JP2005054963A - Device for getting hydrogen out of hydrogen tank - Google Patents

Device for getting hydrogen out of hydrogen tank Download PDF

Info

Publication number
JP2005054963A
JP2005054963A JP2003288948A JP2003288948A JP2005054963A JP 2005054963 A JP2005054963 A JP 2005054963A JP 2003288948 A JP2003288948 A JP 2003288948A JP 2003288948 A JP2003288948 A JP 2003288948A JP 2005054963 A JP2005054963 A JP 2005054963A
Authority
JP
Japan
Prior art keywords
hydrogen
inert gas
tank
pipe
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003288948A
Other languages
Japanese (ja)
Inventor
Masaharu Niwa
正治 丹羽
Hiroshi Otsuka
宏 大塚
Katsuji Nakayoku
勝司 中浴
Tetsuya Ofuji
哲也 大藤
Takayuki Nonoyama
貴之 野々山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003288948A priority Critical patent/JP2005054963A/en
Publication of JP2005054963A publication Critical patent/JP2005054963A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for getting hydrogen out of a hydrogen tank in which static electricity is prevented from arising inside a pipe for getting out hydrogen and besides an inert gas such as helium can displace hydrogen inside the hydrogen tank. <P>SOLUTION: There is provided the device 1 for getting hydrogen out of the hydrogen tank which includes a hydrogen getting out pipe 5 which is coupled to the hydrogen tank 2 and through which hydrogen flows at the time of getting out hydrogen, and further includes a needle valve 8 which is provided in a mid flow of the hydrogen getting out pipe and can control a hydrogen flow rate. In the device for getting hydrogen out of the hydrogen tank, a second pipe 14 is coupled to the hydrogen getting out pipe 5, while an inert gas source 19 is connected to the second pipe. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は水素タンクからの水素抜取り装置に関する。   The present invention relates to an apparatus for removing hydrogen from a hydrogen tank.

特開平9−126397号公報は、高圧タンクからガスを調量しながら抜取る装置を開示している。   Japanese Patent Application Laid-Open No. 9-126397 discloses an apparatus for extracting gas from a high-pressure tank while metering it.

しかし、ガスが高圧水素である場合に、たとえば、燃料電池(FC)車両のタンク内高圧水素(25MPa−35MPa)を抜き取る場合に、従来技術をそのまま使用すると、つぎの問題が生じることが予想される。
1. 水素流速が高速の場合、水素抜取り配管内に静電気が発生し着火源になるおそれがある。
2. 水素タンク内圧力が低くなりすぎると、エアが進入して残留水素と混合するおそれがある。
3. FC車両の空輸に際しては、水素タンク内をヘリウムなどの不活性ガスで置換したいが、従来技術の装置は抜取り専用の装置のため、ヘリウムとの置換には別の装置が必要となる。
特開平9−126397号公報
However, when the gas is high-pressure hydrogen, for example, when the high-pressure hydrogen (25 MPa-35 MPa) in the tank of a fuel cell (FC) vehicle is extracted, the following problems are expected to occur if the conventional technology is used as it is. The
1. When the hydrogen flow rate is high, static electricity is generated in the hydrogen extraction pipe, which may cause an ignition source.
2. If the pressure in the hydrogen tank becomes too low, air may enter and mix with residual hydrogen.
3. In the air transportation of FC vehicles, it is desired to replace the inside of the hydrogen tank with an inert gas such as helium. However, since the apparatus of the prior art is a sampling-only apparatus, another apparatus is required for replacement with helium.
Japanese Patent Laid-Open No. 9-126397

本発明が解決しようとする問題点は、水素抜取り配管内の静電気の発生、エアの進入による残留水素との混合の、少なくとも一つの問題である。
本発明が解決しようとするもう一つの問題点は、上記問題に加えて、水素タンク内をヘリウムなどの不活性ガスで置換する場合に、別の装置が必要となるという問題である。
The problem to be solved by the present invention is at least one problem of generation of static electricity in the hydrogen extraction pipe and mixing with residual hydrogen due to the ingress of air.
Another problem to be solved by the present invention is that, in addition to the above problem, another device is required when the inside of the hydrogen tank is replaced with an inert gas such as helium.

本発明の目的は、水素抜取り配管内の静電気の発生を抑制できる、水素タンクからの水素抜取り装置を提供することにある。
本発明のもう一つの目的は、上記目的に加えて、水素タンク内をヘリウムなどの不活性ガスで置換することができる、水素タンクからの水素抜取り装置を提供することにある。
An object of the present invention is to provide a hydrogen extraction device from a hydrogen tank that can suppress the generation of static electricity in the hydrogen extraction pipe.
Another object of the present invention is to provide an apparatus for extracting hydrogen from a hydrogen tank, which can replace the inside of the hydrogen tank with an inert gas such as helium, in addition to the above object.

上記課題を解決する、また、上記目的を達成する、本発明はつぎの通りである。
(1)水素タンクに連結され水素を抜取る際に水素が流れる水素抜取り配管と、該水素抜取り配管の途中に設けられた、水素流速を制御可能なニードル弁と、を有する水素タンクからの水素抜取り装置。
(2)前記水素抜取り配管には、第2の配管が接続されており、該第2の配管には不活性ガス源が接続されている(1)記載の水素タンクからの水素抜取り装置。
(3)前記水素抜取り配管の途中には、ガス圧力を1MPa未満にする圧力レギュレータが設けられている(1)または(2)記載の水素タンクからの水素抜取り装置。
The present invention for solving the above problems and achieving the above object is as follows.
(1) Hydrogen from a hydrogen tank that is connected to a hydrogen tank and through which hydrogen flows when hydrogen is extracted, and a needle valve that is provided in the middle of the hydrogen extraction pipe and that can control the hydrogen flow rate. Sampling device.
(2) The hydrogen extraction device from the hydrogen tank according to (1), wherein a second piping is connected to the hydrogen extraction piping, and an inert gas source is connected to the second piping.
(3) The apparatus for extracting hydrogen from the hydrogen tank according to (1) or (2), wherein a pressure regulator for reducing the gas pressure to less than 1 MPa is provided in the middle of the hydrogen extraction pipe.

上記(1)の水素タンクからの水素抜取り装置によれば、水素抜取り配管の途中に、水素流速を制御可能なニードル弁を有するので、水素流速を低速に制御でき、水素抜取り配管に静電気を発生させないようにすることができる。   According to the hydrogen extraction device from the hydrogen tank in (1) above, since the needle valve that can control the hydrogen flow rate is provided in the middle of the hydrogen extraction piping, the hydrogen flow rate can be controlled at a low speed, and static electricity is generated in the hydrogen extraction piping. You can avoid it.

上記(2)の水素タンクからの水素抜取り装置によれば、水素抜取り配管に第2の配管を接続し、この第2の配管に不活性ガス源を接続したので、水素タンク内の水素の抜取りと、水素タンク内の水素の不活性ガスとの置換を1つの装置で行うことが可能になる。   According to the hydrogen extraction device from the hydrogen tank of (2) above, the second piping is connected to the hydrogen extraction piping, and the inert gas source is connected to the second piping. And replacement of the hydrogen in the hydrogen tank with an inert gas can be performed with one apparatus.

上記(3)の水素タンクからの水素抜取り装置によれば、圧力レギュレータを設けたので、水素抜きを1MPa未満の圧力下(所定機関への届け出を必要としない圧力下)で行うことができる。   According to the apparatus for removing hydrogen from the hydrogen tank of (3) above, since the pressure regulator is provided, hydrogen can be removed under a pressure of less than 1 MPa (a pressure that does not require notification to a predetermined engine).

以下に、本発明の水素タンクからの水素抜取り装置1(以下、単に水素抜取り装置1という)を、図1、図2を参照して説明する。
水素タンク2は、たとえば、燃料電池自動車の水素タンクであり、水素タンク2内に25MPa−35MPaの水素が充填してある。
燃料電池は、MEA(電解質膜の一面にアノードを形成し多面にカソードを形成した膜−電極アッセンブリ)と燃料ガス、酸化ガス流路を形成したセパレータとを重合わせた単セルを含む。燃料ガスとして水素または水素含有ガスをアノード側に供給し、アノードで水素が電子とプロトンに変換され、プロトンが電解質膜を通過してカソードに至り酸素と反応して水を生成し、電子が外部回路に流れて仕事をする。燃料ガスを水素タンク2などに圧縮して封入して、燃料電池とともに車両に搭載する。保守、点検や、外国への空輸に際しては、水素タンク2からの水素抜取りや、あるいは水素タンク2の水素の、不活性ガスとの置換が必要になる。本発明の水素抜取り装置1は、この水素抜取り、および不活性ガスとの置換に用いられるもので、車両工場、またはサービスステーション等に設置される。
Hereinafter, a hydrogen extraction apparatus 1 (hereinafter simply referred to as a hydrogen extraction apparatus 1) from a hydrogen tank according to the present invention will be described with reference to FIGS.
The hydrogen tank 2 is, for example, a hydrogen tank of a fuel cell vehicle, and the hydrogen tank 2 is filled with hydrogen of 25 MPa to 35 MPa.
The fuel cell includes a single cell in which an MEA (a membrane-electrode assembly in which an anode is formed on one surface and a cathode is formed on multiple surfaces) and a separator in which a fuel gas and an oxidizing gas channel are formed are overlapped. Hydrogen or a hydrogen-containing gas is supplied to the anode as the fuel gas, and hydrogen is converted into electrons and protons at the anode. The protons pass through the electrolyte membrane and reach the cathode to react with oxygen to produce water, and the electrons are externally supplied. Work on the circuit. The fuel gas is compressed and sealed in the hydrogen tank 2 or the like and mounted on the vehicle together with the fuel cell. During maintenance, inspection, and air transportation to foreign countries, it is necessary to remove hydrogen from the hydrogen tank 2 or replace the hydrogen in the hydrogen tank 2 with an inert gas. The hydrogen extraction device 1 of the present invention is used for this hydrogen extraction and replacement with an inert gas, and is installed in a vehicle factory or a service station.

本発明の水素抜取り装置1は、図1に示すように、水素抜取り系3と、不活性ガス置換系4とを有する。
水素抜取り系3は、水素抜取り配管(第1の配管)5を有し、水素抜取り配管5は水素タンク出口21にて水素タンク2に接続される。水素抜取り系3は、水素抜取り配管5に、水素タンク2との水素タンク出口21側から、順に、弁6、ガス圧を所定圧(たとえば、1MPa未満の圧力)に落とす圧力レギュレータ7、水素流速を制御可能なニードル弁8、遮断弁(電磁弁)9、リークチェック用弁10を有しており、さらに大気に開放する。ニードル弁8と遮断弁9との間から管11が分岐しており、管11には遮断弁(電磁弁)12、水素濃度計13が接続している。抜取り水素は、水素タンク2側から設備の排気ポートへと流れて抜き取られ、安全を確認しつつ大気に放出される。
As shown in FIG. 1, the hydrogen extraction device 1 of the present invention includes a hydrogen extraction system 3 and an inert gas replacement system 4.
The hydrogen extraction system 3 includes a hydrogen extraction pipe (first pipe) 5, and the hydrogen extraction pipe 5 is connected to the hydrogen tank 2 at a hydrogen tank outlet 21. The hydrogen extraction system 3 includes, in order from the hydrogen tank outlet 21 side with the hydrogen tank 2, a valve 6, a pressure regulator 7 that drops the gas pressure to a predetermined pressure (for example, a pressure less than 1 MPa), a hydrogen flow rate, Needle valve 8, shut-off valve (electromagnetic valve) 9, and leak check valve 10 are further opened to the atmosphere. A pipe 11 is branched from between the needle valve 8 and the shutoff valve 9, and a shutoff valve (electromagnetic valve) 12 and a hydrogen concentration meter 13 are connected to the pipe 11. The extracted hydrogen flows from the hydrogen tank 2 side to the exhaust port of the facility and is extracted, and released to the atmosphere while confirming safety.

不活性ガス置換系4は、水素抜取り配管5の水素タンク出口21と弁6との間の部分から分岐された不活性ガス置換配管14(不活性ガス置換配管14を第2の配管ともいう、その場合、第1の配管は水素抜取り配管5である)を有する。不活性ガス置換系4は、不活性ガス置換配管14に、水素抜取り配管5との分岐部側から、順に、ガスの不活性ガス源側への逆流を防止する逆止弁15、弁16、遮断弁(電磁弁)17、ガス圧を1MPa未満に落とす圧力レギュレータ18、不活性ガス源としての不活性ガスボンベ19を有する。不活性ガスは、たとえば、ヘリウムである。ヘリウムは窒素などに代替されてもよい。不活性ガスは不活性ガスボンベ19から、水素タンク2側へと流れて、水素と置換される。   The inert gas replacement system 4 includes an inert gas replacement pipe 14 branched from a portion between the hydrogen tank outlet 21 of the hydrogen extraction pipe 5 and the valve 6 (the inert gas replacement pipe 14 is also referred to as a second pipe, In that case, the first pipe is a hydrogen extraction pipe 5). The inert gas replacement system 4 includes a check valve 15, a valve 16, and a valve 16 that prevent the gas from flowing backward to the inert gas source side in order from the branching side of the hydrogen extraction pipe 5 to the inert gas replacement pipe 14. It has a shut-off valve (solenoid valve) 17, a pressure regulator 18 for reducing the gas pressure to less than 1 MPa, and an inert gas cylinder 19 as an inert gas source. The inert gas is, for example, helium. Helium may be replaced by nitrogen or the like. The inert gas flows from the inert gas cylinder 19 to the hydrogen tank 2 side and is replaced with hydrogen.

適宜の箇所に圧力スイッチ20が設けられて、その箇所の圧力を測定してもよい。図示例では、水素抜取り配管5上で水素タンク2の出口、不活性ガス置換配管14上で弁16と遮断弁(電磁弁)17との間の部位、不活性ガス置換配管14上で圧力レギュレータ18と不活性ガスボンベ19との間の部位などに設けられている。また、弁6、10、16は手動弁である。ただし、弁6、10、16を電磁弁に変えてもよい。   The pressure switch 20 may be provided at an appropriate location, and the pressure at that location may be measured. In the illustrated example, the outlet of the hydrogen tank 2 on the hydrogen extraction pipe 5, the part between the valve 16 and the shutoff valve (solenoid valve) 17 on the inert gas replacement pipe 14, and the pressure regulator on the inert gas replacement pipe 14. 18 and the inert gas cylinder 19. The valves 6, 10, and 16 are manual valves. However, the valves 6, 10, and 16 may be changed to electromagnetic valves.

つぎに、水素抜取り、不活性ガス置換の工程を説明する。
水素タンク2から水素を抜取る時には、水素抜取り配管5を水素タンク出口21にて水素タンク2に連結する。この時点では、弁6、弁16、ニードル弁8、遮断弁9、12、17は閉である。ついで、弁6、弁16、弁10を開にし、水素抜取り、不活性ガス置換の用意が完了する。
Next, the steps of removing hydrogen and replacing inert gas will be described.
When extracting hydrogen from the hydrogen tank 2, the hydrogen extraction pipe 5 is connected to the hydrogen tank 2 at the hydrogen tank outlet 21. At this time, the valve 6, the valve 16, the needle valve 8, and the shut-off valves 9, 12, 17 are closed. Next, the valve 6, the valve 16, and the valve 10 are opened to complete the hydrogen removal and inert gas replacement preparation.

水素抜取り作業を実行する。図2の各種パラメータのタイムチャートに示すように、制御盤に設けた運転スイッチをONにして、運転スイッチと連動する遮断弁9を開にする。不活性ガス置換系4の遮断弁17は閉じたままとする。ニードル弁8を少しづつ開いていくと、水素タンク2から水素が水素抜取り配管5を流れて設備へと抜き取られていく。ニードル弁8は、圧力レギュレータ7出口からの排出気体(水素、不活性ガス)の初速を1m/sec以下に制御する。ニードル弁8による流速管理、圧力レギュレータ7による1MPa未満への圧力管理は、シーケンス制御によって自動で行われる。このガス流速制御によって、ガス流速が高いときに発生するおそれのある水素抜取り配管5での静電気の発生を防止する。
時間の経過とともに、排出水素流量は増え、ニードル弁8の開度は大となっていき、水素タンク2内の水素残圧は低下していく。圧力が下がりすぎるとエアが進入するおそれがあるので、それを防止するために、圧力スイッチ20で管理し、水素タンク2内の水素残圧が所定圧(たとえば、0.05MPa)になった時に、自動で運転スイッチをOFFにし遮断弁9が閉じ、水素抜取りを停止する。
Perform a hydrogen scavenging operation. As shown in the time chart of various parameters in FIG. 2, the operation switch provided on the control panel is turned ON, and the shutoff valve 9 interlocked with the operation switch is opened. The shutoff valve 17 of the inert gas replacement system 4 is kept closed. When the needle valve 8 is opened little by little, hydrogen flows from the hydrogen tank 2 through the hydrogen extraction pipe 5 and is extracted to the facility. The needle valve 8 controls the initial velocity of the exhaust gas (hydrogen, inert gas) from the outlet of the pressure regulator 7 to 1 m / sec or less. Flow rate management by the needle valve 8 and pressure management to less than 1 MPa by the pressure regulator 7 are automatically performed by sequence control. By this gas flow rate control, generation of static electricity in the hydrogen extraction pipe 5 that may occur when the gas flow rate is high is prevented.
As time passes, the discharged hydrogen flow rate increases, the opening degree of the needle valve 8 increases, and the residual hydrogen pressure in the hydrogen tank 2 decreases. Since air may enter if the pressure is too low, it is managed by the pressure switch 20 to prevent this, and when the residual hydrogen pressure in the hydrogen tank 2 reaches a predetermined pressure (for example, 0.05 MPa). Then, the operation switch is automatically turned OFF, the shut-off valve 9 is closed, and the hydrogen extraction is stopped.

ついで、不活性ガス置換作業を実行する。不活性ガス置換系4の遮断弁17を開く。水素抜取り系3の遮断弁9は閉じたままとする。不活性ガスボンベ19からの不活性ガス(たとえば、ヘリウム)が、圧力レギュレータ18で圧力を落とされて水素タンク2に封入される。水素タンク2内圧力が所定圧(たとえば、0.8MPa)になったことが水素タンク2の出口の圧力スイッチ20で検出されると、遮断弁17を閉じて不活性ガスの送りを停止し、所定時間(たとえば、約10分)放置する。放置の理由は、水素タンク2内の残存水素と封入した不活性ガスを充分に攪拌するためである。以上で、1回目の水素抜取りと不活性ガスの封入が実行された。   Next, an inert gas replacement operation is performed. The shutoff valve 17 of the inert gas replacement system 4 is opened. The shutoff valve 9 of the hydrogen removal system 3 is kept closed. An inert gas (for example, helium) from the inert gas cylinder 19 is reduced in pressure by the pressure regulator 18 and sealed in the hydrogen tank 2. When the pressure switch 20 at the outlet of the hydrogen tank 2 detects that the internal pressure of the hydrogen tank 2 has reached a predetermined pressure (for example, 0.8 MPa), the shutoff valve 17 is closed to stop the feeding of the inert gas, Leave for a predetermined time (for example, about 10 minutes). The reason for leaving is to sufficiently agitate the residual hydrogen in the hydrogen tank 2 and the enclosed inert gas. Thus, the first hydrogen extraction and inert gas filling were performed.

ついで、上記水素抜取り作業と同じ方法で、水素タンク2中の残存水素と不活性ガスの混合気体の抜取り作用を実行し、その後、不活性ガスの封入を実行して、2回目の水素抜取りと不活性ガスの封入を実行する。水素抜取りと不活性ガスの封入を複数回(たとえば、計3回)実行する。これらは、自動、または半自動で行われる。   Next, in the same manner as the above-described hydrogen extraction operation, the operation of extracting the mixed gas of the remaining hydrogen and the inert gas in the hydrogen tank 2 is executed, and then the inert gas sealing is executed to perform the second hydrogen extraction. Perform inert gas encapsulation. Hydrogen removal and inert gas filling are performed a plurality of times (for example, three times in total). These are performed automatically or semi-automatically.

不活性ガスへの置換終了後、最終的な水素濃度を計測することが望ましい。水素濃度計測は、水素抜取り系3におて、遮断弁9を閉じ、遮断弁12を開き、水素タンク2および水素抜取り配管5中のガスを水素濃度計13に導くことによって行われる。
また、安全上、水素のリークがないことを確認することが望ましい。リークの有無を確認するには、遮断弁17、12を閉じ、リークチェック弁10を閉じ、遮断弁9を開いて、系の圧力低下の有無を圧力スイッチ20によって検出することによって行われる。圧力低下があれば、系にリークがあることを意味する。
It is desirable to measure the final hydrogen concentration after the replacement with the inert gas. The hydrogen concentration measurement is performed in the hydrogen extraction system 3 by closing the shut-off valve 9 and opening the shut-off valve 12 and introducing the gas in the hydrogen tank 2 and the hydrogen extraction pipe 5 to the hydrogen concentration meter 13.
For safety reasons, it is desirable to confirm that there is no hydrogen leak. The presence or absence of a leak is confirmed by closing the shut-off valves 17 and 12, closing the leak check valve 10 and opening the shut-off valve 9, and detecting the presence or absence of a system pressure drop by the pressure switch 20. A pressure drop means that there is a leak in the system.

つぎに、上記水素抜取り装置1による水素抜取り、不活性ガスとの置換の作用、効果を説明する。
まず、水素抜取り配管5の途中に、水素流速を制御可能なニードル弁8を有するので、水素流速を低速に、たとえば、1m/sec以下に、制御でき、水素抜取り配管5に静電気を発生させないようにすることができる。
また、圧力レギュレータ7を設け、シーケンス制御の圧力管理により、自動で1MPa未満で安全に水素を排出するようにしたので、高圧ガス取締りに係わる基準の圧力未満の範囲であり、管理も容易になる。
また、水素タンク2内の残圧が所定圧力になると自動で遮断弁9が閉じるようにしたので、エアの進入を防止でき、かつ、それを操作ミスなく、かつ、特別な集中力を要さずに行うことができる。
また、リークチェック弁10と圧力スイッチ20を設けて圧力低下により水素のリークを検出できるようにしたので、水素洩れも検出可能であり、装置の安全性を容易に確認することができる。
上記により、誰が作業しても、安全、かつ、確実に水素抜取りを実施できる。
Next, the action and effect of hydrogen extraction by the hydrogen extraction apparatus 1 and substitution with an inert gas will be described.
First, since the needle valve 8 capable of controlling the hydrogen flow rate is provided in the middle of the hydrogen extraction piping 5, the hydrogen flow rate can be controlled to a low speed, for example, 1 m / sec or less, so that static electricity is not generated in the hydrogen extraction piping 5. Can be.
In addition, since the pressure regulator 7 is provided and hydrogen is automatically discharged safely at less than 1 MPa by pressure control of sequence control, the pressure is within the range below the standard pressure related to high-pressure gas control and management is easy. .
In addition, since the shutoff valve 9 is automatically closed when the residual pressure in the hydrogen tank 2 reaches a predetermined pressure, it is possible to prevent the ingress of air, and there is no operational error and a special concentration is required. Can be done without.
Further, since the leak check valve 10 and the pressure switch 20 are provided so that hydrogen leak can be detected by pressure drop, hydrogen leak can also be detected, and the safety of the apparatus can be easily confirmed.
According to the above, hydrogen removal can be performed safely and reliably regardless of who works.

水素抜取り配管5に不活性ガス置換配管(第2の配管)14を接続し、この第2の配管に不活性ガス源(不活性ガスボンベ)19を接続したので、遮断弁9、17の切替えによって、水素タンク2内の水素の抜取りと、水素タンク2内の水素の不活性ガスとの置換を1つの装置で、かつ、自動で行うことが可能になった。自動により、誰が作業しても、ミスなく、水素抜取りと不活性ガスとの置換を実施できる。   Since the inert gas replacement pipe (second pipe) 14 is connected to the hydrogen extraction pipe 5 and the inert gas source (inert gas cylinder) 19 is connected to the second pipe, the shutoff valves 9 and 17 are switched. The extraction of the hydrogen in the hydrogen tank 2 and the replacement of the hydrogen in the hydrogen tank 2 with an inert gas can be performed automatically with one apparatus. Automatic operation makes it possible for anyone to carry out hydrogen removal and replacement with inert gas without mistakes.

また、圧力レギュレータ7、18を設けたので、水素抜き、および水素と不活性ガスの混合ガス抜きを、1MPa未満の圧力下(所定機関への届け出を必要としない圧力下)で行うことができる。したがって、本発明の装置を、工場またはサービスステーションなどどこに設置しても、容易に、かつ、確実に、水素タンク2からの水素抜き取り、および水素タンク2への不活性ガスの封入を行うことができる。
本発明は、燃料電池自動車の水素タンクからの水素の抜取り、外国への空輸に際して水素タンクの水素の抜取りおよび不活性ガスとの置換に利用することができる。
In addition, since the pressure regulators 7 and 18 are provided, it is possible to perform dehydrogenation and dehydrogenation of hydrogen and inert gas under a pressure of less than 1 MPa (under a pressure that does not require notification to a predetermined engine). . Therefore, it is possible to easily and surely remove the hydrogen from the hydrogen tank 2 and seal the inert gas into the hydrogen tank 2 wherever the apparatus of the present invention is installed, such as a factory or a service station. it can.
INDUSTRIAL APPLICABILITY The present invention can be used for extracting hydrogen from a hydrogen tank of a fuel cell vehicle, extracting hydrogen from a hydrogen tank and replacing it with an inert gas during air transportation to a foreign country.

本発明の水素タンクからの水素の抜取り装置の系統図である。It is a systematic diagram of the extraction apparatus of hydrogen from the hydrogen tank of this invention. 本発明の水素タンクからの水素の抜取りにおける、水素流量、ニードル弁開度、水素タンク残圧、運転スイッチの、タイムチャートである。4 is a time chart of hydrogen flow rate, needle valve opening, hydrogen tank residual pressure, and operation switch in extracting hydrogen from the hydrogen tank of the present invention.

符号の説明Explanation of symbols

1 水素タンクからの水素抜取り装置(単に、水素抜取り装置1ともいう)
2 水素タンク
3 水素抜取り系
4 不活性ガス置換系
5 水素抜取り配管(第1の配管)
6 弁
7 圧力レギュレータ
8 ニードル弁
9 遮断弁(電磁弁)
10 リークチェック用弁
11 管
12 遮断弁(電磁弁)
13 水素濃度計
14 不活性ガス置換配管(第2の配管)
15 逆止弁
16 弁
17 遮断弁
18 圧力レギュレータ
19 不活性ガス源(たとえば、不活性ガスボンベ、たとえば、ヘリウムボンベ)
20 圧力スイッチ
21 水素タンク出口
1 Hydrogen removal device from hydrogen tank (also simply referred to as hydrogen removal device 1)
2 Hydrogen tank 3 Hydrogen extraction system 4 Inert gas replacement system 5 Hydrogen extraction piping (first piping)
6 Valve 7 Pressure regulator 8 Needle valve 9 Shut-off valve (solenoid valve)
10 Leak check valve 11 Pipe 12 Shut-off valve (solenoid valve)
13 Hydrogen concentration meter 14 Inert gas replacement piping (second piping)
15 Check valve 16 Valve 17 Shut-off valve 18 Pressure regulator 19 Inert gas source (for example, inert gas cylinder, for example, helium cylinder)
20 Pressure switch 21 Hydrogen tank outlet

Claims (3)

水素タンクに連結され水素を抜取る際に水素が流れる水素抜取り配管と、該水素抜取り配管の途中に設けられた、水素流速を制御可能なニードル弁と、を有する水素タンクからの水素抜取り装置。   A hydrogen extraction device connected to a hydrogen tank and having a hydrogen extraction pipe through which hydrogen flows when the hydrogen is extracted, and a needle valve provided in the middle of the hydrogen extraction pipe and capable of controlling a hydrogen flow rate. 前記水素抜取り配管には、第2の配管が接続されており、該第2の配管には不活性ガス源が接続されている請求項1記載の水素タンクからの水素抜取り装置。   The apparatus for extracting hydrogen from a hydrogen tank according to claim 1, wherein a second pipe is connected to the hydrogen extraction pipe, and an inert gas source is connected to the second pipe. 前記水素抜取り配管の途中には、ガス圧を1MPa未満にする圧力レギュレータが設けられている請求項1または請求項2記載の水素タンクからの水素抜取り装置。   The apparatus for extracting hydrogen from a hydrogen tank according to claim 1 or 2, wherein a pressure regulator for reducing a gas pressure to less than 1 MPa is provided in the middle of the hydrogen extraction pipe.
JP2003288948A 2003-08-07 2003-08-07 Device for getting hydrogen out of hydrogen tank Pending JP2005054963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003288948A JP2005054963A (en) 2003-08-07 2003-08-07 Device for getting hydrogen out of hydrogen tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003288948A JP2005054963A (en) 2003-08-07 2003-08-07 Device for getting hydrogen out of hydrogen tank

Publications (1)

Publication Number Publication Date
JP2005054963A true JP2005054963A (en) 2005-03-03

Family

ID=34367438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003288948A Pending JP2005054963A (en) 2003-08-07 2003-08-07 Device for getting hydrogen out of hydrogen tank

Country Status (1)

Country Link
JP (1) JP2005054963A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008281155A (en) * 2007-05-14 2008-11-20 Taiyo Nippon Sanso Corp Cylinder cabinet
JP2009036213A (en) * 2007-07-31 2009-02-19 Tatsuno Corp Gas filling system
CN106567992A (en) * 2016-11-03 2017-04-19 北京航天试验技术研究所 Oxy-hydrogen rocket liquid hydrogen storage box replacement method
JP2021060203A (en) * 2019-10-03 2021-04-15 大陽日酸株式会社 Airtightness test method for hydrogen station

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008281155A (en) * 2007-05-14 2008-11-20 Taiyo Nippon Sanso Corp Cylinder cabinet
JP2009036213A (en) * 2007-07-31 2009-02-19 Tatsuno Corp Gas filling system
CN106567992A (en) * 2016-11-03 2017-04-19 北京航天试验技术研究所 Oxy-hydrogen rocket liquid hydrogen storage box replacement method
CN106567992B (en) * 2016-11-03 2020-08-28 北京航天试验技术研究所 Replacement method for hydrogen and oxygen rocket liquid hydrogen storage tank
JP2021060203A (en) * 2019-10-03 2021-04-15 大陽日酸株式会社 Airtightness test method for hydrogen station
JP7477953B2 (en) 2019-10-03 2024-05-02 大陽日酸株式会社 Hydrogen station airtightness test method

Similar Documents

Publication Publication Date Title
CN100481587C (en) Hydrogen passivation shut down system for a fuel cell power plant
CN103348522B (en) For the recirculation circuit of fuel cell
CN102623727B (en) Compressed hydrogen filling control valve
CN110178255B (en) Method for determining the tightness of a fuel cell stack
US9755254B2 (en) Procedure for detecting the state of permeability of the ion exchange polymer membrane of a fuel cell
US9437886B2 (en) Fuel cell system and method for stopping power generation in fuel cell system
JP2005054963A (en) Device for getting hydrogen out of hydrogen tank
KR100799725B1 (en) Fuel cell system and method for operating same
CN101809794B (en) Fuel cell system
JP5498901B2 (en) Fuel cell membrane breakage detection method
JP2006127830A (en) Fuel cell system
JP2016018611A (en) Fuel cell system
US8304138B2 (en) Fuel cell system and method of use
JP2011159538A (en) Fuel cell system
US20020058167A1 (en) Safety process and device for starting up a fuel cell
EP2202834B1 (en) Fuell cell system and method of starting fuel cell system
CN116724428A (en) Method for protecting a component of a fuel cell system
CN113169359A (en) Method for reducing carbon corrosion in a fuel cell stack and motor vehicle
US11851777B2 (en) Hydrogen gas mixing device
US11471841B2 (en) Hydrogen gas mixing device
CN114317878B (en) Converter oxygen lance nitrogen seal device
US20230253602A1 (en) Fuel cell system and fuel supply method thereof
JP2007073278A (en) Fuel cell system
CN115613048A (en) Nitrogen charging control system and method
CN115079016A (en) Method and device for accelerating life test of fuel cell