JP2005054946A - Bearing device - Google Patents

Bearing device Download PDF

Info

Publication number
JP2005054946A
JP2005054946A JP2003288341A JP2003288341A JP2005054946A JP 2005054946 A JP2005054946 A JP 2005054946A JP 2003288341 A JP2003288341 A JP 2003288341A JP 2003288341 A JP2003288341 A JP 2003288341A JP 2005054946 A JP2005054946 A JP 2005054946A
Authority
JP
Japan
Prior art keywords
bearing
damping member
vibration damping
rotating body
facing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003288341A
Other languages
Japanese (ja)
Inventor
Hiroshi Fujito
宏 藤戸
Makoto Funahashi
眞 舟橋
Akira Matsumoto
亮 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003288341A priority Critical patent/JP2005054946A/en
Publication of JP2005054946A publication Critical patent/JP2005054946A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Support Of The Bearing (AREA)
  • Vibration Prevention Devices (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing device capable of enhancing mechanical durability of a vibration damping member provided on a bearing structure. <P>SOLUTION: In the bearing device comprising a bearing 10, a bearing supporting body 20 and a rotating body 22 with a vibration damping member S disposed between the bearing supporting body or the rotating body and the bearing, a groove forming a gap is formed in the surface of the vibration damping member or a surface facing the vibration damping member. When foreign matters enters between the vibration damping member and the member facing the vibration damping member, the foreign matters are captured in the cap and removed to avoid damages of the surface of the vibration damping member by the foreign matters, and pitching breakage of the vibration damping member. Complementary uneven grooves are formed in the vibration damping member and the member facing the vibration damping member so as to prevent relative slide between the vibration damping member and the member facing the vibration damping member, and occurrence of fretting wear or spalling breakage is suppressed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、軸受又は軸受装置に係り、より詳細には、振動又は騒音を低減する制振部材を備えた上記の如き装置に係る。なお、本明細書において、「軸受装置」とは、回転体と、回転体を支持する軸受と、軸受を支持する手段又は部分、即ち、「軸受支持体」とを組み合わせてなる装置であるが、かかる装置の構造を備えた任意の機械をも意味しており、「軸受支持体」が、例えば、機械本体から取り外し可能な筐体等からなっているもの、又は、機械の本体又は枠に一体的に構成されているものを含む。同様に、「軸受支持装置」は、軸受を支持又は保持する装置であり、任意の機械の本体又は枠に一体に構成されているものも含まれると理解されるべきである。   The present invention relates to a bearing or a bearing device, and more particularly to the above-described device provided with a damping member that reduces vibration or noise. In the present specification, the “bearing device” is a device formed by combining a rotating body, a bearing that supports the rotating body, and a means or part that supports the bearing, that is, a “bearing support body”. Means any machine equipped with such a device structure, where the “bearing support” is composed of, for example, a housing removable from the machine body, or the machine body or frame. Including those that are integrally formed. Similarly, a “bearing support device” is a device that supports or holds a bearing, and should be understood to include one that is integrated into the body or frame of any machine.

回転体を有する種々の機械においては、その回転体を回転可能に支持する軸受と、その軸受を保持する機械本体に構成された軸受支持体又は機械に備えられたケース(軸受支持装置)との間に、振動を伝達しにくい材料からなる制振部材が設けられる場合がある(制振部材は、軸受と回転体との間に設けられる場合もある。)。かかる制振部材が設けられることにより、回転体の機械的な振動又は雑音や、軸受と回転体との接触部(又は面)又はころがり軸受内に備えられる転動体に発生する機械的な振動が機械全体に伝播することが回避され、機械全体の振動又は騒音の発生が抑えられる。そのような制振部材としては、一般的には、ゴム又は樹脂等の弾性を有する高分子材料が広く利用されている(例えば、下記の特許文献1−5参照)。また、自動車等の変速機又はトランスアクスルなど、やや大型の機械の軸受においては、軸受の支持すべき回転体の重量が大きく、軸受に高い荷重が作用することにより、ゴムや樹脂等からなる制振部材では、軸受にかかる高い荷重に耐えられず潰れてしまう。そこで、金属製(ステンレス製)の制振部材を用いることが提案されている(下記の特許文献6参照。)。特に、本発明の発明者は、特願2003−44508及び特願2003−89656において、制振部材を、高い弾性率を有し(即ち、高荷重を受けても変位が小さい)且つ振動減衰効果の大きい金属材料(高振動減衰金属−下記の特許文献7参照)から構成し、かかる高振動減衰金属の温度又は歪特性を考慮して良好な振動減衰効果の得られる軸受構造を提案した。また、本願出願人により、非特許文献1において、回転軸の振動伝達を低減する制振部材の形状が提案されている。しかしながら、現在のところ、実際の市場においては、制振部材が備えられていない場合が多い。   In various machines having a rotating body, a bearing that rotatably supports the rotating body, and a bearing support body configured on a machine body that holds the bearing or a case (bearing support device) provided in the machine. In some cases, a vibration damping member made of a material that hardly transmits vibration may be provided (the vibration damping member may be provided between the bearing and the rotating body). By providing such a damping member, mechanical vibration or noise of the rotating body, or mechanical vibration generated in a contact portion (or surface) between the bearing and the rotating body or a rolling element provided in the rolling bearing is provided. Propagation to the entire machine is avoided, and vibration or noise of the entire machine is suppressed. As such a damping member, generally, a polymer material having elasticity such as rubber or resin is widely used (for example, see Patent Documents 1 to 5 below). Further, in a bearing of a slightly large machine such as a transmission of a car or a transaxle, the weight of the rotating body to be supported by the bearing is large, and a high load acts on the bearing, thereby controlling the rubber or resin. The vibration member cannot withstand a high load applied to the bearing and is crushed. Thus, it has been proposed to use a metal (stainless steel) damping member (see Patent Document 6 below). In particular, the inventors of the present invention disclosed in Japanese Patent Application No. 2003-44508 and Japanese Patent Application No. 2003-89656 that the damping member has a high elastic modulus (that is, a small displacement even when subjected to a high load) and a vibration damping effect. A bearing structure is proposed which is made of a metal material having a large thickness (high vibration damping metal-see Patent Document 7 below) and can obtain a good vibration damping effect in consideration of the temperature or strain characteristics of the high vibration damping metal. In addition, Non-Patent Document 1 proposes the shape of a damping member that reduces vibration transmission of the rotating shaft by the applicant of the present application. However, at present, in the actual market, there are many cases where the vibration damping member is not provided.

上記の如き軸受装置の制振材料として用いられる高振動減衰金属(制振材料)に関する一つの問題は、かかる金属材料の機械的な強度が低いということである。良好な制振効果を有する金属としては、種々のものが知られているが、一般的に、振動減衰能が大きくなるほど、機械的強度が小さくなる傾向がある。図6に示されている如く、制振材料として有効な合金材料(例えば、Mn−Cu合金、Mg−Zr合金等)は、減衰係数が大きい種類の材料ほど、その引張強度が低くなることが見出されている。また、それらの強度は、ケースに通常用いられるアルミ合金や鋳鉄或いは軸受鋼よりも低い(下記非特許文献2参照)。従って、従来の軸受構造においては、良好な振動減衰効果を有しているものとして選択された制振材料から成る制振部材を組み込んでも、制振部材は、機械的損傷を受けやすく、機械的な耐久性が確保できないこととなる(振動減衰効果の高いものを選べば、それだけ耐久性が低くなってしまう。)。   One problem with the high vibration damping metal (damping material) used as a damping material for the bearing device as described above is that the mechanical strength of the metal material is low. Various metals are known as metals having a good vibration damping effect. In general, however, the mechanical strength tends to decrease as the vibration damping capacity increases. As shown in FIG. 6, an alloy material that is effective as a damping material (for example, an Mn—Cu alloy, an Mg—Zr alloy, etc.) may have a lower tensile strength as the material has a larger damping coefficient. Has been found. Moreover, those strengths are lower than the aluminum alloy, cast iron, or bearing steel normally used for a case (refer nonpatent literature 2 below). Therefore, in the conventional bearing structure, even if a damping member made of a damping material selected as having a good vibration damping effect is incorporated, the damping member is susceptible to mechanical damage and mechanical Durability cannot be ensured (if a material with a high vibration damping effect is selected, the durability will be reduced accordingly).

制振部材において問題となる機械的損傷(のいくつか)は、具体的には、制振部材をケース又は回転体と軸受との間に介装する際の嵌め合いに関連したものであり、特に、制振部材とその相手の部材との嵌め合いが所謂「すきまばめ」にされる場合の如く、制振部材とその相手の部材との間に相対的な(微小な)滑りが生ずることに起因する。例えば、上記の如き自動車の変速機などの軸受に高い荷重が作用する軸受構造において、ケースと軸受との間に制振部材を介装する場合には、制振部材は、ケースに対しては、「しまりばめ」にされ、軸受に対しては「すきまばめ」にされるが、この場合、回転体の回転に伴って、「すきまばめ」にされた制振部材と軸受との間に、相対的に(微小な)滑りが生ずると同時に、制振部材が高負荷の面圧を受けることとなる。そうすると、制振部材に作用する高負荷の面圧と、軸受との間の相対的な滑りにより(そして、制振部材が軸受の材料よりも機械的強度が低いことにより、)、制振部材は、後述の如きピッチング(pitting)又はスポーリング(spalling)破壊、或いはフレッティング(fretting)磨耗といった機械的損傷を受けやすくなるのである。   The mechanical damage (some of which) is a problem in the damping member is specifically related to the fit when the damping member is interposed between the case or the rotating body and the bearing, In particular, a relative (small) slip occurs between the damping member and the counterpart member as in the case where the fitting between the damping member and the counterpart member is a so-called “clearance fit”. Due to that. For example, in a bearing structure in which a high load acts on a bearing such as an automobile transmission as described above, when a damping member is interposed between the case and the bearing, the damping member In this case, with the rotation of the rotating body, the bearing between the damping member and the bearing In the meantime, relatively (slight) slip occurs, and at the same time, the damping member receives a high load surface pressure. Then, due to the high load surface pressure acting on the damping member and the relative slip between the bearings (and because the damping member has lower mechanical strength than the material of the bearing), the damping member Are susceptible to mechanical damage such as pitting or spalling failure, or fretting wear, as described below.

従って、従前の軸受構造又は制振部材の構成では、制振部材の材料として振動減衰能が大きな材料を選択すると、制振部材の機械的な耐久性が確保されず、軸受装置、特に大型の機械において、実用的な制振部材を用いた有効な防振・防音対策を施すことが難しかったのである。
実開昭55−109134号公報 実開昭64−720号公報 特開平7−91443号公報 特開平8−201715号公報 特開2000−192979号公報 実開平4−90718号公報 特許第2849698号明細書 発明協会公開技報 公技番号2002−2648 2002年6月3日発行 雑誌「金属」Vol.71 No.2 47頁 2001年 株式会社アグネ技術センター
Therefore, in the conventional bearing structure or the structure of the damping member, if a material having a large vibration damping capability is selected as the material of the damping member, the mechanical durability of the damping member cannot be ensured, and the bearing device, particularly a large-sized It was difficult to implement effective anti-vibration / sound-proofing measures using practical damping members in machines.
Japanese Utility Model Publication No. 55-109134 Japanese Utility Model Publication No. 64-720 Japanese Patent Laid-Open No. 7-91443 JP-A-8-201715 Japanese Patent Laid-Open No. 2000-192979 Japanese Utility Model Publication No. 4-90718 Japanese Patent No. 2849698 Japan Society for Invention and Innovation Technical Bulletin No. 2002-2648 Issued on June 3, 2002 Magazine "Metal" Vol. 71 No.2 Page 47 2001 Agne Technology Center Co., Ltd.

本明細書においては、上記の如き軸受装置に於ける制振部材と軸受(又は軸受支持装置若しくは回転体)との嵌め合い及びそれに関連する相対的な滑りに起因する機械的損傷を回避若しくは低減して制振部材の機械的な耐久性を向上し、これにより、制振部材として用いられる制振材料の選択の幅を広げ、振動減衰能のより高い材料を採用可能とする発明が開示される。   In the present specification, mechanical damage caused by the fitting between the vibration damping member and the bearing (or the bearing support device or the rotating body) in the bearing device as described above and the relative slip associated therewith is avoided or reduced. An invention is disclosed in which the mechanical durability of the damping member is improved, thereby expanding the range of selection of the damping material used as the damping member, and a material having a higher vibration damping capability can be adopted. The

既に述べた如く、軸受装置の制振部材においては、「ピッチング破壊」、「スポーリング破壊」、「フレッティング磨耗」と呼ばれる機械的損傷が発生し得る。   As described above, in the vibration damping member of the bearing device, mechanical damage called “pitching failure”, “spoling failure”, and “fretting wear” may occur.

「ピッチング破壊」とは、互いに摺動する部材間に入り込んだ(高硬度の)異物により摺動部材の表面に亀裂が生じ、その亀裂が拡大することにより発生する疲労破壊である。即ち、相対的な滑りを生ずる部材間に異物が進入すると、異物は、かかる相対的な滑りとともに転がりながら移動する。軸受装置の運転中には、該装置内の部材間に相当な荷重が作用しているので、異物が荷重により部材の表面に押し付けられて、その表面を傷つけ、更に、その傷が起点となって、部材間の荷重により亀裂となって拡大されていくこととなる。自動車の変速機等の軸受には、特に高い荷重が作用しているため、異物の進入による亀裂が発生しやすく、また、亀裂の拡大も起きやすい。   “Pitching fracture” is fatigue fracture that occurs when a crack is generated on the surface of a sliding member due to foreign matter (high hardness) entering between the sliding members, and the crack expands. That is, when a foreign object enters between members that cause relative slip, the foreign object moves while rolling with the relative slip. During operation of the bearing device, a considerable load is applied between the members in the device, so that the foreign object is pressed against the surface of the member by the load and damages the surface, and the scratch is the starting point. As a result, the cracks are enlarged due to the load between the members. Since a particularly high load is applied to a bearing such as a transmission of an automobile, a crack is likely to occur due to the entry of foreign matter, and the crack is likely to expand.

「スポーリング破壊」とは、部材に高い応力が付与されることにより、部材内部のせん断応力が、部材内の内部欠陥や弱強度部位(例えば、熱処理境界など)の許容限界応力を超え、かかる応力の限界を超えた部位が、内部起点となって亀裂が発生し、表面まで到達する疲労破壊の一種である。高い荷重の作用する部材間に相対的な滑りを生ずると、滑りにより内部のせん断応力が更に増大するため、スポーリング破壊が起き易くなる。   “Spalling failure” means that a high stress is applied to the member, so that the shear stress inside the member exceeds the allowable limit stress of the internal defect or weak strength part (for example, heat treatment boundary) in the member. A part that exceeds the stress limit is a kind of fatigue fracture in which a crack is generated from the internal origin and reaches the surface. When a relative slip occurs between members subjected to a high load, the internal shear stress is further increased by the slip, and therefore, spalling failure is likely to occur.

そして、「フレッティング磨耗」とは、相対的な滑りを生ずる部材間において、外部から伝達されてくる微小振動に伴って微小滑りが発生し、これにより表面が磨耗し、或いは、酸化してしまう現象である。互いに摺動する部材間の荷重が高ければ高いほど、部材の表面が擦り合う力は強くなるので、その分、表面の磨耗の進行も早くなる。   “Fretting wear” means that a minute slip is generated with a minute vibration transmitted from the outside between members that cause relative slip, and the surface is worn or oxidized by this. It is a phenomenon. The higher the load between the members that slide relative to each other, the stronger the force with which the surfaces of the members rub against each other.

上記の一連の機械的損傷は、ケースや軸受については、それらの材料が十分に硬質であり、機械的強度を有するため、さほど問題とはならない。しかしながら、制振部材の材料は、既に述べた如く、ケース若しくは回転体の材料又は軸受鋼よりも機械的強度が低く、軟質であるため、かかる損傷を受けやすい。かくして、良好な振動減衰効果を得るために機械的強度が低くなってしまう制振部材(図6参照)の機械的な耐久性を確保するためには、かかる一連の機械的な損傷の発生原因を除去し、損傷の防止することが必要となろう。また、かかる機械的な損傷を回避しようとする際、できるだけ廉価にて且つ複雑な機構を必要としないことが望ましい。   The series of mechanical damages described above is not a problem for the case and the bearing because the materials are sufficiently hard and have mechanical strength. However, as described above, the material of the damping member has a lower mechanical strength and is softer than the material of the case or the rotating body or the bearing steel, and thus is easily damaged. Thus, in order to ensure the mechanical durability of the damping member (see FIG. 6) whose mechanical strength is low in order to obtain a good vibration damping effect, the cause of the occurrence of such a series of mechanical damages. It will be necessary to remove the damage and prevent damage. It is also desirable to avoid such mechanical damage and to avoid the need for complicated mechanisms as cheap as possible.

かくして、本発明の解決しようとする一つの課題は、振動・騒音を低減する制振部材を組みこんだ軸受装置であって、軸受のための制振部材の機械的な耐久性を向上する新規な構造を有する軸受装置を提供することである。   Thus, one problem to be solved by the present invention is a bearing device incorporating a vibration damping member that reduces vibration and noise, and a novel device that improves the mechanical durability of the vibration damping member for the bearing. It is to provide a bearing device having a simple structure.

本発明のもう一つの課題は、自動車等の大型の機械の回転体を支持する軸受装置であって、回転体又は軸受内に発生する振動・騒音を有効に低減する制振部材を備えた上記の如き軸受装置を提供することである。   Another object of the present invention is a bearing device that supports a rotating body of a large machine such as an automobile, and includes the damping member that effectively reduces vibration and noise generated in the rotating body or the bearing. Is to provide such a bearing device.

本発明の更にもう一つの課題は、上記の如き装置であって、制振部材の機械的な損傷の発生原因を除去し、かかる損傷を回避若しくは低減する新規な構造を有する軸受装置を提供することである。   Still another object of the present invention is to provide a bearing device having a novel structure that eliminates the cause of mechanical damage of the vibration damping member and avoids or reduces such damage. That is.

本発明の更にもう一つの課題は、上記の如き装置であって、制振部材とそれと嵌合される部材との嵌め合い及びそれらの相対的な滑りに起因する機械的損傷を回避若しくは低減する新規な構造を有する軸受装置を提供することである。   Still another object of the present invention is an apparatus as described above, which avoids or reduces mechanical damage caused by fitting between a damping member and a member fitted thereto and relative slippage between them. To provide a bearing device having a novel structure.

本発明の更なる課題は、上記の如き装置であって、制振部材が「すきまばめ」にて他の部材に嵌め合わされることにより相対的な滑りが生じることに起因する機械的な損傷を回避又は低減する新規な構造の軸受装置を提供することである。   A further object of the present invention is an apparatus as described above, in which mechanical damage is caused by relative slippage caused by fitting the damping member to another member by “clearance fitting”. It is an object of the present invention to provide a bearing device having a novel structure that avoids or reduces the above.

本発明の更なる課題は、上記の如き装置であって、制振部材に於いて「ピッチング破壊」、「スポーリング破壊」又は「フレッティング磨耗」の発生を防止することのできる新規な構造を有する軸受装置を提供することである。   A further object of the present invention is a device as described above, which has a novel structure capable of preventing the occurrence of “pitching failure”, “spalling failure” or “fretting wear” in a damping member. It is providing the bearing apparatus which has.

本発明の更にもう一つの課題は、上記の如き装置であって、制振部材として、用いることのできる材料の選択の幅が広く、従って、より高い振動減衰能を有する材料を採用することを可能にすることにより、良好な振動減衰効果の得られる新規な構造の軸受装置を提供することである。   Still another object of the present invention is to employ a device as described above, which has a wide range of choices of materials that can be used as the damping member, and therefore employs a material having a higher vibration damping capability. By making it possible to provide a bearing device having a novel structure capable of obtaining a good vibration damping effect.

本発明の更にもう一つの課題は、上記の如き装置であって、廉価にて又は複雑な構成を必要せずに、制振部材の上記の如き機械的損傷を回避することのできる新規な構造の軸受装置を提供することである。   Still another object of the present invention is an apparatus as described above, which is a novel structure capable of avoiding the above-described mechanical damage of the damping member without requiring an inexpensive or complicated structure. It is providing the bearing apparatus of this.

上記の課題は、本発明によれば、軸受と、軸受を支持する軸受支持体と、軸受に装着される回転体とを含み、軸受支持体及び回転体のうちの少なくとも一方と軸受との間に制振部材が設けられている軸受装置であって、制振部材の表面及び該制振部材に対面する軸受、軸受支持体又は回転体の表面のうちの少なくとも一方の表面に溝が設けられ、溝が空隙を形成し、これにより、制振部材の表面及び該制振部材に対面する軸受、軸受支持体又は回転体の表面の間に侵入した異物が空隙内に捕捉されることを特徴とする軸受装置により達成される。   According to the present invention, the above-described problem includes a bearing, a bearing support that supports the bearing, and a rotating body that is attached to the bearing, and is provided between at least one of the bearing support and the rotating body and the bearing. The vibration damping member is provided with a groove on the surface of the vibration damping member and at least one of the surface of the bearing, the bearing support or the rotating body facing the vibration damping member. The groove forms a gap, whereby foreign matter that has entered between the surface of the damping member and the surface of the bearing, bearing support or rotating body facing the damping member is captured in the gap. This is achieved by the bearing device.

既に述べた如く、制振部材に生ずる機械的な損傷の一つのピッチング破壊の原因は、互いに摺動し得る部材間にその部材よりも高硬度の異物が進入し、かかる異物が部材の表面を傷つけてしまうためであった。そこで、上記の軸受装置の構成においては、かかるピッチング破壊の原因となる異物が制振部材の表面とそれに対面する部材の表面との間に進入した場合に、異物が表面間にて移動し続けることのないように、制振部材又はそれに対面する部材上に空隙を構成する溝が設けられる。かくして、異物が表面間に侵入したとしても、表面を移動する間に空隙内に落ち込んでトラップ(捕捉)され、それ以後、部材の表面を移動して傷つけることがないようにすることができるようになる。   As described above, one cause of the mechanical damage that occurs in the vibration damping member is that a foreign material having a hardness higher than that member enters between the members that can slide with each other. It was to hurt. Therefore, in the configuration of the bearing device described above, when the foreign matter causing the pitching breakage enters between the surface of the vibration damping member and the surface of the member facing it, the foreign matter continues to move between the surfaces. In order to prevent this, a groove forming a gap is provided on the vibration damping member or the member facing it. Thus, even if a foreign object enters between the surfaces, it can be trapped by falling into the gap while moving on the surface, and thereafter the surface of the member can be prevented from moving and being damaged. become.

上記の本発明の特徴である「溝」は、例えば、制振部材が既存の又は汎用の軸受装置に組み込まれる場合には、軸受装置の製作上、制振部材の表面に設けることが容易であり有利であると思われるが(制振部材は、一般に、ケース用の材料又は軸受鋼などより軟質である)、制振部材に対面する部材側に設けられてもよいことは理解されるべきである。上記の本発明者により提案された特願2003−44508及び特願2003−89656においても記載されている如く、制振部材は、抑えられるべき振動又は雑音の発生部位とその特性等に応じて、軸受と軸受支持体との間又は軸受と回転体との間に任意に設けられることとなる。従って、溝は、制振部材が設けられる部位に応じて、ピッチング破壊が生じるおそれのある制振部材の表面に対面する軸受、軸受支持体又は回転体などの部材上に任意に設けられてよく、かかる構成は、全て本発明に範囲に属すると理解されるべきである。   The “groove”, which is a feature of the present invention, can be easily provided on the surface of the damping member in the production of the bearing device, for example, when the damping member is incorporated into an existing or general-purpose bearing device. Although it seems to be advantageous (the damping member is generally softer than the material for the case or bearing steel etc.), it should be understood that it may be provided on the side of the member facing the damping member It is. As described in Japanese Patent Application No. 2003-44508 and Japanese Patent Application No. 2003-89656 proposed by the present inventor, the vibration damping member has a vibration or noise generation site to be suppressed and its characteristics. It is arbitrarily provided between the bearing and the bearing support or between the bearing and the rotating body. Therefore, the groove may be arbitrarily provided on a member such as a bearing, a bearing support body, or a rotating body that faces the surface of the vibration damping member that may cause the pitching failure depending on a portion where the vibration damping member is provided. It should be understood that all such configurations are within the scope of the present invention.

ところで、既に述べた如く、ピッチング破壊が生ずる要因の一つは、相対面する部材間において、相対的な滑りが生ずることであった。例えば、軸受装置において「すきまばめ」にされた部材間においては、回転体の回転作動に伴って相対的な滑りを生ずる。本発明によれば、そのような、「すきまばめ」にされて嵌め合わされる制振部材の表面又はそれに対面する部材の表面に、本発明の溝が設けられることにより、互いに摺動する表面間から異物が除去され、ピッチング破壊を防止することができることとなる。   By the way, as already described, one of the factors that cause the pitching failure is the relative slip between the facing members. For example, relative slip occurs between the members that have been “clearance fitted” in the bearing device as the rotating body rotates. According to the present invention, the surface of the vibration damping member that is fitted with the “clearance fit” or the surface of the member facing the surface is provided with the groove of the present invention, so that the surfaces sliding with each other are provided. Foreign matter is removed from the gap, and pitching destruction can be prevented.

更に、摺動する部材間に互いに圧し合う荷重が作用している場合では、異物が部材の表面に強く圧しつけられ、かかる表面に傷をつけやすくなるため、ピッチング破壊は発生しやすくなる。特に軸受装置の形式によっては、例えば、自動車の変速機の軸受部に用いられる円錐ころ軸受などでは、軸受外輪に予圧が付与されるが、制振部材が軸受に付与される予圧を受けるように配置されている場合には、制振部材とそれに対面する部材とが互いに圧しつけ合うこととなり、このことにより、ピッチング破壊が発生し得る。同様に、軸受装置の運転中においては、軸受装置内の種々の部材において、概ね回転体の回転軸線の向いた方向、即ち、スラスト方向に、スラスト荷重が作用することがあるが、制振部材がそのようなスラスト荷重を受ける位置に配置される場合、部材間に侵入した異物により制振部材の表面が傷つけられてしまうこととなる。しかしながら、本発明によれば、制振部材が予圧又はスラスト荷重を受ける位置に配置される場合に、制振部材の前記の予圧又はスラスト荷重を受ける表面又はそれに対面する部材の表面に、本発明の溝を設けることにより、互いに摺動する表面間の異物をトラップし、ピッチング破壊の発生する可能性を大幅に低減することができる。   Further, when a load that presses each other is applied between the sliding members, the foreign matter is strongly pressed against the surface of the member, and the surface is likely to be damaged, so that the pitching breakage easily occurs. In particular, depending on the type of the bearing device, for example, in a tapered roller bearing used for a bearing portion of an automobile transmission, a preload is applied to the bearing outer ring, but the vibration damping member receives a preload applied to the bearing. When arranged, the vibration damping member and the member facing it are pressed against each other, which can cause pitching failure. Similarly, during operation of the bearing device, a thrust load may act on the various members in the bearing device generally in the direction in which the rotation axis of the rotating body faces, that is, in the thrust direction. Is disposed at a position that receives such a thrust load, the surface of the damping member is damaged by foreign matter that has entered between the members. However, according to the present invention, when the damping member is disposed at a position to receive the preload or the thrust load, the present invention is applied to the surface of the damping member that receives the preload or the thrust load or the surface of the member facing the surface. By providing the groove, it is possible to trap the foreign matter between the sliding surfaces and greatly reduce the possibility of the occurrence of pitching failure.

通常、前記の予圧或いはスラスト荷重は、回転体及び軸受の回転軸線と概ね平行に作用する。また、軸受装置においては、一般に、軸受の半径方向は、スラスト方向、即ち、軸受の回転軸線に沿う方向に比して、より高い軌道精度が要求される場合が多い。従って、軸受の外周面と内周面については、できるだけ加工を施さないことが好ましい。即ち、本発明の溝は、回転軸線と概ね垂直の方向或いは軸受の半径(放射)方向に延在する面(スラスト面)を有する制振部材の、スラスト面に設けられることが好ましい。   Usually, the preload or thrust load acts substantially parallel to the rotation axis of the rotating body and the bearing. Further, in the bearing device, generally, the radial direction of the bearing is often required to have higher track accuracy than the thrust direction, that is, the direction along the rotation axis of the bearing. Therefore, it is preferable that the outer peripheral surface and the inner peripheral surface of the bearing are not processed as much as possible. That is, the groove of the present invention is preferably provided on the thrust surface of a vibration damping member having a surface (thrust surface) extending in a direction substantially perpendicular to the rotation axis or in the radial (radiating) direction of the bearing.

本発明の第二の局面によれば、上記の課題は、軸受と、軸受を支持する軸受支持体と、軸受に装着される回転体とを含み、軸受支持体及び回転体のうちの少なくとも一方と軸受との間に制振部材が設けられている軸受装置であって、制振部材の表面と該制振部材に対面する軸受、軸受支持体又は回転体の表面とに互いに嵌合する相補的な凹凸溝が設けられ、互いに嵌合した凹凸溝が制振部材と該制振部材に対面する軸受、軸受支持体又は回転体との相対的な軸受の回転方向の変位を阻止することを特徴とする軸受装置により達成される。   According to the second aspect of the present invention, the above problem includes a bearing, a bearing support that supports the bearing, and a rotating body that is mounted on the bearing, and at least one of the bearing support and the rotating body. Device comprising a vibration damping member between the bearing and the bearing, wherein the surfaces of the vibration damping member and the surface of the bearing, bearing support or rotating body facing each other are fitted together The concave and convex grooves fitted to each other prevent the displacement in the rotational direction of the bearing relative to the damping member and the bearing, bearing support or rotating body facing the damping member. This is achieved by the bearing device.

既に述べた如く、制振部材とそれに対面する軸受、軸受支持体又は回転体との間に相対的な滑りが生ずると、ピッチング破壊だけでなく、フレッティング磨耗も生じ得る。フレッティング磨耗は、相対的な滑りにより、摺動する部材の表面が擦りあう限り徐々に進行する。そこで、上記の本発明の第二の局面においては、制振部材とそれに対面する表面に互いに嵌合する相補的な(即ち、鍵と鍵穴の関係の)凹凸溝を設け、制振部材と該制振部材に対面する軸受、軸受支持体又は回転体との相対的な軸受の回転方向の変位、即ち、相対的な滑りを阻止し、表面の磨耗の発生を抑えるよう構成される。   As described above, if relative slip occurs between the vibration damping member and the bearing, bearing support or rotating body facing the vibration damping member, not only pitching failure but also fretting wear may occur. Fretting wear gradually progresses as long as the surfaces of the sliding members rub against each other due to relative slip. Therefore, in the second aspect of the present invention described above, complementary vibration grooves (that is, a relationship between a key and a key hole) are provided on the surface facing the vibration damping member and the vibration damping member, It is configured to prevent displacement in the rotational direction of the bearing relative to the bearing, bearing support or rotating body facing the vibration damping member, that is, relative slippage, and suppress occurrence of surface wear.

上記の凹凸溝の目的は、部材間の相対的な滑りを阻止するためのものであるから、凹凸溝が嵌合した状態で、前記目的を達成し得る限り、空隙が形成されるよう構成されていてよい。かかる空隙によれば、軸受装置の運転中における部材の熱膨張の差を吸収し、或いは、部材間に侵入した異物をトラップすることが可能となる。   Since the purpose of the concave and convex grooves is to prevent relative slip between members, the gap is formed as long as the objective can be achieved with the concave and convex grooves fitted. It may be. According to such a gap, it becomes possible to absorb the difference in thermal expansion of the members during operation of the bearing device or to trap foreign matter that has entered between the members.

上記の本発明の第二の局面において、制振部材の少なくとも一部がスラスト方向の荷重を受ける部位を有する場合には、凹凸溝は、スラスト荷重を受ける制振部材の部位の表面とそれに対面する軸受、軸受支持体又は回転体の表面とに設けられていることが好ましい。   In the second aspect of the present invention described above, when at least a part of the vibration damping member has a portion that receives a load in the thrust direction, the concave and convex grooves face the surface of the portion of the vibration damping member that receives the thrust load and the surface thereof. It is preferable to be provided on the surface of the bearing, bearing support or rotating body.

既に述べた如く、軸受の外周面と内周面については、できるだけ加工を施さないことが好ましい。従って、上記の相対的な滑りを阻止する目的の溝は、スラスト荷重を受ける面、即ち、軸受の回転軸線と概ね垂直な面或いは外周面若しくは内周面に交差する面において設けられることが好ましい。   As already described, it is preferable that the outer peripheral surface and the inner peripheral surface of the bearing are not processed as much as possible. Therefore, it is preferable that the groove for the purpose of preventing the relative slip is provided on the surface that receives the thrust load, that is, the surface that is substantially perpendicular to the rotation axis of the bearing, or the surface that intersects the outer peripheral surface or the inner peripheral surface. .

凹凸溝の形状は、相対的な滑りを阻止できる任意のものであってよい。逆に、軸受の回転方向に沿う方向のみしか係合しない表面のみを有する溝、例えば、軸受の回転軸線を中心とした同心状の円環状の溝では、相対的な滑りを阻止することができないことは理解されるべきである。   The shape of the concavo-convex groove may be any that can prevent relative slip. Conversely, a groove having only a surface that engages only in the direction along the rotation direction of the bearing, for example, a concentric annular groove around the rotation axis of the bearing cannot prevent relative slip. That should be understood.

更に、本発明の第三の局面によれば、前記の如き相補的な凹凸溝がスラスト荷重を受ける面に形成される場合において、溝の各々の表面の延在する向きを、前記スラスト荷重の作用方向に対して傾斜した方向となるように、即ち、スラスト荷重の作用方向に対して、垂直とならないように任意の或る角度にて傾斜させると、上記の「スポーリング破壊」の発生を回避若しくは低減することが可能となる。既に述べた如く、スポーリング破壊は、部材の内部応力が、かかる部材の許容限界応力を超えることにより生ずる亀裂が拡大することにより生ずるところ、上記の本発明の第三の局面によれば、溝の表面の向きをスラスト荷重に対して傾斜させることにより、部材の表面が受けるスラスト荷重により生ずる内部応力が分散され、これにより、局所的に高い応力が発生することが回避され、部材内の応力が、亀裂を生じ得る許容限界を超えるおそれを低減し、かくして、スポーリング破壊の発生を抑制できるようになる。   Further, according to the third aspect of the present invention, in the case where the complementary concave-convex grooves as described above are formed on the surface that receives the thrust load, the extending direction of each surface of the groove is determined by the thrust load. If it is inclined at an arbitrary angle so as to be inclined with respect to the acting direction, that is, not perpendicular to the acting direction of the thrust load, the occurrence of the above-mentioned “spoling failure” is caused. It can be avoided or reduced. As already mentioned, spalling failure is caused by the expansion of cracks caused by the internal stress of a member exceeding the allowable limit stress of the member. According to the third aspect of the present invention described above, By inclining the direction of the surface with respect to the thrust load, the internal stress generated by the thrust load applied to the surface of the member is dispersed, thereby avoiding the generation of a locally high stress and the stress in the member. However, it is possible to reduce the possibility of exceeding the allowable limit that may cause cracks, and thus to suppress the occurrence of spalling failure.

部材間の相対的な滑りが阻止されれば、かかる滑りにより表面にかかるせん断応力が低減されるため、スポーリング破壊を回避するための凹凸溝は、好ましくは、本発明の第二の局面に於ける凹凸溝と同様に部材間の相対滑りを阻止し得る向きに形成されることが好ましい。しかしながら、部材内の内部応力の局所的な増大を回避する目的は、溝が相対滑りを許す方向に(軸受の回転軸線を中心とした同心円環状に)形成されていても、或る程度にて達成されることは理解されるべきであり、そのような溝を含む軸受装置は、本発明の範囲内に含まれる。更に、スラスト荷重を受ける部位の表面全体に亙って局所的な内部応力の増大を回避するためには、複数の凹凸溝が、スラスト荷重を受ける制振部材の表面及びそれに対面する部材の表面に全域に亙って形成されていることが好ましく、最も好ましくは、軸受の放射方向に延在する凹凸溝が軸受の周方向全周にわたって複数形成されていることが好ましい。   If the relative slip between the members is prevented, the shear stress applied to the surface due to such slip is reduced, so that the uneven groove for avoiding spalling failure is preferably in the second aspect of the present invention. It is preferable that the groove is formed in a direction that can prevent relative slippage between the members in the same manner as the concave and convex grooves. However, the purpose of avoiding a local increase in internal stress in the member is to a certain extent even if the groove is formed in a direction allowing relative sliding (in a concentric ring centered on the rotation axis of the bearing). It should be understood that this is achieved, and bearing devices including such grooves are included within the scope of the present invention. Furthermore, in order to avoid an increase in local internal stress over the entire surface of the portion subjected to the thrust load, a plurality of concave and convex grooves are provided on the surface of the vibration damping member that receives the thrust load and the surface of the member facing it. Preferably, a plurality of concave and convex grooves extending in the radial direction of the bearing are formed over the entire circumference in the circumferential direction of the bearing.

上記において述べた本発明における制振部材の機械的損傷を回避又は低減するための構成は、制振部材、軸受、軸受支持装置又は回転体の各々に個別に設けられてよく、これにより、本発明の特徴を有する制振部材、軸受、軸受支持装置又は回転体を汎用の軸受、軸受支持装置又は回転体と組み合わせて用いることができることは理解されるであろう。例えば、軸受と、該軸受を支持する軸受支持体又は該軸受に装着される回転体との間に介装されるよう構成された制振部材であって、軸受、軸受支持体又は回転体に対面する表面に溝が設けられ、空隙を形成することを特徴とする制振部材は、既存の軸受装置において、軸受と軸受支持体又は回転体との間に用いることにより、良好な制振効果を有し且つ機械的な耐久性を有する制振部材として有利に用いることができる。   The configuration for avoiding or reducing the mechanical damage of the damping member in the present invention described above may be provided individually for each of the damping member, the bearing, the bearing support device, or the rotating body. It will be understood that the damping member, bearing, bearing support device or rotating body having the features of the invention can be used in combination with a general purpose bearing, bearing support device or rotating body. For example, a vibration damping member configured to be interposed between a bearing and a bearing support that supports the bearing or a rotating body that is mounted on the bearing, the bearing, the bearing support, or the rotating body A vibration damping member characterized in that a groove is provided on the facing surface to form a gap is used in an existing bearing device between a bearing and a bearing support or a rotating body. And can be advantageously used as a damping member having mechanical durability.

既に述べた如く、従来の技術において、重量の大きい機械又は装置には、ゴム弾性体等の高分子材料を制振部材として用いることができず、実際上、制振部材自体が、殆どの場合、用いられていなかったが、本発明の発明者は、特願2003−44508及び特願2003−89656に於いて、高弾性率・高振動減衰金属の如き、大きな重量には耐えられる制振材料を、軸受装置の制振部材として利用することを提案した。本発明では、更に高弾性率・高振動減衰金属からなる制振部材の機械的な耐久性を確保する手段が提供され、これにより、従来では制振部材による制振処理を施すことができなかった中型又は大型の機械又は装置において、上記の如き高弾性率・高振動減衰金属からなる制振部材を実用的に用いることが可能となる。   As already mentioned, in the prior art, a high-weight machine or device cannot use a polymer material such as a rubber elastic body as a vibration damping member. In practice, the vibration damping member itself is almost always used. Although not used, the inventors of the present invention disclosed in Japanese Patent Application No. 2003-44508 and Japanese Patent Application No. 2003-89656 that a damping material capable of withstanding a large weight, such as a high elastic modulus and high vibration damping metal. Has been proposed to be used as a damping member for a bearing device. In the present invention, a means for ensuring the mechanical durability of a vibration damping member made of a metal having a high elastic modulus and high vibration damping is provided, so that conventionally, the vibration damping treatment by the vibration damping member cannot be performed. In addition, in a medium- or large-sized machine or device, it is possible to practically use a damping member made of a high elastic modulus and high vibration damping metal as described above.

本発明の有利な点として特記されるべきことの一つは、本発明に於ける効果、即ち、制振部材の耐久性の向上が、制振部材又はそれに対面する部材の表面形状に改良を加えることにより得られるものであり、制振材料の種類によらない点である。そして、本発明のこの利点によれば、制振部材として採用し得る材料の種類の範囲が大きく広がり、図6に於いて制振材料の左上方にプロットされる材料も適宜選択できるようになるので(図6の縦横軸が対数であることに注意)、より一層良好な制振効果を有する材料が実用的に利用できるようになるのである。   One of the advantages of the present invention is that it should be noted that the effect of the present invention, that is, the improvement of the durability of the vibration damping member, improves the surface shape of the vibration damping member or the member facing it. It is obtained by adding, and is independent of the type of damping material. According to this advantage of the present invention, the range of types of materials that can be employed as the damping member is greatly expanded, and the material plotted on the upper left of the damping material in FIG. 6 can be selected as appropriate. Therefore (note that the vertical and horizontal axes in FIG. 6 are logarithmic), a material having a much better vibration damping effect can be practically used.

本発明の更なる有利な点として、機械的な損傷を防ぐための対策が、装置に追加的に部材を必要とせず、制振部材又はそれに対面する部材に、溝を形成することによって達成されるため、構造的に複雑にならず、また、装置の製造費用を大幅に増大することがない点は特記されるべきである。以下の実施形態に於いて詳細な説明からに理解される如く、例えば、制振部材に本発明の特徴となる溝を形成することにより、既存の軸受装置において全く若しくは殆ど設計の変更することなく、本発明の作用効果が得られることは、非常に有利である。   As a further advantage of the present invention, measures to prevent mechanical damage are achieved by forming a groove in the damping member or the member facing it without requiring additional members in the device. Thus, it should be noted that it is not structurally complex and does not significantly increase the manufacturing cost of the device. As will be understood from the detailed description in the following embodiments, for example, by forming a groove which is a feature of the present invention in the damping member, there is no or almost no design change in the existing bearing device. It is very advantageous that the effects of the present invention can be obtained.

上記に述べた本発明の特徴的な構成は、自動車等の変速機や動力伝達装置だけでなく、種々の重量の大きい機械又は軸受装置に適用されてよい。また、ゴムなどからなる制振部材を用いた従前の軸受装置に於いても、通常は、制振材料は、軸受やケースの材料よりも軟質で機械的損傷を受けやすいことが多いことから、本発明の構成が適用されれば、制振部材の耐久性が改善され、制振部材の寿命を延ばすことができる。   The characteristic configuration of the present invention described above may be applied not only to a transmission such as an automobile and a power transmission device but also to various heavy machines or bearing devices. Also, even in the conventional bearing device using a damping member made of rubber or the like, the damping material is usually softer and more susceptible to mechanical damage than the bearing or case material, If the configuration of the present invention is applied, the durability of the damping member can be improved and the life of the damping member can be extended.

本発明のその他の目的及び利点は、以下の本発明の好ましい実施形態の説明により明らかになるであろう。   Other objects and advantages of the present invention will become apparent from the following description of preferred embodiments of the present invention.

以下に添付の図を参照しつつ、本発明を幾つかの好ましい実施形態について詳細に説明する。図中、同一の符号は、同一の部位を示す。   The present invention will now be described in detail with reference to a few preferred embodiments with reference to the accompanying drawings. In the figure, the same reference numerals indicate the same parts.

なお、以下において、本発明は、自動車等の動力伝達装置に典型的に見られるころがり軸受、より詳細には、円錐ころ軸受に適用される形態により説明されるが、本発明が、その概念及び範囲から逸脱することなく、その他の任意のころがり軸受やすべり軸受を含む軸受構造にも、また、軸受構造を有する任意の機械又は装置においても同様に適用可能であることは理解されるであろう。   In the following, the present invention will be described with reference to a rolling bearing typically found in a power transmission device such as an automobile, and more specifically, a form applied to a tapered roller bearing. It will be understood that the invention is equally applicable to any other rolling bearing or bearing structure including a plain bearing and any machine or apparatus having a bearing structure without departing from the scope. .

図1には、本発明が適用されている自動車等のトランスアクスルに於ける軸受周辺の構造の断面の模式図が示されている。同図に於いて、符号10にて示された軸受は、円錐ころ軸受であり、線CLを中心とする環状の軸受外輪12と軸受内輪14との間にて、複数のころ又は転動体16が挾持され転動できるようになっている(図では、簡単のため、二つの転動体のみが示されている。)。軸受外輪12は、機械本体(図の例ではトランスアクスル)の枠に形成された軸受支持体又はケース20に固定的に保持される。他方、軸受内輪14は、機械の回転体22上に対し固定的に保持される。回転体22には、軸受が設けられている部位とは、別の部位にギヤ24が形成されており、図示していない別の回転体のギヤに作動的に係合している。かくして、周知の如く、回転体22が回転軸線CL周りに回転すると、軸受内輪14は、回転体22と伴に回転し、これにより、転動体16が軸受内輪14と軸受外輪12との間で転動する。軸受の各要素は、当業者にとって周知の任意の軸受鋼、例えば、高炭素クロム鋼で形成されてよい(機械の種類又は採用される軸受に要求される条件を満たす任意の材料が選択されてよい。)。   FIG. 1 is a schematic cross-sectional view of a structure around a bearing in a transaxle of an automobile or the like to which the present invention is applied. In the drawing, a bearing indicated by reference numeral 10 is a tapered roller bearing, and a plurality of rollers or rolling elements 16 are provided between an annular bearing outer ring 12 and a bearing inner ring 14 centered on a line CL. Is held and can roll (only two rolling elements are shown in the figure for the sake of simplicity). The bearing outer ring 12 is fixedly held by a bearing support or case 20 formed on the frame of the machine main body (transaxle in the illustrated example). On the other hand, the bearing inner ring 14 is fixedly held on the rotating body 22 of the machine. The rotating body 22 is formed with a gear 24 at a portion different from the portion where the bearing is provided, and is operatively engaged with a gear of another rotating body (not shown). Thus, as is well known, when the rotating body 22 rotates around the rotation axis CL, the bearing inner ring 14 rotates together with the rotating body 22, whereby the rolling element 16 moves between the bearing inner ring 14 and the bearing outer ring 12. Roll. Each element of the bearing may be formed of any bearing steel known to those skilled in the art, for example, high carbon chrome steel (any material selected to meet the requirements of the type of machine or the bearing employed). Good.)

図示されている如き軸受構造が備えられた機械において、振動又は騒音は、回転体のギヤ24と別の回転体のギヤ(図示せず)との噛合いによる衝撃振動或いは軸受の転動体の回転振動に起因する。それらの振動が軸受を介して軸受支持体に伝達されることを防ぐべく、図1の本発明の実施形態では、軸受支持体20と軸受外輪12との間に制振部材Sが設けられる。制振部材Sは、回転体又は軸受において発生する振動を吸収し、かくして、軸受支持体20へ伝わる振動が低減される。制振部材Sは、特願2003−44508及び特願2003−89656に記載されている如く、高弾性率・高振動減衰金属から形成されてよい。例えば、転位型高振動減衰金属であるK1X1(Mg−Zr合金)、双晶型高振動減衰金属であるM2052(Mn−Cu合金)等が採用される。制振部材Sは、好ましくは、軸受の外周面又は内周面に沿って設けられ、従って、その場合には、完全には図示されていないが、環状スリーブ形状を有していることは理解されるべきである。   In a machine provided with a bearing structure as shown in the figure, vibration or noise is caused by impact vibration caused by meshing between a gear 24 of a rotating body and a gear (not shown) of another rotating body or rotation of a rolling element of a bearing. Due to vibration. In order to prevent those vibrations from being transmitted to the bearing support via the bearing, in the embodiment of the present invention in FIG. 1, a damping member S is provided between the bearing support 20 and the bearing outer ring 12. The damping member S absorbs vibration generated in the rotating body or the bearing, and thus vibration transmitted to the bearing support 20 is reduced. The damping member S may be formed of a high elastic modulus and high vibration damping metal as described in Japanese Patent Application Nos. 2003-44508 and 2003-89656. For example, K1X1 (Mg—Zr alloy) that is a dislocation type high vibration damping metal, M2052 (Mn—Cu alloy) that is a twin type high vibration damping metal, or the like is employed. It is understood that the damping member S is preferably provided along the outer or inner peripheral surface of the bearing and thus has an annular sleeve shape in that case, although not fully illustrated. It should be.

図1に示されている如き軸受構造において、回転体22を軸受内輪14に嵌合する際、その嵌め合いは、典型的には、しまりばめにされる。他方、軸受外輪12は、軸受支持体に対し、すきまばめとなるよう嵌め合わされる。そこで、図1の例の如く、軸受外輪12と軸受支持体20との間に制振部材Sが間装される場合には、制振部材Sと軸受支持体20との嵌め合いを、しまりばめとし、制振部材Sと軸受外輪12との間がすきまばめとされる。勿論、これらの部材の嵌め合いは、適宜、制振部材Sと軸受外輪12との間をしまりばめとし、制振部材Sと軸受支持体20との間をすきまばめとなるよう設計されてもよいことは当業者にとって理解されるべきである。また、制振部材Sは、軸受内輪14と回転体22との間に装着されてもよく、任意に、制振部材Sと軸受内輪14又は回転体22との間の嵌め合いがしまりばめ又はすきまばめとなるよう部材の寸法が設計されてよいことは理解されるであろう。   In the bearing structure as shown in FIG. 1, when the rotating body 22 is fitted to the bearing inner ring 14, the fitting is typically an interference fit. On the other hand, the bearing outer ring 12 is fitted to the bearing support so as to have a clearance fit. Therefore, as shown in the example of FIG. 1, when the damping member S is interposed between the bearing outer ring 12 and the bearing support 20, the fit between the damping member S and the bearing support 20 is tight. A clearance fit is provided between the damping member S and the bearing outer ring 12. Of course, the fitting of these members is suitably designed to provide an interference fit between the damping member S and the bearing outer ring 12 and a clearance fit between the damping member S and the bearing support 20. It should be understood by those skilled in the art that it may be. Further, the damping member S may be mounted between the bearing inner ring 14 and the rotating body 22, and the fit between the damping member S and the bearing inner ring 14 or the rotating body 22 is arbitrarily fit. It will also be appreciated that the dimensions of the member may be designed to provide a clearance fit.

上記の制振部材Sの材料は、発明の開示の欄において述べた如く、一般的には、軸受支持体や軸受の材料よりも機械的な強度が低いため、磨耗や破壊などの機械的な損傷を受けやすく、機械的な耐久性を確保することができない。特に、制振部材Sとそれに対面する部材間がすきまばめにされている場合など、相対的な滑りを生じ得る構成では、上記の如く、ピッチング破壊、スポーリング破壊或いはフレッティング磨耗が発生しやすい。図1の例では、制振部材Sと軸受外輪12との間がすきまばめになっているので、それらの表面間を起点として、上記の如き機械的損傷が発生するおそれがある。   As described in the section of the disclosure of the invention, the material of the vibration damping member S generally has a mechanical strength lower than that of the bearing support or the bearing material. It is easily damaged and cannot ensure mechanical durability. In particular, in a configuration in which relative slippage may occur, such as when the vibration damping member S and a member facing it are loosely fitted, pitching failure, spalling failure, or fretting wear occurs as described above. Cheap. In the example of FIG. 1, since the clearance between the damping member S and the bearing outer ring 12 is a clearance fit, there is a possibility that the mechanical damage as described above may occur starting from the surface thereof.

そこで、図1に例示される軸受装置においては、まず、ピッチング破壊、即ち、制振部材Sとそれに対面する軸受外輪12との間に高硬度の、特に制振部材Sよりも硬い、異物が進入することによる破壊を回避するべく、制振部材Sの表面に複数の溝30が設けられ、溝30が表面に空隙を形成するよう構成される。図2(A)は、図1における線II−IIに沿って図中の矢印の方向に見た軸受の回転軸線に垂直な面における制振部材Sの模式図が示されており、図2(B)は、図2(A)の線B−Bに沿って図中の矢印の方向に見た制振部材Sと軸受外輪12の断面図である。これらの図より理解されるように、溝30は、例えば、回転軸線CLを中心として制振部材の放射方向に延在するよう複数設けられてよい。かかる溝30が形成されていることにより、軸受装置の組み立て中又は運転中に、外部からの異物が制振部材Sとそれと対面する部材(図1の例では、軸受外輪12)との間へ入り込んでも、制振部材Sと軸受外輪12とが相対的な滑りを生ずるうちに、異物が溝30内に落ち込み、トラップされ、かくして、互いに擦り合う制振部材Sと軸受外輪12の表面間から除去されて、ピッチング破壊が回避される。また、溝30の内端30aは、開放されていてよく、この場合、空隙に落ち込んだ異物は、かかる内端30aから除去されてよい。   Therefore, in the bearing device illustrated in FIG. 1, first, a pitting breakage, that is, foreign matter having a high hardness, particularly harder than the damping member S, is present between the damping member S and the bearing outer ring 12 facing the damping member S. In order to avoid destruction due to entering, a plurality of grooves 30 are provided on the surface of the damping member S, and the grooves 30 are configured to form voids on the surface. 2A shows a schematic diagram of the vibration damping member S on a plane perpendicular to the rotation axis of the bearing as seen in the direction of the arrow in FIG. 2 along the line II-II in FIG. FIG. 2B is a cross-sectional view of the vibration damping member S and the bearing outer ring 12 as viewed in the direction of the arrow in the drawing along line BB in FIG. As understood from these drawings, for example, a plurality of grooves 30 may be provided so as to extend in the radial direction of the damping member around the rotation axis CL. By forming the groove 30, foreign matter from the outside enters between the damping member S and the member facing the damping member S (the bearing outer ring 12 in the example of FIG. 1) during assembly or operation of the bearing device. Even if it enters, while the vibration damping member S and the bearing outer ring 12 slide relative to each other, foreign matter falls into the groove 30 and is trapped, and thus from between the surfaces of the vibration damping member S and the bearing outer ring 12 that rub against each other. Removed to avoid pitching failure. Further, the inner end 30a of the groove 30 may be opened, and in this case, the foreign matter that has fallen into the gap may be removed from the inner end 30a.

溝30の形状は、図2(A)に示されている如く、回転軸線CLを中心とした放射状に延在するよう構成されてもよいが、図2(C)の如く、制振部材Sの表面上に複数の窪み状の溝32が適当に分散されて形成されるようになっていてもよい。この場合、制振部材Sと軸受外輪12との相対的な滑りが、回転軸線CL周りの回転変位であることを考慮し、かかる回転変位が生ずる間に、制振部材Sの表面全域が網羅できるよう、窪み32は、制振部材Sの半径方向について、互いにずれて形成されていることが好ましい。   The shape of the groove 30 may be configured to extend radially around the rotation axis CL as shown in FIG. 2A, but the damping member S as shown in FIG. A plurality of indented grooves 32 may be appropriately dispersed on the surface. In this case, considering that the relative slip between the damping member S and the bearing outer ring 12 is a rotational displacement around the rotation axis CL, the entire surface of the damping member S is covered while the rotational displacement occurs. The depressions 32 are preferably formed so as to be shifted from each other in the radial direction of the damping member S so as to be able to do so.

図1及び図2の例において、溝30又は32が、軸受の周囲の円筒面12aに面した部位S1ではなく、回転軸線CLに概ね垂直な部位S2に形成されていることは、注意されるべきである。通常、軸受の円筒面12aは、回転精度を確保するために、高度な軌道精度が要求される。従って、軸受の周囲の円筒面12aに面する部位S1には、できるだけ、溝などの付加的な構造を形成しないことが望ましい。他方、回転軸線CLに概ね垂直な部位S2は、軸受支持体と回転体との間で発生するスラスト方向に荷重(スラスト荷重)を受けるところ、かかる荷重が、異物を挟んだ状態で、制振部材のS2とそれに対面する部材(軸受外輪)との間に作用すると、異物が制振部材(及びそれに対面する部材)の表面に圧しつけられ、傷をつけることとなる。また、図示の如き円錐ころ軸受は、回転体22を回転軸線CLに沿って軸受支持体20へ向かって圧すことにより、軸受に予圧が与えられて作動する。このような場合、かかる予圧は、制振部材Sの面S2にも作用し、これにより、スラスト荷重がかかる場合と同様に、異物を挟んだ制振部材Sの面S2は、傷つけられることとなる。従って、スラスト荷重又は予圧を受ける面に進入した異物が除去されるよう、図示の如く、溝30又は32は、回転軸線CLに概ね垂直な部位の表面S2に形成されていることが好ましい。なお、制振部材Sのスラスト荷重を受ける部位の表面S2は、図示の如く回転軸線CLに概ね垂直である必要はなく、軸受外輪の形状により、任意の形状を有する部位の面であってよいことは理解されるべきである。   In the example of FIGS. 1 and 2, it is noted that the groove 30 or 32 is formed not in the portion S1 facing the cylindrical surface 12a around the bearing but in the portion S2 that is substantially perpendicular to the rotation axis CL. Should. Normally, the cylindrical surface 12a of the bearing is required to have a high degree of orbit accuracy in order to ensure rotational accuracy. Therefore, it is desirable not to form an additional structure such as a groove as much as possible in the portion S1 facing the cylindrical surface 12a around the bearing. On the other hand, the portion S2 that is substantially perpendicular to the rotation axis CL receives a load (thrust load) in the thrust direction generated between the bearing support and the rotating body. When acting between the member S2 and the member (bearing outer ring) facing the member, the foreign matter is pressed against the surface of the vibration damping member (and the member facing the member) and is damaged. Further, the tapered roller bearing as shown in the figure operates by applying a preload to the bearing by pressing the rotating body 22 toward the bearing support body 20 along the rotation axis CL. In such a case, the preload also acts on the surface S2 of the vibration damping member S, and as a result, the surface S2 of the vibration damping member S sandwiching the foreign matter is damaged as in the case where a thrust load is applied. Become. Therefore, as shown in the figure, the groove 30 or 32 is preferably formed on the surface S2 at a site substantially perpendicular to the rotation axis CL so that the foreign matter that has entered the surface receiving the thrust load or preload is removed. The surface S2 of the vibration receiving member S that receives the thrust load does not need to be substantially perpendicular to the rotation axis CL as shown in the figure, and may be a surface of a portion having an arbitrary shape depending on the shape of the bearing outer ring. That should be understood.

軸受の円筒面12aに於ける軌道精度が適当に確保される場合には、円筒面12a上に溝30が設けられていてもよく(図3A参照)、その場合、制振部材の面S1と軸受の円筒面12aとの間に侵入した異物が、除去される。   If the orbit accuracy on the cylindrical surface 12a of the bearing is appropriately ensured, a groove 30 may be provided on the cylindrical surface 12a (see FIG. 3A), in which case the surface S1 of the damping member and Foreign matter that has entered between the cylindrical surface 12a of the bearing is removed.

同様の溝が制振部材S上ではなく、図3Bに示すように、軸受外輪12上の溝30’の如く設けられてもよいことは理解されるべきである。また、制振部材Sが軸受にしまりばめにされ、制振部材Sと軸受支持体20との間がすきまばめにされる場合には、制振部材Sの軸受支持体20に面する側に、溝30”が設けられてもよい(図3C)。更に、制振部材Sが軸受の回転軸線CLに概ね垂直な面のみに設けられる場合にも、同様の溝30が制振部材S上又はそれに面する部材に上にもうけられるよう構成されていてもよい(図3D)。同様の溝は、制振部材Sが軸受内輪14と回転体22との間に設けられる場合にも形成されてよい。   It should be understood that similar grooves may be provided on the bearing outer ring 12, such as grooves 30 ', as shown in FIG. Further, when the damping member S is fit into the bearing and the clearance between the damping member S and the bearing support 20 is a clearance fit, it faces the bearing support 20 of the damping member S. A groove 30 ″ may be provided on the side (FIG. 3C). Further, when the damping member S is provided only on a surface substantially perpendicular to the rotation axis CL of the bearing, the same groove 30 is provided on the damping member. It may be configured so as to be provided on S or on a member facing it (FIG. 3D) A similar groove is also provided when the damping member S is provided between the bearing inner ring 14 and the rotating body 22. May be formed.

図1或いは図3(A)に示されている如き溝30を設けた制振部材Sは、良好な制振効果を有し、しかも機械的耐久性のある制振部材として、汎用の又は既存の軸受装置に組み込むことができることは理解されるべきであり、そのような制振部材自体が本発明の一形態であることは理解されるべきである。   The vibration damping member S provided with the groove 30 as shown in FIG. 1 or FIG. 3 (A) has a good vibration damping effect and is a general-purpose or existing vibration damping member with mechanical durability. It should be understood that such a vibration damping member itself is a form of the present invention.

図4は、本発明の第二の実施形態を示しており、(A)は、図1と同様の軸受装置の回転軸線CLに沿った断面図であり、(B)は、(A)に於ける線B−Bから見た断面の模式図であり、(C)は、(B)における線C−Cに沿って見た制振部材Sと軸受外輪12の拡大断面図である。この実施形態においては、制振部材Sと軸受外輪12との表面に、相補的な凹凸溝40a(制振部材S側の凸部)及び40b(軸受外輪12側の凸部)が設けられ、それらの部材の相対的な滑りを阻止し、ピッチング破壊だけでなく、制振部材に生ずるフレッティング磨耗を回避するよう構成されている。   FIG. 4 shows a second embodiment of the present invention, in which (A) is a cross-sectional view along the rotation axis CL of the bearing device similar to FIG. 1, and (B) is shown in (A). It is a schematic diagram of the cross section seen from line BB in this, (C) is an expanded sectional view of the damping member S and the bearing outer ring 12 seen along line CC in (B). In this embodiment, complementary concave and convex grooves 40a (protrusions on the vibration damping member S side) and 40b (protrusions on the bearing outer ring 12 side) are provided on the surfaces of the vibration damping member S and the bearing outer ring 12, Relative slipping of these members is prevented, and not only pitching failure but also fretting wear occurring in the vibration damping member is avoided.

これらの図の構造においても、制振部材Sが軸受10と軸受支持体20との間に設けられており、制振部材Sと軸受外輪12との間はすきまばめにされる。従って、凹凸溝40a及びbがなければ、両者の部材は、回転体22の回転に伴って、相対的に回転方向に滑りを生ずるはずのものであったところ、相補的な、即ち、鍵と鍵穴の関係にて、制振部材Sの凹部又は凸部と軸受外輪12上の凸部又は凹部とが嵌合することにより、かかる相対的な滑りが阻止される。   Also in the structures shown in these drawings, the damping member S is provided between the bearing 10 and the bearing support 20, and a clearance fit is provided between the damping member S and the bearing outer ring 12. Therefore, if the concave and convex grooves 40a and 40b are not present, both members should be relatively slippery in the rotational direction as the rotating body 22 rotates. The relative slip is prevented by fitting the concave portion or the convex portion of the damping member S with the convex portion or the concave portion on the bearing outer ring 12 in relation to the key hole.

凹凸溝40a及び40bは、軸受の円筒面12aに形成されてもよいが、かかる円筒面12aは、軸受の軌道精度を確保する必要があるため、好ましくは、図4(A)より理解される如く、(図1の例と同様に)回転軸線CLに対し概ね垂直な面に形成される。   The concave and convex grooves 40a and 40b may be formed on the cylindrical surface 12a of the bearing. However, the cylindrical surface 12a is preferably understood from FIG. Thus, it is formed on a surface substantially perpendicular to the rotation axis CL (similar to the example of FIG. 1).

また、凹凸溝40a及び40bは、図4(B)に記載されている如く、典型的には、回転軸線CLから放射方向に延在するよう形成されるが、制振部材Sと軸受外輪12とが相対的に回転方向に変位することを阻止し得る任意のパターンにて形成されてよいことは、当業者にとって理解されるであろう。図4(C)の如く、凹凸溝は、矩形状であってもよいが、その他の形状であってもよい。重要なことは、互いに係合する溝の表面が、制振部材Sと軸受外輪12との相対的な回転方向の変位方向に一致しない(表面の接線方向が変位方向に一致しない)方向に延在するよう形成されるということである。また、以下の図5に関連して詳細に述べる如く、凹凸溝の形状は、相対的な滑りを阻止する以外の目的をも達成するべく、任意に決定されてよい。更に、凹凸溝が互いに嵌合した状態において、空隙40cが設けられてよく、これにより、表面間に侵入した異物をトラップしたり、或いは部材間の熱膨張の差を収容できるようになっていてよい。   Further, as shown in FIG. 4B, the concave and convex grooves 40a and 40b are typically formed so as to extend in the radial direction from the rotation axis CL, but the vibration damping member S and the bearing outer ring 12 are also formed. Those skilled in the art will appreciate that can be formed in any pattern that can prevent relative displacement in the rotational direction. As shown in FIG. 4C, the concave and convex grooves may be rectangular or other shapes. What is important is that the surfaces of the grooves engaged with each other extend in a direction in which the relative rotational direction between the damping member S and the bearing outer ring 12 does not coincide (the tangential direction of the surface does not coincide with the displacement direction). It is formed to exist. Further, as will be described in detail with reference to FIG. 5 below, the shape of the concavo-convex groove may be arbitrarily determined in order to achieve an object other than preventing relative slippage. Further, in the state in which the concave and convex grooves are fitted to each other, a gap 40c may be provided, so that foreign matter that has entered between the surfaces can be trapped or a difference in thermal expansion between the members can be accommodated. Good.

かくして、図4に示されている如き、相補的な凹凸溝が設けられることにより、すきまばめにされた制振部材Sと軸受外輪12との間の相対的な滑りが回避され、ピッチング破壊だけでなく、フレッティング磨耗も抑えることが可能となる。なお、図1の例と同様に、図4の凹凸溝は、制振部材Sと軸受支持体20との間がすきまばめにされる場合や制振部材Sが回転体と軸受との間に設けられる場合などに於いて、適宜、互いに相対的な滑りを生ずる部材間に設けられてよいことは理解されるべきであり、そのような(制振部材Sと軸受外輪12との間以外に)凹凸溝が設けられた軸受装置、軸受、軸受支持体又は回転体は、本発明の範囲に属する。   Thus, as shown in FIG. 4, by providing the complementary concave-convex grooves, relative slip between the vibration-damping member S and the bearing outer ring 12 which are fitted by clearance is avoided, and the pitching failure In addition, fretting wear can be suppressed. As in the example of FIG. 1, the concave and convex grooves in FIG. 4 are formed when the clearance between the damping member S and the bearing support 20 is a clearance fit or between the rotating member and the bearing. It should be understood that it may be appropriately provided between members that cause relative slip to each other in such a case (other than between the damping member S and the bearing outer ring 12). B) Bearing devices, bearings, bearing supports or rotating bodies provided with concave and convex grooves belong to the scope of the present invention.

図5は、図4の実施形態と概ね同様の軸受装置を示しているが、図5(B)及び(C)から理解されるように、スラスト荷重を受ける面に形成された相補的な凹凸溝44a及びbの表面が回転軸線CLに対し或る角度にて傾斜されて延在するよう構成される。即ち、図5(C)に示されている如く、互いに嵌合する凹凸溝は、それぞれ頂部と谷部とを有する鋸歯状の断面を有する。これにより、ピッチング破壊、フレッティング磨耗に加えて、以下に説明されるように、スポーリング破壊も回避若しくは低減されることとなる。   FIG. 5 shows a bearing device substantially similar to the embodiment of FIG. 4, but as can be seen from FIGS. 5 (B) and 5 (C), complementary irregularities formed on the surface receiving the thrust load. The surfaces of the grooves 44a and b are configured to extend at an angle with respect to the rotation axis CL. That is, as shown in FIG. 5C, the concavo-convex grooves to be fitted to each other have a sawtooth cross section having a top portion and a trough portion. As a result, spalling failure is avoided or reduced in addition to pitching failure and fretting wear, as will be described below.

図5(D)を参照して、回転軸線CLに概ね垂直な方向に延在する制振部材上には、スラスト荷重又は軸受の予圧の力F1が、回転軸線CLに平行な方向に作用にする。もし図4の如き凹凸溝の場合、溝の表面は、前記の力F1をそのまま受けることとなり、かくして、表面内部に局所的に強い応力を発生し得る。その場合、その局所的に強い応力が許容応力の比較的低い部分に到達した場合には、その低い部分に、亀裂が生じ、その亀裂は、前記の力F1に由来する応力により拡大され、それがスポーリング破壊となり得る。しかしながら、本実施形態に於いては、溝の表面を回転軸線CLに対し或る角度にて傾斜して延在するよう構成することにより、表面が力F1に対して傾斜することとなり、これにより、力が分散され、局所的に高い応力が発生することが回避される。かくして、表面内部の亀裂の発生する確率が低減され、スポーリング破壊の危険性を低減することが可能となる。   Referring to FIG. 5D, on the damping member extending in a direction substantially perpendicular to the rotation axis CL, the thrust load or the preload force F1 of the bearing acts in a direction parallel to the rotation axis CL. To do. In the case of the concavo-convex groove as shown in FIG. 4, the surface of the groove receives the force F1 as it is, and thus a strong stress can be locally generated inside the surface. In that case, when the locally strong stress reaches a relatively low part of the allowable stress, a crack is generated in the low part, and the crack is enlarged by the stress derived from the force F1. Can cause spalling destruction. However, in this embodiment, the surface of the groove is inclined with respect to the rotational axis CL so as to extend at a certain angle, so that the surface is inclined with respect to the force F1. , The force is distributed and high local stresses are avoided. Thus, the probability of occurrence of cracks inside the surface is reduced, and the risk of spalling failure can be reduced.

図4(C)において示されているように、この実施形態の相補的な凹凸溝においても、空隙44cが形成されていてよい。また、制振部材Sのスラスト荷重を受ける面の全体において、力が分散されていることが望ましいので、好ましくは、凹凸溝は、制振部材Sの面S2の全面及びそれに対面する軸受外輪12の表面に設けられることが好ましい。   As shown in FIG. 4C, the gap 44c may be formed also in the complementary concave-convex groove of this embodiment. Further, since it is desirable that the force is distributed over the entire surface of the damping member S that receives the thrust load, the concave and convex grooves are preferably formed on the entire surface S2 of the damping member S and the bearing outer ring 12 facing the entire surface. It is preferable to be provided on the surface.

更に、図示していないが、制振部材Sにかかるスラスト荷重(又は予圧)を分散する目的を達成するためだけであれば、溝の延在する向きは、制振部材Sと軸受外輪12との相対的な滑りを許す方向に、例えば、回転軸線CLを中心として同心円状に設けられてもよいことは理解されるべきである。また、制振部材Sが、軸受の円筒面12a上に設けられず、スラスト荷重を受ける面のみに設けられる場合にも、本発明を適用することができることは理解されるべきである。そして、図5に記載の構成と同様の構成が制振部材を回転体と軸受内輪との間に装着した場合おいても形成できることは、当業者にとって明らかであり、そのような構成は、本発明の範囲に属することは理解されるべきである。   Furthermore, although not shown in the drawing, if only the purpose of distributing the thrust load (or preload) applied to the damping member S is achieved, the extending direction of the groove is determined by the damping member S and the bearing outer ring 12. It should be understood that they may be provided concentrically in a direction that allows relative sliding of them, for example, about the rotation axis CL. Further, it should be understood that the present invention can also be applied to the case where the damping member S is not provided on the cylindrical surface 12a of the bearing but only on the surface receiving the thrust load. It is obvious to those skilled in the art that the same configuration as that shown in FIG. 5 can be formed even when the damping member is mounted between the rotating body and the bearing inner ring. It should be understood that it belongs to the scope of the invention.

かくして、図5に示されている如き、実施形態によれば、制振部材Sにかかる力を分散することにより、ピッチング破壊、フレッティング磨耗に加えて、スポーリング破壊の発生のおそれを低減することが可能となり、制振部材の機械的な耐久性を確保することができるようになる。   Thus, according to the embodiment as shown in FIG. 5, by distributing the force applied to the damping member S, in addition to pitching failure and fretting wear, the possibility of occurrence of spalling failure is reduced. Thus, the mechanical durability of the damping member can be ensured.

以上の説明は、本発明の実施の態様に関連してなされているが、当業者にとつて多くの修正及び変更が容易になされることは、理解されるべきであり、本発明は、上記に例示された実施態様のみに限定されるものではなく、本発明の概念から逸脱することなく種々の装置に適用されることは理解されるであろう。   Although the above description has been made in connection with the embodiments of the present invention, it should be understood that many modifications and changes can be easily made by those skilled in the art. It will be understood that the invention is not limited to the embodiments illustrated in FIG. 1 and applies to various devices without departing from the inventive concept.

本発明による制振部材が軸受支持体と軸受の間に間装された軸受構造の模式図。(A)軸受の回転軸線CLに沿っての軸受装置の断面図。The schematic diagram of the bearing structure by which the damping member by this invention was interposed between the bearing support body and the bearing. (A) Sectional drawing of the bearing apparatus along the rotation axis CL of a bearing. (A)Aの線II−IIにから見た制振部材Sの模式図。(B)Aの線B−Bにから見た制振部材Sと軸受外輪12の溝部分の断面の模式図。(C)本発明の別の実施形態についての(A)と同様の図。(A) The schematic diagram of the damping member S seen from the line II-II of A. (B) The schematic diagram of the cross section of the groove part of the damping member S and the bearing outer ring | wheel 12 seen from line BB of A. FIG. (C) The same figure as (A) about another embodiment of the present invention. (A)制振部材の溝が軸受の円筒面に対面する部位に設けられた本発明による実施形態の図1と同様の軸受構造の模式図。(B)軸受外輪12上に溝30’が設けられた本発明による実施形態の図1と同様の軸受構造の模式図。(C)制振部材Sの軸受支持体20に面する側に溝30”が設けられている本発明による実施形態の図1と同様の軸受構造の模式図。軸受構造の断面の上半分のみが示されており、下半分は、回転軸CLをはさんで対称であるため省略されている。(A) The schematic diagram of the bearing structure similar to FIG. 1 of embodiment by this invention provided in the site | part in which the groove | channel of the damping member faces the cylindrical surface of a bearing. (B) A schematic view of a bearing structure similar to FIG. 1 of the embodiment according to the present invention in which a groove 30 ′ is provided on the bearing outer ring 12. (C) A schematic diagram of a bearing structure similar to that of FIG. 1 of the embodiment according to the present invention in which a groove 30 ″ is provided on the side facing the bearing support 20 of the damping member S. Only the upper half of the cross section of the bearing structure. The lower half is omitted because it is symmetrical with respect to the rotation axis CL. (A)制振部材Sと軸受外輪12との相補的な凹凸溝が形成された本発明による実施形態の図1と同様の軸受構造の模式図。凹凸溝は、破線にて示されている。軸受構造の断面の上半分のみが示されており、下半分は、回転軸CLをはさんで対称であるため省略されている。(B)Aの線B−Bにから見た制振部材Sの模式図。(C)Bの線C−Cにから見た制振部材Sと軸受外輪12の溝部分の断面の模式図。(A) The schematic diagram of the bearing structure similar to FIG. 1 of embodiment by this invention in which the complementary uneven groove | channel of the damping member S and the bearing outer ring | wheel 12 was formed. The uneven grooves are indicated by broken lines. Only the upper half of the cross section of the bearing structure is shown, and the lower half is omitted because it is symmetric with respect to the rotation axis CL. (B) The schematic diagram of the damping member S seen from the line BB of A. (C) The schematic diagram of the cross section of the groove part of the damping member S and the bearing outer ring | wheel 12 seen from B line CC. (A)制振部材Sと軸受外輪12との相補的な凹凸溝であって、回転軸線CLに対し傾斜した面を有する溝が形成された本発明による実施形態の図1と同様の軸受構造の模式図。(B)Aの線B−Bにから見た制振部材Sの模式図。(C)Bの線C−Cにから見た制振部材Sと軸受外輪12の溝部分の断面の模式図。(D)溝の面に作用する力が分散されることを示す図。(A) A bearing structure similar to that of FIG. 1 of the embodiment according to the present invention, in which grooves are formed by complementary grooves between the damping member S and the bearing outer ring 12 and have a surface inclined with respect to the rotation axis CL. FIG. (B) The schematic diagram of the damping member S seen from the line BB of A. (C) The schematic diagram of the cross section of the groove part of the damping member S and the bearing outer ring | wheel 12 seen from B line CC. (D) The figure which shows that the force which acts on the surface of a groove | channel is disperse | distributed. 種々のケース又は軸受に用いられる金属材料、高振動減衰金属材料の振動減衰率(減衰係数)と機械的強度(引張強さ)との関係を示すグラフ図(非特許文献2からの引用)。The graph figure which shows the relationship between the vibration damping factor (damping coefficient) and mechanical strength (tensile strength) of the metal material used for various cases or bearings, and a high vibration damping metal material (cited from nonpatent literature 2).

符号の説明Explanation of symbols

10…軸受
12…軸受外輪
12a…軸受の円筒面
14…軸受内輪
16…転動体(ころ)
20…ケース(軸受支持体)
22…回転体
24…歯車
30…溝
32…窪み(溝)
40a、b…凹凸溝
40c…空隙
44a、b…凹凸溝
44c…空隙
CL…回転軸線
S…制振部材
S1…軸受の円筒面に対面する制振部材の面
S2…スラスト荷重を受ける制振部材の面
DESCRIPTION OF SYMBOLS 10 ... Bearing 12 ... Bearing outer ring 12a ... Bearing cylindrical surface 14 ... Bearing inner ring 16 ... Rolling element (roller)
20 ... Case (bearing support)
22 ... Rotating body 24 ... Gear 30 ... Groove 32 ... Dimple (groove)
40a, b ... Uneven groove 40c ... Air gap 44a, b ... Uneven groove 44c ... Air gap CL ... Rotational axis S ... Damping member S1 ... Surface of the damping member facing the cylindrical surface of the bearing S2 ... Damping member receiving thrust load Face of

Claims (37)

軸受と、前記軸受を支持する軸受支持体と、前記軸受に装着される回転体とを含み、前記軸受支持体及び前記回転体のうちの少なくとも一方と前記軸受との間に制振部材が設けられている軸受装置であって、前記制振部材の表面及び該制振部材に対面する前記軸受、軸受支持体又は回転体の表面のうちの少なくとも一方の表面に溝が設けられ、前記溝が空隙を形成し、これにより、前記制振部材の表面及び該制振部材に対面する前記軸受、軸受支持体又は回転体の表面の間に侵入した異物が前記空隙内に捕捉されることを特徴とする軸受装置。   A bearing includes a bearing, a bearing support that supports the bearing, and a rotating body mounted on the bearing, and a vibration damping member is provided between at least one of the bearing support and the rotating body and the bearing. A groove is provided on at least one of the surface of the damping member and the surface of the bearing, bearing support or rotating body facing the damping member, and the groove A gap is formed, whereby foreign matter that has entered between the surface of the damping member and the surface of the bearing, bearing support, or rotating body facing the damping member is captured in the gap. Bearing device. 請求項1の軸受装置であって、前記制振部材が前記軸受、軸受支持体又は回転体に対しすきまばめに嵌め合わされた表面を有し、前記溝が前記制振部材のすきまばめにされた表面及びそれに対面する前記軸受、軸受支持体又は回転体の表面のうちの少なくとも一方の表面に設けられていることを特徴する軸受装置。   The bearing device according to claim 1, wherein the damping member has a surface fitted in a clearance fit with respect to the bearing, the bearing support body, or the rotating body, and the groove serves as a clearance fit of the damping member. A bearing device, wherein the bearing device is provided on at least one of a surface of the surface and the surface of the bearing, the bearing support or the rotating body facing each other. 請求項1の軸受装置であって、前記軸受に予圧が付与され、前記溝が前記予圧を受ける前記制振部材の表面及びそれに対面する前記軸受、軸受支持体又は回転体の表面のうちの少なくとも一方の表面に設けられていることを特徴とする軸受装置。   2. The bearing device according to claim 1, wherein preload is applied to the bearing, and the groove receives at least the surface of the vibration damping member that receives the preload and the surface of the bearing, the bearing support, or the rotating body facing the surface. A bearing device provided on one surface. 請求項1の軸受装置であって、前記制振部材が前記回転体からスラスト荷重を受けるスラスト面を有し、前記溝が前記制振部材のスラスト面の表面及びそれに対面する前記軸受、軸受支持体又は回転体の表面のうちの少なくとも一方の表面に設けられていることを特徴とする軸受装置。   2. The bearing device according to claim 1, wherein the damping member has a thrust surface that receives a thrust load from the rotating body, and the groove is a surface of the thrust surface of the damping member and the bearing facing the thrust surface, the bearing support. A bearing device, wherein the bearing device is provided on at least one of the surfaces of the body and the rotating body. 請求項1の軸受装置であって、前記軸受が円錐ころ軸受である軸受装置。   The bearing device according to claim 1, wherein the bearing is a tapered roller bearing. 軸受を支持するための軸受支持装置にして、前記軸受が装着された際の該軸受に対向する部位に制振部材が設けられるよう構成された軸受支持装置であって、
前記制振部材に対面する表面に溝が設けられ、前記制振部材が装着された際に前記溝が空隙を形成し、これにより、前記制振部材の表面及び該制振部材に対面する表面の間に侵入した異物が前記空隙内に捕捉されることを特徴とする軸受支持装置。
A bearing support device configured to support a bearing, wherein a damping member is provided at a portion facing the bearing when the bearing is mounted,
A groove is provided on the surface facing the vibration damping member, and the groove forms a gap when the vibration damping member is mounted, whereby the surface of the vibration damping member and the surface facing the vibration damping member The bearing support device is characterized in that the foreign matter that has entered between is captured in the gap.
請求項6の軸受支持装置であって、スラスト荷重を受ける部位に前記制振部材の少なくとも一部が配置されるよう構成され、前記溝が前記制振部材の少なくとも一部に対面する表面に設けられていることを特徴する軸受支持装置。   The bearing support device according to claim 6, wherein at least a part of the vibration damping member is disposed in a portion that receives a thrust load, and the groove is provided on a surface facing at least a part of the vibration damping member. A bearing support device characterized by being provided. 請求項6の軸受支持装置であって、前記軸受に与えられる予圧を受ける部位に前記制振部材の少なくとも一部が配置されるよう構成され、前記溝が前記制振部材の少なくとも一部に対面する表面に設けられていることを特徴する軸受支持装置。   The bearing support device according to claim 6, wherein at least a part of the vibration damping member is disposed at a portion that receives a preload applied to the bearing, and the groove faces at least a part of the vibration damping member. A bearing support device provided on a surface of the bearing. 請求項6の軸受支持装置であって、前記制振部材に対面する表面に於ける前記制振部材との嵌め合いがすきまばめとなるよう構成されている軸受支持装置。   The bearing support device according to claim 6, wherein the fitting with the vibration damping member on the surface facing the vibration damping member is a clearance fit. 軸受に装着される回転体であって、前記軸受に装着された際に前記軸受に対向する部位に制振部材が設けられるよう構成された回転体にして、前記制振部材に対面する部位の表面に溝が設けられ、前記制振部材が装着された際に前記溝が空隙を形成し、これにより、前記制振部材の表面及び該制振部材に対面する表面の間に侵入した異物が前記空隙内に捕捉されることを特徴とする回転体。   A rotating body mounted on a bearing, wherein the rotating body is configured to be provided with a damping member at a portion facing the bearing when mounted on the bearing. A groove is provided on the surface, and when the vibration damping member is mounted, the groove forms a gap, so that foreign matter that has entered between the surface of the vibration damping member and the surface facing the vibration damping member A rotating body characterized by being trapped in the gap. 請求項10の回転体であって、前記軸受に装着される際に前記軸受に対しスラスト荷重を作用する部位に前記制振部材の少なくとも一部が介在するよう構成され、前記溝が前記制振部材の少なくとも一部に対面する表面に設けられていることを特徴する回転体。   The rotating body according to claim 10, wherein at least a part of the vibration damping member is interposed in a portion where a thrust load is applied to the bearing when being mounted on the bearing, and the groove is the vibration damping member. A rotating body provided on a surface facing at least a part of a member. 請求項10の回転体であって、前記制振部材に対面する表面に於ける前記制振部材との嵌め合いがすきまばめとなるよう構成されていることを特徴とする回転体。   11. The rotating body according to claim 10, wherein the fitting with the damping member on the surface facing the damping member is a clearance fit. 外周面と内周面とを有し前記外周面及び内周面のうち少なくとも一方に制振部材が設けられるよう構成された軸受であって、前記制振部材に対面する表面に溝が設けられ、前記制振部材が装着された際に前記溝が空隙を形成し、これにより、前記制振部材の表面と該制振部材に対面する表面との間に侵入した異物が前記空隙内に捕捉されることを特徴とする軸受。   A bearing having an outer peripheral surface and an inner peripheral surface, wherein a vibration damping member is provided on at least one of the outer peripheral surface and the inner peripheral surface, and a groove is provided on a surface facing the vibration damping member. When the vibration damping member is mounted, the groove forms a gap, whereby foreign matter that has entered between the surface of the vibration damping member and the surface facing the vibration damping member is captured in the gap. A bearing characterized by being made. 請求項13の軸受であって、前記軸受を支持する軸受支持装置に装着され回転体が装着された際にスラスト荷重を受けるに部位に前記制振部材の少なくとも一部が配置されるよう構成され、前記溝が前記制振部材の少なくとも一部に対面する表面に設けられていることを特徴とする軸受。   14. The bearing according to claim 13, wherein at least a part of the vibration damping member is disposed at a site to receive a thrust load when the rotating body is mounted on a bearing support device that supports the bearing. The groove is provided on a surface facing at least a part of the damping member. 請求項13の軸受であって、予圧が与えられて作動する軸受にして、前記制振部材が該軸受に装着された際に該制振部材の少なくとも一部に前記予圧が作用するよう構成され、前記溝が前記制振部材の少なくとも一部に対面する表面に設けられていることを特徴とする軸受。   14. The bearing according to claim 13, wherein the bearing is operated by applying a preload, and the preload acts on at least a part of the damping member when the damping member is mounted on the bearing. The groove is provided on a surface facing at least a part of the damping member. 請求項13の軸受であって、前記制振部材に対面する表面に於ける前記制振部材との嵌め合いがすきまばめとなるよう構成されていることを特徴とする軸受。   14. The bearing according to claim 13, wherein the fitting with the damping member on the surface facing the damping member is a clearance fit. 軸受と、該軸受を支持する軸受支持体又は該軸受に装着される回転体との間に介装されるよう構成された制振部材であって、前記軸受、前記軸受支持体又は前記回転体に対面する表面に溝が設けられ、空隙を形成することを特徴とする制振部材。   A vibration-damping member configured to be interposed between a bearing and a bearing support that supports the bearing or a rotating body that is mounted on the bearing, wherein the bearing, the bearing support, or the rotating body A vibration damping member, characterized in that a groove is provided on the surface facing to form a gap. 請求項17の制振部材であって、前記軸受と前記軸受支持体又は前記回転体との間に介装された際に、スラスト荷重を受ける部位を有し、前記溝が前記スラスト荷重を受ける部位の表面に設けられていることを特徴とする制振部材。   18. The vibration damping member according to claim 17, further comprising a portion that receives a thrust load when interposed between the bearing and the bearing support or the rotating body, and the groove receives the thrust load. A vibration damping member provided on a surface of a part. 請求項17の制振部材であって、前記溝が、前記軸受と前記軸受支持体又は前記回転体との間に介装された際に、前記軸受、前記軸受支持体又は前記回転体との嵌め合いがすきまばめとなる表面に設けられていることを特徴とする制振部材。   18. The vibration damping member according to claim 17, wherein when the groove is interposed between the bearing and the bearing support body or the rotating body, the bearing, the bearing support body, or the rotating body. A vibration damping member, characterized in that the fitting is provided on a surface that provides a clearance fit. 軸受と、前記軸受を支持する軸受支持体と、前記軸受に装着される回転体とを含み、前記軸受支持体及び前記回転体のうちの少なくとも一方と前記軸受との間に制振部材が設けられている軸受装置であって、前記制振部材の表面と該制振部材に対面する前記軸受、軸受支持体又は回転体の表面とに互いに嵌合する相補的な凹凸溝が設けられ、互いに嵌合した前記凹凸溝が前記制振部材と該制振部材に対面する前記軸受、軸受支持体又は回転体との相対的な前記軸受の回転方向の変位を阻止することを特徴とする軸受装置。   A bearing includes a bearing, a bearing support that supports the bearing, and a rotating body mounted on the bearing, and a vibration damping member is provided between at least one of the bearing support and the rotating body and the bearing. Complementary concavo-convex grooves that are fitted to each other are provided on the surface of the damping member and the surface of the bearing, bearing support, or rotating body facing the damping member. The fitted concave and convex grooves prevent the displacement in the rotational direction of the bearing relative to the vibration damping member and the bearing, bearing support or rotating body facing the vibration damping member. . 請求項20の軸受装置であって、前記互いに嵌合する凹凸溝が空隙を形成していることを特徴とする軸受装置。   21. The bearing device according to claim 20, wherein the concave and convex grooves fitted to each other form a gap. 請求項20の軸受装置であって、前記制振部材の少なくとも一部がスラスト方向の荷重を受ける部位を有し、前記凹凸溝が前記スラスト荷重を受ける制振部材の部位の表面とそれに対面する前記軸受、軸受支持体又は回転体の表面とに設けられていることを特徴とする軸受装置。   21. The bearing device according to claim 20, wherein at least a part of the vibration damping member has a portion that receives a load in a thrust direction, and the concave and convex grooves face a surface of a portion of the vibration damping member that receives the thrust load. A bearing device provided on a surface of the bearing, the bearing support or the rotating body. 軸受と、前記軸受を支持する軸受支持体と、前記軸受に装着される回転体とを含み、前記軸受支持体及び前記回転体のうちの少なくとも一方と前記軸受との間に制振部材が設けられている軸受装置であって、前記制振部材の少なくとも一部がスラスト方向の荷重を受ける部位を有し、互いに嵌合する相補的な凹凸溝が前記スラスト荷重を受ける制振部材の部位の表面とそれに対面する前記軸受、軸受支持体又は回転体の表面の全体に亙って複数形成され、前記凹凸溝の各々の表面が前記スラスト荷重の作用方向に対して傾斜した方向に延在していることを特徴とする軸受装置。   A bearing includes a bearing, a bearing support that supports the bearing, and a rotating body attached to the bearing, and a vibration damping member is provided between at least one of the bearing support and the rotating body and the bearing. In this bearing device, at least a part of the damping member has a portion that receives a load in a thrust direction, and complementary concave and convex grooves that are fitted to each other are parts of the portion of the damping member that receives the thrust load. A plurality of surfaces are formed over the entire surface of the bearing, the bearing support or the rotating body facing the surface, and each surface of the concave and convex grooves extends in a direction inclined with respect to the acting direction of the thrust load. A bearing device characterized by that. 軸受を支持するための軸受支持装置にして、前記軸受が装着された際の該軸受に対向する部位に制振部材が設けられる軸受支持装置であって、前記制振部材の表面と該制振部材に対面する前記軸受支持装置の表面とに互いに嵌合する相補的な凹凸溝が設けられ、前記凹凸溝が前記制振部材と該制振部材に対面する前記軸受支持装置との相対的な前記軸受の回転方向の変位を阻止することを特徴とする軸受支持装置。   A bearing support device for supporting a bearing, wherein a vibration damping member is provided at a portion facing the bearing when the bearing is mounted, the surface of the vibration damping member and the vibration damping member. Complementary concavo-convex grooves that are fitted to each other are provided on the surface of the bearing support device facing the member, and the concavo-convex grooves are relative to the vibration damping member and the bearing support device facing the vibration suppression member. A bearing support device that prevents displacement of the bearing in the rotational direction. 請求項24の軸受支持装置であって、前記互いに嵌合する凹凸溝が空隙を形成していることを特徴とする軸受支持装置。   25. The bearing support device according to claim 24, wherein the concave and convex grooves fitted to each other form a gap. 請求項24の軸受支持装置であって、前記軸受及び該軸受に装着される回転体が装着された際に前記制振部材の少なくとも一部がスラスト方向の荷重を受ける部位を有し、前記凹凸溝が前記スラスト荷重を受ける制振部材の部位の表面とそれに対面する前記軸受支持装置の表面とに設けられていることを特徴とする軸受支持装置。   25. The bearing support device according to claim 24, wherein at least a part of the vibration damping member receives a load in a thrust direction when the bearing and a rotating body mounted on the bearing are mounted, and the unevenness A bearing support device, wherein a groove is provided on a surface of a portion of a vibration damping member that receives the thrust load and a surface of the bearing support device facing the groove. 軸受を支持するための軸受支持装置にして、前記軸受が装着された際の該軸受に対向する部位に制振部材が設けられる軸受支持装置であって、前記軸受及び該軸受に装着される回転体が装着された際に前記制振部材の少なくとも一部がスラスト方向の荷重を受ける部位を有し、互いに嵌合する相補的な凹凸溝が前記スラスト荷重を受ける制振部材の部位の表面とそれに対面する前記軸受支持装置の表面全体に亙って複数形成され、前記凹凸溝の各々の表面が前記スラスト荷重の作用方向に対して傾斜した方向に延在していることを特徴とする軸受支持装置。   A bearing support device for supporting a bearing, wherein a damping member is provided at a portion facing the bearing when the bearing is mounted, the rotation being mounted on the bearing and the bearing When the body is mounted, at least a part of the damping member has a portion that receives a load in the thrust direction, and complementary concave and convex grooves that are fitted to each other have a surface of the portion of the damping member that receives the thrust load A plurality of bearings are formed over the entire surface of the bearing support device facing the bearings, and each surface of the concave and convex grooves extends in a direction inclined with respect to the acting direction of the thrust load. Support device. 軸受に装着される回転体であって、前記軸受に装着された際に前記軸受に対向する部位に制振部材が設けられる回転体にして、前記制振部材の表面と該制振部材に対面する前記回転体の表面とに互いに嵌合する相補的な凹凸溝が設けられ、前記凹凸溝が前記制振部材と該制振部材に対面する前記回転体との相対的な前記軸受の回転方向の変位を阻止することを特徴とする回転体。   A rotating body mounted on a bearing, wherein the rotating body is provided with a damping member at a portion facing the bearing when mounted on the bearing, and the surface of the damping member faces the damping member. Complementary concavo-convex grooves that are fitted to each other are provided on the surface of the rotating body, and the concavo-convex grooves are relative to the damping member and the rotating body facing the damping member in the rotation direction of the bearing. A rotating body characterized by preventing the displacement of the rotating body. 請求項28の回転体であって、前記互いに嵌合する凹凸溝が空隙を形成することを特徴とする回転体。   It is a rotary body of Claim 28, Comprising: The said uneven groove | channel which mutually fits forms a space | gap, The rotary body characterized by the above-mentioned. 請求項28の回転体であって、該軸受を介して前記軸受を支持する軸受支持装置に装着された際に前記制振部材の少なくとも一部がスラスト方向の荷重を受ける部位を有し、前記凹凸溝が前記スラスト荷重を受ける制振部材の部位の表面とそれに対面する前記回転体の表面とに設けられていることを特徴とする回転体。   30. The rotating body according to claim 28, wherein at least a part of the damping member receives a load in a thrust direction when mounted on a bearing support device that supports the bearing via the bearing, A rotating body characterized in that concave and convex grooves are provided on the surface of a portion of a vibration damping member that receives the thrust load and on the surface of the rotating body facing it. 軸受に装着される回転体であって、前記軸受に装着された際に前記軸受に対向する部位に制振部材が設けられる回転体にして、前記軸受を介して該軸受を支持する軸受支持装置に装着された際に前記制振部材の少なくとも一部がスラスト方向の荷重を受ける部位を有し、互いに嵌合する相補的な凹凸溝が前記スラスト荷重を受ける制振部材の部位の表面とそれに対面する前記回転体の表面との全体に亙って複数形成され、前記凹凸溝の各々の表面が前記スラスト荷重の作用方向に対して傾斜した方向に延在していることを特徴とする回転体。   A rotating body mounted on a bearing, wherein the rotating body is provided with a damping member at a portion facing the bearing when mounted on the bearing, and the bearing support device supports the bearing via the bearing. And at least a part of the vibration damping member receives a load in the thrust direction, and complementary concave and convex grooves fitted to each other have a surface of the vibration damping member receiving the thrust load and the surface thereof. A plurality of rotations formed over the entire surface of the rotating body facing each other, and each surface of the concave and convex grooves extends in a direction inclined with respect to the acting direction of the thrust load. body. 外周面と内周面とを有し前記外周面及び内周面のうち少なくとも一方に制振部材が設けられる軸受であって、前記制振部材の表面と該制振部材に対面する前記軸受の表面とに互いに嵌合する相補的な凹凸溝が設けられ、前記凹凸溝が前記制振部材と該制振部材に対面する前記軸受との相対的な前記軸受の回転方向の変位を阻止することを特徴とする軸受。   A bearing having an outer circumferential surface and an inner circumferential surface, wherein a damping member is provided on at least one of the outer circumferential surface and the inner circumferential surface, the surface of the damping member facing the damping member. Complementary concavo-convex grooves that fit each other are provided on the surface, and the concavo-convex grooves prevent displacement in the rotational direction of the bearing relative to the vibration-damping member and the bearing facing the vibration-damping member. Bearing characterized by. 請求項32の軸受であって、前記互いに嵌合する凹凸溝が空隙を形成することを特徴とする軸受。   33. The bearing according to claim 32, wherein the concave and convex grooves fitted to each other form a gap. 請求項32の軸受であって、前記軸受を支持する軸受支持装置に装着され回転体が装着された際に前記制振部材の少なくとも一部がスラスト方向の荷重を受ける部位を有し、前記凹凸溝が前記スラスト荷重を受ける制振部材の部位の表面とそれに対面する前記軸受の表面とに設けられていることを特徴とする軸受。   33. The bearing according to claim 32, wherein at least a part of the damping member receives a load in a thrust direction when mounted on a bearing support device that supports the bearing and a rotating body is mounted. A bearing characterized in that a groove is provided on the surface of a portion of the vibration damping member that receives the thrust load and the surface of the bearing facing the groove. 請求項32の軸受であって、予圧が付与されて作動する軸受にして、前記制振部材の少なくとも一部が前記予圧を受ける部位を有し、前記凹凸溝が前記予圧を受ける制振部材の部位の表面とそれに対面する前記軸受の表面とに設けられていることを特徴とする軸受。   33. The bearing according to claim 32, wherein the bearing is operated by applying a preload, wherein at least a part of the damping member has a portion that receives the preload, and the uneven groove receives the preload. A bearing provided on a surface of a portion and a surface of the bearing facing the portion. 外周面と内周面とを有し前記外周面及び内周面のうち少なくとも一方に制振部材が設けられる軸受であって、該軸受を支持する軸受支持装置に装着され回転体が装着された際に前記制振部材の少なくとも一部がスラスト方向の荷重を受ける部位を有し、互いに嵌合する相補的な凹凸溝が前記スラスト荷重を受ける制振部材の部位の表面とそれに対面する前記軸受の表面との全体に亙って複数形成され、前記凹凸溝の各々の表面が前記スラスト荷重の作用方向に対して傾斜した方向に延在していることを特徴とする軸受。   A bearing having an outer peripheral surface and an inner peripheral surface, wherein a vibration damping member is provided on at least one of the outer peripheral surface and the inner peripheral surface, and mounted on a bearing support device that supports the bearing and mounted with a rotating body In this case, at least a part of the vibration damping member has a portion that receives a load in the thrust direction, and complementary concave and convex grooves that are fitted to each other face the surface of the portion of the vibration damping member that receives the thrust load and the bearing And a plurality of the concave and convex grooves are formed so as to extend in a direction inclined with respect to a direction in which the thrust load is applied. 外周面と内周面とを有し、前記外周面及び内周面のうち少なくとも一方に制振部材が設けられ、予圧が付与されて作動する軸受であって、前記制振部材の少なくとも一部が前記予圧を受ける部位を有し、互いに嵌合する相補的な凹凸溝が前記予圧を受ける制振部材の部位の表面とそれに対面する前記軸受の表面との全体に亙って複数形成され、前記凹凸溝の各々の表面が前記予圧の作用方向に対して傾斜した方向に延在していることを特徴とする軸受。
A bearing having an outer peripheral surface and an inner peripheral surface, wherein a vibration damping member is provided on at least one of the outer peripheral surface and the inner peripheral surface, and is operated with a preload applied thereto, wherein at least a part of the vibration damping member Has a portion that receives the preload, and a plurality of complementary concave and convex grooves that fit together are formed over the entire surface of the portion of the vibration-damping member that receives the preload and the surface of the bearing that faces the surface. The bearing according to claim 1, wherein the surface of each of the concave and convex grooves extends in a direction inclined with respect to a direction in which the preload acts.
JP2003288341A 2003-08-07 2003-08-07 Bearing device Pending JP2005054946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003288341A JP2005054946A (en) 2003-08-07 2003-08-07 Bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003288341A JP2005054946A (en) 2003-08-07 2003-08-07 Bearing device

Publications (1)

Publication Number Publication Date
JP2005054946A true JP2005054946A (en) 2005-03-03

Family

ID=34367015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003288341A Pending JP2005054946A (en) 2003-08-07 2003-08-07 Bearing device

Country Status (1)

Country Link
JP (1) JP2005054946A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225097A (en) * 2006-02-27 2007-09-06 Toyota Motor Corp Rotation device and its manufacturing method
JP2009185977A (en) * 2008-02-08 2009-08-20 Nsk Ltd Double-row rolling bearing
JP2017201326A (en) * 2017-07-13 2017-11-09 オリエンタルモーター株式会社 Rotation angle detection device using gear support mechanism for holding gear at proper position

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225097A (en) * 2006-02-27 2007-09-06 Toyota Motor Corp Rotation device and its manufacturing method
JP4622886B2 (en) * 2006-02-27 2011-02-02 トヨタ自動車株式会社 Rotating device and manufacturing method thereof
JP2009185977A (en) * 2008-02-08 2009-08-20 Nsk Ltd Double-row rolling bearing
JP2017201326A (en) * 2017-07-13 2017-11-09 オリエンタルモーター株式会社 Rotation angle detection device using gear support mechanism for holding gear at proper position

Similar Documents

Publication Publication Date Title
KR101200313B1 (en) Thrust bearing assembly
JP5014335B2 (en) Thrust bearing assembly, engine assembly used in a vehicle, method of aligning thrust bearing assembly, and thrust bearing
EP2952763B1 (en) Multipoint contact ball bearing
JP2006051545A (en) Bearing seal including flexible lip
JP2008138779A (en) Shaft supporting device and preload method for cylindrical roller bearing
JP6790555B2 (en) Rolling bearing
JP2005054946A (en) Bearing device
US20130163907A1 (en) Rolling bearing
JP4427963B2 (en) Bearing device
JP2007333011A (en) Deep groove ball bearing
JP6817539B2 (en) Tortional damper
JP2007155021A (en) Roller bearing
JP4640003B2 (en) Rotating support with thrust needle bearing
JP2005023997A (en) Roller and roller bearing
JP4952284B2 (en) Bearing sealing device and bearing unit
JP2009168205A (en) Tilting pad bearing
JP2002120508A (en) Hub unit for automobile
JP2006002815A (en) Bearing unit for rolling stock
WO2024171958A1 (en) Rolling bearing and bearing device
JP2001090736A (en) Ball bearing
KR20110007432A (en) Torque converter for a vehicle
JP2006200669A (en) Roller bearing
JP2005048834A (en) Tapered roller bearing
JP2006226462A (en) Bearing structure
JP2023134073A (en) Rolling bearing unit for supporting wheel