JP2005054953A - Fuel feeding pipe - Google Patents
Fuel feeding pipe Download PDFInfo
- Publication number
- JP2005054953A JP2005054953A JP2003288554A JP2003288554A JP2005054953A JP 2005054953 A JP2005054953 A JP 2005054953A JP 2003288554 A JP2003288554 A JP 2003288554A JP 2003288554 A JP2003288554 A JP 2003288554A JP 2005054953 A JP2005054953 A JP 2005054953A
- Authority
- JP
- Japan
- Prior art keywords
- pipe
- ceramic
- fuel
- fuel supply
- composite material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
Abstract
Description
本発明は、燃料吹き込み供給ノズルに係り、特に、燃料吹き込みノズルに連結するセラミックス製内管と金属−セラミックス複合材料製外管からなる燃料供給管に関するものである。 The present invention relates to a fuel injection supply nozzle, and more particularly to a fuel supply pipe comprising a ceramic inner tube and a metal-ceramic composite material outer tube connected to the fuel injection nozzle.
近年、流動床燃焼方式による燃焼炉は、産業用燃焼炉を始め、熱回収炉や発電用など、固体燃料の多様性に対応できる燃焼炉として利用拡大が図られている。
この際、炉内への燃料供給方法としては、流動床の上部から投入する方式と、炉内流動層の内部へ下方から供給する方式とに分けられている。最近では、大型化して床面積が大きくなるにつれて、燃料分散の均一化の点から、多数の燃料吹き込みノズルにより下方から燃料を供給する方式が主流となってきている。
In recent years, combustion furnaces based on fluidized bed combustion have been used more widely as combustion furnaces that can handle a variety of solid fuels, such as industrial combustion furnaces, heat recovery furnaces, and power generation furnaces.
At this time, the fuel supply method into the furnace is divided into a method of feeding from the upper part of the fluidized bed and a method of supplying from the lower side to the fluidized bed in the furnace. Recently, as the floor area becomes larger due to an increase in size, a system in which fuel is supplied from below by a large number of fuel blowing nozzles has become mainstream from the viewpoint of uniform fuel dispersion.
この際、粉コークス等の粉粒体燃料が使用されるため、耐摩耗性付与の面から、鋼管の内周にセラミックス管を複合した燃料吹き込みノズルが使用されているが、内蔵するセラミックス管が熱衝撃等で破損するという問題点があった。 At this time, since a granular fuel such as coke breeze is used, a fuel blowing nozzle in which a ceramic tube is combined with the inner periphery of the steel tube is used from the viewpoint of imparting wear resistance. There was a problem of damage due to thermal shock.
こうした破損を防止するため、セラミックス製内管を分割セグメント化した燃料吹き込み供給ノズルや、水平な燃料吹き込みノズルとそれに連結する燃料供給管からなる燃料吹き込み供給ノズルが提案されている。(例えば、特許文献1参照)。
しかしながら、従来の燃料吹き込み供給ノズルにおいては、温度上昇、降温が繰り返されるような使用条件においては、金属製外管とセラミックス製内管の熱膨張の差によりセラミックス製内管に亀裂が生じ、時には燃料供給管自体が破損するという課題があった。さらには、製造に手間がかかるという問題点もあった。 However, in the conventional fuel blowing supply nozzle, under conditions where temperature rise and fall are repeated, cracks occur in the ceramic inner pipe due to the difference in thermal expansion between the metal outer pipe and the ceramic inner pipe, and sometimes There was a problem that the fuel supply pipe itself was damaged. Furthermore, there is a problem that it takes time to manufacture.
したがって、本発明の目的は、昇温・昇降を繰り返しても破損することは無い燃料供給管とこれを連結して得られる燃料吹き込み供給ノズルを容易に作製する技術を提供することにある。 Accordingly, it is an object of the present invention to provide a technique for easily producing a fuel supply pipe that is not damaged even when repeated raising and lowering of temperature and a fuel blowing supply nozzle obtained by connecting the fuel supply pipe.
上記した本発明の目的は、燃料吹き込みノズルに連結する燃料供給管であって、該燃料供給管がセラミックス製内管と金属−セラミックス複合材料製外管とからなる複合管であることを特徴とする燃料供給管によって達成できる。
また、上記した本発明の目的は、前記金属−セラミックス複合材料がAl合金マトリックス中にSiC強化材が複合された材料であり、かつ、該複合材料中のSiC強化材の含有率が30〜80体積%であることを特徴とする前記載の燃料供給管によって達成できる。
The object of the present invention is a fuel supply pipe connected to a fuel injection nozzle, wherein the fuel supply pipe is a composite pipe comprising a ceramic inner pipe and a metal-ceramic composite material outer pipe. Can be achieved by the fuel supply pipe.
Another object of the present invention is that the metal-ceramic composite material is a material in which an SiC reinforcing material is composited in an Al alloy matrix, and the content of the SiC reinforcing material in the composite material is 30 to 80. This can be achieved by the fuel supply pipe described above, which is characterized by being in volume%.
本発明によれば、セラミックス製内管を有する複合管(燃料供給管)が容易に作製できる。また、燃料供給管が互いに熱膨張係数の値が近いセラミックス製内管と金属−セラミックス複合材料製外管とからなる複合管であるため昇温・昇降を繰り返しても破損することは無い。したがって、これを燃料供給管として用いた燃料吹き込み供給ノズルを容易に作製することができる効果がある。 According to the present invention, a composite pipe (fuel supply pipe) having a ceramic inner pipe can be easily manufactured. In addition, since the fuel supply pipe is a composite pipe made of a ceramic inner pipe and a metal-ceramic composite material outer pipe having close thermal expansion coefficients, the fuel supply pipe will not be damaged even if it is repeatedly heated and raised. Therefore, there is an effect that a fuel blowing supply nozzle using this as a fuel supply pipe can be easily manufactured.
本発明に係る燃料吹き込み供給ノズルの構成を図1を用いて説明する。図1の(a)は、燃料吹き込み供給ノズルの縦断面図であり、(b)は、本発明の燃料供給管の横断面図である。なお、両図とも模式的な概略図である。
1は、鋼管2の内周にセラミックス管3を複合した燃料吹き込みノズルであり、4は、燃料吹き込みノズル1に連結する燃料供給管である。本発明は、燃料供給管4がセラミックス製内管5と金属−セラミックス複合材料製外管6とからなる複合管であることを特徴ととしている。
ここで、図中の太い矢印は、粉流体燃料と空気の出入りの方向を示している。
The structure of the fuel blowing supply nozzle according to the present invention will be described with reference to FIG. 1A is a longitudinal sectional view of a fuel blowing supply nozzle, and FIG. 1B is a transverse sectional view of a fuel supply pipe of the present invention. Both figures are schematic schematic views.
Here, the thick arrows in the figure indicate the directions in and out of the powder fluid fuel and air.
すなわち、本発明者らは、上記課題に鑑み鋭意研究した結果、燃料供給管の外管として金属−セラミックス複合材料を使用することにより、セラミックス製内管の破損を防止できることを見出し、本発明を完成したものである。 That is, as a result of intensive studies in view of the above problems, the present inventors have found that the use of a metal-ceramic composite material as the outer tube of the fuel supply tube can prevent the ceramic inner tube from being damaged. It has been completed.
ここで、本発明において燃料供給管の外管として金属−セラミックス複合材料を提案した理由は、該複合材料はその金属とセラミックスの種類と、含有率を変えることで熱膨張係数を制御できるからである。(ここで、金属としてはアルミニウム合金やSi合金等、セラミックスとしては、Al2O3やSiC等が用いられる。)
例えば、金属としてアルミニウム合金を、セラミックス強化材としてSiCを用いた場合、SiCの含有率を60〜70体積%とすることで、複合材料の熱膨張係数をアルミナセラミックスと略同一とすることができる作用がある。
すなわち、本発明のセラミックス製内管と金属−セラミックス複合材料製外管とからなる複合管により燃料供給管を構成することで昇温・昇降を繰り返しても熱膨張の差に起因した破損を防ぐ効果がある。
Here, the reason why the metal-ceramic composite material is proposed as the outer pipe of the fuel supply pipe in the present invention is that the composite material can control the thermal expansion coefficient by changing the kind and content of the metal and ceramic. is there. (Here, aluminum or Si alloy is used as the metal, and Al 2 O 3 or SiC is used as the ceramic.)
For example, when an aluminum alloy is used as the metal and SiC is used as the ceramic reinforcement, the thermal expansion coefficient of the composite material can be made substantially the same as that of the alumina ceramic by setting the SiC content to 60 to 70% by volume. There is an effect.
That is, the fuel supply pipe is composed of a composite pipe composed of the ceramic inner pipe and the metal-ceramic composite material outer pipe of the present invention, thereby preventing damage due to the difference in thermal expansion even if the temperature rise and fall are repeated. effective.
本発明において金属−セラミックス複合材料製の外管を作製する方法は慣用の方法を用いることができ、セラミックス強化材粉末と金属粉末を混合、焼結する粉末冶金法、セラミックス粉末で作製したプリフォームに溶融した金属を加圧浸透させ複合化する高圧鋳造法、及びセラミックス粉末で作製したプリフォームに溶融した金属を非加圧で浸透させ複合化する非加圧浸透法などが挙げられる。 In the present invention, a conventional method can be used as a method for producing an outer tube made of a metal-ceramic composite material. A powder metallurgy method in which a ceramic reinforcing material powder and a metal powder are mixed and sintered, and a preform produced from a ceramic powder. There are a high pressure casting method in which molten metal is pressed and infiltrated to form a composite, and a non-pressurized infiltration method in which molten metal is infiltrated into a preform made of ceramic powder without applying pressure.
また、セラミックス粉末でプリフォームを作製する場合、その作製方法は慣用の方法が用いられる。すなわち、有機、無機バインダーとセラミックス粉末を混合、プレスする方法、セラミックス粉末に溶媒、バインダーを添加しフィルタープレスで成形する方法が挙げられる。 Moreover, when producing a preform with ceramic powder, a conventional method is used as the production method. That is, a method of mixing and pressing an organic or inorganic binder and a ceramic powder, and a method of adding a solvent and a binder to the ceramic powder and molding with a filter press can be mentioned.
本発明において、複合材料中のセラミック強化材は安価で軽量なSiCが好ましく、その含有率は30〜80体積%が好ましい。その理由は、複合材料中のセラミック強化材(SiC)の含有率が30体積%より少ないと部材の剛性が低下しセラミックス内管を支持する上で好ましくないからであり、また含有率80体積%より多いと複合材料の作製が困難となるからである。 In the present invention, the ceramic reinforcing material in the composite material is preferably cheap and lightweight SiC, and the content is preferably 30 to 80% by volume. The reason is that if the content of the ceramic reinforcing material (SiC) in the composite material is less than 30% by volume, the rigidity of the member is lowered, which is not preferable for supporting the ceramic inner tube, and the content is 80% by volume. This is because it is difficult to produce a composite material if the content is larger.
本発明によれば、複合材料製外管がセラミックス製内管と熱膨張係数が近いので、外管に内管を取り付けることは容易となる。例えば有機系、無機系の接着剤を用いて容易に取り付けることができる。こうして作製した燃料供給管と燃料吹き込みノズルとを必要に応じて機械加工して、互いを公知の方法で連結すれば粉粒体燃料を吹き込むのに最適な燃料吹き込み供給ノズルを得ることができる。 According to the present invention, since the outer tube made of a composite material has a thermal expansion coefficient close to that of the inner tube made of ceramics, it is easy to attach the inner tube to the outer tube. For example, it can be easily attached using an organic or inorganic adhesive. If the fuel supply pipe and the fuel injection nozzle produced in this way are machined as necessary and connected to each other by a known method, a fuel injection supply nozzle that is optimal for injecting granular fuel can be obtained.
次に、本発明を試験例により詳細に説明する。
(試験例1)
SiC粉末(粒径40μm)100重量部にシリカ系無機バインダーを20重量部を添加し、フィルタープレスして成形した後、1000℃で焼成してSiC成形体を得た。この成形体のSiC含有率は60体積%であった(複合材料中のSiC含有率もほぼ同様となる。)。これを機械加工により外径20mm、内径16mm、長さ50mmの管形状プリフォームを得た。
これとアルミニウム合金(Al−5%Mg合金)を炉に入れN2中で加熱して、Al合金を溶融させ、プリフォーム中に浸透させ、複合材料製外管を得た。これに外径15mm、内径11mm、長さ50mmのAl2O3セラミックス製内管をアルミナ系接着剤で接着して、本発明の燃料供給管を得た。ここで、同様にして作成した複合材料より3×4×40mmの試験片を切り出し、共振法にてヤング率を測定したところ230Gpaと剛性が大きかった。また、複合材料の熱膨張係数は、8.5×10-6/℃とAl2O3セラミックス管(熱膨張係数:7.8×10-6/℃)と略同程度であった。
次に、得られた燃料供給管を室温から200℃まで10minで昇温し、降温するテストを10回繰り返したが、破損はなかった。
Next, the present invention will be described in detail by test examples.
(Test Example 1)
20 parts by weight of a silica-based inorganic binder was added to 100 parts by weight of SiC powder (particle size: 40 μm), molded by filter pressing, and then fired at 1000 ° C. to obtain a SiC molded body. The SiC content of this molded body was 60% by volume (the SiC content in the composite material is substantially the same). This was machined to obtain a tube-shaped preform having an outer diameter of 20 mm, an inner diameter of 16 mm, and a length of 50 mm.
This and an aluminum alloy (Al-5% Mg alloy) were placed in a furnace and heated in N 2 to melt the Al alloy and permeate it into the preform to obtain a composite outer tube. An inner pipe made of Al 2 O 3 ceramics having an outer diameter of 15 mm, an inner diameter of 11 mm, and a length of 50 mm was adhered to this with an alumina-based adhesive to obtain a fuel supply pipe of the present invention. Here, a 3 × 4 × 40 mm test piece was cut out from the composite material prepared in the same manner, and the Young's modulus was measured by a resonance method. As a result, the rigidity was as high as 230 GPa. The thermal expansion coefficient of the composite material was 8.5 × 10 −6 / ° C., which was substantially the same as that of an Al 2 O 3 ceramic tube (thermal expansion coefficient: 7.8 × 10 −6 / ° C.).
Next, the test of raising the temperature of the obtained fuel supply pipe from room temperature to 200 ° C. in 10 minutes and lowering the temperature was repeated 10 times, but there was no damage.
(試験例2)
原料としてSiC粉末100重量部に対してSiCウィスカを10重量部添加した以外は試験例1と同様な方法及び手段で燃料供給管を作製した。評価したところ複合材料中のSiC含有率は25体積%となり、試験例1よりヤング率は低下し120Gpaとなった。しかし、昇温・降温テストの結果、破損は認められなかった。
(Test Example 2)
A fuel supply pipe was produced by the same method and means as in Test Example 1 except that 10 parts by weight of SiC whisker was added as a raw material to 100 parts by weight of SiC powder. As a result of the evaluation, the SiC content in the composite material was 25% by volume, and the Young's modulus decreased from Test Example 1 to 120 GPa. However, no damage was found as a result of the temperature rise / fall test.
(比較例)
複合材料製外管の代わりにアルミニウム製外管(熱膨張係数:23×10-6/℃)を使用した以外は試験例1と同様な方法、及び手段で燃料供給管を作製し、昇温・降温テストを行ったの結果、Al2O3セラミックス製内管が剥離し、一部破断していた。
(Comparative example)
A fuel supply pipe was prepared by the same method and means as in Test Example 1 except that an aluminum outer pipe (thermal expansion coefficient: 23 × 10 -6 / ° C) was used instead of the composite outer pipe, and the temperature was raised. As a result of the temperature drop test, the Al 2 O 3 ceramic inner tube was peeled off and partially broken.
1;燃料吹き込みノズル
2;鋼管
3;セラミックス管
4;燃料供給管
5;セラミックス製内管
6:複合材料製外管
DESCRIPTION OF
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003288554A JP2005054953A (en) | 2003-08-07 | 2003-08-07 | Fuel feeding pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003288554A JP2005054953A (en) | 2003-08-07 | 2003-08-07 | Fuel feeding pipe |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005054953A true JP2005054953A (en) | 2005-03-03 |
Family
ID=34367169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003288554A Pending JP2005054953A (en) | 2003-08-07 | 2003-08-07 | Fuel feeding pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005054953A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101922590A (en) * | 2010-02-09 | 2010-12-22 | 徐州胜海机械制造科技有限公司 | Wear-resisting heat-resisting corrosion-resisting compound pipe and production method thereof |
JP2016113696A (en) * | 2014-12-15 | 2016-06-23 | ベ イ,ゴン | Manufacturing method of aluminum matrix composite material and aluminum matrix composite material manufactured by the same |
CN113738774A (en) * | 2021-09-10 | 2021-12-03 | 中车大同电力机车有限公司 | Transmission hollow shaft, bogie coupling and manufacturing method of transmission hollow shaft |
CN114791057A (en) * | 2022-04-29 | 2022-07-26 | 江苏徐工工程机械研究院有限公司 | Composite multilayer pipe and preparation method thereof |
-
2003
- 2003-08-07 JP JP2003288554A patent/JP2005054953A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101922590A (en) * | 2010-02-09 | 2010-12-22 | 徐州胜海机械制造科技有限公司 | Wear-resisting heat-resisting corrosion-resisting compound pipe and production method thereof |
JP2016113696A (en) * | 2014-12-15 | 2016-06-23 | ベ イ,ゴン | Manufacturing method of aluminum matrix composite material and aluminum matrix composite material manufactured by the same |
CN113738774A (en) * | 2021-09-10 | 2021-12-03 | 中车大同电力机车有限公司 | Transmission hollow shaft, bogie coupling and manufacturing method of transmission hollow shaft |
CN114791057A (en) * | 2022-04-29 | 2022-07-26 | 江苏徐工工程机械研究院有限公司 | Composite multilayer pipe and preparation method thereof |
CN114791057B (en) * | 2022-04-29 | 2023-08-04 | 江苏徐工工程机械研究院有限公司 | Composite multilayer pipe and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1662286B (en) | Fiber reinforced filter for molten metal filtration and method for producing such filters | |
TW201043591A (en) | Large refractory article and method for making | |
CN103025680B (en) | Composite refractory for blast furnace lining | |
CN205746874U (en) | A kind of fire grate fire bars and include this fire grate fire bars incinerator fire grate or cooling fire grate | |
CN109912316A (en) | A kind of preparation method of the nanowire-toughened coating of C/SiC composite material surface | |
CN1950313A (en) | Ceramic batch and associated product for fireproof applications | |
CN103261444A (en) | Ceramic bottom lining of a blast furnace hearth | |
JP2005054953A (en) | Fuel feeding pipe | |
KR950008592B1 (en) | Reservoir feed method of making ceramic composite structure and structures made thereby | |
CN105642877B (en) | Silicon carbide whisker combination high-strength compound submersed nozzle and manufacture method | |
CN106513632A (en) | Improved low-pressure casting liquid rising pipe | |
JP4945257B2 (en) | Refractory | |
CN105384440B (en) | Prepare the material and method of molybdenum disilicide protection pipe | |
CN106900094B (en) | Large-scale composite radiation type heating rod and preparation method thereof | |
JP2593889B2 (en) | Ceramic composite objects | |
KR101819923B1 (en) | Heater tube for molten metal immersion | |
JP2008241169A (en) | Method of manufacturing precast block for metal melting furnace ceiling and precast block for metal melting furnace ceiling | |
JP4116922B2 (en) | Manufacturing method of stave cooler for blast furnace wall | |
JP2021004160A (en) | Brick for hot metal ladle, and hot metal ladle lined with the same | |
JP4511486B2 (en) | Nozzle and hot chamber die casting machine using the same | |
KR100643838B1 (en) | bubbling plug for gas purging | |
JPH09300060A (en) | Sprue member for casting and manufacture thereof | |
JP6974801B2 (en) | Graphite-containing refractory | |
JP5880208B2 (en) | Method for producing inorganic fibrous ceramic porous body | |
JP3774557B2 (en) | Refractory for injecting inert gas into molten metal and method for producing the same |