膜に感光性を持たせる必要がないため、材料の選択の幅が広がるメリットがある。また、液滴吐出ヘッドを用いて蛍光変換膜前駆体を吐出して蛍光変換膜を形成するため、蛍光変換膜前駆体の成分のドーピング比をその場で適宜調整することができる。従って、蛍光変換膜の色素成分の調整が容易になる。また、本実施形態は、白色発光/蛍光変換方式のEL素子にも応用できる。   According to this embodiment, since the fluorescence conversion film can be formed without going through a lithography process, it is possible to reduce the manufacturing cost of an EL element having a structure including the fluorescence conversion film. Moreover, since it is not necessary to make the fluorescence conversion film have photosensitivity, there is an advantage that the range of selection of materials is widened. Further, since the fluorescence conversion film precursor is discharged using the droplet discharge head to form the fluorescence conversion film, the doping ratio of the components of the fluorescence conversion film precursor can be appropriately adjusted on the spot. Therefore, it is easy to adjust the dye component of the fluorescence conversion film. The present embodiment can also be applied to a white light emission / fluorescence conversion type EL element.

[実施形態2]
実施形態2にかかるEL素子の構造とその製造方法について図2、図3を参照して説明する。
[Embodiment 2]
The structure and manufacturing method of the EL element according to Embodiment 2 will be described with reference to FIGS.

(EL素子の構造)
図3(F)を参照してEL素子の構造を説明する。このEL素子は、青色発光/蛍光変換方式のタイプである。ガラス基板10上にはマトリクス状に仕切部材20が形成されており、蛍光変換膜40A,40Bが形成される画素領域(光透過領域)を仕切っている。仕切部材20の材質を適当に選ぶことで遮光機能を兼用させることができる。蛍光変換膜40Aは赤色蛍光変換膜であり、蛍光変換膜40Bは緑色蛍光変換膜である。各画素領域にはITOから成る陽極30が形成されており、陰極60との間に電圧を印加すると、陰極60から注入された電子と陽極30から注入された正孔が有機物質(発光層50)中で出会い、正孔―電子対である励起子(エキシトン)を形成する。この励起子の発光再結合により青色のレクトロルミネッセンスが得られる。この青色光を赤色画素では蛍光変換膜40Aで、緑色画素では蛍光変換膜40Bで蛍光変換することで、青色画素では発光層50からの青色光をそのまま用いて、RGBの3原色による光源(画像)を得ることができる。また、同図では蛍光変換膜として青色蛍光変換膜を用いておらず青色発光を直接使用しているが、青色発光層50から発光する光では必要とする青色光を得ることができない場合に、青色蛍光変換膜を設けることもできる。
(EL element structure)
The structure of the EL element is described with reference to FIG. This EL element is of a blue light emission / fluorescence conversion type. A partition member 20 is formed in a matrix on the glass substrate 10, and partitions pixel regions (light transmission regions) where the fluorescence conversion films 40A and 40B are formed. By appropriately selecting the material of the partition member 20, the light shielding function can be shared. The fluorescence conversion film 40A is a red fluorescence conversion film, and the fluorescence conversion film 40B is a green fluorescence conversion film. In each pixel region, an anode 30 made of ITO is formed. When a voltage is applied between the cathode 60 and the cathode 60, electrons injected from the cathode 60 and holes injected from the anode 30 are converted into organic substances (light emitting layer 50). ) Meet inside and form excitons that are hole-electron pairs. Blue luminescence is obtained by luminescence recombination of excitons. The blue light is converted by the fluorescence conversion film 40A in the red pixel and by the fluorescence conversion film 40B in the green pixel, and the blue light from the light emitting layer 50 is used as it is in the blue pixel, and the light source (image by RGB) is used. ) Can be obtained. In addition, in the same figure, blue light emission is not directly used as the fluorescence conversion film, but blue light emission is directly used, but when the blue light required from the light emitted from the blue light emitting layer 50 cannot be obtained, A blue fluorescence conversion film can also be provided.

(EL素子の製造工程)
本実施形態のEL素子の製造工程を図2、図3を参照して説明する。
(EL element manufacturing process)
The manufacturing process of the EL element of this embodiment will be described with reference to FIGS.

陽極形成工程(図2(A))
基板10上に陽極30を形成する。ガラス基板10は実施の形態1と同様のものを用いれば良い。陽極の材質として光透過性のある導電性材料、例えば、ITO、酸化インジウムと酸化亜鉛の複合酸化物等を用いる。本工程では、スパッタ法でITOを0.15μmの厚さに成膜し、画素領域に対応する形状にフォトリソグラフィ工程でパターニングする。
Anode formation process (FIG. 2A)
An anode 30 is formed on the substrate 10. The glass substrate 10 may be the same as that in the first embodiment. As the material of the anode, a light-transmitting conductive material, for example, ITO, a composite oxide of indium oxide and zinc oxide, or the like is used. In this step, ITO is deposited to a thickness of 0.15 μm by sputtering, and patterned into a shape corresponding to the pixel region by a photolithography step.

仕切部材形成工程(図2B)
陽極30間を仕切り、画素領域に開口部を有する仕切部材20を形成する。仕切部材20の組成は種々のものを用いることができるが、本実施形態では、仕切部材20に遮光性をもたせてブラックマトリクスとして機能させる場合を説明する。仕切部材20は、光透過性の無い材料であって、耐久性のあるものであれば、適当な材料を適宜選択して用いることができる。具体的には、富士ハント社製ネガ型樹脂ブラック、凸版印刷社製高絶縁性ブラックマトリクス用レジストHRB−#01、日本合成ゴム社製樹脂ブラック等の黒色の樹脂を有機溶剤に溶かしたものを用いることができる。これらの樹脂は、スピンコート法、ディッピング法、スプレーコート法、ロールコート法、バーコート法等で所定の厚み、例えば、0.5μm乃至2.5μmの範囲で成膜する。
Partition member formation process (FIG. 2B)
A partition member 20 having partitions between the anodes 30 and having openings in the pixel region is formed. Various compositions can be used for the partition member 20, but in the present embodiment, a description will be given of a case where the partition member 20 is provided with a light shielding property and functions as a black matrix. As long as the partition member 20 is a material that does not transmit light and is durable, an appropriate material can be appropriately selected and used. Specifically, a black resin such as negative resin black manufactured by Fuji Hunt, resist HRB- # 01 made by Toppan Printing Co., Ltd., and resin black manufactured by Nippon Synthetic Rubber Co., Ltd. is dissolved in an organic solvent. Can be used. These resins are formed in a predetermined thickness, for example, in the range of 0.5 μm to 2.5 μm, by spin coating, dipping, spray coating, roll coating, bar coating, or the like.

これら樹脂の他、金属クロム、カーボンやチタンをフォトレジストに分散した樹脂ブラック、ニッケル、クロムと酸化クロムの二層構造等を用いることができる。この場合、スパッタ成膜法、蒸着法等で仕切部材20を成膜する。次いで、仕切部材20上にレジスト(図示せず)を塗布し、所望のパターンに露光・現像する。このレジストをマスクにして仕切部材20をエッチングする。これらの工程を経てマトリクス状に区画形成された仕切部材20が形成される。仕切部材20は画素領域の位置に合わせて形成された開口部21a〜21cを備える。
尚、印刷法で仕切部材20を形成することもできる。この場合、凹版、凸版、平板等を使用してマトリクス状に有機材料を直接塗布すればよい。
In addition to these resins, metallic black, resin black in which carbon or titanium is dispersed in a photoresist, nickel, a two-layer structure of chromium and chromium oxide, or the like can be used. In this case, the partition member 20 is formed by sputtering or vapor deposition. Next, a resist (not shown) is applied on the partition member 20, and is exposed and developed into a desired pattern. The partition member 20 is etched using this resist as a mask. Through these steps, the partition member 20 partitioned and formed in a matrix is formed. The partition member 20 includes openings 21a to 21c formed according to the position of the pixel region.
In addition, the partition member 20 can also be formed by a printing method. In this case, the organic material may be directly applied in a matrix using an intaglio, a relief, a flat plate or the like.

蛍光変換膜前駆体吐出工程(図2(C))
本工程は液滴吐出ヘッド2を用いて開口部21a〜21cに液状の蛍光変換膜前駆体を吐出する工程である。同図は開口部21aに赤色の蛍光変換膜前駆体40aを吐出しているところである。本実施形態の場合、陽極30上に蛍光変換膜前駆体を吐出する構成であるため、蛍光変換膜前駆体は導電性の有する材質を用いる。具体的には、赤色の蛍光変換膜前駆体の組成は、例えばシアニン系色素、ピリジン系色素、キサンテン系色素、又は、オキサジン系色素に透明導電性材料を混合したものとすることができる。緑色の蛍光変換膜前駆体の組成は、例えばスチルベン系化合物及びクマリン系化合物に透明導電性材料を混合したものとすることができる。
Fluorescence conversion film precursor discharge process (FIG. 2C)
This step is a step of discharging a liquid fluorescent conversion film precursor to the openings 21a to 21c using the droplet discharge head 2. In the figure, the red fluorescent conversion film precursor 40a is discharged into the opening 21a. In the case of the present embodiment, since the fluorescent conversion film precursor is discharged onto the anode 30, the fluorescent conversion film precursor is made of a conductive material. Specifically, the composition of the red fluorescent conversion film precursor can be, for example, a mixture of a cyanine dye, a pyridine dye, a xanthene dye, or an oxazine dye mixed with a transparent conductive material. The composition of the green fluorescent conversion film precursor can be, for example, a mixture of a transparent conductive material in a stilbene compound and a coumarin compound.

青色の蛍光変換膜を用いる場合、その前駆体の組成は、例えばクマリン色素に透明導電性材料を混合したものを用いることができる。ここで、透明導電性材料は、ITOアルコキシド溶液、ITO粒子のキシレン分散溶液、酸化インジウムと酸化亜鉛との複合酸化物粒子のトルエン分散液等が使用される。
但し、青色発光層の青色光で充分な場合は青色の蛍光変換膜前駆体の吐出工程は不要である。
When using a blue fluorescence conversion film, the composition of the precursor may be, for example, a mixture of a coumarin dye and a transparent conductive material. Here, as the transparent conductive material, an ITO alkoxide solution, a xylene dispersion solution of ITO particles, a toluene dispersion of composite oxide particles of indium oxide and zinc oxide, or the like is used.
However, when the blue light of the blue light-emitting layer is sufficient, the step of discharging the blue fluorescent conversion film precursor is not necessary.

蛍光変換膜前駆体固化工程(図3(D))
本工程は開口部21a、21b内に吐出された蛍光変換膜前駆体を加熱処理で固化する工程である。この工程により溶媒成分を蒸発させて蛍光変換膜40A、40Bを得る。
Fluorescence conversion film precursor solidification process (FIG. 3D)
This step is a step of solidifying the fluorescent conversion film precursor discharged into the openings 21a and 21b by heat treatment. In this step, the solvent component is evaporated to obtain the fluorescence conversion films 40A and 40B.

青色発光層形成工程(図3(E))
本工程は蛍光変換膜40A、40Bを覆うように青色発光層50を形成する工程である。有機ELの発光材料として、低分子である色素分子と共役高分子である導電性高分子がある。低分子系材料は主として蒸着法により、高分子系材料はスピンコート法等の塗布法により有機薄膜を成膜することができる。同図に図示していないが、青色発光層50を挟むように正孔輸送層と電子輸送層を形成し、ダブルヘテロ構造としてもよい。具体的な成膜法は実施形態1と同様である。
Blue light emitting layer forming step (FIG. 3E)
This step is a step of forming the blue light emitting layer 50 so as to cover the fluorescence conversion films 40A and 40B. As a light emitting material for organic EL, there are a pigment molecule which is a low molecule and a conductive polymer which is a conjugated polymer. An organic thin film can be formed mainly by a vapor deposition method for low molecular weight materials and by a coating method such as a spin coating method for high molecular weight materials. Although not shown in the figure, a double heterostructure may be formed by forming a hole transport layer and an electron transport layer so as to sandwich the blue light emitting layer 50. A specific film forming method is the same as that in the first embodiment.

陰極形成工程(図3(F))
青色発光層50上に陰極60を成膜する。陰極の材質としては、アルカリ金属、アルカリ土類金属等が好ましい。例えば、Mg/Ag、Al/Li等の合金がよい。具体的な成膜法は実施形態1と同様である。陰極60を成膜後、青色発光/蛍光変換方式のEL素子が完成する。
Cathode forming step (FIG. 3F)
A cathode 60 is formed on the blue light emitting layer 50. As the material for the cathode, alkali metals, alkaline earth metals and the like are preferable. For example, an alloy such as Mg / Ag or Al / Li is preferable. A specific film forming method is the same as that in the first embodiment. After forming the cathode 60, a blue light emission / fluorescence conversion type EL element is completed.

尚、本実施形態で製造されたEL素子では、特に、図3(F)に示す構造のように、ある画素(例えば赤色画素及び緑色画素)では、陽極及び陰極間で液滴吐出ヘッドを用いた吐出法により形成された層(即ち蛍光変換膜)と塗布法や蒸着法により形成された層(即ち青色発光層)が積層された構造となっており、必要に応じて他の画素(例えば青色画素)では、陽極及び陰極間で吐出法により形成された層は設けられず塗布法や蒸着法により形成された層(即ち青色発光層)が設けられた構造となっている。   In the EL element manufactured in the present embodiment, a droplet discharge head is used between the anode and the cathode particularly in a certain pixel (for example, a red pixel and a green pixel) as in the structure shown in FIG. The layer formed by the conventional discharge method (that is, the fluorescence conversion film) and the layer formed by the coating method or the vapor deposition method (that is, the blue light emitting layer) are laminated, and other pixels (for example, The blue pixel) has a structure in which a layer formed by a coating method or a vapor deposition method (that is, a blue light-emitting layer) is not provided between the anode and the cathode.

本実施形態によれば、蛍光変換膜自体が導電性を有するため、蛍光変換膜が陽極と青色発光層間に位置するEL素子を提供することができる。また、リソグラフィ工程を経ずに蛍光変換膜を形成することができるため、EL素子の製造コストを下げることができる。また、蛍光変換膜に感光性を持たせる必要がないため、材料の選択の幅が広がるメリットがある。また、液滴吐出ヘッドを用いて蛍光変換膜前駆体を吐出して蛍光変換膜を形成するため、蛍光変換膜前駆体の成分のドーピング比をその場で適宜調整することができる。従って、蛍光変換膜の色素成分の調整が容易になる。   According to this embodiment, since the fluorescence conversion film itself has conductivity, it is possible to provide an EL element in which the fluorescence conversion film is positioned between the anode and the blue light emitting layer. In addition, since the fluorescence conversion film can be formed without performing a lithography process, the manufacturing cost of the EL element can be reduced. Moreover, since it is not necessary to make the fluorescence conversion film have photosensitivity, there is an advantage that the range of selection of materials is widened. Further, since the fluorescence conversion film precursor is discharged using the droplet discharge head to form the fluorescence conversion film, the doping ratio of the components of the fluorescence conversion film precursor can be appropriately adjusted on the spot. Therefore, it is easy to adjust the dye component of the fluorescence conversion film.

[実施形態3]
実施形態3にかかるEL素子の構造とその製造方法について図4を参照して説明する。
[Embodiment 3]
A structure of an EL element according to Embodiment 3 and a manufacturing method thereof will be described with reference to FIG.

(EL素子の構造)
図4(C)を参照してEL素子の構造を説明する。このEL素子は、レジストから成る仕切部材70が各画素領域を仕切っており、基板10上の全面に成膜された陽極30が共通電極となっている。例えば、赤色の画素領域には赤色の蛍光変換膜40A、青色発光層50、陰極60が順次積層されている。
(EL element structure)
The structure of the EL element will be described with reference to FIG. In this EL element, a partition member 70 made of resist partitions each pixel region, and the anode 30 formed on the entire surface of the substrate 10 serves as a common electrode. For example, a red fluorescence conversion film 40A, a blue light emitting layer 50, and a cathode 60 are sequentially stacked in a red pixel region.

(EL素子の製造工程)
EL素子の製造工程を図4を参照して説明する。陽極30としてITOが表面に成膜されたガラス基板10上にレジスト70をスピンコートする(同図(A))。画素領域に合わせてレジスト70をパターニングし、開口部71a〜71cを形成する(同図(B))。液滴吐出ヘッドを用いて開口部71a、71bに蛍光変換膜前駆体を吐出し、これを固化させて蛍光変換膜40A、40Bを形成する。次いで、開口部71a〜71c内に青色発光層50、陰極60を成膜する。この場合、蛍光変換膜前駆体は導電性のあることが必要であり、具体的には、実施形態2と同様の成分(材料)を用いれば良い。
(EL element manufacturing process)
The manufacturing process of the EL element will be described with reference to FIG. A resist 70 is spin-coated on the glass substrate 10 having an ITO film formed on the surface thereof as the anode 30 ((A) in the figure). The resist 70 is patterned in accordance with the pixel region to form openings 71a to 71c (FIG. 5B). The phosphor conversion film precursor is discharged into the openings 71a and 71b using a droplet discharge head, and this is solidified to form the fluorescence conversion films 40A and 40B. Next, the blue light emitting layer 50 and the cathode 60 are formed in the openings 71a to 71c. In this case, the fluorescent conversion film precursor needs to be conductive, and specifically, the same components (materials) as in Embodiment 2 may be used.

本実施形態によれば、レジスト70がそれぞれの陰極60を電気的に絶縁する役割を担う。また、リソグラフィ工程、エッチング工程等を経ずに陰極60を画素領域に合わせてパターニングできるため、製造工程を簡略化することができる。この結果、製造コストを下げることができる。   According to the present embodiment, the resist 70 plays a role of electrically insulating each cathode 60. Further, since the cathode 60 can be patterned in accordance with the pixel region without passing through the lithography process, the etching process, etc., the manufacturing process can be simplified. As a result, the manufacturing cost can be reduced.

[実施形態4]
EL素子の構造とその製造方法について図5を参照して説明する。
[Embodiment 4]
The structure of the EL element and the manufacturing method thereof will be described with reference to FIG.

(EL素子の構造)
図5(D)を参照してEL素子の構造を説明する。このEL素子は、実施の形態3を改良したものである。仕切部材70の下部には絶縁膜80が形成されており、この絶縁膜80が陰極60と陽極30間のリーク電流をカットし、素子の短絡を防ぐ働きをする。このため、EL素子の信頼性が向上する
(EL element structure)
The structure of the EL element is described with reference to FIG. This EL element is an improvement of the third embodiment. An insulating film 80 is formed below the partition member 70, and this insulating film 80 functions to cut a leakage current between the cathode 60 and the anode 30 and prevent a short circuit of the element. For this reason, the reliability of the EL element is improved.

(EL素子の製造工程)
EL素子の製造工程を図5を参照して説明する。陽極30としてITO薄膜が表面に成膜された基板10上に酸化膜80を形成する。酸化膜80は絶縁性の薄膜であればその種類は特に限定されるものではなく、二酸化珪素膜、酸化ジルコニウム膜、酸化タンタル膜、窒化シリコン膜、酸化アルミニウム膜等が良い。絶縁膜80を画素領域に合わせてパターニングし、開口部81a〜81cを形成する(同図(A))。基板10の全面にわたってレジスト70をスピンコートする(同図(B))。このレジスト70を絶縁膜80に合わせてパターニングし、絶縁膜80上にのみレジスト70を残す(同図(C))。液滴吐出ヘッドを用いて開口部81a、81bに蛍光変換膜前駆体を吐出し、これを固化させて蛍光変換膜40A、40Bを形成する。次いで、開口部81a〜81c内に青色発光層50、陰極60を順次成膜する(同(D))。この場合も、蛍光変換膜前駆体は導電性のあることが必要であり、具体的には、実施形態2と同様の成分を用いれば良い。
(EL element manufacturing process)
The manufacturing process of the EL element will be described with reference to FIG. An oxide film 80 is formed on the substrate 10 on which an ITO thin film is formed as the anode 30. The type of the oxide film 80 is not particularly limited as long as it is an insulating thin film, and a silicon dioxide film, a zirconium oxide film, a tantalum oxide film, a silicon nitride film, an aluminum oxide film, or the like is preferable. The insulating film 80 is patterned in accordance with the pixel region to form openings 81a to 81c (FIG. 1A). A resist 70 is spin coated over the entire surface of the substrate 10 ((B) in the figure). The resist 70 is patterned in accordance with the insulating film 80, and the resist 70 is left only on the insulating film 80 (FIG. 3C). Fluorescence conversion film precursor is discharged into the openings 81a and 81b using a droplet discharge head, and this is solidified to form the fluorescence conversion films 40A and 40B. Next, the blue light emitting layer 50 and the cathode 60 are sequentially formed in the openings 81a to 81c ((D)). Also in this case, the fluorescent conversion film precursor needs to be conductive, and specifically, the same components as those in Embodiment 2 may be used.

本実施形態によれば、絶縁膜80が陰極60と陽極30間のリーク電流をカットし、素子の短絡を防ぐ働きをする。このため、EL素子の信頼性が向上する。ここで、レジスト70の幅を酸化膜80の幅より狭くパターニングすることで、構造的に陽極30と陰極60との間の絶縁性が高まり、短絡防止により効果的である。   According to the present embodiment, the insulating film 80 functions to cut a leakage current between the cathode 60 and the anode 30 and prevent a short circuit of the element. For this reason, the reliability of the EL element is improved. Here, by patterning the width of the resist 70 so as to be narrower than the width of the oxide film 80, the insulation between the anode 30 and the cathode 60 is structurally enhanced, which is more effective in preventing a short circuit.

以上詳述したように、本発明によれば、リソグラフィ工程を経ずに蛍光変換膜を形成することができるため、エレクトロルミネッセンス素子の製造コストを下げることができる。また、蛍光変換膜に感光性を持たせる必要がないため、材料選択の幅が広がる。さらに、液滴吐出ヘッドを用いて蛍光変換膜前駆体を吐出し、これを固化して蛍光変換膜を得るため、蛍光変換膜前駆体の成分のドーピング比を容易に適宜調整し、蛍光変換特性を最適に調整することができる。   As described above in detail, according to the present invention, since the fluorescence conversion film can be formed without performing a lithography process, the manufacturing cost of the electroluminescence element can be reduced. In addition, since the fluorescence conversion film does not need to have photosensitivity, the range of material selection is widened. Furthermore, in order to obtain a fluorescence conversion film by discharging the fluorescence conversion film precursor using a droplet discharge head and solidifying it, the doping ratio of the components of the fluorescence conversion film precursor is easily adjusted as appropriate, and the fluorescence conversion characteristics Can be adjusted optimally.

本発明の実施形態1にかかるEL素子の製造方法をその工程に沿って示す断面図である。It is sectional drawing which shows the manufacturing method of the EL element concerning Embodiment 1 of this invention along the process. 本発明の実施形態2にかかるEL素子の製造方法をその工程に沿って示す断面図である。It is sectional drawing which shows the manufacturing method of the EL element concerning Embodiment 2 of this invention along the process. 本発明の実施形態2にかかるEL素子の製造方法をその工程に沿って示す断面図である。It is sectional drawing which shows the manufacturing method of the EL element concerning Embodiment 2 of this invention along the process. 本発明の実施形態3にかかるEL素子の製造方法をその工程に沿って示す断面図である。It is sectional drawing which shows the manufacturing method of the EL element concerning Embodiment 3 of this invention along the process. 本発明の実施形態4にかかるEL素子の製造方法をその工程に沿って示す断面図である。It is sectional drawing which shows the manufacturing method of the EL element concerning Embodiment 4 of this invention along the process.

Claims (8)

基板上に画素領域に対応する複数の第1の電極と、
前記第1の電極間を仕切り、画素領域に開口部を有する仕切部材と、
前記第1の電極上に形成された蛍光変換膜と、
前記蛍光変換膜を覆うように形成された発光層と
前記発光層上に形成された第2の電極を有することを特徴とするエレクトロルミネッセンス素子。
A plurality of first electrodes corresponding to pixel regions on the substrate;
A partition member that partitions the first electrodes and has an opening in a pixel region;
A fluorescence conversion film formed on the first electrode;
An electroluminescence element comprising: a light emitting layer formed so as to cover the fluorescence conversion film; and a second electrode formed on the light emitting layer.
前記蛍光変換膜が導電性を有することを特徴とする請求項1記載のエレクトロルミネッセンス素子。 2. The electroluminescent device according to claim 1, wherein the fluorescence conversion film has conductivity. 前記仕切り部材が遮光性を有することを特徴とする請求項1記載のエレクトロルミネッセンス素子。 The electroluminescent element according to claim 1, wherein the partition member has a light shielding property. 前記第1の電極が陽極であり、前記第2の電極が陰極であることを特徴とする請求項1乃至3記載のエレクトロルミネッセンス素子。 4. The electroluminescent device according to claim 1, wherein the first electrode is an anode and the second electrode is a cathode. 前記蛍光変換膜と前記発光層との間に正孔輸送層を有することを特徴とする請求項4記載のエレクトロルミネッセンス素子。 5. The electroluminescent device according to claim 4, further comprising a hole transport layer between the fluorescence conversion film and the light emitting layer. 前記発光層と前記陰極との間に電子輸送層を有することを特徴とする請求項4記載のエレクトロルミネッセンス素子。 The electroluminescent device according to claim 4, further comprising an electron transport layer between the light emitting layer and the cathode. 前記蛍光変換膜の発光色が前記画素領域により異なることを特徴とするエレクトロルミネッセンス素子。 The electroluminescent device according to claim 1, wherein an emission color of the fluorescence conversion film varies depending on the pixel region. 基板上の画素領域に対応する複数の陽極を形成する工程と、
前記陽極間を仕切り、前記画素領域に対応する位置に開口部を有する仕切り部材を形成する工程と、
液滴吐出ヘッドを用いて前記開口部内に蛍光変換膜前駆体を吐出し、前記陽極上に蛍光変換膜前駆体を充填する工程と、
前記蛍光変換膜前駆体を固化して蛍光変換膜を形成する工程と、
前記蛍光変換膜上に発光層を形成する工程とを有することを特徴とするエレクトロルミネッセンス素子の製造方法。

Forming a plurality of anodes corresponding to pixel regions on the substrate;
Partitioning the anodes and forming a partition member having an opening at a position corresponding to the pixel region;
Discharging a fluorescent conversion film precursor into the opening using a droplet discharge head, and filling the anode with a fluorescent conversion film precursor;
Solidifying the fluorescence conversion film precursor to form a fluorescence conversion film; and
And a step of forming a light emitting layer on the fluorescence conversion film.

JP2004264442A 1998-09-17 2004-09-10 Electroluminescent element and manufacturing method of the same Withdrawn JP2005056855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004264442A JP2005056855A (en) 1998-09-17 2004-09-10 Electroluminescent element and manufacturing method of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP26373498 1998-09-17
JP2004264442A JP2005056855A (en) 1998-09-17 2004-09-10 Electroluminescent element and manufacturing method of the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000571720A Division JP3649125B2 (en) 1998-09-17 1999-09-14 ELECTROLUMINESCENT ELEMENT MANUFACTURING METHOD AND ELECTROLUMINESCENT ELEMENT

Publications (1)

Publication Number Publication Date
JP2005056855A true JP2005056855A (en) 2005-03-03

Family

ID=34379583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004264442A Withdrawn JP2005056855A (en) 1998-09-17 2004-09-10 Electroluminescent element and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2005056855A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010010730A1 (en) * 2008-07-24 2010-01-28 富士電機ホールディングス株式会社 Method for manufacturing color conversion substrate
JP2010267552A (en) * 2009-05-18 2010-11-25 Fuji Electric Holdings Co Ltd Color conversion filter substrate
JP2010272588A (en) * 2009-05-19 2010-12-02 Panasonic Electric Works Co Ltd Organic el element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010010730A1 (en) * 2008-07-24 2010-01-28 富士電機ホールディングス株式会社 Method for manufacturing color conversion substrate
JP2010267552A (en) * 2009-05-18 2010-11-25 Fuji Electric Holdings Co Ltd Color conversion filter substrate
JP2010272588A (en) * 2009-05-19 2010-12-02 Panasonic Electric Works Co Ltd Organic el element

Similar Documents

Publication Publication Date Title
JP3649125B2 (en) ELECTROLUMINESCENT ELEMENT MANUFACTURING METHOD AND ELECTROLUMINESCENT ELEMENT
JP3900724B2 (en) Organic EL element manufacturing method and organic EL display device
KR100495744B1 (en) Method of manufacturing organic el element and organic el element
KR100403544B1 (en) Production of organic luminescence device
KR100554338B1 (en) Method of producing organic el element
KR100554337B1 (en) Composition for Organic EL Devices
JP3911775B2 (en) Manufacturing method of organic EL element
CN111435676B (en) Organic EL display panel and method of manufacturing the same
JP4226159B2 (en) Manufacturing method of organic LED display
JP2000323276A (en) Manufacture of organic el element, organic el element, and ink composition
JP4603133B2 (en) Substrate device for EL display, manufacturing method thereof, and manufacturing device used
WO2010035643A1 (en) Substrate for pattern coating and organic el element
JP2000106278A (en) Manufacture of organic el element and the organic el element
JP2001291587A (en) Manufacturing method of organic light emission device and organic light emission device manufactured by the method
JP5870926B2 (en) Letterpress for printing and method for producing organic EL element using the same
JP2009064642A (en) Manufacturing method of organic electroluminescent display device, and manufacturing apparatus
JP5604857B2 (en) Letterpress for printing, method for producing organic electroluminescent element using the same, and organic electroluminescent element
JP2005056855A (en) Electroluminescent element and manufacturing method of the same
JP4513800B2 (en) Manufacturing method of organic EL element
JP3807621B2 (en) Manufacturing method of organic EL element
KR101223333B1 (en) Organic el device and method for fabricating same
JP2010205528A (en) Manufacturing method of organic electroluminescent device
JP3685188B2 (en) Organic EL device and manufacturing method thereof
JP2007207591A (en) Method of manufacturing light-emitting device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060818