JP2005054243A - Hydrogen storage material, its production method, and hydrogen generator - Google Patents

Hydrogen storage material, its production method, and hydrogen generator Download PDF

Info

Publication number
JP2005054243A
JP2005054243A JP2003287069A JP2003287069A JP2005054243A JP 2005054243 A JP2005054243 A JP 2005054243A JP 2003287069 A JP2003287069 A JP 2003287069A JP 2003287069 A JP2003287069 A JP 2003287069A JP 2005054243 A JP2005054243 A JP 2005054243A
Authority
JP
Japan
Prior art keywords
particulate
hydrogen storage
metal
storage material
solid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003287069A
Other languages
Japanese (ja)
Inventor
Yoshio Morita
芳雄 盛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003287069A priority Critical patent/JP2005054243A/en
Publication of JP2005054243A publication Critical patent/JP2005054243A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen storage material consisting essentially of Mg which has a high reaction rate and reduced hysteresis while making the most of high hydrogen storage capacity and excellent plateau flatness in a PCT (Pressure-Composition-Temperature) chart characteristic of Mg metal. <P>SOLUTION: The hydrogen storage material has a metallic structure comprising: (a) a simple substance phase of Mg; and (b) a solid solution phase in which Mg atoms are incorporated into the crystal structure of V or V atoms are incorporated into the crystal structure of Mg, and has a composition expressed by formula of Mg<SB>X</SB>V<SB>1-X</SB>(0.2≤X≤0.9). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、少なくともMgとVを含む水素貯蔵材料およびその製造法ならびに水素貯蔵材料を内蔵した水素発生装置に関する。   The present invention relates to a hydrogen storage material containing at least Mg and V, a method for producing the same, and a hydrogen generator incorporating the hydrogen storage material.

近年、環境問題ならびにエネルギー問題の観点から、燃料電池を始めとして水素を燃料として用いる機器およびシステムに関する技術開発が活発に進められている。また、水素の供給に必要不可欠な水素製造に関する技術、水素の輸送や貯蔵に関する技術の開発も活発化している。   In recent years, from the viewpoints of environmental problems and energy problems, technological development relating to fuel cells and other devices and systems using hydrogen as fuel has been actively promoted. In addition, the development of technology related to hydrogen production, which is indispensable for supplying hydrogen, and technology related to the transport and storage of hydrogen are being actively promoted.

水素の供給方法は、水素発生手段を用いる方法と、水素貯蔵手段を用いる方法とに大別される。水素発生手段には、水の電気分解、化石燃料の改質などが挙げられる。また、水素貯蔵手段には、高圧水素あるいは液体水素の貯蔵用容器、水素を吸蔵する水素貯蔵材料などが挙げられる。なかでも、水素を水素貯蔵材料に吸蔵させる方法は、コンパクト性および安全性の観点から、特に優れている。   Hydrogen supply methods are roughly classified into a method using hydrogen generation means and a method using hydrogen storage means. Examples of the hydrogen generating means include water electrolysis and fossil fuel reforming. Examples of the hydrogen storage means include high-pressure hydrogen or liquid hydrogen storage containers, hydrogen storage materials that store hydrogen, and the like. Among them, the method for storing hydrogen in the hydrogen storage material is particularly excellent from the viewpoint of compactness and safety.

水素貯蔵材料のなかでは、金属材料、ケミカルハイドライド類、炭素系材料などが有望である(例えば特許文献1、2参照)。金属からなる水素貯蔵材料としては、3.9重量%の水素を貯蔵可能なV金属、7. 6重量%の水素を貯蔵可能なMg金属などが知られている。ケミカルハイドライドとしては、理論上、7.4重量%の水素貯蔵能力を有するNaAlH4が知られているが、材料の安定性に問題がある。炭素系材料に関しては、水素化特性において、未だ確証されていない面が多い。
特開平10−147827号公報 特開平11−117036号公報
Among hydrogen storage materials, metal materials, chemical hydrides, carbon-based materials, and the like are promising (see, for example, Patent Documents 1 and 2). As metal hydrogen storage materials, V metal capable of storing 3.9% by weight of hydrogen, Mg metal capable of storing 7.6% by weight of hydrogen, and the like are known. Theoretically, NaAlH 4 having a hydrogen storage capacity of 7.4% by weight is known as a chemical hydride, but there is a problem in the stability of the material. Regarding carbon-based materials, there are many aspects that have not been confirmed yet in terms of hydrogenation characteristics.
Japanese Patent Laid-Open No. 10-147827 JP 11-1117036 A

コンパクト性および安全性において優れた水素貯蔵材料としては、水素貯蔵能力が高くて安定なMgが有望である。Mg金属は、その形態を粒子状とすることにより、水素の吸蔵と放出が可能になる。しかし、水素化・脱水素化の反応速度が遅いという欠点があり、その結果、水素平衡圧−水素貯蔵量等温線図(以下、PCT線図という)において、大きなヒステリシスが存在する。PCT線図は、水素貯蔵材料の実用性を評価する上で重要な指標となる。本発明は、これらの点を鑑みてなされたものである。   As a hydrogen storage material excellent in compactness and safety, Mg having a high hydrogen storage capacity and stable is promising. Mg metal can be occluded and released by making its form particulate. However, there is a drawback that the reaction rate of hydrogenation / dehydrogenation is slow. As a result, there is a large hysteresis in the hydrogen equilibrium pressure-hydrogen storage amount isotherm (hereinafter referred to as PCT diagram). The PCT diagram is an important index for evaluating the practicality of hydrogen storage materials. The present invention has been made in view of these points.

すなわち、本発明は、Mg金属の特徴である高い水素貯蔵能力と、PCT線図における優れたプラトー平坦性、例えば一段プラトーである点とを活かしながら、反応速度が速く、ヒステリシスが小さい水素貯蔵材料を提供するものである。本発明は、また、このような水素貯蔵材料を用いた水素発生装置を提供するものである。   That is, the present invention is a hydrogen storage material that has a high reaction rate and a low hysteresis while taking advantage of the high hydrogen storage capacity that is characteristic of Mg metal and the excellent plateau flatness in the PCT diagram, for example, a single-stage plateau. Is to provide. The present invention also provides a hydrogen generator using such a hydrogen storage material.

本発明は、(a)Mg(マグネシウム)の単体相と、(b)Mg原子がVの結晶構造に取り込まれ、もしくはV原子がMgの結晶構造に取り込まれた固溶体相と、を含んだ金属組織からなり、式:
MgX1-X(0.2≦X≦0.9)
で表される組成を有する水素貯蔵材料(以下、水素貯蔵材料Xという)に関する。
The present invention provides a metal comprising (a) a single phase of Mg (magnesium) and (b) a solid solution phase in which Mg atoms are incorporated into the crystal structure of V or V atoms are incorporated into the crystal structure of Mg. The organization consists of a formula:
Mg X V 1-X (0.2 ≦ X ≦ 0.9)
It is related with the hydrogen storage material (henceforth the hydrogen storage material X) which has the composition represented by these.

水素貯蔵材料Xは、粒子状のMg金属と、粒子状のV金属とを混合し、得られた混合物を700〜1000℃で加熱溶解する工程を含む製造法により得ることができる。   The hydrogen storage material X can be obtained by a production method including a step of mixing particulate Mg metal and particulate V metal, and heating and dissolving the obtained mixture at 700 to 1000 ° C.

水素貯蔵材料Xは、また、粒子状のMg金属と、粒子状のV金属とを混合し、得られた混合物にメカニカルアロイング法により機械的剪断力を付与する工程を含む製造法により得ることができる。   The hydrogen storage material X is also obtained by a production method including a step of mixing particulate Mg metal and particulate V metal, and applying a mechanical shearing force to the obtained mixture by a mechanical alloying method. Can do.

本発明は、また、(a)炭素原子がMgの結晶構造に取り込まれた固溶体相と、(b)炭素原子がVの結晶構造に取り込まれた固溶体相と、を含んだ金属組織からなり、式:
(MgX1-X)CY(0.2≦X≦0.9、0<Y≦0.4)
で表される組成を有する水素貯蔵材料(以下、水素貯蔵材料Yという)に関する。
The present invention also comprises a metal structure containing (a) a solid solution phase in which carbon atoms are incorporated into the Mg crystal structure, and (b) a solid solution phase in which carbon atoms are incorporated into the V crystal structure, formula:
(Mg X V 1-X ) C Y (0.2 ≦ X ≦ 0.9, 0 <Y ≦ 0.4)
Is related to a hydrogen storage material (hereinafter referred to as hydrogen storage material Y).

水素貯蔵材料Yは、粒子状のMg金属と、粒子状のV金属と、粒子状の炭素、粒子状の炭化マグネシウムおよび粒子状の炭化バナジウムよりなる群から選ばれる少なくとも1種とを混合し、得られた混合物を700〜1000℃で加熱溶解する工程を含む製造法により得ることができる。   The hydrogen storage material Y is a mixture of particulate Mg metal, particulate V metal, and at least one selected from the group consisting of particulate carbon, particulate magnesium carbide, and particulate vanadium carbide, The obtained mixture can be obtained by a production method including a step of dissolving by heating at 700 to 1000 ° C.

水素貯蔵材料Yは、また、粒子状のMg金属と、粒子状のV金属と、粒子状の炭素、粒子状の炭化マグネシウムおよび粒子状の炭化バナジウムよりなる群から選ばれる少なくとも1種とを混合し、得られた混合物にメカニカルアロイング法により機械的剪断力を付与する工程を含む製造法により得ることができる。   The hydrogen storage material Y is a mixture of particulate Mg metal, particulate V metal, and at least one selected from the group consisting of particulate carbon, particulate magnesium carbide, and particulate vanadium carbide. And it can obtain by the manufacturing method including the process of providing a mechanical shearing force to the obtained mixture by the mechanical alloying method.

本発明は、また、(a)硼素原子がMgの結晶構造に取り込まれた固溶体相と、(b)硼素原子がVの結晶構造に取り込まれた固溶体相と、を含んだ金属組織からなり、式:
(MgX1-X)BY(0.2≦X≦0.9、0<Y≦0.4)
で表される組成を有する水素貯蔵材料(以下、水素貯蔵材料Zという)に関する。
The present invention also includes a metal structure containing (a) a solid solution phase in which boron atoms are incorporated into the crystal structure of Mg, and (b) a solid solution phase in which boron atoms are incorporated into the crystal structure of V. formula:
(Mg X V 1-X ) B Y (0.2 ≦ X ≦ 0.9, 0 <Y ≦ 0.4)
The hydrogen storage material (henceforth the hydrogen storage material Z) which has the composition represented by these.

水素貯蔵材料Zは、粒子状のMg金属と、粒子状のV金属と、粒子状の硼素、粒子状の硼化マグネシウムおよび粒子状の硼化バナジウムよりなる群から選ばれる少なくとも1種とを混合し、得られた混合物を700〜1000℃で加熱溶解する工程を含む製造法により得ることができる。   The hydrogen storage material Z is a mixture of particulate Mg metal, particulate V metal, and at least one selected from the group consisting of particulate boron, particulate magnesium boride, and particulate vanadium boride. In addition, the obtained mixture can be obtained by a production method including a step of heating and dissolving at 700 to 1000 ° C.

水素貯蔵材料Zは、また、粒子状のMg金属と、粒子状のV金属と、粒子状の硼素、粒子状の硼化マグネシウムおよび粒子状の硼化バナジウムよりなる群から選ばれる少なくとも1種とを混合し、得られた混合物にメカニカルアロイング法により機械的剪断力を付与する工程を含む製造法により得ることができる。   The hydrogen storage material Z is also at least one selected from the group consisting of particulate Mg metal, particulate V metal, particulate boron, particulate magnesium borate, and particulate vanadium boride. Can be obtained by a production method including a step of applying mechanical shearing force to the obtained mixture by a mechanical alloying method.

上記の水素貯蔵材料X、YおよびZの製造法において、粒子状のV金属の平均粒径は、10μm以下であることが好ましい。
本発明は、さらに、水素貯蔵材料X、YまたはZを内蔵した水素発生装置に関する。
In the above method for producing the hydrogen storage materials X, Y and Z, the average particle size of the particulate V metal is preferably 10 μm or less.
The present invention further relates to a hydrogen generation apparatus incorporating a hydrogen storage material X, Y or Z.

本発明によれば、Mg金属の特徴である高い水素貯蔵能力と、PCT線図における優れたプラトー平坦性とを活かしながら、反応速度が速く、ヒステリシスが小さい、Mgを主成分とする水素貯蔵材料を提供することができる。   According to the present invention, a hydrogen storage material mainly composed of Mg, having a high reaction rate and a small hysteresis, while taking advantage of the high hydrogen storage capability that is characteristic of Mg metal and the excellent plateau flatness in the PCT diagram. Can be provided.

実施の形態1
本発明の第1の水素貯蔵材料Xは、Mg単体相と、MgとVの固溶体相とを含んだ金属組織からなる。水素貯蔵材料Xは、100%固溶体相からなることが好ましいが、通常は、Mg単体相とV単体相とを含んでいる。固溶体相は、主にMg単体相とV単体相との境界付近に存在し、固溶体相においては、Mg原子がVの結晶構造に取り込まれており、もしくはV原子がMgの結晶構造に取り込まれている。なお、Mg単体相には、不可避不純物として微量のV原子が含まれ、V単体相には、不可避不純物として微量のMg原子が含まれていてもよい。
Embodiment 1
The first hydrogen storage material X of the present invention is composed of a metal structure containing a single Mg phase and a solid solution phase of Mg and V. The hydrogen storage material X is preferably composed of a 100% solid solution phase, but usually contains a Mg simple substance phase and a V simple substance phase. The solid solution phase exists mainly near the boundary between the Mg single phase and the V single phase, and in the solid solution phase, Mg atoms are incorporated into the V crystal structure, or V atoms are incorporated into the Mg crystal structure. ing. The Mg single phase may contain a trace amount of V atoms as an inevitable impurity, and the V single phase may contain a trace amount of Mg atoms as an inevitable impurity.

上記3種類の相を含む材料では、Mg単体相とV単体相とが、固溶体相を介して密着している。このような構造においては、水素化時に、まず、V金属が直ちに水素と反応して水素の吸蔵を始める。吸蔵された水素は、VとMgとが原子レベルで混在する固溶体相を通ってMg単体相に移動する。従って、Mg単体相中に素早く水素を吸蔵することが可能になる。一方、水素放出時には、Mg単体相から固溶体相を通って、V金属から水素が容易に放出される。従って、Mg単体相中から素早く水素が放出される。その結果、水素貯蔵材料Xは、Mgを主成分とするにもかかわらず、水素の吸蔵・放出に係る反応速度の速い水素貯蔵材料となる。   In the material containing the above three types of phases, the Mg single-phase and the V single-phase are in close contact with each other through the solid solution phase. In such a structure, at the time of hydrogenation, first, V metal immediately reacts with hydrogen and begins to occlude hydrogen. The occluded hydrogen moves to a single Mg phase through a solid solution phase in which V and Mg are mixed at an atomic level. Therefore, it becomes possible to quickly store hydrogen in the Mg single phase. On the other hand, when releasing hydrogen, hydrogen is easily released from the V metal through the solid solution phase from the Mg single phase. Accordingly, hydrogen is quickly released from the Mg single phase. As a result, the hydrogen storage material X is a hydrogen storage material having a high reaction rate related to the storage and release of hydrogen, although Mg is the main component.

水素貯蔵材料Xの組成は、式:
MgX1-X(0.2≦X≦0.9)
で表される。Xが0.2未満では、Mgが少なすぎて、水素貯蔵量が不十分となり、Xが0.9を超えると、Vが少なすぎて、固溶体相が十分に形成されず、本発明の効果が十分に得られなくなる。水素貯蔵材料Xにおける固溶体相の含有量は、多いほど好ましい。
The composition of the hydrogen storage material X has the formula:
Mg X V 1-X (0.2 ≦ X ≦ 0.9)
It is represented by When X is less than 0.2, Mg is too little and hydrogen storage amount becomes insufficient. When X is more than 0.9, V is too little and a solid solution phase is not sufficiently formed, and the effect of the present invention is achieved. Cannot be obtained sufficiently. The higher the content of the solid solution phase in the hydrogen storage material X, the better.

水素貯蔵材料Xにおいては、Vの含有量によって、最大水素吸蔵量が異なる。最大水素吸蔵量は、MgとVとの原子比が9対1の組成の場合、7.0重量%である。また、MgとVとの原子比が2対8の組成の場合、最大水素吸蔵量は、4.6重量%である。   In the hydrogen storage material X, the maximum hydrogen storage amount varies depending on the V content. The maximum hydrogen storage amount is 7.0% by weight when the atomic ratio of Mg to V is 9: 1. Further, when the atomic ratio of Mg and V is 2 to 8, the maximum hydrogen storage amount is 4.6% by weight.

従来、Mg元素とV元素とは、互いに殆ど溶解し合わず、固溶体を形成しないものと考えられていたが、本発明者が実験を積み重ねて調べた結果、Mg元素とV元素とが固溶体を形成することが判明し、水素貯蔵材料Xを得るに至ったものである。Mg単体の融点は650℃であり、V単体の融点は1910℃であり、両者は大きく異なることから、合金の作製は困難である。このことが、Mg元素とV元素とが固溶体を形成しないと考えられていたことの原因であると推察される。   Conventionally, it was thought that the Mg element and the V element hardly dissolve each other and do not form a solid solution. However, as a result of the present inventors' investigation through repeated experiments, the Mg element and the V element become a solid solution. The hydrogen storage material X was found to be formed. The melting point of Mg alone is 650 ° C., the melting point of V simple substance is 1910 ° C., and they are greatly different, so that it is difficult to produce an alloy. This is presumed to be the reason why Mg element and V element were thought not to form a solid solution.

水素貯蔵材料Xは、バルクもしくは粒子状のMg金属と、粒子状のV金属とを混合し、得られた混合物を加熱溶解する工程を含む製造法により得られる。加熱溶解の温度は、Mg単体の融点以上で、かつ、V単体の融点以下であることが好ましく、具体的には700〜1000℃であることが好ましい。なお、Mg金属は、バルクよりも粒子状である方が、合金の均質化の点で好ましい。   The hydrogen storage material X is obtained by a production method including a step of mixing bulk or particulate Mg metal and particulate V metal, and heating and dissolving the obtained mixture. The temperature for heating and melting is preferably not less than the melting point of Mg alone and not more than the melting point of V alone, specifically 700 to 1000 ° C. In addition, it is preferable that the Mg metal is in the form of particles rather than the bulk in terms of homogenization of the alloy.

水素貯蔵材料Xは、粒子状のMg金属と粒子状のV金属とを混合し、得られた混合物にメカニカルアロイング法で機械的剪断力を付与する工程を含む製造法によっても得ることができる。
なお、いずれの方法においても、原料の仕込み比は、水素貯蔵材料Xの組成に合わせればよい。
The hydrogen storage material X can also be obtained by a production method including a step of mixing particulate Mg metal and particulate V metal and applying a mechanical shearing force to the obtained mixture by a mechanical alloying method. .
In any method, the raw material charge ratio may be adjusted to the composition of the hydrogen storage material X.

いずれの方法においても、粒子状のMg金属の平均粒径は、100μm〜1mmが好適である。また、粒子状のV金属の平均粒径は、10μm以下であることが好ましい。粒子状のV金属の平均粒径を10μm以下にすることにより、V原子のMg結晶構造への溶解が促進され、水素貯蔵材料XにおけるMgとVの固溶体相の含有量を高めることができるからである。   In any method, the average particle diameter of the particulate Mg metal is preferably 100 μm to 1 mm. The average particle size of the particulate V metal is preferably 10 μm or less. By making the average particle size of the particulate V metal 10 μm or less, dissolution of V atoms into the Mg crystal structure is promoted, and the content of the solid solution phase of Mg and V in the hydrogen storage material X can be increased. It is.

水素貯蔵材料中にV単体相が存在すると、PCT線図において水素化時の立ち上がりが緩やかとなり、水素放出時には、Y軸(水素平衡圧軸)近傍において大きなヒステリシスが現れる。一方、V金属の平均粒径を10μm以下にすることにより、V単体相に特有の傾向が現れにくくなり、PCT線図は、シャープな立ち上がりを有し、かつ、ヒステリシスの小さな線図となる。V単体相の特徴が小さくなったとしても、Mgの結晶構造にV原子が取り込まれた相が多く存在するため、反応速度は速いまま維持される。   If the V single phase is present in the hydrogen storage material, the rise at the time of hydrogenation in the PCT diagram becomes gradual, and a large hysteresis appears in the vicinity of the Y axis (hydrogen equilibrium pressure axis) when hydrogen is released. On the other hand, by setting the average particle size of V metal to 10 μm or less, a tendency peculiar to the V single phase is less likely to appear, and the PCT diagram has a sharp rise and a small hysteresis. Even if the characteristics of the V single phase are reduced, the reaction rate remains high because there are many phases in which V atoms are incorporated in the crystal structure of Mg.

実施の形態2
本発明の第2の水素貯蔵材料Yは、炭素原子がMgの結晶構造に取り込まれたMg主体の固溶体相と、炭素原子がVの結晶構造に取り込まれたV主体の固溶体相と、を含んだ金属組織からなる。Mg主体の固溶体相におけるCの含有量は、5原子%以上であることが好ましく、V主体の固溶体相におけるCの含有量は、より少ない方が好ましい。Mg主体の固溶体相におけるCの含有量が少なすぎると、反応速度を高める効果が小さくなり、多くなるにつれて水素貯蔵量は減少する。また、V主体の固溶体相におけるCの含有は、水素吸蔵特性に対して特に影響しない。なお、Mg主体の固溶体相には、不可避不純物として微量のV原子が含まれ、V主体の固溶体相には、不可避不純物として微量のMg原子が含まれていてもよい。
Embodiment 2
The second hydrogen storage material Y of the present invention includes an Mg-based solid solution phase in which carbon atoms are incorporated into the Mg crystal structure, and a V-based solid solution phase in which carbon atoms are incorporated into the V crystal structure. It consists of a metal structure. The C content in the Mg-based solid solution phase is preferably 5 atomic% or more, and the C content in the V-based solid solution phase is preferably smaller. If the content of C in the solid solution phase mainly composed of Mg is too small, the effect of increasing the reaction rate is reduced, and the hydrogen storage amount decreases as the content increases. Further, the C content in the V-based solid solution phase does not particularly affect the hydrogen storage characteristics. Note that the Mg-based solid solution phase may contain a small amount of V atoms as an unavoidable impurity, and the V-based solid solution phase may include a small amount of Mg atoms as an unavoidable impurity.

従来、Mgに対して炭素原子は殆ど固溶しないと考えられていたが、本発明者が実験を積み重ねて調べた結果、かなりの量の炭素原子がMgの結晶構造に取り込まれ得ることが判明し、水素貯蔵材料Yを得るに至ったものである。   Conventionally, it was thought that carbon atoms hardly dissolve in Mg, but as a result of the present inventors' investigation through repeated experiments, it was found that a considerable amount of carbon atoms can be incorporated into the crystal structure of Mg. As a result, the hydrogen storage material Y was obtained.

上記2種類の相を含む材料では、水素化・脱水素化反応が迅速に進み、PCT線図におけるヒステリシスがほぼ零となる。水素化時には、炭素を含むV主体の固溶体相は水素化が困難になるが、炭素を含むMg相が水素と反応しやすくなるためと考えられる。従って、水素貯蔵材料Yは、Mgを主成分とするにもかかわらず、水素の吸蔵に係る反応速度の速い水素貯蔵材料が得られる。   In the material containing the above two types of phases, the hydrogenation / dehydrogenation reaction proceeds rapidly, and the hysteresis in the PCT diagram becomes almost zero. At the time of hydrogenation, it is considered that the V-based solid solution phase containing carbon is difficult to hydrogenate, but the Mg phase containing carbon easily reacts with hydrogen. Therefore, although the hydrogen storage material Y has Mg as a main component, a hydrogen storage material having a high reaction rate related to hydrogen storage can be obtained.

水素貯蔵材料Yの組成は、式:
(MgX1-X)CY(0.2≦X≦0.9、0<Y≦0.4)
で表される。Xが0.2未満では、Mgが少なすぎて、水素貯蔵量が不十分となり、Xが0.9を超えると、Vが少なすぎて、Mgに対する炭素の固溶が困難となる。また、Yが0.4を超えると、水素貯蔵量が大きく減少する。一方、Yが小さすぎると、Mg主体の固溶体相およびV主体の固溶体相がほとんど形成されないことから、Yは0.05以上であることが好ましい。
The composition of the hydrogen storage material Y has the formula:
(Mg X V 1-X ) C Y (0.2 ≦ X ≦ 0.9, 0 <Y ≦ 0.4)
It is represented by If X is less than 0.2, the amount of Mg is too small and the hydrogen storage amount becomes insufficient, and if X exceeds 0.9, V is too small and it becomes difficult to dissolve carbon in Mg. On the other hand, if Y exceeds 0.4, the hydrogen storage amount is greatly reduced. On the other hand, if Y is too small, an Mg-based solid solution phase and a V-based solid solution phase are hardly formed. Therefore, Y is preferably 0.05 or more.

水素貯蔵材料Yにおいては、Vおよび炭素含有量によって、最大水素吸蔵量が異なる。最大水素吸蔵量は、MgとVとの原子比が9対1の組成の場合、炭素の含有率Yが0から0.4になるにつれて、7.0重量%から3.0重量%へと変化する。また、MgとVとの原子比が2対8の組成の場合、炭素の含有率Yが0から0.4になるにつれて、最大水素吸蔵量は、4.6重量%から2.0重量%と変化する。   In the hydrogen storage material Y, the maximum hydrogen storage amount varies depending on V and carbon content. The maximum hydrogen occlusion amount increases from 7.0% by weight to 3.0% by weight as the carbon content Y is changed from 0 to 0.4 when the atomic ratio of Mg and V is 9: 1. Change. When the atomic ratio of Mg and V is 2 to 8, the maximum hydrogen storage amount is 4.6 wt% to 2.0 wt% as the carbon content Y is changed from 0 to 0.4. And change.

水素貯蔵材料Yは、バルクもしくは粒子状のMg金属と、粒子状のV金属と、粒子状の炭素、粒子状の炭化マグネシウムおよび粒子状の炭化バナジウムよりなる群から選ばれる少なくとも1種とを混合し、得られた混合物を加熱溶解する工程を含む製造法により得ることができる。加熱溶解の温度は、Mg金属が溶けて蒸発が小さいという観点から、700〜1000℃であることが好ましい。なお、Mg金属は、バルクよりも粒子状である方が、合金の均質化の点で好ましい。   The hydrogen storage material Y is a mixture of bulk or particulate Mg metal, particulate V metal, and at least one selected from the group consisting of particulate carbon, particulate magnesium carbide, and particulate vanadium carbide. And it can obtain by the manufacturing method including the process of heat-dissolving the obtained mixture. The temperature for heating and melting is preferably 700 to 1000 ° C. from the viewpoint that Mg metal dissolves and evaporation is small. In addition, it is preferable that the Mg metal is in the form of particles rather than the bulk in terms of homogenization of the alloy.

水素貯蔵材料Yは、粒子状のMg金属と、粒子状のV金属と、粒子状の炭素、粒子状の炭化マグネシウムおよび粒子状の炭化バナジウムよりなる群から選ばれる少なくとも1種とを混合し、得られた混合物にメカニカルアロイング法で機械的剪断力を付与する工程を含む製造法によっても得ることができる。
なお、いずれの方法においても、原料の仕込み比は、水素貯蔵材料Yの組成に合わせればよい。また、粒子状の炭素としては、例えば無定形炭素とか黒鉛などを用いることができる。
The hydrogen storage material Y is a mixture of particulate Mg metal, particulate V metal, and at least one selected from the group consisting of particulate carbon, particulate magnesium carbide, and particulate vanadium carbide, It can also be obtained by a production method including a step of applying a mechanical shearing force to the obtained mixture by a mechanical alloying method.
In any method, the charging ratio of the raw materials may be matched to the composition of the hydrogen storage material Y. As the particulate carbon, for example, amorphous carbon or graphite can be used.

いずれの方法においても、粒子状のMg金属の平均粒径は、100μm〜1mmが好適である。また、粒子状の炭素、炭化マグネシウムおよび炭化バナジウムの平均粒径は、10〜100μmが好適である。さらに、粒子状のV金属の平均粒径は、10μm以下であることが好ましい。V金属の平均粒径を10μm以下にすることにより、上述のように、V単体相に特有の傾向が現れにくくなり、PCT線図は、シャープな立ち上がりを有し、かつ、ヒステリシスの小さな線図となるからである。   In any method, the average particle diameter of the particulate Mg metal is preferably 100 μm to 1 mm. The average particle size of the particulate carbon, magnesium carbide and vanadium carbide is preferably 10 to 100 μm. Further, the average particle diameter of the particulate V metal is preferably 10 μm or less. By making the average particle size of V metal 10 μm or less, as described above, a tendency peculiar to the V single phase is less likely to appear, and the PCT diagram has a sharp rise and has a small hysteresis. Because it becomes.

実施の形態3
本発明の第3の水素貯蔵材料Zは、硼素原子がMgの結晶構造に取り込まれたMg主体の固溶体相と、硼素原子がVの結晶構造に取り込まれたV主体の固溶体相と、を含んだ金属組織からなる。Mg主体の固溶体相におけるBの含有量は、5原子%以上であることが好ましく、V主体の固溶体相におけるBの含有量は、より少ない方が好ましい。Mg主体の固溶体相におけるBの含有量が少なすぎると、反応速度を高める効果が小さくなり、多くなるにつれて水素貯蔵量は減少する。また、V主体の固溶体相におけるBの含有は、水素吸蔵特性に対して特に影響しない。なお、Mg主体の固溶体相には、不可避不純物として微量のV原子が含まれ、V主体の固溶体相には、不可避不純物として微量のMg原子が含まれていてもよい。
Embodiment 3
The third hydrogen storage material Z of the present invention includes an Mg-based solid solution phase in which boron atoms are incorporated into the Mg crystal structure, and a V-based solid solution phase in which boron atoms are incorporated into the V crystal structure. It consists of a metal structure. The B content in the Mg-based solid solution phase is preferably 5 atomic% or more, and the B content in the V-based solid solution phase is preferably smaller. If the B content in the solid solution phase mainly composed of Mg is too small, the effect of increasing the reaction rate is reduced, and the hydrogen storage amount decreases as the content increases. Further, the inclusion of B in the V-based solid solution phase does not particularly affect the hydrogen storage characteristics. Note that the Mg-based solid solution phase may contain a small amount of V atoms as an unavoidable impurity, and the V-based solid solution phase may include a small amount of Mg atoms as an unavoidable impurity.

従来、Mgに対して硼素原子は殆ど固溶しないと考えられていたが、本発明者が実験を積み重ねて調べた結果、かなりの量の硼素原子がMgの結晶構造に取り込まれ得ることが判明し、水素貯蔵材料Zを得るに至ったものである。   Conventionally, it was thought that boron atoms hardly dissolve in Mg. However, as a result of inventor's repeated experiments, it was found that a considerable amount of boron atoms can be incorporated into the crystal structure of Mg. Thus, the hydrogen storage material Z has been obtained.

上記2種類の相を含む材料では、水素化・脱水素化反応が迅速に進み、PCT線図におけるヒステリシスがほぼ零となる。水素化時には、硼素を含むV主体の固溶体相は、水素と殆ど反応しない。これは、硼素を含むことによってMg相が水素と反応しやすくなるためと考えられる。従って、水素貯蔵材料Zは、Mgを主成分とするにもかかわらず、水素の吸蔵に係る反応速度の速い水素貯蔵材料が得られる。   In the material containing the above two types of phases, the hydrogenation / dehydrogenation reaction proceeds rapidly, and the hysteresis in the PCT diagram becomes almost zero. During hydrogenation, the V-based solid solution phase containing boron hardly reacts with hydrogen. This is presumably because the Mg phase easily reacts with hydrogen by containing boron. Therefore, although the hydrogen storage material Z has Mg as a main component, a hydrogen storage material having a high reaction rate related to hydrogen storage can be obtained.

水素貯蔵材料Zの組成は、式:
(MgX1-X)BY(0.2≦X≦0.9、0<Y≦0.4)
で表される。Xが0.2未満では、Mgが少なすぎて、水素貯蔵量が不十分となり、Xが0.9を超えると、Vが少なすぎて、Mgに対する硼素の固溶が困難となる。また、Yが0.4を超えると、水素貯蔵量が大きく減少する。一方、Yが小さすぎると、Mg主体の固溶体相およびV主体の固溶体相がほとんど形成されないことから、Yは0.05以上であることが好ましい。
The composition of the hydrogen storage material Z has the formula:
(Mg X V 1-X ) B Y (0.2 ≦ X ≦ 0.9, 0 <Y ≦ 0.4)
It is represented by When X is less than 0.2, the amount of Mg stored is too small, and the hydrogen storage amount becomes insufficient. When X exceeds 0.9, V is too small and it is difficult to dissolve boron in Mg. On the other hand, if Y exceeds 0.4, the hydrogen storage amount is greatly reduced. On the other hand, if Y is too small, an Mg-based solid solution phase and a V-based solid solution phase are hardly formed. Therefore, Y is preferably 0.05 or more.

水素貯蔵材料Zにおいては、Vおよび硼素含有量によって、最大水素吸蔵量が異なる。最大水素吸蔵量は、MgとVとの原子比が9対1の組成の場合、硼素の含有率Yが0から0.4になるにつれて、7.0重量%から3.0重量%へと変化する。また、MgとVとの原子比が2対8の組成の場合、硼素の含有率Yが0から0.4になるにつれて、最大水素吸蔵量は、4.6重量%から2.0重量%へと変化する。   In the hydrogen storage material Z, the maximum hydrogen storage amount varies depending on the V and boron contents. The maximum hydrogen occlusion amount is 7.0 wt% to 3.0 wt% as the boron content Y is changed from 0 to 0.4 in the case of an atomic ratio of 9 to 1 between Mg and V. Change. In the case where the atomic ratio of Mg and V is 2 to 8, the maximum hydrogen storage amount is 4.6 wt% to 2.0 wt% as the boron content Y is changed from 0 to 0.4. To change.

水素貯蔵材料Zは、バルクもしくは粒子状のMg金属と、粒子状のV金属と、粒子状の硼素、粒子状の硼化マグネシウムおよび粒子状の硼化バナジウムよりなる群から選ばれる少なくとも1種とを混合し、得られた混合物を加熱溶解する工程を含む製造法により得ることができる。加熱溶解の温度は、Mg金属が溶けて蒸発が小さいという観点から、700〜1000℃であることが好ましい。なお、Mg金属は、バルクよりも粒子状である方が、合金の均質化の点で好ましい。   The hydrogen storage material Z is at least one selected from the group consisting of bulk or particulate Mg metal, particulate V metal, particulate boron, particulate magnesium borate, and particulate vanadium boride. Can be obtained by a production method including a step of heating and dissolving the obtained mixture. The temperature for heating and melting is preferably 700 to 1000 ° C. from the viewpoint that Mg metal dissolves and evaporation is small. In addition, it is preferable that the Mg metal is in the form of particles rather than the bulk in terms of homogenization of the alloy.

水素貯蔵材料Zは、粒子状のMg金属と、粒子状のV金属と、粒子状の硼素、粒子状の硼化マグネシウムおよび粒子状の硼化バナジウムよりなる群から選ばれる少なくとも1種とを混合し、得られた混合物にメカニカルアロイング法で機械的剪断力を付与する工程を含む製造法によっても得ることができる。
なお、いずれの方法においても、原料の仕込み比は、水素貯蔵材料Zの組成に合わせればよい。
The hydrogen storage material Z is a mixture of particulate Mg metal, particulate V metal, and at least one selected from the group consisting of particulate boron, particulate magnesium boride, and particulate vanadium boride. And it can also obtain by the manufacturing method including the process of providing a mechanical shearing force with the mechanical alloying method to the obtained mixture.
In any method, the raw material charge ratio may be matched to the composition of the hydrogen storage material Z.

いずれの方法においても、粒子状のMg金属の平均粒径は、100μm〜1mmが好適である。また、粒子状の硼素、硼化マグネシウムおよび硼化バナジウムの平均粒径は、10〜100μmが好適である。さらに、粒子状のV金属の平均粒径は、10μm以下であることが好ましい。V金属の平均粒径を10μm以下にすることにより、上述のように、V単体相に特有の傾向が現れにくくなり、PCT線図は、シャープな立ち上がりを有し、かつ、ヒステリシスの小さな線図となるからである。
以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらに限定されるものではない。
In any method, the average particle diameter of the particulate Mg metal is preferably 100 μm to 1 mm. The average particle size of particulate boron, magnesium boride, and vanadium boride is preferably 10 to 100 μm. Further, the average particle diameter of the particulate V metal is preferably 10 μm or less. By making the average particle size of V metal 10 μm or less, as described above, a tendency peculiar to the V single phase is less likely to appear, and the PCT diagram has a sharp rise and has a small hysteresis. Because it becomes.
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these.

原子比1:1でバルクのMgと粒子状のV(平均粒径60μm)とを、総重量20gとして混合し、カーボンルツボを用いて高周波溶解し、組成がMg0.50.5のインゴットを得た。高周波溶解は、アルゴン雰囲気中で、Mgの融点以上かつVの融点以下(900℃)で、2kWの出力で1時間かけて実施した。 Bulk Mg and particulate V (average particle size 60 μm) at an atomic ratio of 1: 1 were mixed as a total weight of 20 g, and high-frequency dissolution was performed using a carbon crucible to obtain an ingot having a composition of Mg 0.5 V 0.5 . The high-frequency dissolution was performed in an argon atmosphere at an output of 2 kW for 1 hour at a melting point of Mg and below a melting point of V (900 ° C.).

得られたインゴットの断面の金属組織を観察した結果、図1に模式図で示すように、Mg単体相1と、V単体相2と、MgとV元素の固溶体相3との3種類から金属組織から成り立っていた。ここでは、溶解温度をMg単体の融点以上、かつ、V単体の融点以下としたため、主にMgが溶解して、V粒子を被覆した状態となっている。従って、固溶体相3は、Mg単体相1とV単体相2との境界に形成されている。   As a result of observing the metal structure of the cross-section of the obtained ingot, as shown in the schematic diagram of FIG. 1, the metal is composed of three kinds of Mg single phase 1, V single phase 2 and solid solution phase 3 of Mg and V element. It consisted of an organization. Here, since the melting temperature is set to be equal to or higher than the melting point of Mg alone and equal to or lower than the melting point of V simple substance, Mg is mainly dissolved to cover the V particles. Therefore, the solid solution phase 3 is formed at the boundary between the Mg single phase 1 and the V single phase 2.

固溶体相3の領域について、X線マイクロアナライザで組成分析をした結果を表1に示す。表1より、V原子が約20原子%から90原子%の範囲に関してMgの結晶構造に取り込まれていることが確認された。

Figure 2005054243
Table 1 shows the results of composition analysis of the region of the solid solution phase 3 using an X-ray microanalyzer. From Table 1, it was confirmed that V atoms were incorporated into the crystal structure of Mg for a range of about 20 atom% to 90 atom%.
Figure 2005054243

上記インゴットを機械的に平均粒径が50μmになるまで粉砕し、PCT測定を実施した。図3に400℃で測定したPCT線図(水素平衡圧力と材料に吸蔵された水素の重量比率との関係)を示す。
また、比較のために、純Mgを20g秤量し、カーボンルツボを用いて同様の溶解条件で高周波溶解したMgインゴットを作製した。得られたインゴットを上記と同様の平均粒径になるまで機械的に粉砕し、PCT測定を行った。図4に400℃で測定したPCT線図を示す。
The ingot was mechanically pulverized until the average particle size became 50 μm, and PCT measurement was performed. FIG. 3 shows a PCT diagram (relationship between the hydrogen equilibrium pressure and the weight ratio of hydrogen occluded in the material) measured at 400 ° C.
For comparison, 20 g of pure Mg was weighed, and a Mg ingot was prepared by high-frequency dissolution under the same dissolution conditions using a carbon crucible. The obtained ingot was mechanically pulverized until the average particle diameter was the same as described above, and PCT measurement was performed. FIG. 4 shows a PCT diagram measured at 400 ° C.

図4では、放出曲線(白点プロット)の戻りがわるく、大きなヒステリシスが生じたが、図3では、純Mgの場合と比べて、放出曲線の戻りが大きく改善され、ヒステリシスが小さくなった。これは、図4の場合には、Mg単体相とV単体相とが、MgとVとが互いに原子レベルで溶解し合っている固溶体相を介して密着しているためと考えられる。すなわち、水素化時にはV金属が直ちに水素と反応して吸蔵を始め、固溶体相を介してMg単体相中に水素が移動することができるからである。また、水素放出時は、逆にMg単体相から固溶体相を通ってV金属から水素が容易に放出されるからである。   In FIG. 4, the return of the release curve (white dot plot) was hindered and a large hysteresis occurred, but in FIG. 3, the return of the release curve was greatly improved compared to the case of pure Mg, and the hysteresis was reduced. In the case of FIG. 4, it is considered that the Mg single phase and the V single phase are in close contact with each other via a solid solution phase in which Mg and V are dissolved at the atomic level. That is, during hydrogenation, the V metal immediately reacts with hydrogen and begins to occlude, and hydrogen can move into the Mg single-phase through the solid solution phase. On the other hand, when hydrogen is released, hydrogen is easily released from the V metal through the solid solution phase from the Mg single phase.

次に、上記水素貯蔵材料を用い、貯蔵容器、圧力調整器および各種配管を用いて水素発生装置を組み立てたところ、貯蔵容器を400℃とした場合、放出圧0.1MPaの水素を安定して発生させることができた。   Next, when the above hydrogen storage material was used to assemble a hydrogen generator using a storage container, a pressure regulator, and various pipes, when the storage container was set to 400 ° C., hydrogen with a discharge pressure of 0.1 MPa was stably stabilized. Could be generated.

原子比1:1で粒子状のMg(20メッシュ、平均粒径1mm)と粒子状のV(300メッシュ、平均粒径60μm)とを、総重量10gとして混合し、ステンレス鋼製容器を用いてメカニカルアロイングを実施し、組成がMg0.50.5の粉体材料を得た。メカニカルアロイングは、アルゴン雰囲気中で、400℃で、168時間実施した。得られた粉体材料の金属組織を観察した結果、図1に模式図で示すような3種類の金属組織から成り立っていた。 At a 1: 1 atomic ratio, particulate Mg (20 mesh, average particle size 1 mm) and particulate V (300 mesh, average particle size 60 μm) are mixed in a total weight of 10 g, using a stainless steel container. Mechanical alloying was performed to obtain a powder material having a composition of Mg 0.5 V 0.5 . Mechanical alloying was performed in an argon atmosphere at 400 ° C. for 168 hours. As a result of observing the metal structure of the obtained powder material, it was composed of three kinds of metal structures as schematically shown in FIG.

上記粉体材料を用いて、PCT測定を実施したところ、400℃で測定したPCT線図は、図3と同様であり、純Mgと比べて、放出曲線の戻りが大きく改善され、ヒステリシスが小さかった。   When PCT measurement was performed using the above powder material, the PCT diagram measured at 400 ° C. was the same as FIG. 3, and the return of the release curve was greatly improved and the hysteresis was small compared to pure Mg. It was.

原子比8:2:1で、バルクのMgと、粒子状のV(平均粒径60μm)と、粒子状の無定形炭素とを、総重量20gとして混合し、カーボンルツボを用いて高周波溶解し、組成がMg0.80.20.1のインゴットを得た。高周波溶解は、アルゴン雰囲気中で、Mgの融点以上かつVの融点以下(900℃)で、2kWの出力で1時間かけて実施した。 At an atomic ratio of 8: 2: 1, bulk Mg, particulate V (average particle size 60 μm), and particulate amorphous carbon are mixed in a total weight of 20 g, and high-frequency dissolved using a carbon crucible. An ingot having a composition of Mg 0.8 V 0.2 C 0.1 was obtained. The high-frequency dissolution was performed in an argon atmosphere at an output of 2 kW for 1 hour at a melting point of Mg and below a melting point of V (900 ° C.).

得られたインゴットの断面の金属組織を観察した結果、図2に模式図で示すように、炭素原子がMgの結晶構造に取り込まれたMg主体の固溶体相4と、炭素原子がVの結晶構造に取り込まれたV主体の固溶体相5との2種類が存在した。また、V単体相、Mg単体相、C単体相は存在しなかった。ここでは、溶解温度をMg単体の融点以上、かつ、V単体およびC単体の融点以下としたため、Mgのみが溶解したものと考えられる。   As a result of observing the metal structure of the cross section of the obtained ingot, as shown in the schematic diagram of FIG. 2, the Mg-based solid solution phase 4 in which carbon atoms are incorporated into the Mg crystal structure, and the crystal structure of V carbon atoms There were two types, V and a solid solution phase 5 mainly composed of V. Further, there was no V single phase, Mg single phase, or C single phase. Here, since the melting temperature is set to be equal to or higher than the melting point of Mg alone and to the melting points of V and C alone, it is considered that only Mg is dissolved.

Mg主体の固溶体相4およびV主体の固溶体相5の領域について、X線マイクロアナライザで組成分析をした結果を表2に示す。表2より、Mg主体の固溶体相には炭素が約5原子%取り込まれており、V主体の固溶体相には炭素が約33原子%取り込まれてことが確認された。

Figure 2005054243
Table 2 shows the results of composition analysis of the regions of the Mg-based solid solution phase 4 and the V-based solid solution phase 5 using an X-ray microanalyzer. From Table 2, it was confirmed that about 5 atomic% of carbon was incorporated in the solid solution phase mainly composed of Mg, and about 33 atomic% of carbon was incorporated into the solid solution phase mainly composed of V.
Figure 2005054243

上記インゴットを機械的に平均粒径が50μmになるまで粉砕し、PCT測定を実施した。図5に400℃で測定したPCT線図(水素平衡圧力と材料に吸蔵された水素の重量比率との関係)を示す。   The ingot was mechanically pulverized until the average particle size became 50 μm, and PCT measurement was performed. FIG. 5 shows a PCT diagram (relationship between hydrogen equilibrium pressure and weight ratio of hydrogen occluded in the material) measured at 400 ° C.

図5では、純Mgの場合(図4)と比べて、放出曲線の戻りが大きく改善され、ヒステリシスが非常に小さく、角型性に優れていた。これは、図5の場合には、水素化時には炭素を含んだV主体の固溶体相が水素と殆ど反応せず、炭素を含むMg主体の固溶体相が水素と反応しやすくなったためと考えられる。   In FIG. 5, compared to the case of pure Mg (FIG. 4), the return of the release curve is greatly improved, the hysteresis is very small, and the squareness is excellent. In the case of FIG. 5, this is probably because the V-based solid solution phase containing carbon hardly reacts with hydrogen during hydrogenation, and the Mg-based solid solution phase containing carbon easily reacts with hydrogen.

次に、上記水素貯蔵材料を用い、貯蔵容器、圧力調整器および各種配管を用いて水素発生装置を組み立てたところ、貯蔵容器を400℃とした場合、放出圧0.1MPaの水素を安定して発生させることができた。   Next, when the above hydrogen storage material was used to assemble a hydrogen generator using a storage container, a pressure regulator, and various pipes, when the storage container was set to 400 ° C., hydrogen with a discharge pressure of 0.1 MPa was stably stabilized. Could be generated.

原子比8:2:1で粒子状のMg(20メッシュ、平均粒径1mm)と、粒子状のV(300メッシュ、平均粒径60μm)と、平均粒径10μmの無定形炭素とを、総重量10gとして混合し、ステンレス鋼製容器を用いてメカニカルアロイングを実施し、組成がMg0.80.20.1の粉体材料を得た。メカニカルアロイングは、アルゴン雰囲気中で、400℃で、168時間実施した。得られた粉体材料の金属組織を観察した結果、炭素原子がMgの結晶構造に取り込まれたMg主体の固溶体相と、炭素原子がVの結晶構造に取り込まれたV主体の固溶体相との2種類が存在し、V単体相等は存在しなかった。 Total amount of particulate Mg (20 mesh, average particle size 1 mm), particulate V (300 mesh, average particle size 60 μm) and amorphous carbon having an average particle size of 10 μm in an atomic ratio of 8: 2: 1. The mixture was mixed at a weight of 10 g and subjected to mechanical alloying using a stainless steel container to obtain a powder material having a composition of Mg 0.8 V 0.2 C 0.1 . Mechanical alloying was performed in an argon atmosphere at 400 ° C. for 168 hours. As a result of observing the metal structure of the obtained powder material, it was found that an Mg-based solid solution phase in which carbon atoms were incorporated into the Mg crystal structure and a V-based solid solution phase in which carbon atoms were incorporated into the V crystal structure. There were two types, and there was no V single phase or the like.

上記粉体材料を用いて、PCT測定を実施したところ、400℃で測定したPCT線図は、図5と同様であり、純Mgと比べて、放出曲線の戻りが大きく改善され、ヒステリシス特性が非常に優れていた。   When the PCT measurement was performed using the above powder material, the PCT diagram measured at 400 ° C. was the same as FIG. 5, and the return of the release curve was greatly improved compared to pure Mg, and the hysteresis characteristics were improved. It was very good.

原子比8:2:1で、バルクのMgと、粒子状のV(平均粒径60μm)と、粒子状の硼素とを、総重量20gとして混合し、カーボンルツボを用いて高周波溶解し、組成がMg0.80.20.1のインゴットを得た。高周波溶解は、アルゴン雰囲気中で、Mgの融点以上かつVの融点以下(900℃)で、2kWの出力で1時間かけて実施した。 At a ratio of 8: 2: 1, bulk Mg, particulate V (average particle size 60 μm), and particulate boron are mixed in a total weight of 20 g, and high-frequency dissolved using a carbon crucible. Obtained an ingot of Mg 0.8 V 0.2 B 0.1 . The high-frequency dissolution was performed in an argon atmosphere at an output of 2 kW for 1 hour at a melting point of Mg and below a melting point of V (900 ° C.).

得られたインゴットの断面の金属組織を観察した結果、硼素原子がMgの結晶構造に取り込まれたMg主体の固溶体相と、硼素原子がVの結晶構造に取り込まれたV主体の固溶体相との2種類が存在した。また、V単体相は存在しなかった。ここでは、溶解温度をMg単体の融点以上、かつ、V単体の融点以下としたため、Mgのみが溶解したものと考えられる。   As a result of observing the metal structure of the cross section of the obtained ingot, it was found that there was a Mg-based solid solution phase in which boron atoms were incorporated into the Mg crystal structure and a V-based solid solution phase in which boron atoms were incorporated into the V crystal structure. There were two types. Further, there was no V single phase. Here, since the melting temperature is set to be equal to or higher than the melting point of Mg alone and to the melting point of V alone, it is considered that only Mg is dissolved.

Mg主体の固溶体相およびV主体の固溶体相の領域について、X線マイクロアナライザで組成分析をしたところ、Mg主体の固溶体相に対しては硼素が約5原子%取り込まれており、V主体の固溶体相に対しては硼素が約40原子%取り込まれてことが確認された。   Composition analysis of the Mg-based solid solution phase and the V-based solid solution phase with an X-ray microanalyzer revealed that about 5 atomic percent of boron was incorporated into the Mg-based solid solution phase, It was confirmed that about 40 atomic% of boron was incorporated into the phase.

上記インゴットを機械的に平均粒径が50μmになるまで粉砕し、PCT測定を実施した。図6に400℃で測定したPCT線図(水素平衡圧力と材料に吸蔵された水素の重量比率との関係)を示す。   The ingot was mechanically pulverized until the average particle size became 50 μm, and PCT measurement was performed. FIG. 6 shows a PCT diagram (relationship between the hydrogen equilibrium pressure and the weight ratio of hydrogen occluded in the material) measured at 400 ° C.

図6では、純Mgの場合(図4)と比べて、放出曲線の戻りが大きく改善され、ヒステリシスが非常に小さく、角型性に優れていた。これは、図6の場合には、水素化時には硼素を含んだV主体の固溶体相が水素と殆ど反応せず、硼素を含むMg主体の固溶体相が水素と反応しやすくなったためと考えられる。   In FIG. 6, compared to the case of pure Mg (FIG. 4), the return of the release curve is greatly improved, the hysteresis is very small, and the squareness is excellent. This is probably because in the case of FIG. 6, the V-based solid solution phase containing boron hardly reacts with hydrogen during hydrogenation, and the Mg-based solid solution phase containing boron easily reacts with hydrogen.

次に、上記水素貯蔵材料を用い、貯蔵容器、圧力調整器および各種配管を用いて水素発生装置を組み立てたところ、貯蔵容器を400℃とした場合、放出圧0.1MPaの水素を安定して発生させることができた。   Next, when the above hydrogen storage material was used to assemble a hydrogen generator using a storage container, a pressure regulator, and various pipes, when the storage container was set to 400 ° C., hydrogen with a discharge pressure of 0.1 MPa was stably stabilized. Could be generated.

原子比8:2:1で粒子状のMg(20メッシュ。平均粒径1mm)と、粒子状のV(300メッシュ、平均粒径60μm)と、粒子状の硼素(300メッシュ、平均粒径60μm)とを、総重量10gとして混合し、ステンレス鋼製容器を用いてメカニカルアロイングを実施し、組成がMg0.80.20.1の粉体材料を得た。メカニカルアロイングは、アルゴン雰囲気中で、400℃で、168時間実施した。得られた粉体材料の金属組織を観察した結果、硼素原子がMgの結晶構造に取り込まれたMg主体の固溶体相と、硼素原子がVの結晶構造に取り込まれたV主体の固溶体相との2種類が存在し、V単体相は存在しなかった。 Particulate Mg (20 mesh, average particle size 1 mm) with an atomic ratio of 8: 2: 1, particulate V (300 mesh, average particle size 60 μm), and particulate boron (300 mesh, average particle size 60 μm) And a total weight of 10 g, and mechanical alloying was performed using a stainless steel container to obtain a powder material having a composition of Mg 0.8 V 0.2 B 0.1 . Mechanical alloying was performed in an argon atmosphere at 400 ° C. for 168 hours. As a result of observing the metallographic structure of the obtained powder material, it was found that an Mg-based solid solution phase in which boron atoms were incorporated into the Mg crystal structure and a V-based solid solution phase in which boron atoms were incorporated into the V crystal structure. There were two types and no V single phase.

上記粉体材料を用いて、PCT測定を実施したところ、400℃で測定したPCT線図は、図6と同様であり、純Mgと比べて、放出曲線の戻りが大きく改善され、ヒステリシス特性が非常に優れていた。   When PCT measurement was performed using the above powder material, the PCT diagram measured at 400 ° C. was the same as FIG. 6, and the return of the release curve was greatly improved compared to pure Mg, and the hysteresis characteristics were improved. It was very good.

粒子状のVの平均粒径を8μmにしたこと以外、実施例1と同じ方法で、水素貯蔵材料を作製した。そして、実施例1と同様にPCT線図を求めた。その結果、PCT線図の立ち上がりは、さらにシャープとなり、かつ、ヒステリシスも、より小さくなる傾向が見られた。   A hydrogen storage material was produced in the same manner as in Example 1 except that the average particle size of the particulate V was 8 μm. And the PCT diagram was calculated | required similarly to Example 1. FIG. As a result, the rise of the PCT diagram was further sharpened, and the hysteresis also tended to be smaller.

なお、実施例3および4に係るMg−V−C系および実施例5および6に係るMg−V−B系合金の場合にも、粒子状のVの平均粒径を10μm以下にすることにより、VのMgに対する溶解が促進されて均質化が進み、PCT線図における放出曲線の立ち上がりをシャープにする効果が見られると考えられる。   In the case of the Mg—V—C system according to Examples 3 and 4 and the Mg—V—B system alloy according to Examples 5 and 6, the average particle size of the particulate V is set to 10 μm or less. It is considered that the dissolution of V in Mg is promoted to promote homogenization, and the effect of sharpening the rise of the release curve in the PCT diagram can be seen.

本発明の水素貯蔵材料によれば、コンパクトで安全性が高く、高い水素貯蔵能力を有し、迅速な水素の供給が可能な水素発生装置を提供することができる。   According to the hydrogen storage material of the present invention, it is possible to provide a hydrogen generator that is compact and highly safe, has a high hydrogen storage capacity, and can supply hydrogen quickly.

組成がMg0.50.5の水素貯蔵材料の金属組織の模式図である。It is a schematic diagram of the metal structure of the hydrogen storage material whose composition is Mg 0.5 V 0.5 . 組成がMg0.80.20.1の水素貯蔵材料の金属組織の模式図である。It is a schematic diagram of the metal structure of the hydrogen storage material whose composition is Mg 0.8 V 0.2 C 0.1 . 組成がMg0.50.5の水素貯蔵材料のPCT線図である。It is a PCT diagram of the hydrogen storage material whose composition is Mg 0.5 V 0.5 . 純MgのPCT線図である。It is a PCT diagram of pure Mg. 組成がMg0.80.20.1の水素貯蔵材料のPCT線図である。It is a PCT diagram of a hydrogen storage material having a composition of Mg 0.8 V 0.2 C 0.1 . 組成がMg0.80.20.1の水素貯蔵材料のPCT線図であるIt is a PCT diagram of the hydrogen storage material whose composition is Mg 0.8 V 0.2 B 0.1

符号の説明Explanation of symbols

1 Mg単体相
2 V単体相
3 MgとVの固溶体相
4 Mgを主体とする固溶体相
5 Vを主体とする固溶体相
1 Mg single phase 2 V single phase 3 Mg and V solid solution phase 4 Solid solution phase mainly composed of Mg 5 Solid solution phase mainly composed of V

Claims (11)

水素貯蔵材料であって、
(a)Mgの単体相と、
(b)Mg原子がVの結晶構造に取り込まれ、もしくはV原子がMgの結晶構造に取り込まれた固溶体相と、を含んだ金属組織からなり、式:
MgX1-X(0.2≦X≦0.9)
で表される組成を有する水素貯蔵材料。
A hydrogen storage material,
(A) a single phase of Mg;
And (b) a metal structure including a solid solution phase in which Mg atoms are incorporated into the crystal structure of V or V atoms are incorporated into the crystal structure of Mg, and the formula:
Mg X V 1-X (0.2 ≦ X ≦ 0.9)
A hydrogen storage material having a composition represented by:
粒子状のMg金属と、粒子状のV金属とを混合し、得られた混合物を700〜1000℃で加熱溶解する工程を有する請求項1記載の水素貯蔵材料の製造法。   The method for producing a hydrogen storage material according to claim 1, further comprising a step of mixing particulate Mg metal and particulate V metal, and heating and dissolving the obtained mixture at 700 to 1000 ° C. 粒子状のMg金属と、粒子状のV金属とを混合し、得られた混合物にメカニカルアロイング法により機械的剪断力を付与する工程を有する請求項1記載の水素貯蔵材料の製造法。   The method for producing a hydrogen storage material according to claim 1, further comprising a step of mixing particulate Mg metal and particulate V metal, and applying mechanical shearing force to the obtained mixture by a mechanical alloying method. 水素貯蔵材料であって、
(a)炭素原子がMgの結晶構造に取り込まれた固溶体相と、
(b)炭素原子がVの結晶構造に取り込まれた固溶体相と、を含んだ金属組織からなり、式:
(MgX1-X)CY(0.2≦X≦0.9、0<Y≦0.4)
で表される組成を有する水素貯蔵材料。
A hydrogen storage material,
(A) a solid solution phase in which carbon atoms are incorporated into the crystal structure of Mg;
(B) a metal structure containing a solid solution phase in which carbon atoms are incorporated into the crystal structure of V, and the formula:
(Mg X V 1-X ) C Y (0.2 ≦ X ≦ 0.9, 0 <Y ≦ 0.4)
A hydrogen storage material having a composition represented by:
粒子状のMg金属と、粒子状のV金属と、粒子状の炭素、粒子状の炭化マグネシウムおよび粒子状の炭化バナジウムよりなる群から選ばれる少なくとも1種とを混合し、得られた混合物を700〜1000℃で加熱溶解する工程を有する請求項4記載の水素貯蔵材料の製造法。   Particulate Mg metal, particulate V metal, and at least one selected from the group consisting of particulate carbon, particulate magnesium carbide and particulate vanadium carbide are mixed, and the resulting mixture is 700. The method for producing a hydrogen storage material according to claim 4, comprising a step of heating and dissolving at ˜1000 ° C. 粒子状のMg金属と、粒子状のV金属と、粒子状の炭素、粒子状の炭化マグネシウムおよび粒子状の炭化バナジウムよりなる群から選ばれる少なくとも1種とを混合し、得られた混合物にメカニカルアロイング法により機械的剪断力を付与する工程を有する請求項4記載の水素貯蔵材料の製造法。   Particulate Mg metal, particulate V metal, and at least one selected from the group consisting of particulate carbon, particulate magnesium carbide, and particulate vanadium carbide are mixed, and the resulting mixture is mechanically mixed. The method for producing a hydrogen storage material according to claim 4, further comprising a step of applying a mechanical shearing force by an alloying method. 水素貯蔵材料であって、
(a)硼素原子がMgの結晶構造に取り込まれた固溶体相と、
(b)硼素原子がVの結晶構造に取り込まれた固溶体相と、を含んだ金属組織からなり、式:
(MgX1-X)BY(0.2≦X≦0.9、0<Y≦0.4)
で表される組成を有する水素貯蔵材料。
A hydrogen storage material,
(A) a solid solution phase in which boron atoms are incorporated into the crystal structure of Mg;
(B) a metal structure containing a solid solution phase in which boron atoms are incorporated into the crystal structure of V, and the formula:
(Mg X V 1-X ) B Y (0.2 ≦ X ≦ 0.9, 0 <Y ≦ 0.4)
A hydrogen storage material having a composition represented by:
粒子状のMg金属と、粒子状のV金属と、粒子状の硼素、粒子状の硼化マグネシウムおよび粒子状の硼化バナジウムよりなる群から選ばれる少なくとも1種とを混合し、得られた混合物を700〜1000℃で加熱溶解する工程を有する請求項7記載の水素貯蔵材料の製造法。   A mixture obtained by mixing particulate Mg metal, particulate V metal, and at least one selected from the group consisting of particulate boron, particulate magnesium borate, and particulate vanadium boride. The method for producing a hydrogen storage material according to claim 7, further comprising a step of heating and melting at 700 to 1000 ° C. 粒子状のMg金属と、粒子状のV金属と、粒子状の硼素、粒子状の硼化マグネシウムおよび粒子状の硼化バナジウムよりなる群から選ばれる少なくとも1種とを混合し、得られた混合物にメカニカルアロイング法により機械的剪断力を付与する工程を有する請求項7記載の水素貯蔵材料の製造法。   A mixture obtained by mixing particulate Mg metal, particulate V metal, and at least one selected from the group consisting of particulate boron, particulate magnesium borate, and particulate vanadium boride. The method for producing a hydrogen storage material according to claim 7, further comprising a step of applying a mechanical shearing force by mechanical alloying. 前記粒子状のV金属の平均粒径が、10μm以下である請求項2、3、5、6、8または9記載の水素貯蔵材料の製造法。   The method for producing a hydrogen storage material according to claim 2, 3, 5, 6, 8, or 9, wherein the average particle diameter of the particulate V metal is 10 µm or less. 請求項1、4または7記載の水素貯蔵材料を内蔵した水素発生装置。   A hydrogen generator incorporating the hydrogen storage material according to claim 1, 4 or 7.
JP2003287069A 2003-08-05 2003-08-05 Hydrogen storage material, its production method, and hydrogen generator Pending JP2005054243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003287069A JP2005054243A (en) 2003-08-05 2003-08-05 Hydrogen storage material, its production method, and hydrogen generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003287069A JP2005054243A (en) 2003-08-05 2003-08-05 Hydrogen storage material, its production method, and hydrogen generator

Publications (1)

Publication Number Publication Date
JP2005054243A true JP2005054243A (en) 2005-03-03

Family

ID=34366186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003287069A Pending JP2005054243A (en) 2003-08-05 2003-08-05 Hydrogen storage material, its production method, and hydrogen generator

Country Status (1)

Country Link
JP (1) JP2005054243A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006114728A1 (en) * 2005-04-25 2006-11-02 Koninklijke Philips Electronics N.V. Hydrogen storage material and method for preparation of such a material
JP2011514245A (en) * 2008-02-12 2011-05-06 イリカ テクノロジーズ リミテッド Doped hydrogen storage material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006114728A1 (en) * 2005-04-25 2006-11-02 Koninklijke Philips Electronics N.V. Hydrogen storage material and method for preparation of such a material
JP2011514245A (en) * 2008-02-12 2011-05-06 イリカ テクノロジーズ リミテッド Doped hydrogen storage material

Similar Documents

Publication Publication Date Title
Yartys et al. Magnesium based materials for hydrogen based energy storage: Past, present and future
Douglass The formation and dissociation of magnesium alloy hydrides and their use for fuel storage in the hydrogen car
Ouyang et al. Enhanced hydrogen storage kinetics and stability by synergistic effects of in situ formed CeH2. 73 and Ni in CeH2. 73-MgH2-Ni nanocomposites
Gasiorowski et al. Hydriding properties of nanocrystalline Mg2− xMxNi alloys synthesized by mechanical alloying (M= Mn, Al)
Ivanov et al. Magnesium mechanical alloys for hydrogen storage
JP5092747B2 (en) Hydrogen storage alloy and manufacturing method thereof, hydrogen storage alloy electrode, and secondary battery
Zhang et al. Dehydriding properties of ternary Mg2Ni1− xZrx hydrides synthesized by ball milling and annealing
JP2002327230A (en) Magnesium-based hydrogen absorbing alloy
Anik Improvement of the electrochemical hydrogen storage performance of Mg2Ni by the partial replacements of Mg by Al, Ti and Zr
JP2008266781A (en) METHOD FOR MANUFACTURING Mg-Al BASED HYDROGEN STORAGE ALLOY POWDER AND Mg-Al BASED HYDROGEN STORAGE ALLOY POWDER OBTAINED BY THE MANUFACTURING METHOD
Gkanas et al. Synthesis, characterisation and hydrogen sorption properties of mechanically alloyed Mg (Ni1-xMnx) 2
Denys et al. Phase equilibria in the Mg–Ti–Ni system at 500° C and hydrogenation properties of selected alloys
JP4602926B2 (en) Method for producing alloy powder
Zhang et al. Modification of nano-eutectic structure and the relation on hydrogen storage properties: A novel Ti–V–Zr medium entropy alloy
JP2000104135A (en) Ternary hydrogen storage alloy and its production
Majchrzycki et al. Electrode characteristics of nanocrystalline (Zr, Ti)(V, Cr, Ni) 2.41 compound
JP5297205B2 (en) Powder intermetallic materials for reversible storage of hydrogen
Leiva et al. Mechanochemistry and H-sorption properties of Mg2FeH6-based nanocomposites
JP2005054243A (en) Hydrogen storage material, its production method, and hydrogen generator
US20110091352A1 (en) Light metal solid solution alloys for hydrogen storage
JP4524384B2 (en) Quasicrystal-containing titanium alloy and method for producing the same
CN110249066B (en) Hydrogen-storage alloy
Gvozdkov et al. Elaboration of Chemical Hydrogen Source Based on Hydrides of Magnesium Alloys
Chebab et al. Structural and hydrogen storage properties of LaCaMgNi9-type alloy obtained by mechanical alloying
Park et al. Hydrogen Sorption of Pure Mg and Niobium (V) Fluoride-Added Mg Alloys Prepared by Planetary Ball Milling in Hydrogen