JP2005055382A - Polarization dispersion measuring device - Google Patents

Polarization dispersion measuring device Download PDF

Info

Publication number
JP2005055382A
JP2005055382A JP2003288577A JP2003288577A JP2005055382A JP 2005055382 A JP2005055382 A JP 2005055382A JP 2003288577 A JP2003288577 A JP 2003288577A JP 2003288577 A JP2003288577 A JP 2003288577A JP 2005055382 A JP2005055382 A JP 2005055382A
Authority
JP
Japan
Prior art keywords
optical frequency
optical
polarization
pulse
measuring apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003288577A
Other languages
Japanese (ja)
Other versions
JP4170852B2 (en
Inventor
Tetsuo Takahashi
哲夫 高橋
Kunihiko Mori
邦彦 森
Takashi Go
隆司 郷
Kazuhiro Noguchi
一博 野口
Masabumi Koga
正文 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003288577A priority Critical patent/JP4170852B2/en
Publication of JP2005055382A publication Critical patent/JP2005055382A/en
Application granted granted Critical
Publication of JP4170852B2 publication Critical patent/JP4170852B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To measure the polarization dispersion of a subject with excellent precision by using the Jones matrix analysis method. <P>SOLUTION: The polarization dispersion measurement device comprises: a light frequency com generation part for generating the light frequency com composed of ≥n light frequency components with light frequency interval f; a polarization wave controller for controlling the state of the polarization and inputting the polarization into the subject; a demultiplexor for demultiplexing n light frequency components from the light frequency com transmitted through the subject; n polarimeters for measuring the polarization state of each frequency component demultiplexed by the demultiplexor; a measurement device controller for setting independent 3 polarization state on the Poincare sphere to the polarization controller; an operation part for calculating the polarization dispersion value of the subject by the operation of the Jones matrix of the subject from the relation between the input polarization state set by the polarization controller by the measurement device control part, and polarization state of each light frequency component measured by each polarimeter. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、波長多重ネットワークにおいて用いられるデバイスまたはネットワーク自体の偏波分散を測定する偏波分散測定装置に関する。   The present invention relates to a polarization dispersion measuring apparatus for measuring polarization dispersion of a device used in a wavelength division multiplexing network or the network itself.

xDSLや光アクセスサービスなどの普及に伴うネットワークへのアクセス手段の高速化により、バックボーンネットワークに流入するトラヒックは着実に増加している。一方、増加するトラヒックを処理するルータやスイッチは、年々高速化されてギガビット領域に達しようとしている。このようなバックボーンネットワークを経済的に構築するには、波長多重(WDM)伝送技術が効果的になっている。   The traffic flowing into the backbone network is steadily increasing due to the speeding up of the access means to the network accompanying the spread of xDSL and optical access services. On the other hand, routers and switches that handle increasing traffic are increasing in speed year by year to reach the gigabit range. In order to economically construct such a backbone network, wavelength division multiplexing (WDM) transmission technology has become effective.

また、リンクの大容量化に加えて、光領域での経路制御(波長ルーチング)の導入により、トラヒックの効率的な転送と一層の経済化を図るために、一部の波長チャネルを分岐・挿入する光アド・ドロップ技術や、任意の波長チャネルの経路を自由に設定できる光クロスコネクト技術の開発が進められている。   In addition to increasing the capacity of the link, by introducing path control (wavelength routing) in the optical domain, some wavelength channels are branched and inserted in order to achieve efficient traffic transfer and further economy. Optical add / drop technology and optical cross-connect technology that can freely set the path of an arbitrary wavelength channel are being developed.

このような波長多重ネットワークにおいて、各波長チャネルの劣化量を抑え、各波長チャネルの均一化を図ることは重要な課題である。各波長チャネルの劣化は、伝送路の損失、高パワー領域における非線形光学効果による波形劣化または非線形光学現象を誘起するクロストーク、合分波器その他のデバイスの波長依存性による各波長チャネルのフィルタリング効果など、さまざまな要因により決定される。さらに、40Gbit/s を越える高速ネットワークでは、中継区間が長くなると、偏波分散による信号劣化に対して敏感であり、注意深く設計される必要がある。   In such a wavelength division multiplexing network, it is an important issue to suppress the deterioration amount of each wavelength channel and make the wavelength channels uniform. Degradation of each wavelength channel is caused by transmission path loss, waveform degradation due to nonlinear optical effects in the high power region or crosstalk that induces nonlinear optical phenomena, and filtering effects of each wavelength channel due to wavelength dependence of multiplexers / demultiplexers and other devices. It is determined by various factors. Furthermore, in a high-speed network exceeding 40 Gbit / s, if the relay section becomes long, it is sensitive to signal degradation due to polarization dispersion and needs to be carefully designed.

偏波分散を測定する方法としては、B.L.Heffner によるジョーンズ行列解析法が提案されている(非特許文献1)。この方法は、被測定物の入力側で3つの独立な偏光状態を与え、各入力偏光状態に対する出力偏光状態を測定することにより被測定物のジョーンズ行列T(η)を求め、さらにその光周波数ηの依存性を測定し、ジョーンズ行列T(η)を用いた固有値問題の解の光周波数に対する微分をとることにより、被測定物の偏波分散値を算出するものである。   As a method for measuring polarization dispersion, a Jones matrix analysis method by B.L.Heffner has been proposed (Non-Patent Document 1). In this method, three independent polarization states are given on the input side of the object to be measured, and the Jones matrix T (η) of the object to be measured is obtained by measuring the output polarization state with respect to each input polarization state. The dependence of η is measured, and the polarization dispersion value of the object to be measured is calculated by taking the derivative with respect to the optical frequency of the solution of the eigenvalue problem using the Jones matrix T (η).

ここで、2行2列の複素行列であるジョーンズ行列は、光の偏光状態を表現する2行1列の複素行列であるジョーンズベクトルJに対して
Jout =T(η)・Jin
で決まる行列である。すなわち、入力偏光状態を表すジョーンズベクトルJinに対して、ジョーンズ行列T(η)を掛けることにより出力偏光状態を表すジョーンズベクトルJout となる。このジョーンズ行列は4つの独立なパラメータからなるが、そのうち一次元は損失のパラメータとなるため、実効的には3つのパラメータで規定できる。すなわち、3つの独立な入力偏光状態に対する3つの出力偏光状態を測定することによりジョーンズ行列を求めることができる。具体的例としては、被測定物の入力側で、図12に示すx偏光、y偏光、x,y軸に対する45度偏光の3つの独立な偏光状態を与え、各々の出力偏光状態をポラリメータで測定する。図13は、各入力偏光状態に対して測定された出力偏光状態を示し、ジョーンズ行列を表すパラメータk1 ,k2 ,k3 ,k4 は、
1 =hx /hy
2 =νx /νy
3 =qx /qy
4 =(k3−k2)/(k1−k2)
となり、ジョーンズ行列T(η)は、βを定数として、
Here, a Jones matrix which is a 2 × 2 complex matrix is defined as Jout = T (η) · Jin with respect to a Jones vector J which is a 2 × 1 complex matrix representing the polarization state of light.
It is a matrix determined by That is, the Jones vector Jin representing the output polarization state is obtained by multiplying the Jones vector Jin representing the input polarization state by the Jones matrix T (η). This Jones matrix is composed of four independent parameters, one of which is a loss parameter, and can be effectively defined by three parameters. That is, the Jones matrix can be determined by measuring three output polarization states for three independent input polarization states. As a specific example, three independent polarization states of x polarization, y polarization, and 45 degree polarization with respect to the x and y axes shown in FIG. 12 are given on the input side of the object to be measured, and each output polarization state is obtained by a polarimeter. taking measurement. FIG. 13 shows the output polarization state measured for each input polarization state, and the parameters k 1 , k 2 , k 3 , k 4 representing the Jones matrix are
k 1 = h x / h y ,
k 2 = ν x / ν y ,
k 3 = q x / q y ,
k 4 = (k 3 −k 2 ) / (k 1 −k 2 )
The Jones matrix T (η) is defined as

Figure 2005055382
Figure 2005055382

で与えられる。
IEEE PHOTONIC TECHNOLOGY LETTERS, VOL.4,NO.9, Sep.1992, pp.1066-1069
Given in.
IEEE PHOTONIC TECHNOLOGY LETTERS, VOL.4, NO.9, Sep.1992, pp.1066-1069

偏波分散を測定するジョーンズ行列解析法は、その測定原理において光周波数での微分演算を行う方法であり、光周波数の設定精度がそのまま偏波分散の測定精度に影響する。   The Jones matrix analysis method for measuring polarization dispersion is a method of performing a differential operation at the optical frequency in the measurement principle, and the setting accuracy of the optical frequency directly affects the measurement accuracy of the polarization dispersion.

一方、従来の光周波数設定手段では、試験光の光周波数をサブGHz以下の精度で確定することが困難であり、偏波分散を高精度に測定することができなかった。また、マイケルソン干渉計の原理を用いた波長計を利用する場合には、所定の精度は確保できるものの環境温度の変動などの影響を受けやすい問題があった。さらに、試験光の波長を連続的に変化させる構成であっても、偏波分散については順次測定されることになるので、チャネル数分の時間が必要であった。   On the other hand, with the conventional optical frequency setting means, it is difficult to determine the optical frequency of the test light with sub-GHz accuracy or less, and polarization dispersion cannot be measured with high accuracy. In addition, when a wavelength meter using the principle of the Michelson interferometer is used, there is a problem that a predetermined accuracy can be ensured but it is easily affected by fluctuations in environmental temperature. Furthermore, even with a configuration in which the wavelength of the test light is continuously changed, polarization dispersion is measured sequentially, so that it takes time for the number of channels.

本発明は、被測定物の偏波分散をジョーンズ行列解析法を用いて極めて高い精度で測定することができる偏波分散測定装置を提供することを目的とする。   An object of the present invention is to provide a polarization dispersion measuring apparatus capable of measuring the polarization dispersion of a device under test with extremely high accuracy using the Jones matrix analysis method.

請求項1に記載の発明は、被測定物の入力偏光状態と出力偏光状態の関係から被測定物のジョーンズ行列を演算し、その結果から被測定物の偏波分散値を演算する偏波分散測定装置において、光周波数間隔fでn個以上(nは2以上の整数)の光周波数成分からなる光周波数コムを発生する光周波数コム発生部と、光周波数コムを入力し、その偏光状態を制御して被測定物に入力する偏波コントローラと、被測定物を通過した光周波数コムからn個の光周波数成分を分波する分波器と、分波器で分波された各光周波数成分の偏光状態を測定するn個のポラリメータと、偏波コントローラにポアンカレ球上の独立な3つの偏光状態を設定する測定器制御部と、測定器制御部により偏波コントローラで設定される入力偏光状態と、各ポラリメータで測定される各光周波数成分の偏光状態との関係から被測定物のジョーンズ行列を演算し、その結果から被測定物の偏波分散値を演算する演算部とを備える。   The invention according to claim 1 calculates the Jones matrix of the device under test from the relationship between the input polarization state and the output polarization state of the device under test, and calculates the polarization dispersion value of the device under test from the result. In the measurement apparatus, an optical frequency comb generator for generating an optical frequency comb composed of n or more (n is an integer of 2 or more) optical frequency components at an optical frequency interval f, an optical frequency comb is input, and the polarization state is input A polarization controller to be controlled and input to the device to be measured, a demultiplexer for demultiplexing n optical frequency components from the optical frequency comb that has passed through the device to be measured, and each optical frequency demultiplexed by the demultiplexer N polarimeters for measuring the polarization state of the component, a measuring instrument controller for setting three independent polarization states on the Poincare sphere in the polarization controller, and an input polarization set by the polarization controller by the measuring instrument controller Status and each polarimeter It calculates the Jones matrix of the object to be measured from the relation between the polarization state of each optical frequency components measured, and a calculator for calculating the polarization dispersion value of the object to be measured from the result.

また、請求項1に記載の偏波分散測定装置において、n個のポラリメータに代えて、分波器で分波されたn個の光周波数成分の1つを選択する光スイッチと、選択された1つの光周波数成分の偏光状態を測定する1つのポラリメータとを備え、演算部は、測定器制御部の制御により光スイッチを切り替えて得られる各光周波数成分の偏光状態を蓄積し、被測定物の偏波分散値を演算する構成としてもよい(請求項2)。さらに、分波器および光スイッチに代えて、被測定物から出力されるn個の光周波数成分の1つを透過する波長可変フィルタを備え、演算部は、測定器制御部の制御により波長可変フィルタの透過波長を切り替えて得られる各光周波数成分の偏光状態を蓄積し、被測定物の偏波分散値を演算する構成としてもよい(請求項3)。   Further, in the polarization dispersion measuring apparatus according to claim 1, an optical switch that selects one of n optical frequency components demultiplexed by a demultiplexer instead of n polarimeters is selected. And a polarimeter for measuring the polarization state of one optical frequency component, and the arithmetic unit accumulates the polarization state of each optical frequency component obtained by switching the optical switch under the control of the measuring instrument control unit, and the device under test The polarization dispersion value may be calculated (claim 2). Further, in place of the duplexer and the optical switch, a wavelength tunable filter that transmits one of the n optical frequency components output from the device under test is provided, and the arithmetic unit is tunable under the control of the measuring instrument controller. The polarization state of each optical frequency component obtained by switching the transmission wavelength of the filter may be accumulated, and the polarization dispersion value of the device under test may be calculated.

また、請求項2に記載の分波器および光スイッチ、または請求項3に記載の波長可変フィルタを被測定物の前段に配置し、選択された1つの光周波数成分を被測定物に入力し、被測定物を通過した光周波数成分をポラリメータに入力する構成としてもよい(請求項4)。   Further, the duplexer and the optical switch according to claim 2 or the wavelength tunable filter according to claim 3 is arranged in front of the object to be measured, and one selected optical frequency component is input to the object to be measured. The optical frequency component that has passed through the object to be measured may be input to the polarimeter (claim 4).

また、請求項2に記載の分波器および光スイッチ、または請求項3に記載の波長可変フィルタを偏波コントローラの前段に配置し、選択された1つの光周波数成分を偏波コントローラを介して被測定物に入力し、被測定物を通過した光周波数成分をポラリメータに入力する構成としてもよい(請求項5)。   In addition, the duplexer and the optical switch according to claim 2 or the wavelength tunable filter according to claim 3 is arranged in front of the polarization controller, and one selected optical frequency component is passed through the polarization controller. It is good also as a structure which inputs into a to-be-measured object and inputs into the polarimeter the optical frequency component which passed the to-be-measured object.

以上の偏波分散測定装置における光周波数コム発生部は、繰り返し周波数fの光パルスを発生するパルス光源と、繰り返し周波数fを保ったまま、光パルスの光周波数成分の分布域の外側の広い光周波数領域に新たな光周波数成分を生成し、光周波数間隔fの光周波数コムとして出力するSC光発生部とを備える構成としてもよい(請求項6)。   The optical frequency comb generator in the above polarization dispersion measuring apparatus includes a pulse light source that generates an optical pulse having a repetition frequency f, and a wide light outside the optical frequency component distribution region of the optical pulse while maintaining the repetition frequency f. It is good also as a structure provided with the SC light generation part which produces | generates a new optical frequency component in a frequency domain, and outputs as an optical frequency comb of the optical frequency space | interval f (Claim 6).

また、光周波数コム発生部は、繰り返し周波数f/M(Mは2以上の整数)の光パルスを発生するパルス光源と、繰り返し周波数f/Mを保ったまま、光パルスの光周波数成分の分布域の外側の広い光周波数領域に新たな光周波数成分を生成し、光周波数間隔f/Mの光周波数コムとして出力するSC光発生部と、SC光発生部から出力される光周波数コムを間引き、光周波数間隔fの光周波数コムとして出力する周期性透過フィルタとを備える構成としてもよい(請求項7)。   The optical frequency comb generator generates a pulse light source that generates an optical pulse having a repetition frequency f / M (M is an integer of 2 or more), and a distribution of optical frequency components of the optical pulse while maintaining the repetition frequency f / M. A new optical frequency component is generated in a wide optical frequency region outside the area and output as an optical frequency comb having an optical frequency interval of f / M, and an optical frequency comb output from the SC light generating unit is thinned out A periodic transmission filter that outputs an optical frequency comb having an optical frequency interval f may be used.

また、光周波数コム発生部は、繰り返し周波数f/M(Mは2以上の整数)の光パルスを発生するパルス光源と、パルス光源から出力される繰り返し周波数f/Mの光パルスを間引き、繰り返し周波数fの光パルスを出力する周期性透過フィルタと、繰り返し周波数fを保ったまま、光パルスの光周波数成分の分布域の外側の広い光周波数領域に新たな光周波数成分を生成し、光周波数間隔fの光周波数コムとして出力するSC光発生部とを備える構成としてもよい(請求項8)。   The optical frequency comb generator thins out and repeats a pulse light source that generates an optical pulse with a repetition frequency f / M (M is an integer of 2 or more) and an optical pulse with a repetition frequency f / M output from the pulse light source. A periodic transmission filter that outputs an optical pulse of frequency f, and a new optical frequency component generated in a wide optical frequency region outside the optical frequency component distribution region of the optical pulse while maintaining the repetition frequency f. It is good also as a structure provided with the SC light generation part output as an optical frequency comb of the space | interval f (Claim 8).

また、光周波数コム発生部は、繰り返し周波数Mf(Mは2以上の整数)の光パルスを発生するパルス光源と、パルス光源から出力される繰り返し周波数Mfの光パルスをM分周し、繰り返し周波数fの光パルスを出力する分周器と、繰り返し周波数fを保ったまま、光パルスの光周波数成分の分布域の外側の広い光周波数領域に新たな光周波数成分を生成し、光周波数間隔fの光周波数コムとして出力するSC光発生部とを備える構成としてもよい(請求項9)。   The optical frequency comb generator generates a pulse light source that generates an optical pulse having a repetition frequency Mf (M is an integer equal to or greater than 2) and an optical pulse having a repetition frequency Mf that is output from the pulse light source. A frequency divider that outputs an optical pulse of f, a new optical frequency component generated in a wide optical frequency region outside the optical frequency component distribution region of the optical pulse while maintaining the repetition frequency f, and an optical frequency interval f It is good also as a structure provided with the SC light generation part which outputs as an optical frequency comb of this (claim 9).

また、光周波数コム発生部は、所定の基準光の光ピークとこれに最も近い光周波数コムの光ピークとの光周波数間隔が一定になるように制御する光周波数制御部を含む構成としてもよい(請求項10)。   The optical frequency comb generator may include an optical frequency controller that controls the optical frequency interval between the optical peak of the predetermined reference light and the optical peak of the optical frequency comb closest thereto to be constant. (Claim 10).

本発明の偏波分散測定装置は、光周波数コム発生部から出力される光周波数コムを被測定物に入力することにより、被測定物における波長分散を高精度に測定することができる。   The polarization dispersion measuring apparatus of the present invention can measure the chromatic dispersion in the measured object with high accuracy by inputting the optical frequency comb output from the optical frequency comb generator to the measured object.

(第1の実施形態)
図1は、本発明の偏波分散測定装置の第1の実施形態を示す。図において、光周波数コム発生部11で発生する中心光周波数fc 、光周波数間隔fでn個以上の光周波数成分を有する光周波数コムは偏波コントローラ12に入力され、測定器制御部13の制御によりx偏光、y偏光、x,y軸に対する45度偏光の3つの偏光状態が設定される。この偏光状態に設定された光周波数コムは被測定物14に入力される。被測定物14を通過した光周波数コムは、分波器15によって光周波数コムのn個の光周波数成分に分波され、各光周波数成分がポラリメータ16−1〜16−nに入力され、測定された偏光状態が演算部17に入力される。
(First embodiment)
FIG. 1 shows a first embodiment of the polarization dispersion measuring apparatus of the present invention. In the figure, an optical frequency comb having a center optical frequency fc generated by the optical frequency comb generator 11 and n or more optical frequency components at an optical frequency interval f is input to the polarization controller 12 and controlled by the measuring instrument controller 13. The three polarization states of x-polarized light, y-polarized light, and 45-degree polarized light with respect to the x and y axes are set. The optical frequency comb set in this polarization state is input to the device under test 14. The optical frequency comb that has passed through the DUT 14 is demultiplexed into n optical frequency components of the optical frequency comb by the demultiplexer 15, and each optical frequency component is input to the polarimeters 16-1 to 16-n for measurement. The polarized state is input to the calculation unit 17.

演算部17は、測定器制御部13により偏波コントローラ12で設定される入力偏光状態と、各ポラリメータ16−1〜16−nで測定される各光周波数成分の出力偏光状態との関係から被測定物14のジョーンズ行列を演算し、その結果から被測定物14の偏波分散値を演算する。   The calculation unit 17 is subject to the relationship between the input polarization state set by the polarization controller 12 by the measuring instrument control unit 13 and the output polarization state of each optical frequency component measured by each of the polarimeters 16-1 to 16-n. The Jones matrix of the measurement object 14 is calculated, and the polarization dispersion value of the measurement object 14 is calculated from the result.

例えば、光周波数コム発生部11で周波数間隔5GHzで各々サブGHzオーダの確度をもつ光周波数コムが生成される場合には、5GHzの周波数間隔で被測定物14のジョーンズ行列を測定可能である。したがって、光周波数での微分演算を行うことにより被測定物の偏波分散を測定するジョーンズ行列解析法により、極めて高精度に被測定物の偏波分散を測定することができる。   For example, when the optical frequency comb generator 11 generates optical frequency combs each having an accuracy of sub-GHz order at a frequency interval of 5 GHz, the Jones matrix of the DUT 14 can be measured at a frequency interval of 5 GHz. Therefore, the polarization dispersion of the device under test can be measured with extremely high accuracy by the Jones matrix analysis method for measuring the polarization dispersion of the device under test by performing a differential operation at the optical frequency.

また、被測定物14の波長多重グリッドをf′としたときに、分波器15の分波間隔をf(f′>f、例えばf′= 200GHz、f=25GHz)としてもよい。   Further, when the wavelength multiplexing grid of the DUT 14 is f ′, the demultiplexing interval of the demultiplexer 15 may be f (f ′> f, for example, f ′ = 200 GHz, f = 25 GHz).

(第2の実施形態)
図2は、本発明の偏波分散測定装置の第2の実施形態を示す。本実施形態の特徴は、第1の実施形態の構成において、n個のポラリメータ16−1〜16−nに代えて、分波器15で分波されたn個の光周波数成分の1つを選択する光スイッチ21と、光スイッチ21を介して入力される光周波数成分の偏光状態を測定する1つのポラリメータ22を備える。測定器制御部23は、光スイッチ21の切り替え制御を行い、その切替情報を演算部24に通知する。演算部24は、ポラリメータ22で順次測定された各光周波数成分の偏光状態を蓄積し、被測定物14の偏波分散を演算する。
(Second Embodiment)
FIG. 2 shows a second embodiment of the polarization dispersion measuring apparatus of the present invention. A feature of the present embodiment is that, in the configuration of the first embodiment, instead of n polarimeters 16-1 to 16-n, one of the n optical frequency components demultiplexed by the demultiplexer 15 is used. An optical switch 21 to be selected and one polarimeter 22 for measuring the polarization state of the optical frequency component input through the optical switch 21 are provided. The measuring instrument control unit 23 performs switching control of the optical switch 21 and notifies the calculation unit 24 of the switching information. The calculation unit 24 accumulates the polarization state of each optical frequency component sequentially measured by the polarimeter 22 and calculates the polarization dispersion of the device under test 14.

(第3の実施形態)
図3は、本発明の偏波分散測定装置の第3の実施形態を示す。本実施形態の特徴は、第2の実施形態の構成において、分波器15および光スイッチ21に代えて、被測定物14から出力されるn個の光周波数成分の1つを透過する波長可変フィルタ25を備え、波長可変フィルタ25を介して入力される光周波数成分の偏光状態をポラリメータ22で測定する構成である。測定器制御部23は、波長可変フィルタ25の透過波長の切り替え制御を行い、その切替情報を演算部24に通知する。演算部24は、ポラリメータ22で順次測定された各光周波数成分の偏光状態を蓄積し、被測定物14の偏波分散を演算する。
(Third embodiment)
FIG. 3 shows a third embodiment of the polarization dispersion measuring apparatus of the present invention. The feature of this embodiment is that the wavelength tunable that transmits one of n optical frequency components output from the DUT 14 in place of the duplexer 15 and the optical switch 21 in the configuration of the second embodiment. The filter 25 is provided and the polarization state of the optical frequency component input through the wavelength tunable filter 25 is measured by the polarimeter 22. The measuring instrument control unit 23 controls the transmission wavelength of the wavelength tunable filter 25 and notifies the calculation unit 24 of the switching information. The calculation unit 24 accumulates the polarization state of each optical frequency component sequentially measured by the polarimeter 22 and calculates the polarization dispersion of the device under test 14.

(第4の実施形態)
図4は、本発明の偏波分散測定装置の第4の実施形態を示す。本実施形態の特徴は、第2の実施形態における分波器15および光スイッチ21、あるいは第3の実施形態における波長可変フィルタ25を被測定物14の前に配置し、被測定物14に光周波数コムの1つの光周波数成分を入力し、被測定物14を通過した光周波数成分の偏光状態をポラリメータ22で測定する構成である。
(Fourth embodiment)
FIG. 4 shows a fourth embodiment of the polarization dispersion measuring apparatus of the present invention. The feature of this embodiment is that the branching filter 15 and the optical switch 21 in the second embodiment, or the wavelength tunable filter 25 in the third embodiment is arranged in front of the device under test 14, and light is applied to the device under test 14. In this configuration, one optical frequency component of the frequency comb is input, and the polarization state of the optical frequency component that has passed through the DUT 14 is measured by the polarimeter 22.

(第5の実施形態)
図5は、本発明の偏波分散測定装置の第5の実施形態を示す。本実施形態の特徴は、第2の実施形態における分波器15および光スイッチ21、あるいは第3の実施形態における波長可変フィルタ25を偏波コントローラ12の前に配置し、被測定物14に光周波数コムの1つの光周波数成分を入力し、被測定物14を通過した光周波数成分の偏光状態をポラリメータ22で測定する構成である。
(Fifth embodiment)
FIG. 5 shows a fifth embodiment of the polarization dispersion measuring apparatus of the present invention. The feature of this embodiment is that the branching filter 15 and the optical switch 21 in the second embodiment, or the wavelength tunable filter 25 in the third embodiment is arranged in front of the polarization controller 12, and the light to be measured 14 is measured. In this configuration, one optical frequency component of the frequency comb is input, and the polarization state of the optical frequency component that has passed through the DUT 14 is measured by the polarimeter 22.

(光周波数コム発生部11の第1の構成例)
図6は、光周波数コム発生部11の第1の構成例を示す。図において、光周波数コム発生部11は、モードロックパルス光源71およびSC(スーパーコンティニウム)光発生部(例えば光非線形媒質)72により構成される。
(First Configuration Example of Optical Frequency Comb Generation Unit 11)
FIG. 6 shows a first configuration example of the optical frequency comb generator 11. In the figure, the optical frequency comb generator 11 includes a mode-locked pulse light source 71 and an SC (super continuum) light generator (for example, an optical nonlinear medium) 72.

モードロックパルス光源71は、光周波数制御部31から供給される周波数fのクロックに同期した繰り返し周波数fのモードロック光パルスを発生する。このモードロック光パルスの光周波数スペクトルは、図7(a) のように、光周波数軸上に光周波数間隔fで等間隔に並んだ光周波数成分の合成である。このモードロック光パルスをSC光発生部72に入射すると、図7(b) に示すように、媒質中の光非線形効果によって光周波数間隔fを保ったまま、モードロック光パルスの光周波数成分の分布域の外側の広い光周波数領域に新たな光周波数成分が生成される。これらの光周波数成分の位相は、すべて時間領域においてモードロック光パルスに同期している。その結果、上記の各実施形態の光周波数コム発生部11で発生する光周波数コムの条件を満足する出力光が、SC光発生部72から出力されることになる。   The mode-locked pulse light source 71 generates a mode-locked light pulse having a repetition frequency f synchronized with a clock having a frequency f supplied from the optical frequency control unit 31. The optical frequency spectrum of the mode-locked light pulse is a combination of optical frequency components arranged at equal intervals at an optical frequency interval f on the optical frequency axis as shown in FIG. When this mode-locked light pulse is incident on the SC light generator 72, as shown in FIG. 7 (b), the optical frequency component of the mode-locked light pulse is maintained while maintaining the optical frequency interval f by the optical nonlinear effect in the medium. A new optical frequency component is generated in a wide optical frequency region outside the distribution region. The phases of these optical frequency components are all synchronized with the mode-locked light pulse in the time domain. As a result, output light that satisfies the conditions of the optical frequency comb generated by the optical frequency comb generator 11 of each of the above embodiments is output from the SC light generator 72.

ここで、光周波数コムと図示しない基準光を合波することにより、その光周波数スペクトルは図7(c) に示すように、等間隔fで配置された光周波数コムの光ピーク間に基準光の光ピークが発生する。このとき、基準光の光ピークとこれに最も近い光周波数コムの光ピークとの光周波数間隔fd を常に一定に保つように光周波数制御部16の制御を実行すれば、光周波数コムに含まれるすべての光周波数成分の光周波数は、基準光に対して常に一定の光周波数間隔を保持することになる。これにより、光周波数コムの各光周波数成分は、基準光と同等の波長確度を有することになる。また、光周波数間隔fd をΔfだけシフトさせるように制御すれば、光周波数コムの各光周波数成分は基準光と同等の波長確度を保ったまま、中心光周波数fc をΔfだけシフトさせることができる。 Here, by combining the optical frequency comb and the reference light (not shown), the optical frequency spectrum becomes the reference light between the optical peaks of the optical frequency combs arranged at equal intervals f as shown in FIG. 7 (c). The light peak is generated. At this time, if the control of the optical frequency control unit 16 is performed so that the optical frequency interval fd between the optical peak of the reference light and the optical peak of the optical frequency comb closest thereto is always kept constant, the optical frequency comb is included. The optical frequencies of all the optical frequency components to be held always maintain a constant optical frequency interval with respect to the reference light. Thereby, each optical frequency component of the optical frequency comb has a wavelength accuracy equivalent to that of the reference light. Further, if the optical frequency interval f d is controlled to be shifted by Δf, each optical frequency component of the optical frequency comb can be shifted by Δf while maintaining the wavelength accuracy equivalent to that of the reference light. it can.

また、基準光を発生する光源として、アセチレンあるいはシアン等の分子吸収線に対して発振波長をロックした構成の光源を用いることにより、概ね10-7程度の現状の波長計に比べて非常に高い波長確度を実現することができる。 In addition, by using a light source with a configuration that locks the oscillation wavelength with respect to a molecular absorption line such as acetylene or cyan as the light source for generating the reference light, it is very high compared to the current wavelength meter of about 10-7. Wavelength accuracy can be achieved.

(光周波数コム発生部11の第2の構成例)
図8は、光周波数コム発生部11の第2の構成例を示す。図において、光周波数コム発生部11は、モードロックパルス光源71、SC光発生部(例えば光非線形媒質)72および周期性透過フィルタ73により構成される。モードロックパルス光源71、SC光発生部72および光周波数制御部31の関係は、図6に示す第1の実施形態と同様である。本構成例では、モードロックパルス光源71で繰り返し周波数f/Mのモードロック光パルスを発生させ、SC光発生部72から出力される光周波数間隔f/Mの光周波数コムを周期性透過フィルタ73で間引き、光周波数間隔fの光周波数コムに変換する。
(Second Configuration Example of Optical Frequency Comb Generation Unit 11)
FIG. 8 shows a second configuration example of the optical frequency comb generator 11. In the figure, the optical frequency comb generator 11 includes a mode-locked pulse light source 71, an SC light generator (for example, an optical nonlinear medium) 72, and a periodic transmission filter 73. The relationship among the mode-lock pulse light source 71, the SC light generator 72, and the optical frequency controller 31 is the same as that in the first embodiment shown in FIG. In this configuration example, a mode-locked light source 71 generates a mode-locked light pulse having a repetition frequency f / M, and an optical frequency comb having an optical frequency interval f / M output from the SC light generator 72 is used as a periodic transmission filter 73. Is thinned out and converted into an optical frequency comb having an optical frequency interval f.

(光周波数コム発生部11の第3の構成例)
図9は、光周波数コム発生部11の第3の構成例を示す。図において、光周波数コム発生部11は、モードロックパルス光源71、周期性透過フィルタ73およびSC光発生部(例えば光非線形媒質)72により構成される。本構成例は、図8に示す第2の構成例おけるSC光発生部72と周期性透過フィルタ73の順番を入れ替えたものである。モードロックパルス光源71から出力される繰り返し周波数f/Mのモードロック光パルスを周期性透過フィルタ73で間引き、光周波数間隔fのモードロック光パルスをSC光発生部72に入射する。これにより、光周波数間隔fの光周波数コムが生成される。
(Third configuration example of the optical frequency comb generator 11)
FIG. 9 shows a third configuration example of the optical frequency comb generator 11. In the figure, the optical frequency comb generator 11 includes a mode-locked pulse light source 71, a periodic transmission filter 73, and an SC light generator (for example, an optical nonlinear medium) 72. In this configuration example, the order of the SC light generation unit 72 and the periodic transmission filter 73 in the second configuration example shown in FIG. A mode-locked light pulse having a repetition frequency f / M output from the mode-locked pulse light source 71 is thinned out by the periodic transmission filter 73, and a mode-locked light pulse having an optical frequency interval f is incident on the SC light generating unit 72. Thereby, the optical frequency comb of the optical frequency interval f is generated.

(光周波数コム発生部11の第4の構成例)
図10は、光周波数コム発生部11の第4の構成例を示す。図において、光周波数コム発生部11は、モードロックパルス光源71、分周器74およびSC光発生部(例えば光非線形媒質)72により構成される。
(Fourth configuration example of the optical frequency comb generator 11)
FIG. 10 shows a fourth configuration example of the optical frequency comb generator 11. In the figure, the optical frequency comb generator 11 includes a mode-lock pulse light source 71, a frequency divider 74, and an SC light generator (for example, an optical nonlinear medium) 72.

光周波数コムは、図11(a) に示すように、光周波数軸上において光周波数間隔fで等間隔に配列される光周波数成分である。これらの光周波数成分の位相はすべて同期しており、図11(b) に示すようにそれぞれの光周波数成分の位相がある瞬間にすべて一致する関係にある。各光周波数成分の光周波数間隔がfであるため、時間軸上では1/fの周期で光周波数成分の位相の一致が観測され、かつこの瞬間にすべての光周波数成分が互いに強め合って大きなパワーとなる。したがって、光周波数コム発生部11で発生する光周波数コムを時間軸上で観測すると、図11(c) に示すように、1/fの時間間隔で非常に幅の狭いパルス光となる。   As shown in FIG. 11A, the optical frequency comb is an optical frequency component arranged at equal intervals at an optical frequency interval f on the optical frequency axis. The phases of these optical frequency components are all synchronized, and as shown in FIG. 11 (b), the phases of the respective optical frequency components all coincide with each other at a certain moment. Since the optical frequency interval of each optical frequency component is f, coincidence of the phase of the optical frequency component is observed with a period of 1 / f on the time axis, and at this moment, all the optical frequency components strengthen each other and become large. Become power. Therefore, when the optical frequency comb generated by the optical frequency comb generator 11 is observed on the time axis, as shown in FIG. 11 (c), the pulse light becomes very narrow at a time interval of 1 / f.

本構成例では、モードロックパルス光源71から出力される繰り返し周波数Mf(例えば25GHz)のモードロック光パルスを分周器74に入力し、時間軸上でパルス光を間引くことにより繰り返し周波数f(例えば5GHz)のモードロック光パルスとし、これをSC光発生部72に入射することにより、光周波数間隔fの光周波数コムが生成される。   In this configuration example, a mode-locked light pulse having a repetition frequency Mf (for example, 25 GHz) output from the mode-lock pulse light source 71 is input to the frequency divider 74, and the repetition frequency f (for example, by thinning out the pulse light on the time axis). 5 GHz) mode-locked light pulse, which is incident on the SC light generator 72, thereby generating an optical frequency comb having an optical frequency interval f.

本発明の偏波分散測定装置の第1の実施形態を示す図。The figure which shows 1st Embodiment of the polarization-dispersion measuring apparatus of this invention. 本発明の偏波分散測定装置の第2の実施形態を示す図。The figure which shows 2nd Embodiment of the polarization-dispersion measuring apparatus of this invention. 本発明の偏波分散測定装置の第3の実施形態を示す図。The figure which shows 3rd Embodiment of the polarization-dispersion measuring apparatus of this invention. 本発明の偏波分散測定装置の第4の実施形態を示す図。The figure which shows 4th Embodiment of the polarization-dispersion measuring apparatus of this invention. 本発明の偏波分散測定装置の第5の実施形態を示す図。The figure which shows 5th Embodiment of the polarization-dispersion measuring apparatus of this invention. 光周波数コム発生部11の第1の構成例を示す図。The figure which shows the 1st structural example of the optical frequency comb generation part 11. FIG. 光周波数コム発生部11の各部の光スペクトルを示す図。The figure which shows the optical spectrum of each part of the optical frequency comb generation part 11. FIG. 光周波数コム発生部11の第2の構成例を示す図。The figure which shows the 2nd structural example of the optical frequency comb generation part 11. FIG. 光周波数コム発生部11の第3の構成例を示す図。The figure which shows the 3rd structural example of the optical frequency comb generation part 11. FIG. 光周波数コム発生部11の第4の構成例を示す図。The figure which shows the 4th structural example of the optical frequency comb generation part 11. FIG. 光周波数コム発生部11の発生する光周波数コムの特徴を示す図。The figure which shows the characteristic of the optical frequency comb which the optical frequency comb generation part 11 generate | occur | produces. 偏波コントローラで設定する入力偏光状態を示す図。The figure which shows the input polarization state set with a polarization controller. ポラリメータで測定される各光周波数成分の偏光状態を示す図。The figure which shows the polarization state of each optical frequency component measured with a polarimeter.

符号の説明Explanation of symbols

11 光周波数コム発生部
12 偏波コントローラ
13,23 測定器制御部
14 被測定物
15 分波器
16,22 ポラリメータ
17,24 演算部
21 光スイッチ
25 波長可変フィルタ
31 光周波数制御部
71 モードロックパルス光源
72 SC光発生部
73 周期性透過フィルタ
74 分周器
DESCRIPTION OF SYMBOLS 11 Optical frequency comb generation part 12 Polarization controller 13, 23 Measuring device control part 14 Device to be measured 15 Demultiplexer 16, 22 Polarimeter 17, 24 Calculation part 21 Optical switch 25 Wavelength variable filter 31 Optical frequency control part 71 Mode lock pulse Light source 72 SC light generating unit 73 Periodic transmission filter 74 Frequency divider

Claims (10)

被測定物の入力偏光状態と出力偏光状態の関係から被測定物のジョーンズ行列を演算し、その結果から被測定物の偏波分散値を演算する偏波分散測定装置において、
光周波数間隔fでn個以上(nは2以上の整数)の光周波数成分からなる光周波数コムを発生する光周波数コム発生部と、
前記光周波数コムを入力し、その偏光状態を制御して前記被測定物に入力する偏波コントローラと、
前記被測定物を通過した前記光周波数コムからn個の光周波数成分を分波する分波器と、
前記分波器で分波された各光周波数成分の偏光状態を測定するn個のポラリメータと、 前記偏波コントローラにポアンカレ球上の独立な3つの偏光状態を設定する測定器制御部と、
前記測定器制御部により前記偏波コントローラで設定される入力偏光状態と、前記各ポラリメータで測定される各光周波数成分の偏光状態との関係から前記被測定物のジョーンズ行列を演算し、その結果から被測定物の偏波分散値を演算する演算部と
を備えたことを特徴とする偏波分散測定装置。
In the polarization dispersion measuring apparatus that calculates the Jones matrix of the measurement object from the relationship between the input polarization state and the output polarization state of the measurement object, and calculates the polarization dispersion value of the measurement object from the result,
An optical frequency comb generator for generating an optical frequency comb composed of n or more (n is an integer of 2 or more) optical frequency components at an optical frequency interval f;
A polarization controller that inputs the optical frequency comb, controls the polarization state of the optical frequency comb, and inputs the polarization state;
A demultiplexer for demultiplexing n optical frequency components from the optical frequency comb that has passed through the device under test;
N polarimeters for measuring the polarization state of each optical frequency component demultiplexed by the demultiplexer, and a measuring instrument control unit for setting three independent polarization states on the Poincare sphere in the polarization controller;
The Jones matrix of the device under test is calculated from the relationship between the input polarization state set by the polarization controller by the measuring instrument controller and the polarization state of each optical frequency component measured by each polarimeter, and the result A polarization dispersion measuring apparatus, comprising: a calculation unit that calculates a polarization dispersion value of the object to be measured.
請求項1に記載の偏波分散測定装置において、
前記n個のポラリメータに代えて、前記分波器で分波されたn個の光周波数成分の1つを選択する光スイッチと、選択された1つの光周波数成分の偏光状態を測定する1つのポラリメータとを備え、
前記演算部は、前記測定器制御部の制御により前記光スイッチを切り替えて得られる各光周波数成分の偏光状態を蓄積し、前記被測定物の偏波分散値を演算する構成である
ことを特徴とする偏波分散測定装置。
In the polarization dispersion measuring apparatus according to claim 1,
Instead of the n polarimeters, an optical switch that selects one of the n optical frequency components demultiplexed by the duplexer, and one that measures the polarization state of the selected one optical frequency component With a polarimeter,
The calculation unit is configured to accumulate a polarization state of each optical frequency component obtained by switching the optical switch under the control of the measuring instrument control unit and calculate a polarization dispersion value of the device under test. Polarization dispersion measuring device.
請求項2に記載の偏波分散測定装置において、
前記分波器および前記光スイッチに代えて、前記被測定物から出力されるn個の光周波数成分の1つを透過する波長可変フィルタを備え、
前記演算部は、前記測定器制御部の制御により前記波長可変フィルタの透過波長を切り替えて得られる各光周波数成分の偏光状態を蓄積し、前記被測定物の偏波分散値を演算する構成である
ことを特徴とする偏波分散測定装置。
In the polarization dispersion measuring apparatus according to claim 2,
In place of the branching filter and the optical switch, a wavelength tunable filter that transmits one of n optical frequency components output from the device under test is provided,
The calculation unit is configured to accumulate the polarization state of each optical frequency component obtained by switching the transmission wavelength of the wavelength tunable filter under the control of the measuring instrument control unit, and calculate the polarization dispersion value of the device under test. There is a polarization dispersion measuring apparatus.
請求項2に記載の分波器および光スイッチ、または請求項3に記載の波長可変フィルタを前記被測定物の前段に配置し、選択された1つの光周波数成分を前記被測定物に入力し、前記被測定物を通過した光周波数成分を前記ポラリメータに入力する構成である
ことを特徴とする偏波分散測定装置。
The duplexer and the optical switch according to claim 2 or the wavelength tunable filter according to claim 3 is arranged in front of the device under test, and one selected optical frequency component is input to the device under test. The polarization dispersion measuring apparatus, wherein the optical frequency component that has passed through the device under test is input to the polarimeter.
請求項2に記載の分波器および光スイッチ、または請求項3に記載の波長可変フィルタを前記偏波コントローラの前段に配置し、選択された1つの光周波数成分を前記偏波コントローラを介して前記被測定物に入力し、前記被測定物を通過した光周波数成分を前記ポラリメータに入力する構成である
ことを特徴とする偏波分散測定装置。
The duplexer and the optical switch according to claim 2 or the wavelength tunable filter according to claim 3 is arranged in front of the polarization controller, and one selected optical frequency component is passed through the polarization controller. A polarization dispersion measuring apparatus, characterized in that an optical frequency component that has been input to the device under test and passed through the device under test is input to the polarimeter.
請求項1〜5のいずれかに記載の偏波分散測定装置において、
前記光周波数コム発生部は、
繰り返し周波数fの光パルスを発生するパルス光源と、
前記繰り返し周波数fを保ったまま、前記光パルスの光周波数成分の分布域の外側の広い光周波数領域に新たな光周波数成分を生成し、光周波数間隔fの光周波数コムとして出力するSC光発生部と
を備えたことを特徴とする偏波分散測定装置。
In the polarization dispersion measuring apparatus according to any one of claims 1 to 5,
The optical frequency comb generator is
A pulsed light source that generates a light pulse having a repetition frequency f;
SC light generation that generates a new optical frequency component in a wide optical frequency region outside the optical frequency component distribution region of the optical pulse and outputs it as an optical frequency comb with an optical frequency interval f while maintaining the repetition frequency f And a polarization dispersion measuring apparatus.
請求項1〜5のいずれかに記載の偏波分散測定装置において、
前記光周波数コム発生部は、
繰り返し周波数f/M(Mは2以上の整数)の光パルスを発生するパルス光源と、
前記繰り返し周波数f/Mを保ったまま、前記光パルスの光周波数成分の分布域の外側の広い光周波数領域に新たな光周波数成分を生成し、光周波数間隔f/Mの光周波数コムとして出力するSC光発生部と、
前記SC光発生部から出力される光周波数コムを間引き、光周波数間隔fの光周波数コムとして出力する周期性透過フィルタと
を備えたことを特徴とする偏波分散測定装置。
In the polarization dispersion measuring apparatus according to any one of claims 1 to 5,
The optical frequency comb generator is
A pulse light source that generates an optical pulse having a repetition frequency f / M (M is an integer of 2 or more);
While maintaining the repetition frequency f / M, a new optical frequency component is generated in a wide optical frequency region outside the optical frequency component distribution region of the optical pulse, and output as an optical frequency comb having an optical frequency interval f / M. An SC light generating unit,
A polarization dispersion measuring apparatus comprising: a periodic transmission filter that thins out an optical frequency comb output from the SC light generation unit and outputs the thinned optical frequency comb as an optical frequency comb at an optical frequency interval f.
請求項1〜5のいずれかに記載の偏波分散測定装置において、
前記光周波数コム発生部は、
繰り返し周波数f/M(Mは2以上の整数)の光パルスを発生するパルス光源と、
前記パルス光源から出力される繰り返し周波数f/Mの光パルスを間引き、繰り返し周波数fの光パルスを出力する周期性透過フィルタと、
前記繰り返し周波数fを保ったまま、前記光パルスの光周波数成分の分布域の外側の広い光周波数領域に新たな光周波数成分を生成し、光周波数間隔fの光周波数コムとして出力するSC光発生部と
を備えたことを特徴とする偏波分散測定装置。
In the polarization dispersion measuring apparatus according to any one of claims 1 to 5,
The optical frequency comb generator is
A pulse light source that generates an optical pulse having a repetition frequency f / M (M is an integer of 2 or more);
A periodic transmission filter that thins out optical pulses with a repetition frequency f / M output from the pulse light source and outputs optical pulses with a repetition frequency f;
SC light generation that generates a new optical frequency component in a wide optical frequency region outside the optical frequency component distribution region of the optical pulse and outputs it as an optical frequency comb with an optical frequency interval f while maintaining the repetition frequency f And a polarization dispersion measuring apparatus.
請求項1〜5のいずれかに記載の偏波分散測定装置において、
前記光周波数コム発生部は、
繰り返し周波数Mf(Mは2以上の整数)の光パルスを発生するパルス光源と、
前記パルス光源から出力される繰り返し周波数Mfの光パルスをM分周し、繰り返し周波数fの光パルスを出力する分周器と、
前記繰り返し周波数fを保ったまま、前記光パルスの光周波数成分の分布域の外側の広い光周波数領域に新たな光周波数成分を生成し、光周波数間隔fの光周波数コムとして出力するSC光発生部と
を備えたことを特徴とする偏波分散測定装置。
In the polarization dispersion measuring apparatus according to any one of claims 1 to 5,
The optical frequency comb generator is
A pulse light source that generates an optical pulse having a repetition frequency Mf (M is an integer of 2 or more);
A frequency divider that M-divides an optical pulse with a repetition frequency Mf output from the pulse light source and outputs an optical pulse with a repetition frequency f;
SC light generation that generates a new optical frequency component in a wide optical frequency region outside the optical frequency component distribution region of the optical pulse and outputs it as an optical frequency comb with an optical frequency interval f while maintaining the repetition frequency f And a polarization dispersion measuring apparatus.
請求項1〜5いずれかに記載の偏波分散測定装置において、
前記光周波数コム発生部は、所定の基準光の光ピークとこれに最も近い光周波数コムの光ピークとの光周波数間隔が一定になるように制御する光周波数制御部を含む構成である ことを特徴とする偏波分散測定装置。
In the polarization dispersion measuring apparatus according to any one of claims 1 to 5,
The optical frequency comb generation unit includes an optical frequency control unit that controls an optical frequency interval between an optical peak of predetermined reference light and an optical peak of an optical frequency comb closest thereto to be constant. Characteristic polarization dispersion measuring device.
JP2003288577A 2003-08-07 2003-08-07 Polarization dispersion measuring device Expired - Fee Related JP4170852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003288577A JP4170852B2 (en) 2003-08-07 2003-08-07 Polarization dispersion measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003288577A JP4170852B2 (en) 2003-08-07 2003-08-07 Polarization dispersion measuring device

Publications (2)

Publication Number Publication Date
JP2005055382A true JP2005055382A (en) 2005-03-03
JP4170852B2 JP4170852B2 (en) 2008-10-22

Family

ID=34367184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003288577A Expired - Fee Related JP4170852B2 (en) 2003-08-07 2003-08-07 Polarization dispersion measuring device

Country Status (1)

Country Link
JP (1) JP4170852B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09244076A (en) * 1996-03-08 1997-09-19 Toshiba Corp Multiple wavelength light source
JPH1062308A (en) * 1996-08-20 1998-03-06 Furukawa Electric Co Ltd:The Method for measuring optical circuit part, and measuring device therefor
JPH10206919A (en) * 1997-01-28 1998-08-07 Nippon Hoso Kyokai <Nhk> Method and device for continuously varying wide wavelength range of light frequency
JPH10242555A (en) * 1997-02-28 1998-09-11 Anritsu Corp Frequency-variable laser beam source
JP2002048680A (en) * 2000-08-01 2002-02-15 Anritsu Corp Polarization mode dispersion distribution measuring method and apparatus for optical fiber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09244076A (en) * 1996-03-08 1997-09-19 Toshiba Corp Multiple wavelength light source
JPH1062308A (en) * 1996-08-20 1998-03-06 Furukawa Electric Co Ltd:The Method for measuring optical circuit part, and measuring device therefor
JPH10206919A (en) * 1997-01-28 1998-08-07 Nippon Hoso Kyokai <Nhk> Method and device for continuously varying wide wavelength range of light frequency
JPH10242555A (en) * 1997-02-28 1998-09-11 Anritsu Corp Frequency-variable laser beam source
JP2002048680A (en) * 2000-08-01 2002-02-15 Anritsu Corp Polarization mode dispersion distribution measuring method and apparatus for optical fiber

Also Published As

Publication number Publication date
JP4170852B2 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
EP0729057B1 (en) Coherent white light source and optical devices therewith
Agarwal et al. Fully programmable ring-resonator-based integrated photonic circuit for phase coherent applications
EP1833181B1 (en) Optical waveform measurement apparatus and optical waveform measurement method
Wang et al. Machine learning-based multifunctional optical spectrum analysis technique
JP2000193557A (en) Wavelength dispersion measuring device and polarization dispersion measuring device
EP2344923A2 (en) Apparatus for imparting phase shift to input waveform
Banawan et al. Perfect vortex modes for nondestructive characterization of mode dependent loss in ring core fibers
Beutel et al. Fully integrated four-channel wavelength-division multiplexed QKD receiver
JP4170852B2 (en) Polarization dispersion measuring device
JP2015012325A (en) Crosstalk measuring device and crosstalk measuring method
JP2004279589A (en) Method and device for developing multiple wavelength light source
Biberman et al. Demonstration of all-optical multi-wavelength message routing for silicon photonic networks
JP4008864B2 (en) Measuring device for transmission characteristics of multiplexer / demultiplexer
JP2005049242A (en) Channel transmitting characteristic measuring device for multiple-wavelength network
JP2020112450A (en) Wavelength monitor device and wavelength monitor method
Wang et al. A complete spectral polarimeter design for lightwave communication systems
Tait et al. Microring weight bank designs with improved channel density and tolerance
JP6186610B2 (en) Wavelength converter
Scott et al. Continuous, real-time, full-field waveform measurements via spectral slicing and parallel digital coherent detection
Masi et al. A silicon photonic interferometric router device based on scissor concept
Šlapák et al. Polarization changes as early warning system in optical fiber networks
Fontaine Optical arbitrary waveform generation and measurement
Okonkwo et al. Fibre device estimation techniques for SDM transmission
Ozoliņš et al. Efficient bandwidth of 50 GHz fiber Bragg grating for new-generation optical access
EP2575277A2 (en) Optical reception apparatus and optical network system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080807

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees