JP4008864B2 - Measuring device for transmission characteristics of multiplexer / demultiplexer - Google Patents

Measuring device for transmission characteristics of multiplexer / demultiplexer Download PDF

Info

Publication number
JP4008864B2
JP4008864B2 JP2003282103A JP2003282103A JP4008864B2 JP 4008864 B2 JP4008864 B2 JP 4008864B2 JP 2003282103 A JP2003282103 A JP 2003282103A JP 2003282103 A JP2003282103 A JP 2003282103A JP 4008864 B2 JP4008864 B2 JP 4008864B2
Authority
JP
Japan
Prior art keywords
optical
optical frequency
frequency
multiplexer
demultiplexer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003282103A
Other languages
Japanese (ja)
Other versions
JP2005049241A (en
Inventor
哲夫 高橋
邦彦 森
隆司 郷
一博 野口
正文 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003282103A priority Critical patent/JP4008864B2/en
Publication of JP2005049241A publication Critical patent/JP2005049241A/en
Application granted granted Critical
Publication of JP4008864B2 publication Critical patent/JP4008864B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、波長多重ネットワークなどで用いられる合分波器で合分波される各チャネルの透過率の光周波数依存性(透過特性)を測定する合分波器の透過特性測定装置に関する。   The present invention relates to a transmission characteristic measuring apparatus for a multiplexer / demultiplexer that measures the optical frequency dependency (transmission characteristic) of the transmittance of each channel multiplexed / demultiplexed by a multiplexer / demultiplexer used in a wavelength division multiplexing network or the like.

xDSLや光アクセスサービスなどの普及に伴うネットワークへのアクセス手段の高速化により、バックボーンネットワークに流入するトラヒックは着実に増加している。一方、増加するトラヒックを処理するルータやスイッチは、年々高速化されてギガビット領域に達している。このようなバックボーンネットワークを経済的に構築するには、波長多重(WDM)伝送技術が効果的になっている。   The traffic flowing into the backbone network is steadily increasing due to the speeding up of the access means to the network accompanying the spread of xDSL and optical access services. On the other hand, routers and switches that handle increasing traffic are increasing in speed year by year and reaching the gigabit range. In order to economically construct such a backbone network, wavelength division multiplexing (WDM) transmission technology has become effective.

また、リンクの大容量化に加えて、光領域での経路制御(波長ルーチング)の導入により、トラヒックの効率的な転送と一層の経済化を図るために、一部の波長チャネルを分岐・挿入する光アド・ドロップ技術や、任意の波長チャネルの経路を自由に設定できる光クロスコネクト技術の開発が進められている。   In addition to increasing the capacity of the link, by introducing path control (wavelength routing) in the optical domain, some wavelength channels are branched and inserted in order to achieve efficient traffic transfer and further economy. Optical add / drop technology and optical cross-connect technology that can freely set the path of an arbitrary wavelength channel are being developed.

このような波長多重ネットワークにおいて、各波長チャネルの劣化量を抑え、各波長チャネルの均一化を図ることは重要な課題である。各波長チャネルの劣化は、伝送路の損失、高パワー領域における非線形光学効果による波形劣化または非線形光学現象を誘起するクロストーク、合分波器その他のデバイスの波長依存性による各波長チャネルのフィルタリング効果など、さまざまな要因により決定される。特に、ノード数の多い大規模ネットワークでは、光信号が多数のノードを通過することになるので、合分波器その他のデバイスの波長依存性によるフィルタリング効果については注意深く設計される必要がある。   In such a wavelength division multiplexing network, it is an important issue to suppress the deterioration amount of each wavelength channel and make the wavelength channels uniform. Degradation of each wavelength channel is caused by transmission path loss, waveform degradation due to nonlinear optical effects in the high power region or crosstalk that induces nonlinear optical phenomena, and filtering effects of each wavelength channel due to wavelength dependence of multiplexers / demultiplexers and other devices. It is determined by various factors. In particular, in a large-scale network having a large number of nodes, an optical signal passes through a large number of nodes. Therefore, it is necessary to carefully design the filtering effect due to the wavelength dependence of the multiplexer / demultiplexer and other devices.

この設計を行う場合には、ITU−TG.694.1において標準化されている波長グリッドに対する各種デバイスの離調、および各波長チャネルの透過率の光周波数依存性(透過特性)をサブGHz以下の光周波数分解能で測定する必要がある。また、このような測定データを元に設計・構築された波長多重ネットワークにおいて、各波長チャネルの透過率の光周波数依存性(透過特性)を測定し、設計通りの特性が得られているか否かを確認する必要もある。   When this design is performed, the detuning of various devices with respect to the wavelength grid standardized in ITU-TG.694.1, and the optical frequency dependence (transmission characteristics) of the transmittance of each wavelength channel are optical frequencies below sub-GHz. It is necessary to measure with resolution. Also, in a wavelength division multiplexing network designed and constructed based on such measurement data, the optical frequency dependence (transmission characteristics) of the transmittance of each wavelength channel is measured, and whether or not the designed characteristics are obtained. It is also necessary to confirm.

このような波長多重ネットワークにおいて、使用される合分波器で合分波される各波長チャネルの透過特性を測定するものとしては、例えば特許文献1に記載の光スペクトラム測定装置がある。これは、波長可変光源から出力された試験光を被測定媒体(例えば合分波器)に入射し、その透過光の強度を測定する構成において、波長可変光源から出力される試験光の波長を連続的に変化させ、その一方で透過スペクトラムが既知の波長基準器に試験光を入射してその透過光の強度から波長を確定し、その確定した波長と被測定媒体の透過光の強度から被測定媒体の透過特性を測定する構成であった。   In such a wavelength division multiplexing network, for example, there is an optical spectrum measuring apparatus described in Patent Document 1 that measures the transmission characteristics of each wavelength channel multiplexed / demultiplexed by the used multiplexer / demultiplexer. This is because the test light output from the wavelength tunable light source is input to the medium to be measured (for example, a multiplexer / demultiplexer) and the intensity of the transmitted light is measured. On the other hand, the test light is incident on a wavelength reference device having a known transmission spectrum and the wavelength is determined from the intensity of the transmitted light, and the wavelength is determined from the determined wavelength and the intensity of the transmitted light of the measured medium. It was the structure which measures the permeation | transmission characteristic of a measurement medium.

特開2000−146693号公報Japanese Unexamined Patent Publication No. 2000-146693

従来の光スペクトラム測定装置に用いられる波長可変光源では、波長基準器で試験光の光周波数をサブGHz以下の精度で確定することが困難であり、波長チャネルの透過率の光周波数依存性(波長特性)を高精度に測定することができなかった。また、マイケルソン干渉計の原理を用いた波長計を利用する場合には、所定の精度は確保できるものの環境温度の変動などの影響を受けやすい問題があった。さらに、試験光の波長を連続的に変化させる構成であっても、各波長チャネルの波長特性については順次測定されることになるので、チャネル数分の時間が必要であった。   In a wavelength tunable light source used in a conventional optical spectrum measurement device, it is difficult to determine the optical frequency of the test light with sub-GHz accuracy with a wavelength reference device, and the wavelength channel transmittance depends on the optical frequency (wavelength Characteristic) could not be measured with high accuracy. In addition, when a wavelength meter using the principle of the Michelson interferometer is used, there is a problem that a predetermined accuracy can be ensured but it is easily affected by fluctuations in environmental temperature. Furthermore, even in the configuration in which the wavelength of the test light is continuously changed, the wavelength characteristics of each wavelength channel are sequentially measured, so that time corresponding to the number of channels is required.

本発明は、波長多重ネットワークにおける合分波器で合分波される各チャネルの透過率の光周波数依存性(透過特性)を極めて高い精度で測定することができる合分波器の透過特性測定装置を提供することを目的とする。   The present invention is a measurement of transmission characteristics of a multiplexer / demultiplexer capable of measuring the optical frequency dependence (transmission characteristics) of the transmittance of each channel multiplexed / demultiplexed in a wavelength division multiplexing network with extremely high accuracy. An object is to provide an apparatus.

請求項1に記載の発明は、光信号を狭帯域で等しい光周波数間隔fをもった複数のチャネルを合分波する被測定合分波器の各チャネルの透過特性(透過率の光周波数依存性)を測定する合分波器の透過特性測定装置において、各チャネルの光周波数間隔に等しい光周波数間隔fでn個以上(nは2以上の整数)の光周波数成分からなる光周波数コムを発生し、被測定合分波器に入力する光周波数コム発生部と、被測定合分波器で光周波数コムから分波されたn個の光周波数成分の光電力値を測定するn個の光電力計と、光周波数コム発生部に対して光周波数コムの各光周波数成分の光周波数間隔fを保ったままその中心光周波数を掃引する制御を行う光周波数制御部と、光周波数制御部により設定される光周波数コムの各光周波数成分の光周波数と、光電力計で測定される各光周波数成分の光電力値との関係から、被測定合分波器における各チャネルの透過特性を示すデータを生成するデータ加工部とを備え、光周波数コム発生部は、光周波数制御部から供給される周波数fのクロックに同期した繰り返し周波数fの光パルスを発生するパルス光源と、繰り返し周波数fの光パルスを入力し、繰り返し周波数fを保ったまま、光パルスの光周波数成分の分布域の外側の広い光周波数領域に新たな光周波数成分を生成し、光周波数間隔fの光周波数コムとして出力するSC光発生部とを備える。 According to the first aspect of the present invention, the transmission characteristic of each channel of the multiplexer / demultiplexer to be measured that multiplexes / demultiplexes the optical signal with a plurality of channels having the same optical frequency interval f in a narrow band (dependence of transmittance on the optical frequency) In the transmission characteristic measuring apparatus of the multiplexer / demultiplexer for measuring the optical frequency comb, an optical frequency comb composed of n or more (n is an integer of 2 or more) optical frequency components at an optical frequency interval f equal to the optical frequency interval of each channel. An optical frequency comb generator that generates and inputs to the measured multiplexer / demultiplexer, and n optical power values of n optical frequency components demultiplexed from the optical frequency comb by the measured multiplexer / demultiplexer An optical power meter, an optical frequency control unit for controlling the optical frequency comb generator to sweep the center optical frequency while maintaining the optical frequency interval f of each optical frequency component of the optical frequency comb, and an optical frequency control unit The optical frequency of each optical frequency component of the optical frequency comb set by The number and, from the relationship between the optical power values of the respective optical frequency components measured by the optical power meter, and a data processing unit for generating data indicating the transmission characteristic of each channel in the measurement demultiplexer, optical frequency The comb generator receives a pulse light source that generates an optical pulse with a repetition frequency f synchronized with a clock with a frequency f supplied from an optical frequency control unit, and an optical pulse with a repetition frequency f, and maintains the repetition frequency f. , it generates a new optical frequency components outside a wide optical frequency domain of the distribution areas of the optical frequency components of the optical pulse, Ru and an SC light generation portion for outputting an optical frequency comb of the optical frequency interval f.

請求項2に記載の発明は、光信号を狭帯域で等しい光周波数間隔fをもった複数のチャネルを合分波する被測定合分波器の各チャネルの透過特性(透過率の光周波数依存性)を測定する合分波器の透過特性測定装置において、各チャネルの光周波数間隔に等しい光周波数間隔fでn個以上(nは2以上の整数)の光周波数成分からなる光周波数コムを発生し、被測定合分波器に入力する光周波数コム発生部と、被測定合分波器で光周波数コムから分波されたn個の光周波数成分の光電力値を測定するn個の第1の光電力計と、光周波数コム発生部から出力される光周波数コムを分岐して入力し、n個の光周波数成分を分波する分岐・分波手段と、分岐・分波手段で分波された各光周波数成分の光電力値を測定するn個の第2の光電力計と、光周波数コム発生部に対して光周波数コムの各光周波数成分の光周波数間隔fを保ったままその中心光周波数を掃引する制御を行う光周波数制御部と、第1の光電力計で測定された各光周波数成分の光電力値を第2の光電力計で測定された各光周波数成分の光電力値で規格化し、その規格化された各光周波数成分の光電力値と光周波数制御部により設定される光周波数コムの各光周波数成分の光周波数との関係から、被測定合分波器における各チャネルの透過特性を示すデータを生成するデータ加工部とを備え、光周波数コム発生部は、光周波数制御部から供給される周波数fのクロックに同期した繰り返し周波数fの光パルスを発生するパルス光源と、繰り返し周波数fの光パルスを入力し、繰り返し周波数fを保ったまま、光パルスの光周波数成分の分布域の外側の広い光周波数領域に新たな光周波数成分を生成し、光周波数間隔fの光周波数コムとして出力するSC光発生部とを備える。 According to the second aspect of the present invention, the transmission characteristic of each channel of the multiplexer / demultiplexer to be measured that multiplexes / demultiplexes an optical signal with a plurality of channels having the same optical frequency interval f in a narrow band (dependence of transmittance on optical frequency) In the transmission characteristic measuring apparatus of the multiplexer / demultiplexer for measuring the optical frequency comb, an optical frequency comb composed of n or more (n is an integer of 2 or more) optical frequency components at an optical frequency interval f equal to the optical frequency interval of each channel. An optical frequency comb generator that generates and inputs to the measured multiplexer / demultiplexer, and n optical power values of n optical frequency components demultiplexed from the optical frequency comb by the measured multiplexer / demultiplexer A first optical power meter, a branching / demultiplexing unit for branching and inputting the optical frequency comb output from the optical frequency comb generation unit, and branching and demultiplexing n optical frequency components; N second optical power meters for measuring the optical power values of the demultiplexed optical frequency components; Measured by the first optical wattmeter and the optical frequency control unit that controls the wave number comb generation unit to sweep the center optical frequency while maintaining the optical frequency interval f of each optical frequency component of the optical frequency comb. The optical power value of each optical frequency component is normalized with the optical power value of each optical frequency component measured by the second optical power meter, and the normalized optical power value of each optical frequency component and the optical frequency control unit From the relationship with the optical frequency of each optical frequency component of the set optical frequency comb, it comprises a data processing unit that generates data indicating the transmission characteristics of each channel in the multiplexer / demultiplexer to be measured , A pulse light source that generates an optical pulse with a repetition frequency f synchronized with a clock with a frequency f supplied from an optical frequency control unit, and an optical pulse with a repetition frequency f are input, and the optical pulse is generated while maintaining the repetition frequency f. Hikari It generates a new optical frequency components outside a wide optical frequency domain of the distribution areas of several components, Ru and an SC light generation portion for outputting an optical frequency comb of the optical frequency interval f.

また、請求項1または請求項2に記載の合分波器の透過特性測定装置において、n個の光電力計に代えて、n個の光電力計に入力するn個の光周波数成分の1つを選択する光スイッチと、選択された1つの光周波数成分の光電力値を測定する光電力計とを備え、データ加工部は、光スイッチを切り替えて得られる各光周波数成分の光電力値を蓄積し、被測定合分波器における各チャネルの透過特性を示すデータを生成する構成としてもよい(請求項3)。   Further, in the transmission characteristic measuring apparatus for a multiplexer / demultiplexer according to claim 1 or 2, 1 of n optical frequency components input to n optical power meters instead of n optical power meters. An optical switch that selects one optical power meter that measures the optical power value of one selected optical frequency component, and the data processing unit converts the optical power value of each optical frequency component obtained by switching the optical switch And data indicating transmission characteristics of each channel in the multiplexer / demultiplexer to be measured may be generated (claim 3).

また、光周波数コム発生部は、繰り返し周波数f/M(Mは2以上の整数)の光パルスを発生するパルス光源と、繰り返し周波数f/Mの光パルスを入力し、繰り返し周波数f/Mを保ったまま、光パルスの光周波数成分の分布域の外側の広い光周波数領域に新たな光周波数成分を生成し、光周波数間隔f/Mの光周波数コムとして出力するSC光発生部と、SC光発生部から出力される光周波数コムを間引き、光周波数間隔fの光周波数コムとして出力する周期性透過フィルタとを備える構成としてもよい(請求項)。 The optical frequency comb generator receives a pulse light source that generates an optical pulse having a repetition frequency f / M (M is an integer of 2 or more) and an optical pulse having a repetition frequency f / M , and sets the repetition frequency f / M. An SC light generator that generates a new optical frequency component in a wide optical frequency region outside the optical frequency component distribution region of the optical pulse and outputs it as an optical frequency comb with an optical frequency interval of f / M. It is good also as a structure provided with the periodic transmission filter which thins out the optical frequency comb output from a light generation part, and outputs it as an optical frequency comb of the optical frequency space | interval f (Claim 4 ).

また、光周波数コム発生部は、繰り返し周波数f/M(Mは2以上の整数)の光パルスを発生するパルス光源と、パルス光源から出力される繰り返し周波数f/Mの光パルスを間引き、繰り返し周波数fの光パルスを出力する周期性透過フィルタと、繰り返し周波数fの光パルスを入力し、繰り返し周波数fを保ったまま、光パルスの光周波数成分の分布域の外側の広い光周波数領域に新たな光周波数成分を生成し、光周波数間隔fの光周波数コムとして出力するSC光発生部とを備える構成としてもよい(請求項)。 The optical frequency comb generator thins out and repeats a pulse light source that generates an optical pulse with a repetition frequency f / M (M is an integer of 2 or more) and an optical pulse with a repetition frequency f / M output from the pulse light source. A periodic transmission filter that outputs an optical pulse of frequency f and an optical pulse of repetition frequency f are input, and a new optical frequency region outside the optical frequency component distribution region of the optical pulse is maintained while maintaining the repetition frequency f. It is good also as a structure provided with the SC light generation part which produces | generates an optical frequency component and outputs as an optical frequency comb of the optical frequency space | interval f (Claim 5 ).

また、光周波数コム発生部は、繰り返し周波数Mf(Mは2以上の整数)の光パルスを発生するパルス光源と、パルス光源から出力される繰り返し周波数Mfの光パルスをM分周し、繰り返し周波数fの光パルスを出力する分周器と、繰り返し周波数fの光パルスを入力し、繰り返し周波数fを保ったまま、光パルスの光周波数成分の分布域の外側の広い光周波数領域に新たな光周波数成分を生成し、光周波数間隔fの光周波数コムとして出力するSC光発生部とを備える構成としてもよい(請求項)。 The optical frequency comb generator generates a pulse light source that generates an optical pulse having a repetition frequency Mf (M is an integer equal to or greater than 2) and an optical pulse having a repetition frequency Mf that is output from the pulse light source. A frequency divider that outputs an optical pulse of f and an optical pulse of repetition frequency f are input, and new light is applied to a wide optical frequency region outside the optical frequency component distribution region of the optical pulse while maintaining the repetition frequency f. It is good also as a structure provided with the SC light generation part which produces | generates a frequency component and outputs as an optical frequency comb of the optical frequency space | interval f (Claim 6 ).

また、光周波数制御部は、所定の基準光の光ピークとこれに最も近い光周波数コムの光ピークとの光周波数間隔が一定になるように光周波数コム発生部を制御する構成としてもよい(請求項)。
The optical frequency control unit may be configured to control the optical frequency comb generation unit so that the optical frequency interval between the optical peak of the predetermined reference light and the optical peak of the optical frequency comb closest thereto is constant ( Claim 7 ).

本発明は、光周波数コム発生部から出力される光周波数コムを被測定合分波器に入力することにより、被測定合分波器における各チャネルの透過特性を同時かつ高精度の光周波数確度で測定することができる。   The present invention inputs the optical frequency comb output from the optical frequency comb generator to the multiplexer / demultiplexer to be measured, so that the transmission characteristics of each channel in the multiplexer / demultiplexer to be measured can be simultaneously and accurately optical frequency accuracy. Can be measured.

(第1の実施形態)
図1は、本発明の合分波器の透過特性測定装置の第1の実施形態を示す。図において、光周波数コム発生部11で発生する中心光周波数fc 、光周波数間隔fでn個以上の光周波数成分を有する光周波数コムは、被測定合分波器12に入射される。ここで、光周波数コムの光周波数間隔fは、被測定合分波器12で合分波される各チャネルの光周波数間隔に等しいものとする。被測定合分波器12で分波された光周波数コムのn個の光周波数成分は光電力計14−1〜14−nに入力され、測定された各光周波数成分の光電力値がデータ加工部15に入力される。
(First embodiment)
FIG. 1 shows a first embodiment of a transmission characteristic measuring apparatus for a multiplexer / demultiplexer according to the present invention. In the figure, a center optical frequency fc generated by the optical frequency comb generator 11 and an optical frequency comb having n or more optical frequency components at an optical frequency interval f are incident on the measured multiplexer / demultiplexer 12. Here, the optical frequency interval f of the optical frequency comb is assumed to be equal to the optical frequency interval of each channel multiplexed / demultiplexed by the measured multiplexer / demultiplexer 12. The n optical frequency components of the optical frequency comb demultiplexed by the measured multiplexer / demultiplexer 12 are input to the optical power meters 14-1 to 14-n, and the optical power values of the measured optical frequency components are data. Input to the processing unit 15.

一方、光周波数コム発生部11は光周波数制御部16の制御により、各光周波数成分の光周波数間隔fを保ったまま、その中心光周波数fc をシフトさせる機能をもっている。データ加工部15は、光周波数制御部16により設定される光周波数コムの各光周波数成分の光周波数と、光電力計14−1〜14−nで測定される各光周波数成分の光電力値との関係から、被測定合分波器12における各チャネルの透過特性(透過率の光周波数依存性)を示すデータを生成して出力する。   On the other hand, the optical frequency comb generator 11 has a function of shifting the center optical frequency fc while maintaining the optical frequency interval f of each optical frequency component under the control of the optical frequency controller 16. The data processing unit 15 includes the optical frequency of each optical frequency component of the optical frequency comb set by the optical frequency control unit 16 and the optical power value of each optical frequency component measured by the optical power meters 14-1 to 14-n. Thus, data indicating the transmission characteristics of each channel in the measured multiplexer / demultiplexer 12 (the optical frequency dependence of the transmittance) is generated and output.

(第2の実施形態)
図2は、本発明の合分波器の透過特性測定装置の第2の実施形態を示す。本実施形態の特徴は、第1の実施形態の構成において、光周波数コム発生部11から出力される光周波数コムの各光周波数成分の光電力値を別途測定し、その光電力値で被測定合分波器12を分波して測定された光電力値を規格化する構成にある。そのための構成は、光周波数コム発生部11の出力を分岐する分岐器17、分岐された光周波数コムをn個の光周波数成分に分波する分波器18、分波された各光周波数成分の光電力値を測定する光電力計19−1〜19−nを備える。データ加工部15は、光電力計14−1〜14−n、19−1〜19−nでそれぞれ測定された光電力値を入力し、光電力計14−i(iは1〜n)で測定された電力値を光電力計19−iで測定された光電力値で規格し、規格化された光電力値をもとに被測定合分波器12における各チャネルの透過特性を示すデータを生成する。
(Second Embodiment)
FIG. 2 shows a second embodiment of the transmission characteristic measuring apparatus for the multiplexer / demultiplexer of the present invention. The feature of this embodiment is that, in the configuration of the first embodiment, the optical power value of each optical frequency component of the optical frequency comb output from the optical frequency comb generator 11 is separately measured, and the optical power value is measured. The optical power value measured by demultiplexing the multiplexer / demultiplexer 12 is normalized. For this purpose, a branching device 17 for branching the output of the optical frequency comb generator 11, a branching device 18 for branching the branched optical frequency comb into n optical frequency components, and each optical frequency component that has been split. Are provided with optical power meters 19-1 to 19-n. The data processing unit 15 inputs the optical power values measured by the optical power meters 14-1 to 14-n and 19-1 to 19-n, and the optical power meters 14-i (i is 1 to n). The measured power value is standardized with the optical power value measured by the optical power meter 19-i, and data indicating the transmission characteristics of each channel in the multiplexer / demultiplexer 12 to be measured based on the normalized optical power value Is generated.

(第3の実施形態)
図3は、本発明の合分波器の透過特性測定装置の第3の実施形態を示す。本実施形態の特徴は、第1の実施形態の構成において、n個の光電力計14−1〜14−nに代えて、被測定合分波器12で分波されたn個の光周波数成分の1つを選択する光スイッチ21と、光スイッチ21を介して入力される光周波数成分の光電力値を測定する光電力計22を備える。データ加工部15は、光スイッチ21を切り替えて光電力計22で順次測定された各光周波数成分の光電力値を蓄積し、被測定合分波器12における各チャネルの透過特性を示すデータを生成する。
(Third embodiment)
FIG. 3 shows a third embodiment of the transmission characteristic measuring apparatus for the multiplexer / demultiplexer of the present invention. A feature of the present embodiment is that n optical frequencies demultiplexed by the measured multiplexer / demultiplexer 12 instead of the n optical power meters 14-1 to 14-n in the configuration of the first embodiment. An optical switch 21 that selects one of the components and an optical power meter 22 that measures the optical power value of the optical frequency component input via the optical switch 21 are provided. The data processing unit 15 switches the optical switch 21 and accumulates the optical power value of each optical frequency component sequentially measured by the optical power meter 22 and stores data indicating the transmission characteristics of each channel in the measured multiplexer / demultiplexer 12. Generate.

(第4の実施形態)
図4は、本発明の合分波器の透過特性測定装置の第4の実施形態を示す。本実施形態の特徴は、第2の実施形態の構成において、n個の光電力計14−1〜14−nおよびn個の電力計19−1〜19−nに代えて、被測定合分波器12で分波されたn個の光周波数成分の1つを選択する光スイッチ21と、分波器18で分波されたn個の光周波数成分の1つを選択する光スイッチ23と、光スイッチ21,23を介して入力される光周波数成分の光電力値を測定する光電力計22,24を備える。データ加工部15は、光スイッチ21,23を連動して切り替えて光電力計22,24で順次測定された各光周波数成分の光電力値を蓄積し、規格化された光電力値を用いて被測定合分波器12における各チャネルの透過特性を示すデータを生成する。
(Fourth embodiment)
FIG. 4 shows a fourth embodiment of the transmission characteristic measuring apparatus for the multiplexer / demultiplexer of the present invention. A feature of the present embodiment is that in the configuration of the second embodiment, instead of the n optical power meters 14-1 to 14-n and the n power meters 19-1 to 19-n, the measured total An optical switch 21 for selecting one of the n optical frequency components demultiplexed by the duplexer 12, and an optical switch 23 for selecting one of the n optical frequency components demultiplexed by the duplexer 18. Optical power meters 22 and 24 for measuring the optical power value of the optical frequency component input through the optical switches 21 and 23 are provided. The data processing unit 15 switches the optical switches 21 and 23 in conjunction with each other, accumulates the optical power value of each optical frequency component sequentially measured by the optical power meters 22 and 24, and uses the normalized optical power value. Data indicating transmission characteristics of each channel in the measured multiplexer / demultiplexer 12 is generated.

(光周波数コム発生部11の第1の構成例)
図5は、光周波数コム発生部11の第1の構成例を示す。図において、光周波数コム発生部11は、モードロックパルス光源71およびSC(スーパーコンティニウム)光発生部(例えば光非線形媒質)72により構成される。
(First Configuration Example of Optical Frequency Comb Generation Unit 11)
FIG. 5 shows a first configuration example of the optical frequency comb generator 11. In the figure, the optical frequency comb generator 11 includes a mode-locked pulse light source 71 and an SC (super continuum) light generator (for example, an optical nonlinear medium) 72.

モードロックパルス光源71は、光周波数制御部16から供給される周波数fのクロックに同期した繰り返し周波数fのモードロック光パルスを発生する。このモードロック光パルスの光周波数スペクトルは、図6(a) のように、光周波数軸上に光周波数間隔fで等間隔に並んだ光周波数成分の合成である。このモードロック光パルスをSC光発生部72に入射すると、図6(b) に示すように、媒質中の光非線形効果によって光周波数間隔fを保ったまま、モードロック光パルスの光周波数成分の分布域の外側の広い光周波数領域に新たな光周波数成分が生成される。これらの光周波数成分の位相は、すべて時間領域においてモードロック光パルスに同期している。その結果、上記の各実施形態の光周波数コム発生部11で発生する光周波数コムの条件を満足する出力光が、SC光発生部72から出力されることになる。   The mode-locked pulse light source 71 generates a mode-locked light pulse having a repetition frequency f synchronized with a clock having a frequency f supplied from the optical frequency control unit 16. The optical frequency spectrum of the mode-locked light pulse is a combination of optical frequency components arranged at equal intervals at an optical frequency interval f on the optical frequency axis as shown in FIG. When this mode-locked light pulse is incident on the SC light generator 72, as shown in FIG. 6B, the optical frequency component of the mode-locked light pulse is maintained while maintaining the optical frequency interval f by the optical nonlinear effect in the medium. A new optical frequency component is generated in a wide optical frequency region outside the distribution region. The phases of these optical frequency components are all synchronized with the mode-locked light pulse in the time domain. As a result, output light that satisfies the conditions of the optical frequency comb generated by the optical frequency comb generator 11 of each of the above embodiments is output from the SC light generator 72.

ここで、光周波数コムと図示しない基準光を合波することにより、その光周波数スペクトルは図6(c) に示すように、等間隔fで配置された光周波数コムの光ピーク間に基準光の光ピークが発生する。このとき、基準光の光ピークとこれに最も近い光周波数コムの光ピークとの光周波数間隔fd を常に一定に保つように光周波数制御部16の制御を実行すれば、光周波数コムに含まれるすべての光周波数成分の光周波数は、基準光に対して常に一定の光周波数間隔を保持することになる。これにより、光周波数コムの各光周波数成分は、基準光と同等の波長確度を有することになる。また、光周波数間隔fd をΔfだけシフトさせるように制御すれば、光周波数コムの各光周波数成分は基準光と同等の波長確度を保ったまま、中心光周波数fc をΔfだけシフトさせることができる。 Here, by combining an optical frequency comb and a reference light (not shown), the optical frequency spectrum is between the optical peaks of the optical frequency combs arranged at equal intervals f as shown in FIG. 6 (c). The light peak is generated. At this time, if the control of the optical frequency control unit 16 is performed so that the optical frequency interval fd between the optical peak of the reference light and the optical peak of the optical frequency comb closest thereto is always kept constant, the optical frequency comb is included. The optical frequencies of all the optical frequency components to be held always maintain a constant optical frequency interval with respect to the reference light. Thereby, each optical frequency component of the optical frequency comb has a wavelength accuracy equivalent to that of the reference light. Further, if the optical frequency interval f d is controlled to be shifted by Δf, each optical frequency component of the optical frequency comb can be shifted by Δf while maintaining the wavelength accuracy equivalent to that of the reference light. it can.

また、基準光を発生する光源として、アセチレンあるいはシアン等の分子吸収線に対して発振波長をロックした構成の光源を用いることにより、概ね10-7程度の現状の波長計に比べて非常に高い波長確度を実現することができる。 In addition, by using a light source with a configuration that locks the oscillation wavelength with respect to a molecular absorption line such as acetylene or cyan as the light source for generating the reference light, it is very high compared to the current wavelength meter of about 10-7. Wavelength accuracy can be achieved.

(光周波数コム発生部11の第2の構成例)
図7は、光周波数コム発生部11の第2の構成例を示す。図において、光周波数コム発生部11は、モードロックパルス光源71、SC光発生部(例えば光非線形媒質)72および周期性透過フィルタ73により構成される。モードロックパルス光源71、SC光発生部72および光周波数制御部16の関係は、図5に示す第1の実施形態と同様である。本構成例では、モードロックパルス光源71で繰り返し周波数f/Mのモードロック光パルスを発生させ、SC光発生部72から出力される光周波数間隔f/Mの光周波数コムを周期性透過フィルタ73で間引き、光周波数間隔fの光周波数コムに変換する。
(Second Configuration Example of Optical Frequency Comb Generation Unit 11)
FIG. 7 shows a second configuration example of the optical frequency comb generator 11. In the figure, the optical frequency comb generator 11 includes a mode-locked pulse light source 71, an SC light generator (for example, an optical nonlinear medium) 72, and a periodic transmission filter 73. The relationship among the mode-locked pulse light source 71, the SC light generation unit 72, and the optical frequency control unit 16 is the same as that in the first embodiment shown in FIG. In this configuration example, a mode-locked light source 71 generates a mode-locked light pulse having a repetition frequency f / M, and an optical frequency comb having an optical frequency interval f / M output from the SC light generator 72 is used as a periodic transmission filter 73. Is thinned out and converted into an optical frequency comb having an optical frequency interval f.

(光周波数コム発生部11の第3の構成例)
図8は、光周波数コム発生部11の第3の構成例を示す。図において、光周波数コム発生部11は、モードロックパルス光源71、周期性透過フィルタ73およびSC光発生部(例えば光非線形媒質)72により構成される。本構成例は、図11に示す第2の構成例おけるSC光発生部72と周期性透過フィルタ73の順番を入れ替えたものである。モードロックパルス光源71から出力される繰り返し周波数f/Mのモードロック光パルスを周期性透過フィルタ73で間引き、光周波数間隔fのモードロック光パルスをSC光発生部72に入射する。これにより、光周波数間隔fの光周波数コムが生成される。
(Third configuration example of the optical frequency comb generator 11)
FIG. 8 shows a third configuration example of the optical frequency comb generator 11. In the figure, the optical frequency comb generator 11 includes a mode-locked pulse light source 71, a periodic transmission filter 73, and an SC light generator (for example, an optical nonlinear medium) 72. In this configuration example, the order of the SC light generation unit 72 and the periodic transmission filter 73 in the second configuration example shown in FIG. A mode-locked light pulse having a repetition frequency f / M output from the mode-locked pulse light source 71 is thinned out by the periodic transmission filter 73, and a mode-locked light pulse having an optical frequency interval f is incident on the SC light generating unit 72. Thereby, the optical frequency comb of the optical frequency interval f is generated.

(光周波数コム発生部11の第4の構成例)
図9は、光周波数コム発生部11の第4の構成例を示す。図において、光周波数コム発生部11は、モードロックパルス光源71、分周器74およびSC光発生部(例えば光非線形媒質)72により構成される。
(Fourth configuration example of the optical frequency comb generator 11)
FIG. 9 shows a fourth configuration example of the optical frequency comb generator 11. In the figure, the optical frequency comb generator 11 includes a mode-lock pulse light source 71, a frequency divider 74, and an SC light generator (for example, an optical nonlinear medium) 72.

光周波数コムは、図10(a) に示すように、光周波数軸上において光周波数間隔fで等間隔に配列される光周波数成分である。これらの光周波数成分の位相はすべて同期しており、図10(b) に示すようにそれぞれの光周波数成分の位相がある瞬間にすべて一致する関係にある。各光周波数成分の光周波数間隔がfであるため、時間軸上では1/fの周期で光周波数成分の位相の一致が観測され、かつこの瞬間にすべての光周波数成分が互いに強め合って大きなパワーとなる。したがって、光周波数コム発生部11で発生する光周波数コムを時間軸上で観測すると、図10(c) に示すように、1/fの時間間隔で非常に幅の狭いパルス光となる。   As shown in FIG. 10 (a), the optical frequency comb is an optical frequency component arranged at equal intervals at an optical frequency interval f on the optical frequency axis. The phases of these optical frequency components are all synchronized, and as shown in FIG. 10 (b), the phases of the respective optical frequency components all coincide with each other at a certain moment. Since the optical frequency interval of each optical frequency component is f, coincidence of the phase of the optical frequency component is observed with a period of 1 / f on the time axis, and at this moment, all the optical frequency components strengthen each other and become large. Become power. Therefore, when the optical frequency comb generated by the optical frequency comb generator 11 is observed on the time axis, as shown in FIG. 10 (c), it becomes pulse light having a very narrow width at 1 / f time intervals.

本構成例では、モードロックパルス光源71から出力される繰り返し周波数Mfのモードロック光パルスを分周器74に入力し、時間軸上でパルス光を間引くことにより繰り返し周波数fのモードロック光パルスとし、これをSC光発生部72に入射することにより、光周波数間隔fの光周波数コムが生成される。   In this configuration example, a mode-locked light pulse having a repetition frequency Mf output from the mode-locked pulse light source 71 is input to the frequency divider 74, and the pulse light is thinned out on the time axis to form a mode-locked light pulse having a repetition frequency f. By making this incident on the SC light generator 72, an optical frequency comb having an optical frequency interval f is generated.

本発明の合分波器の透過特性測定装置の第1の実施形態を示す図。The figure which shows 1st Embodiment of the transmission characteristic measuring apparatus of the multiplexer / demultiplexer of this invention. 本発明の合分波器の透過特性測定装置の第2の実施形態を示す図。The figure which shows 2nd Embodiment of the transmission characteristic measuring apparatus of the multiplexer / demultiplexer of this invention. 本発明の合分波器の透過特性測定装置の第3の実施形態を示す図。The figure which shows 3rd Embodiment of the transmission characteristic measuring apparatus of the multiplexer / demultiplexer of this invention. 本発明の合分波器の透過特性測定装置の第4の実施形態を示す図。The figure which shows 4th Embodiment of the transmission characteristic measuring apparatus of the multiplexer / demultiplexer of this invention. 光周波数コム発生部11の第1の構成例を示す図。The figure which shows the 1st structural example of the optical frequency comb generation part 11. FIG. 光周波数コム発生部11の各部の光スペクトルを示す図。The figure which shows the optical spectrum of each part of the optical frequency comb generation part 11. FIG. 光周波数コム発生部11の第2の構成例を示す図。The figure which shows the 2nd structural example of the optical frequency comb generation part 11. FIG. 光周波数コム発生部11の第3の構成例を示す図。The figure which shows the 3rd structural example of the optical frequency comb generation part 11. FIG. 光周波数コム発生部11の第4の構成例を示す図。The figure which shows the 4th structural example of the optical frequency comb generation part 11. FIG. 光周波数コム発生部11の発生する光周波数コムの特徴を示す図。The figure which shows the characteristic of the optical frequency comb which the optical frequency comb generation part 11 generate | occur | produces.

符号の説明Explanation of symbols

11 光周波数コム発生部
13 被測定合分波器
14,19,22,24 光電力計
15 データ加工部
16 光周波数制御部
17 分岐器
18 分波器
21,23 光スイッチ
71 モードロックパルス光源
72 SC光発生部
73 周期性透過フィルタ
74 分周器
DESCRIPTION OF SYMBOLS 11 Optical frequency comb generation part 13 MUX / DEMUX 14, 19, 22, 24 Optical power meter 15 Data processing part 16 Optical frequency control part 17 Branching device 18 Demultiplexer 21, 23 Optical switch 71 Mode lock pulse light source 72 SC light generator 73 periodic transmission filter 74 frequency divider

Claims (7)

光信号を狭帯域で等しい光周波数間隔fをもった複数のチャネルを合分波する被測定合分波器の各チャネルの透過特性(透過率の光周波数依存性)を測定する合分波器の透過特性測定装置において、
前記各チャネルの光周波数間隔に等しい光周波数間隔fでn個以上(nは2以上の整数)の光周波数成分からなる光周波数コムを発生し、前記被測定合分波器に入力する光周波数コム発生部と、
前記被測定合分波器で前記光周波数コムから分波されたn個の光周波数成分の光電力値を測定するn個の光電力計と、
前記光周波数コム発生部に対して前記光周波数コムの各光周波数成分の光周波数間隔fを保ったままその中心光周波数を掃引する制御を行う光周波数制御部と、
前記光周波数制御部により設定される前記光周波数コムの各光周波数成分の光周波数と、前記光電力計で測定される各光周波数成分の光電力値との関係から、前記被測定合分波器における各チャネルの透過特性を示すデータを生成するデータ加工部とを備え
前記光周波数コム発生部は、
前記光周波数制御部から供給される周波数fのクロックに同期した繰り返し周波数fの光パルスを発生するパルス光源と、
前記繰り返し周波数fの光パルスを入力し、前記繰り返し周波数fを保ったまま、前記光パルスの光周波数成分の分布域の外側の広い光周波数領域に新たな光周波数成分を生成し、光周波数間隔fの光周波数コムとして出力するSC光発生部とを備えた
ことを特徴とする合分波器の透過特性測定装置。
An optical multiplexer / demultiplexer that measures the transmission characteristics (dependence of transmittance on optical frequency) of each channel of an optical multiplexer / demultiplexer that multiplexes / demultiplexes a plurality of channels having the same optical frequency interval f in a narrow band. In the transmission characteristic measuring apparatus of
An optical frequency that generates an optical frequency comb composed of n or more (n is an integer of 2 or more) optical frequency components at an optical frequency interval f equal to the optical frequency interval of each channel, and is input to the measured multiplexer / demultiplexer Com generator and
N optical power meters for measuring optical power values of n optical frequency components demultiplexed from the optical frequency comb by the measured multiplexer / demultiplexer;
An optical frequency control unit that performs control to sweep the center optical frequency while maintaining the optical frequency interval f of each optical frequency component of the optical frequency comb to the optical frequency comb generation unit;
From the relationship between the optical frequency of each optical frequency component of the optical frequency comb set by the optical frequency control unit and the optical power value of each optical frequency component measured by the optical power meter, the measured multiplexing / demultiplexing A data processing unit for generating data indicating transmission characteristics of each channel in the vessel ,
The optical frequency comb generator is
A pulse light source that generates an optical pulse with a repetition frequency f synchronized with a clock with a frequency f supplied from the optical frequency control unit;
An optical pulse having the repetition frequency f is input, a new optical frequency component is generated in a wide optical frequency region outside the optical frequency component distribution region of the optical pulse while the repetition frequency f is maintained, and an optical frequency interval is generated. An apparatus for measuring transmission characteristics of a multiplexer / demultiplexer, comprising: an SC light generation unit that outputs an optical frequency comb of f .
光信号を狭帯域で等しい光周波数間隔fをもった複数のチャネルを合分波する被測定合分波器の各チャネルの透過特性(透過率の光周波数依存性)を測定する合分波器の透過特性測定装置において、
前記各チャネルの光周波数間隔に等しい光周波数間隔fでn個以上(nは2以上の整数)の光周波数成分からなる光周波数コムを発生し、前記被測定合分波器に入力する光周波数コム発生部と、
前記被測定合分波器で前記光周波数コムから分波されたn個の光周波数成分の光電力値を測定するn個の第1の光電力計と、
前記光周波数コム発生部から出力される光周波数コムを分岐して入力し、n個の光周波数成分を分波する分岐・分波手段と、
前記分岐・分波手段で分波された各光周波数成分の光電力値を測定するn個の第2の光電力計と、
前記光周波数コム発生部に対して前記光周波数コムの各光周波数成分の光周波数間隔fを保ったままその中心光周波数を掃引する制御を行う光周波数制御部と、
前記第1の光電力計で測定された各光周波数成分の光電力値を前記第2の光電力計で測定された各光周波数成分の光電力値で規格化し、その規格化された各光周波数成分の光電力値と前記光周波数制御部により設定される前記光周波数コムの各光周波数成分の光周波数との関係から、前記被測定合分波器における各チャネルの透過特性を示すデータを生成するデータ加工部とを備え
前記光周波数コム発生部は、
前記光周波数制御部から供給される周波数fのクロックに同期した繰り返し周波数fの光パルスを発生するパルス光源と、
前記繰り返し周波数fの光パルスを入力し、前記繰り返し周波数fを保ったまま、前記光パルスの光周波数成分の分布域の外側の広い光周波数領域に新たな光周波数成分を生成し、光周波数間隔fの光周波数コムとして出力するSC光発生部とを備えた
ことを特徴とする合分波器の透過特性測定装置。
An optical multiplexer / demultiplexer that measures the transmission characteristics (dependence of transmittance on optical frequency) of each channel of an optical multiplexer / demultiplexer that multiplexes / demultiplexes a plurality of channels having the same optical frequency interval f in a narrow band. In the transmission characteristic measuring apparatus of
An optical frequency that generates an optical frequency comb composed of n or more (n is an integer of 2 or more) optical frequency components at an optical frequency interval f equal to the optical frequency interval of each channel, and is input to the measured multiplexer / demultiplexer Com generator and
N first optical power meters for measuring optical power values of n optical frequency components demultiplexed from the optical frequency comb by the measured multiplexer / demultiplexer;
Branching / demultiplexing means for branching and inputting the optical frequency comb output from the optical frequency comb generator, and demultiplexing n optical frequency components;
N second optical power meters for measuring the optical power value of each optical frequency component demultiplexed by the branching / demultiplexing means;
An optical frequency control unit that performs control to sweep the center optical frequency while maintaining the optical frequency interval f of each optical frequency component of the optical frequency comb to the optical frequency comb generation unit;
The optical power value of each optical frequency component measured by the first optical power meter is normalized with the optical power value of each optical frequency component measured by the second optical power meter, and each normalized light From the relationship between the optical power value of the frequency component and the optical frequency of each optical frequency component of the optical frequency comb set by the optical frequency control unit, data indicating the transmission characteristics of each channel in the multiplexer / demultiplexer to be measured A data processing unit to generate ,
The optical frequency comb generator is
A pulse light source that generates an optical pulse with a repetition frequency f synchronized with a clock with a frequency f supplied from the optical frequency control unit;
An optical pulse having the repetition frequency f is input, a new optical frequency component is generated in a wide optical frequency region outside the optical frequency component distribution region of the optical pulse while the repetition frequency f is maintained, and an optical frequency interval is generated. An apparatus for measuring transmission characteristics of a multiplexer / demultiplexer, comprising: an SC light generation unit that outputs an optical frequency comb of f .
請求項1または請求項2に記載の合分波器の透過特性測定装置において、
前記n個の光電力計に代えて、前記n個の光電力計に入力するn個の光周波数成分の1つを選択する光スイッチと、選択された1つの光周波数成分の光電力値を測定する光電力計とを備え、
前記データ加工部は、前記光スイッチを切り替えて得られる各光周波数成分の光電力値を蓄積し、前記被測定合分波器における各チャネルの透過特性を示すデータを生成する構成である
ことを特徴とする合分波器の透過特性測定装置。
In the transmission characteristic measuring apparatus of the multiplexer / demultiplexer according to claim 1 or 2,
Instead of the n optical power meters, an optical switch that selects one of the n optical frequency components input to the n optical power meters, and an optical power value of the selected one optical frequency component. An optical power meter to measure,
The data processing unit is configured to accumulate the optical power value of each optical frequency component obtained by switching the optical switch, and to generate data indicating transmission characteristics of each channel in the measured multiplexer / demultiplexer. Characteristic multiplexer / demultiplexer transmission characteristic measuring device.
請求項1〜3のいずれかに記載の合分波器の透過特性測定装置において、
前記光周波数コム発生部は、前記パルス光源および前記SC光発生部に代えて、
繰り返し周波数f/M(Mは2以上の整数)の光パルスを発生するパルス光源と、
前記繰り返し周波数f/Mの光パルスを入力し、前記繰り返し周波数f/Mを保ったまま、前記光パルスの光周波数成分の分布域の外側の広い光周波数領域に新たな光周波数成分を生成し、光周波数間隔f/Mの光周波数コムとして出力するSC光発生部と、
前記SC光発生部から出力される光周波数コムを間引き、光周波数間隔fの光周波数コムとして出力する周期性透過フィルタと
を備えたことを特徴とする合分波器の透過特性測定装置。
In the transmission characteristic measuring device of the multiplexer / demultiplexer according to any one of claims 1 to 3,
The optical frequency comb generator replaces the pulse light source and the SC light generator,
A pulse light source that generates an optical pulse having a repetition frequency f / M (M is an integer of 2 or more);
An optical pulse having the repetition frequency f / M is input, and a new optical frequency component is generated in a wide optical frequency region outside the optical frequency component distribution region of the optical pulse while maintaining the repetition frequency f / M. An SC light generator that outputs an optical frequency comb having an optical frequency interval of f / M;
A transmission characteristic measuring apparatus for a multiplexer / demultiplexer, comprising: a periodic transmission filter that thins out an optical frequency comb output from the SC light generation unit and outputs the thinned optical frequency comb as an optical frequency comb with an optical frequency interval f.
請求項1〜3のいずれかに記載の合分波器の透過特性測定装置において、
前記光周波数コム発生部は、前記パルス光源および前記SC光発生部に代えて、
繰り返し周波数f/M(Mは2以上の整数)の光パルスを発生するパルス光源と、
前記パルス光源から出力される繰り返し周波数f/Mの光パルスを間引き、繰り返し周波数fの光パルスを出力する周期性透過フィルタと、
前記繰り返し周波数fの光パルスを入力し、前記繰り返し周波数fを保ったまま、前記光パルスの光周波数成分の分布域の外側の広い光周波数領域に新たな光周波数成分を生成し、光周波数間隔fの光周波数コムとして出力するSC光発生部と
を備えたことを特徴とする合分波器の透過特性測定装置。
In the transmission characteristic measuring device of the multiplexer / demultiplexer according to any one of claims 1 to 3,
The optical frequency comb generator replaces the pulse light source and the SC light generator,
A pulse light source that generates an optical pulse having a repetition frequency f / M (M is an integer of 2 or more);
A periodic transmission filter that thins out optical pulses with a repetition frequency f / M output from the pulse light source and outputs optical pulses with a repetition frequency f;
An optical pulse having the repetition frequency f is input , a new optical frequency component is generated in a wide optical frequency region outside the optical frequency component distribution region of the optical pulse while the repetition frequency f is maintained, and an optical frequency interval is generated. a transmission characteristic measuring apparatus for a multiplexer / demultiplexer, comprising: an SC light generation unit that outputs an optical frequency comb of f.
請求項1〜3のいずれかに記載の合分波器の透過特性測定装置において、
前記光周波数コム発生部は、前記パルス光源および前記SC光発生部に代えて、
繰り返し周波数Mf(Mは2以上の整数)の光パルスを発生するパルス光源と、
前記パルス光源から出力される繰り返し周波数Mfの光パルスをM分周し、繰り返し周波数fの光パルスを出力する分周器と、
前記繰り返し周波数fの光パルスを入力し、前記繰り返し周波数fを保ったまま、前記光パルスの光周波数成分の分布域の外側の広い光周波数領域に新たな光周波数成分を生成し、光周波数間隔fの光周波数コムとして出力するSC光発生部と
を備えたことを特徴とする合分波器の透過特性測定装置。
In the transmission characteristic measuring device of the multiplexer / demultiplexer according to any one of claims 1 to 3,
The optical frequency comb generator replaces the pulse light source and the SC light generator,
A pulse light source that generates an optical pulse having a repetition frequency Mf (M is an integer of 2 or more);
A frequency divider that M-divides an optical pulse with a repetition frequency Mf output from the pulse light source and outputs an optical pulse with a repetition frequency f;
An optical pulse having the repetition frequency f is input , a new optical frequency component is generated in a wide optical frequency region outside the optical frequency component distribution region of the optical pulse while the repetition frequency f is maintained, and an optical frequency interval is generated. a transmission characteristic measuring apparatus for a multiplexer / demultiplexer, comprising: an SC light generation unit that outputs an optical frequency comb of f.
請求項1〜3のいずれかに記載の合分波器の透過特性測定装置において、
前記光周波数制御部は、所定の基準光の光ピークとこれに最も近い光周波数コムの光ピークとの光周波数間隔が一定になるように前記光周波数コム発生部を制御する構成である ことを特徴とする合分波器の透過特性測定装置。
In the transmission characteristic measuring device of the multiplexer / demultiplexer according to any one of claims 1 to 3,
The optical frequency control unit is configured to control the optical frequency comb generation unit so that an optical frequency interval between an optical peak of predetermined reference light and an optical peak of an optical frequency comb closest thereto is constant. Characteristic multiplexer / demultiplexer transmission characteristic measuring device.
JP2003282103A 2003-07-29 2003-07-29 Measuring device for transmission characteristics of multiplexer / demultiplexer Expired - Fee Related JP4008864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003282103A JP4008864B2 (en) 2003-07-29 2003-07-29 Measuring device for transmission characteristics of multiplexer / demultiplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003282103A JP4008864B2 (en) 2003-07-29 2003-07-29 Measuring device for transmission characteristics of multiplexer / demultiplexer

Publications (2)

Publication Number Publication Date
JP2005049241A JP2005049241A (en) 2005-02-24
JP4008864B2 true JP4008864B2 (en) 2007-11-14

Family

ID=34267416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003282103A Expired - Fee Related JP4008864B2 (en) 2003-07-29 2003-07-29 Measuring device for transmission characteristics of multiplexer / demultiplexer

Country Status (1)

Country Link
JP (1) JP4008864B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102192830A (en) * 2010-12-10 2011-09-21 上海霍普光通信有限公司 PLC (Programmable Logic Controller) type optical splitter testing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4352810B2 (en) * 2003-08-20 2009-10-28 日本電気株式会社 Insertion loss measurement method for multiplexer / demultiplexer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102192830A (en) * 2010-12-10 2011-09-21 上海霍普光通信有限公司 PLC (Programmable Logic Controller) type optical splitter testing method
CN102192830B (en) * 2010-12-10 2012-11-28 上海霍普光通信有限公司 PLC (Programmable Logic Controller) type optical splitter testing method

Also Published As

Publication number Publication date
JP2005049241A (en) 2005-02-24

Similar Documents

Publication Publication Date Title
Agarwal et al. Fully programmable ring-resonator-based integrated photonic circuit for phase coherent applications
US5923683A (en) Coherent white light source and optical devices therewith
US7869711B2 (en) Optical tunable asymmetric interleaver and upgrade for dense wavelength division multiplexed networks
JP6123337B2 (en) Optical signal processing device, transmission device, and optical signal processing method
JP2006166444A (en) Passive optical network
Tan et al. Transmission and pass-drop operations of mixed baudrate Nyquist OTDM-WDM signals for all-optical elastic network
JPH11237312A (en) Wavelength dispersion measuring instrument and polarization dispersion measuring instrument
JP2000193557A (en) Wavelength dispersion measuring device and polarization dispersion measuring device
Beutel et al. Fully integrated four-channel wavelength-division multiplexed QKD receiver
JP4008864B2 (en) Measuring device for transmission characteristics of multiplexer / demultiplexer
US9239425B2 (en) Tuneable AWG device for multiplexing and demultiplexing signals and method for tuning said device
JP5210035B2 (en) Optical frequency synchronous communication device
JP6013985B2 (en) Crosstalk measuring device and crosstalk measuring method
JP2005049242A (en) Channel transmitting characteristic measuring device for multiple-wavelength network
US6674937B1 (en) Optical wavelength routing circuits
JP2004279589A (en) Method and device for developing multiple wavelength light source
JP5009890B2 (en) Broadband multi-wavelength light source
JP4170852B2 (en) Polarization dispersion measuring device
WO2014104038A1 (en) Wavelength conversion device
Masri et al. Dense wavelength division multiplexer based on microring resonators
Fontaine Optical arbitrary waveform generation and measurement
JP2005017129A (en) Wavelength dispersion measuring device
Wu et al. Design and testing of an optical routing device with reconfigurable optical add/drop multiplexer and interleaver functions
Takada et al. Filling the frequency gaps of a planar optical spectrum analyzer using a 2.5-GHz-spaced arrayed-waveguide grating in the C and L bands
Feuer et al. Upgradeable metro networks using frequency-cyclic optical add/drop

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees