JP2005052502A - Capsule type medical device and capsule type medical device guiding system - Google Patents

Capsule type medical device and capsule type medical device guiding system Download PDF

Info

Publication number
JP2005052502A
JP2005052502A JP2003288273A JP2003288273A JP2005052502A JP 2005052502 A JP2005052502 A JP 2005052502A JP 2003288273 A JP2003288273 A JP 2003288273A JP 2003288273 A JP2003288273 A JP 2003288273A JP 2005052502 A JP2005052502 A JP 2005052502A
Authority
JP
Japan
Prior art keywords
capsule
medical device
main body
electromagnetic field
capsule medical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003288273A
Other languages
Japanese (ja)
Other versions
JP4137740B2 (en
JP2005052502A5 (en
Inventor
Hironao Kono
宏尚 河野
Akio Uchiyama
昭夫 内山
Kenichi Arai
賢一 荒井
Kazuyuki Ishiyama
和志 石山
Masahiko Sendo
雅彦 仙道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2003288273A priority Critical patent/JP4137740B2/en
Priority to US10/910,738 priority patent/US7623904B2/en
Priority to EP04771603A priority patent/EP1652466A4/en
Priority to CN2008100965381A priority patent/CN101292857B/en
Priority to CN2004800218881A priority patent/CN1829466B/en
Priority to KR1020067002345A priority patent/KR100796077B1/en
Priority to PCT/JP2004/011628 priority patent/WO2005013811A1/en
Publication of JP2005052502A publication Critical patent/JP2005052502A/en
Publication of JP2005052502A5 publication Critical patent/JP2005052502A5/ja
Priority to US11/823,598 priority patent/US7697970B2/en
Application granted granted Critical
Publication of JP4137740B2 publication Critical patent/JP4137740B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00158Holding or positioning arrangements using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/73Manipulators for magnetic surgery

Abstract

<P>PROBLEM TO BE SOLVED: To provide a capsule type medical device and a capsule type medical device guiding system for guiding the medical device to a target section along a lumen organ in a short period of time by rotating the device. <P>SOLUTION: A spiral projection 43 is formed on the cylindrical outer surface of a capsule 3 inserted into the lumen organ in the body cavity, and an end 43a of the projection extends close to the border of the visual field angle near the tip of a tip cover 39 to be contracted in the shape of a hemisphereric plane to make a spiral structure. Accordingly, the speed of propulsion is further increased by rotating the capsule 3 in a rotating magnetic field, etc., and the capsule 3 can be more smoothly propelled along the bending lumen. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は体腔内に挿入され、回転させながら推進させて誘導するのに好適なカプセル型医療装置及びカプセル型医療装置誘導システムに関する。   The present invention relates to a capsule medical device and a capsule medical device guidance system suitable for being inserted into a body cavity and propelled while being rotated.

回転磁場により被検体内を推進させる従来例として特開2001−179700公報及び特開2002−187100号公報がある。これらの従来例には、回転磁場を発生する磁場発生部と、この回転磁場を受けて回転して推力を得るロボット本体と、ロボット本体の位置を検出する位置検出部と、この位置検出部が検出したロボット本体の位置に基づき、ロボット本体を目的地へ到達させる方向へ向けるべく磁場発生部による回転磁場の向きを変更する磁場変更手段とを備えた移動可能なマイクロマシンの移動制御システムが開示されている。
特開2001−179700号公報 特開2002−187100公報
JP-A-2001-179700 and JP-A-2002-187100 are conventional examples in which the inside of a subject is propelled by a rotating magnetic field. In these conventional examples, a magnetic field generator that generates a rotating magnetic field, a robot body that receives the rotating magnetic field and rotates to obtain thrust, a position detector that detects the position of the robot body, and a position detector Disclosed is a movable micromachine movement control system comprising magnetic field changing means for changing the direction of a rotating magnetic field by a magnetic field generation unit to direct the robot main body in a direction to reach a destination based on the detected position of the robot main body. ing.
JP 2001-179700 A JP 2002-187100 A

上述の従来例では、ドリルで孔を形成しながら進行させるタイプのものであり、体腔内における食道等の管腔臓器内をその管腔に沿って進行させるには適用できない。   The above-described conventional example is of a type that advances while forming a hole with a drill, and cannot be applied to advance along a lumen in a luminal organ such as an esophagus in a body cavity.

(発明の目的)
本発明は、上述した点に鑑みてなされたもので、回転させることにより管腔臓器内に沿って短時間に目的部位側に誘導可能とするカプセル型医療装置及びカプセル型医療装置誘導システムを提供することを目的とする。
また、屈曲した管腔臓器の場合においても、円滑に推進させることができるカプセル型医療装置及びカプセル型医療装置誘導システムを提供することを目的とする。
(Object of invention)
The present invention has been made in view of the foregoing points, and provides a capsule medical device and a capsule medical device guidance system that can be guided to a target site in a short time along a hollow organ by rotating. The purpose is to do.
It is another object of the present invention to provide a capsule medical device and a capsule medical device guidance system that can be smoothly propelled even in the case of a bent luminal organ.

被検体の管腔臓器内で検査又は処置などの医療行為を行なうカプセル型医療装置において、
本体が進行方向を対称軸に持つ回転対称体で構成され、本体の進行方向前部又は後部の少なくとも一方は、径が端部の方向に細くなる縮径部により構成され、本体内部に被検体外から印加される電磁場の回転に作用される電磁場応答部を備え、本体外表面に前記電磁場応答部による回転運動を推進力に変換するための螺旋状構造を備え、前記螺旋状構造の端部が本体端部近傍に達するように形成することにより、大きな推進速度が得られるようにするなどして、管腔臓器内に沿って短時間に目的部位側に誘導可能にしている。
In a capsule medical device that performs medical acts such as examinations or treatments within a luminal organ of a subject,
The main body is composed of a rotationally symmetric body having a traveling direction as the axis of symmetry, and at least one of the front part or the rear part of the main body in the traveling direction is composed of a reduced diameter portion whose diameter becomes narrower toward the end, An electromagnetic field response unit that is acted upon by rotation of an electromagnetic field applied from the outside, a helical structure for converting rotational motion by the electromagnetic field response unit into propulsive force on the outer surface of the main body, and an end of the helical structure Is formed so as to reach the vicinity of the end of the main body, so that a large propulsion speed can be obtained, for example, so that it can be guided to the target site side in a short time along the hollow organ.

本発明によれば、カプセル型医療装置を回転させることにより、目的部位側に短時間に誘導させることができる。   According to the present invention, by rotating the capsule medical device, it can be guided to the target site in a short time.

以下、図面を参照して本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1ないし図9は本発明の実施例1に係り、図1は本発明の実施例1を備えたカプセル医療装置誘導システムの概略の構成を示す全体構成図、図2は図1のより詳細な構成を示すブロック図、図3は磁場発生装置の概略の構成を示す概略構成図、図4はカプセル型医療装置の外観を示す側面図、図5は図4の内部構成を示す断面図、図6は回転磁場を印加して推進速度を測定するためにシリコンチューブ内にサンプルのカプセルを挿入した水槽を示す側面図、図7は端部に螺旋状突起を設けて測定に用いたサンプルを示す図、図8は推進速度の測定結果を示す図、図9は屈曲した管路内を推進させる場合の作用の説明図である。   1 to 9 relate to a first embodiment of the present invention, FIG. 1 is an overall configuration diagram showing a schematic configuration of a capsule medical device guidance system including the first embodiment of the present invention, and FIG. 2 is a more detailed diagram of FIG. FIG. 3 is a schematic configuration diagram showing a schematic configuration of the magnetic field generator, FIG. 4 is a side view showing the appearance of the capsule medical device, and FIG. 5 is a cross-sectional view showing the internal configuration of FIG. FIG. 6 is a side view showing a water tank in which a capsule of a sample is inserted into a silicon tube in order to measure the propulsion speed by applying a rotating magnetic field, and FIG. 7 shows a sample used for measurement by providing a spiral projection at the end. FIG. 8 is a diagram showing the measurement result of the propulsion speed, and FIG. 9 is an explanatory diagram of the action when propelling the inside of the bent pipe.

図1、図2及び図3に示すようにカプセル型医療装置誘導システム(以下、カプセル誘導システムと略記)1は、(図1に示す)患者2の体腔内に挿入され、体腔内を検査するためのカプセル形状のカプセル型医療装置(以下、単にカプセルと略記)3と、この患者2の外部に配置され、カプセル3と電波を送受信して、このカプセル3の動作を制御したり、カプセル3から送信される情報を受信するパソコン等で構成されるカプセル制御装置(以下、単に制御装置と略記)4と、カプセル3に印加する回転磁場の方向等を制御してカプセル3を推進させたい方向に誘導する磁場発生装置(図1では模式的に示す)5及びこの磁場発生装置5に回転する磁場(より広義には電磁場)を発生させるための交流電源を供給する交流電源装置6とを有している。   As shown in FIGS. 1, 2 and 3, a capsule medical device guidance system (hereinafter abbreviated as “capsule guidance system”) 1 is inserted into a body cavity of a patient 2 (shown in FIG. 1) to inspect the body cavity. Capsule-shaped capsule medical device (hereinafter simply abbreviated as “capsule”) 3 and the patient 2 are arranged outside the patient 2 to transmit / receive radio waves to / from the capsule 3 to control the operation of the capsule 3, A capsule control device (hereinafter simply abbreviated as a control device) 4 configured by a personal computer or the like that receives information transmitted from the device, and a direction in which the capsule 3 is to be propelled by controlling the direction of the rotating magnetic field applied to the capsule 3 A magnetic field generating device (schematically shown in FIG. 1) 5 and an AC power supply device 6 for supplying an alternating current power for generating a rotating magnetic field (more broadly, an electromagnetic field) to the magnetic field generating device 5 It is.

図2に示すように磁場発生装置5は例えば3つの電磁石5a,5b,5cで形成され、交流電源装置6から供給する交流電源を制御することにより、3軸方向に回転磁場を発生できるようにしている。なお、図3では磁場発生装置5を3軸方向に形成した(中空の立方体形状の)3軸ヘルムホルツコイルで模式的に示している。   As shown in FIG. 2, the magnetic field generator 5 is formed of, for example, three electromagnets 5a, 5b, and 5c, and controls the AC power supplied from the AC power supply 6 so that a rotating magnetic field can be generated in three axial directions. ing. In FIG. 3, the magnetic field generator 5 is schematically shown as a three-axis Helmholtz coil (having a hollow cubic shape) formed in the three-axis direction.

図2に示すように、患者2の周囲に回転磁場を発生する磁場発生装置5を配置し、交流電源装置6を制御装置4側から制御し、患者2の体腔管路内に挿入されたカプセル3の内部に配置した磁場に応答して力が作用する(磁場応答部としての)マグネット8に対してカプセル3を推進させる方向に回転磁場を印加することにより、カプセル3を円滑にかつ効率良く推進(誘導)させることができるようにしている。
この磁場発生装置5による回転磁場の方向は制御装置4に接続された操作入力装置9を操作することにより、制御できるようになっている。
As shown in FIG. 2, a magnetic field generator 5 that generates a rotating magnetic field is arranged around the patient 2, and the AC power supply device 6 is controlled from the control device 4 side, and the capsule is inserted into the body cavity line of the patient 2. The capsule 3 is smoothly and efficiently applied by applying a rotating magnetic field in the direction of propelling the capsule 3 to the magnet 8 (as a magnetic field response unit) in which a force acts in response to the magnetic field disposed inside the capsule 3. It can be promoted (guided).
The direction of the rotating magnetic field generated by the magnetic field generator 5 can be controlled by operating an operation input device 9 connected to the control device 4.

図1に示すように制御装置4は、カプセル3及び磁場発生装置5(の交流電源7)を制御する機能を備えたパソコン本体11と、このパソコン本体11に接続され、コマンド、データ等の入力を行うキーボード12と、パソコン本体11に接続され、画像等を表示する表示手段としてのモニタ13と、パソコン本体11に接続され、カプセル3を制御する制御信号の発信及びカプセル3からの信号を受信する体外アンテナ14と、パソコン本体11に接続され、回転磁場の方向等を入力操作する操作入力装置9とを有する。   As shown in FIG. 1, the control device 4 is connected to the personal computer main body 11 having a function of controlling the capsule 3 and the magnetic field generating device 5 (the AC power source 7), and inputs commands, data, and the like. Connected to the personal computer main body 11 and a monitor 13 as a display means for displaying images and the like, and connected to the personal computer main body 11 to transmit control signals for controlling the capsule 3 and receive signals from the capsule 3 And an operation input device 9 that is connected to the personal computer main body 11 and inputs the direction of the rotating magnetic field.

前記制御装置4は、図2に示すようにCPU15を内蔵しており、CPU15はカプセル3及び磁場発生装置5を制御する制御信号をキーボード12及び操作入力装置9からの入力或いはパソコン本体11内のハードディスク16(図2参照)等に格納された制御プログラムに基づいて生成する。   The control device 4 includes a CPU 15 as shown in FIG. 2, and the CPU 15 inputs a control signal for controlling the capsule 3 and the magnetic field generator 5 from the keyboard 12 and the operation input device 9 or in the personal computer main body 11. It is generated based on a control program stored in the hard disk 16 (see FIG. 2) or the like.

磁場発生装置5を制御する制御信号は、パソコン本体11から接続ケーブルを介して交流電源装置6へ伝達される。そして、その制御信号に基づいて、回転磁場を発生する。その回転磁場によりカプセル3は、磁場発生装置5で発生された回転磁場により内部のマグネット8に対して磁気的に作用し、カプセル3を回転させることで、後述の推力発生構造部により推進するための動力を得られるように構成されている。   A control signal for controlling the magnetic field generation device 5 is transmitted from the personal computer main body 11 to the AC power supply device 6 through the connection cable. A rotating magnetic field is generated based on the control signal. The capsule 3 is magnetically acted on the internal magnet 8 by the rotating magnetic field generated by the magnetic field generating device 5 by the rotating magnetic field, and is propelled by a thrust generating structure section described later by rotating the capsule 3. It is comprised so that the motive power of can be obtained.

一方、カプセル3を制御する制御信号は、パソコン本体11内の発振回路を経て所定の周波数の搬送波で変調され、体外アンテナ14から電波として発振されるようになっている。
そして、カプセル3は、後述のアンテナ27で電波を受信し、制御信号が復調され、各構成回路等へ出力するようになっている。
また、制御装置4は、カプセル3の無線アンテナ27から送信される映像信号等の情報(データ)信号を体外アンテナ14で受信して、モニタ13上に表示するようになっている。
On the other hand, a control signal for controlling the capsule 3 is modulated by a carrier wave having a predetermined frequency via an oscillation circuit in the personal computer main body 11 and oscillated as a radio wave from the external antenna 14.
The capsule 3 receives radio waves with an antenna 27 (to be described later), demodulates the control signal, and outputs it to each component circuit or the like.
Further, the control device 4 receives an information (data) signal such as a video signal transmitted from the wireless antenna 27 of the capsule 3 by the external antenna 14 and displays it on the monitor 13.

図2に示すようにカプセル3内には、光学像を結ぶ対物光学系21と、その結像位置に配置される撮像素子22と、対物光学系21の周囲に配置された照明素子23と、マグネット8の他に、撮像素子22で撮像された信号に対する信号処理を行う信号処理回路24と、信号処理回路24により生成されたデジタル映像信号を一時記憶するメモリ25と、メモリ25から読み出した映像信号を高周波信号で変調して無線送信する信号に変換したり、制御装置4から送信される制御信号を復調等する無線回路26と、体外アンテナ14と電波の送受信を行うアンテナ27と、信号処理回路24等カプセル3を制御するカプセル制御回路28と、信号処理回路24等カプセル3内部の電気系に動作用の電源を供給する電池29とが収納されている。   As shown in FIG. 2, in the capsule 3, an objective optical system 21 for connecting an optical image, an imaging element 22 disposed at the imaging position, an illumination element 23 disposed around the objective optical system 21, In addition to the magnet 8, a signal processing circuit 24 that performs signal processing on a signal imaged by the image sensor 22, a memory 25 that temporarily stores a digital video signal generated by the signal processing circuit 24, and an image read from the memory 25 A radio circuit 26 that modulates a signal with a high-frequency signal and converts it into a signal that is transmitted wirelessly, a demodulation circuit that demodulates a control signal transmitted from the control device 4, an antenna 27 that transmits and receives radio waves to and from the extracorporeal antenna 14, A capsule control circuit 28 that controls the capsule 3 such as the circuit 24 and a battery 29 that supplies power for operation to the electrical system inside the capsule 3 such as the signal processing circuit 24 are housed.

また、このカプセル3と無線通信を行う制御装置4を構成するパソコン本体11は、体外アンテナ14に接続され、(カプセル3側の)無線回路26と無線通信を行う無線回路31と、無線回路31と接続され、カプセル3から送られた画像データに対する画像表示等のデータ処理等を行うデータ処理回路32と、データ処理回路32や交流電源装置6等を制御する制御手段としてのCPU15と、プログラムやデータ等を格納するハードディスク16とを有し、CPU15には回転磁場の方向を設定する操作をする操作入力装置9やコマンド及びデータ入力を行うキーボード12と接続されている。   The personal computer main body 11 constituting the control device 4 that performs wireless communication with the capsule 3 is connected to the external antenna 14, a wireless circuit 31 that performs wireless communication with the wireless circuit 26 (on the capsule 3 side), and the wireless circuit 31. A data processing circuit 32 that performs data processing such as image display on the image data sent from the capsule 3, a CPU 15 as a control means for controlling the data processing circuit 32, the AC power supply device 6 and the like, a program, The CPU 15 is connected to an operation input device 9 for performing an operation for setting the direction of the rotating magnetic field and a keyboard 12 for inputting commands and data.

データ処理回路32にはモニタ13が接続され、撮像素子22で撮像され、無線回路26、31を経てデータ処理回路32により処理された画像等が表示される。また、このデータ処理回路32はカプセル3が回転されながら画像を撮像するので、モニタ13に表示される際の画像の向きを一定の方向に補正する処理を行い、術者が見やすい画像を表示できるように画像処理を行う。   The monitor 13 is connected to the data processing circuit 32, and an image or the like captured by the image sensor 22 and processed by the data processing circuit 32 via the wireless circuits 26 and 31 is displayed. Further, since the data processing circuit 32 captures an image while the capsule 3 is rotated, the data processing circuit 32 performs processing for correcting the orientation of the image displayed on the monitor 13 in a certain direction, and can display an image that is easy for the operator to view. As described above, image processing is performed.

図4はカプセル3の外形を示し、図5はその内部構造を示す。
これらの図4、図5に示すようにカプセル3は、例えば、半球形状の透明な先端カバー39と、この先端カバー39が気密に接続される円筒形状の本体外装部材40とにより気密に覆われ、内部が密閉された略円筒状のカプセル本体41が形成される。なお、この本体外装部材40の後端は略半球形状にされている。 このカプセル本体41は図5に示すように進行方向ともなる長手方向の中心軸Cの回りで回転させた回転対称な外形をしている。
FIG. 4 shows the outer shape of the capsule 3, and FIG. 5 shows its internal structure.
As shown in FIGS. 4 and 5, the capsule 3 is hermetically covered by, for example, a hemispherical transparent tip cover 39 and a cylindrical main body exterior member 40 to which the tip cover 39 is hermetically connected. A substantially cylindrical capsule main body 41 whose inside is sealed is formed. The rear end of the main body exterior member 40 has a substantially hemispherical shape. As shown in FIG. 5, the capsule body 41 has a rotationally symmetric outer shape rotated around a central axis C in the longitudinal direction, which is also the traveling direction.

また、この回転対称なカプセル本体41の外表面に回転運動を推進力に変換する推進発生用の螺旋状構造体を設けている。この螺旋状構造体は、カプセル本体41の円筒状の外周面(ベース面)41aから螺旋状に突出して、体腔内壁に接触して回転運動を推進力に変換する螺旋状突起部43を設けている。また、隣接する螺旋状突起部43の間には、体腔内のガスや体液等の流体が前後に連通可能な螺旋溝が形成されるようにしている。   A helical structure for generating propulsion that converts rotational motion into propulsive force is provided on the outer surface of the rotationally symmetric capsule body 41. This helical structure protrudes from the cylindrical outer peripheral surface (base surface) 41a of the capsule body 41 in a spiral shape, and is provided with a helical projection 43 that contacts the inner wall of the body cavity and converts rotational motion into propulsive force. Yes. In addition, a spiral groove is formed between adjacent spiral protrusions 43 through which fluid such as gas and body fluid in the body cavity can communicate in the front-rear direction.

このカプセル本体41内部には上述した対物レンズ21、照明素子23等の内蔵物が収納配置されている。
具体的には、カプセル本体41内における先端カバー39内側の中央部には対物レンズ21が円筒状レンズ枠44に取り付けられた状態で配置され、この対物レンズ21の結像位置に撮像素子22を実装した撮像素子基板45が配置され、レンズ枠44の周囲には複数の照明素子23が配置されている。
Inside the capsule body 41, built-in objects such as the objective lens 21 and the illumination element 23 described above are accommodated.
Specifically, the objective lens 21 is disposed in the center of the capsule body 41 inside the distal end cover 39 with the objective lens 21 attached to the cylindrical lens frame 44, and the imaging element 22 is placed at the imaging position of the objective lens 21. The mounted image sensor substrate 45 is disposed, and a plurality of illumination elements 23 are disposed around the lens frame 44.

撮像素子基板45に隣接して信号処理と制御を行う制御基板46と無線回路26等の機能を備えた通信基板47とが積層したように配置され、通信基板47にはアンテナ27が接続されている。また、照明素子23、撮像素子基板45等はフレキシブル基板48により電気的に接続されている。   A control board 46 that performs signal processing and control adjacent to the image pickup element board 45 and a communication board 47 having a function of the wireless circuit 26 and the like are arranged so as to be stacked, and the antenna 27 is connected to the communication board 47. Yes. In addition, the illumination element 23, the imaging element substrate 45, and the like are electrically connected by a flexible substrate 48.

また、このカプセル3の長手方向の中心軸C上でその長さのほぼ中心位置にはこの中心軸Cと直交する方向が長手方向となるようにしてマグネット8が配置され、図示しない接着剤等で固定されている。
また、このマグネット8に隣接して電池29が収納され、フレキシブル基板48とスイッチ回路49を介して接続されている。
Further, a magnet 8 is arranged on the central axis C in the longitudinal direction of the capsule 3 so that the direction orthogonal to the central axis C is the longitudinal direction at a substantially central position of the length, and an adhesive or the like (not shown) It is fixed with.
Further, a battery 29 is accommodated adjacent to the magnet 8 and connected to the flexible substrate 48 via a switch circuit 49.

前記マグネット8がカプセル本体41の中心軸C上の中心位置で、中心軸Cに対して直角方向に磁化方向を有して配置することにより、このカプセル3は、磁場発生装置5で発生される回転磁場がマグネット8に作用し、このマグネット8が受ける回転力によりカプセル3が回転するようになっている。   The capsule 3 is generated by the magnetic field generator 5 by arranging the magnet 8 at a central position on the central axis C of the capsule body 41 and having a magnetization direction perpendicular to the central axis C. A rotating magnetic field acts on the magnet 8, and the capsule 3 is rotated by the rotational force received by the magnet 8.

尚、ここで使用するマグネット(磁石)8は、ネオジウム磁石、サマリウムコバルト磁石、フェライト磁石、鉄・クロム・コバルト磁石、プラチナ磁石、アルニコ(AlNiCo)磁石などの永久磁石である。
ネオジウム磁石、サマリウムコバルト磁石などの希土類系磁石は、磁力が強く、カプセルに内蔵する磁石を小さくできるメリットがある。一方、フェライト磁石は、安価であるというメリットがある。更に、プラチナ磁石は、耐腐食性が優れている。
The magnet (magnet) 8 used here is a permanent magnet such as a neodymium magnet, a samarium cobalt magnet, a ferrite magnet, an iron / chromium / cobalt magnet, a platinum magnet, or an AlNiCo magnet.
Rare earth magnets such as neodymium magnets and samarium cobalt magnets have a strong magnetic force and are advantageous in that the magnets built into the capsule can be made smaller. On the other hand, ferrite magnets have the advantage of being inexpensive. Furthermore, platinum magnets have excellent corrosion resistance.

また、本実施例では、図4に示すようにカプセル本体41の外表面に形成した螺旋状突起部43は、その先端側は円筒外周面を経て半球形状に縮径にされる側まで延出され、その端部43aは半球形状に縮径にされた途中部分、具体的には対物レンズ21による視野角内に入らない位置に形成されている。また、この螺旋状突起部43の後端43bは半球状に縮径となる境界付近まで延出されている。なお、図4に示す例では螺旋状突起部43は、一方の螺旋状突起部43の中間位置にさらに螺旋状突起部43を設けて二重(2条)に形成されている。   Further, in this embodiment, as shown in FIG. 4, the spiral protrusion 43 formed on the outer surface of the capsule body 41 extends to the side where the diameter is reduced to a hemispherical shape through the outer peripheral surface of the cylinder. The end 43a is formed in the middle of the hemispherical shape, specifically, at a position that does not fall within the viewing angle of the objective lens 21. Further, the rear end 43b of the spiral projection 43 is extended to the vicinity of the boundary where the diameter is reduced in a hemispherical shape. In the example shown in FIG. 4, the spiral protrusion 43 is formed in a double shape (two strips) by further providing the spiral protrusion 43 at an intermediate position between the one spiral protrusion 43.

このように本実施例では、カプセル3の外表面に螺旋状突起部43を設けると共に、その一方の端部43aは縮径部の端部付近に達する位置にまで形成されている。つまり、この螺旋状突起部43はカプセル本体41の円筒外周面部分にも形成されているが、さらに一方の端部43aは円筒の半径よりも縮径にされた例えば球面状部分にまで延出され、視野角内に入らない境界位置に至るように形成されていることが特徴となっている。   As described above, in this embodiment, the spiral protrusion 43 is provided on the outer surface of the capsule 3, and one end 43a is formed to reach a position near the end of the reduced diameter portion. In other words, the spiral projection 43 is also formed on the outer peripheral surface of the cylinder of the capsule body 41, but the other end 43a extends to, for example, a spherical portion whose diameter is smaller than the radius of the cylinder. It is characterized by being formed so as to reach a boundary position that does not fall within the viewing angle.

このようにカプセル本体41の端部付近にまで螺旋状突起部43を設けることにより、以下で説明するように推進機能を向上している。
図6はこのようにカプセル本体41の端部付近にまで螺旋状突起部43を設けたものを用いて推進速度を測定するための水槽を示す。この水槽内には、(本実施例のカプセル3の外形構造を有する)サンプル(第1のサンプルとする)が管腔臓器を模擬するシリコンチューブ内に挿入した状態で挿入して、上から水を入れてチューブに水圧をかけた状態(例えば水位は20cm)にし、外部から回転磁場を印加して例えば2cm移動させてその推進速度を測定した。
Thus, by providing the helical protrusion 43 near the end of the capsule body 41, the propulsion function is improved as described below.
FIG. 6 shows a water tank for measuring the propulsion speed by using the one provided with the spiral protrusion 43 in the vicinity of the end of the capsule body 41 in this way. In this water tank, a sample (having the outer shape of the capsule 3 of the present embodiment) (referred to as a first sample) is inserted in a silicon tube that simulates a luminal organ. Was put into a state in which water pressure was applied to the tube (for example, the water level was 20 cm), a rotating magnetic field was applied from the outside and the tube was moved, for example, 2 cm, and the propulsion speed was measured.

また、第1のサンプルにおける螺旋状突起を円筒面部分のみにした比較用となるサンプル(第2のサンプルとする)でも同じ条件で推進速度を測定した。
図7は第1のサンプルの外形を示す。なお、第2のサンプルは図7に示す第1のサンプルにおいて、円筒部分のみに螺旋状突起を設けたものである。
The propulsion speed was also measured under the same conditions in a comparative sample (referred to as a second sample) in which the spiral protrusions in the first sample were only the cylindrical surface portion.
FIG. 7 shows the outer shape of the first sample. In addition, the 2nd sample is a 1st sample shown in FIG. 7, and provides a helical protrusion only in the cylindrical part.

これらのサンプルを用いて得た測定結果を図8に示す。図8に示す測定結果は10回行い、その平均値をプロット下ものである。また、回転磁界の周波数は0.5Hz、1Hz、5Hzで行った。
また、推進速度が周波数に比例すると仮定し、最小2乗法にて直線近似した線を引いて示している。
The measurement results obtained using these samples are shown in FIG. The measurement results shown in FIG. 8 are performed 10 times, and the average value is shown under the plot. The frequency of the rotating magnetic field was 0.5 Hz, 1 Hz, and 5 Hz.
In addition, assuming that the propulsion speed is proportional to the frequency, a line approximated by a least square method is drawn.

図8(A)と図8(B)とは同じ実験結果を周波数、速度のスケールを変えて示している。なお、丸で示すデータは先端には螺旋状突起が設けてないサンプル(図8中では簡単化して先端なしと略記)で得たものであり、三角で示すデータは先端にも螺旋状突起を設けたものである。また、図8(A)では5Hzまでの周波数、速度の場合で示し、図8(B)は1Hzまでの測定結果を拡大して示している。   FIG. 8A and FIG. 8B show the same experimental results while changing the frequency and speed scales. The data indicated by a circle is obtained from a sample having no spiral protrusion at the tip (in FIG. 8, simplified, abbreviated as “no tip”), and the data indicated by a triangle indicates a spiral protrusion at the tip. It is provided. 8A shows the case of frequency and speed up to 5 Hz, and FIG. 8B shows the measurement result up to 1 Hz in an enlarged manner.

これらの測定データから端部まで螺旋乗突起が設けている方が端部付近には螺旋状突起を設けない場合よりも、略1.4倍ほど推進速度が大きいといえる。これは端部の螺旋状突起が推進力に寄与していることを表しているといえる。   From these measurement data, it can be said that the propulsion speed is approximately 1.4 times higher when the spiral protrusion is provided to the end than when the spiral protrusion is not provided near the end. It can be said that this represents that the spiral protrusion at the end contributes to the driving force.

また、本実施例のカプセル3による他の特徴的な作用を図9を参照して説明する。
図9(A)、図9(B)に示すように例えば屈曲する管腔臓器55内においてその屈曲した方向に推進させようとした場合、図9(B)に示すように円筒部分のみに螺旋状突起部が設けてあるカプセル3′の場合には、回転させても、螺旋状突起部が管腔臓器の内壁面の襞等の凹凸部と係合しにくく、円滑に推進させにくい。
Further, another characteristic action of the capsule 3 of this embodiment will be described with reference to FIG.
As shown in FIGS. 9A and 9B, for example, when propelled in a bent lumen organ 55 in the bent direction, as shown in FIG. 9B, only the cylindrical portion is spiraled. In the case of the capsule 3 ′ provided with the protrusions, even if the capsule 3 ′ is rotated, the spiral protrusions are difficult to engage with the uneven parts such as the folds on the inner wall surface of the luminal organ, and are difficult to be smoothly pushed.

このような状態においても、本実施例では、図9(A)に示すようにさらに縮径となった端部付近にまで螺旋状突起部43が形成されているので、回転させた場合にその端部付近にまで形成されている螺旋状突起部43により管腔臓器の内壁面の凹凸部と係合させて、カプセル3をより円滑に推進させることができる。   Even in such a state, in this embodiment, as shown in FIG. 9 (A), the spiral protrusion 43 is formed near the end of the further reduced diameter. The capsule 3 can be more smoothly propelled by being engaged with the concavo-convex portion of the inner wall surface of the luminal organ by the helical projection 43 formed to the vicinity of the end portion.

このように本実施例では、縮径になる端部付近にも螺旋状構造体、より具体的には螺旋状突起43を設けて、そのカプセル3を回転駆動することにより、推進力を向上でき、目的部位側に短時間で到達させるようにすることができるようにすると共に、屈曲した管路の場合にも端部付近に形成した螺旋状突起43により、より円滑に屈曲した管路に沿って推進させることもできるようにしていることが特徴となっている。   As described above, in this embodiment, the propulsive force can be improved by providing the spiral structure 43, more specifically, the spiral protrusion 43 near the end portion where the diameter is reduced, and rotating the capsule 3 to rotate. In addition to being able to reach the target site side in a short time, even in the case of a bent pipe line, the spiral protrusion 43 formed in the vicinity of the end portion makes it possible to follow the pipe line more smoothly. The feature is that it can also be promoted.

次に螺旋状突起部43を設けたカプセル誘導システム1による動作を以下に説明する。 図1に示すように、患者2の例えば十二指腸51側或いは小腸側等の体腔管路内を観察する必要がある場合、操作者は、カプセル3を口腔52から患者2に飲み込ませる。   Next, the operation of the capsule guiding system 1 provided with the spiral protrusion 43 will be described below. As shown in FIG. 1, when it is necessary to observe the inside of a body cavity such as the duodenum 51 side or the small intestine side of the patient 2, the operator swallows the capsule 3 from the oral cavity 52 into the patient 2.

尚、このとき、操作者は、患者2に飲み込ませる直前に予め、カプセル3のスイッチ回路49をオンにし、電池29の電力が照明素子23等伝達されるようにする。と同時に、操作者は、磁場発生装置5を起動(オン)し、この磁場発生装置5により発生する回転磁場により体腔管路内においてカプセル3が目的部位側に到達し易いよう磁気的に制御する。   At this time, the operator turns on the switch circuit 49 of the capsule 3 in advance immediately before the patient 2 swallows it so that the power of the battery 29 is transmitted to the illumination element 23 and the like. At the same time, the operator activates (turns on) the magnetic field generator 5 and magnetically controls the capsule 3 so as to easily reach the target site in the body cavity by the rotating magnetic field generated by the magnetic field generator 5. .

上述したようにカプセル3は、磁場発生装置5により発生される回転磁場にマグネット8が作用すると、このマグネット8が受ける作用によりカプセル本体41が回転する。そして、カプセル3は、カプセル本体41が、体腔内壁と接触したとき、この体腔内壁の粘膜と螺旋状突起部43との間の摩擦力が大きな推進力に変換されて進退動する。また、カプセル3は、回転磁場の回転に伴い、マグネット8の回転平面と回転磁場の回転平面とが一致するようにカプセル本体41が回転しながら進行方向(向き)が変更される。
このとき、カプセル3は、カプセル本体41が偏芯運動等の無駄な動きをすることなく、管腔管路内をスムーズに目的部位側に向けて推進させることができる。
As described above, in the capsule 3, when the magnet 8 acts on the rotating magnetic field generated by the magnetic field generator 5, the capsule body 41 is rotated by the action received by the magnet 8. When the capsule body 41 comes into contact with the inner wall of the body cavity, the capsule 3 moves forward and backward because the frictional force between the mucous membrane of the inner wall of the body cavity and the spiral protrusion 43 is converted into a large driving force. Further, as the capsule 3 rotates, the traveling direction (orientation) is changed while the capsule body 41 rotates so that the rotation plane of the magnet 8 and the rotation plane of the rotation magnetic field coincide with each other.
At this time, the capsule 3 can be smoothly pushed toward the target site in the lumen duct without causing the capsule body 41 to move unnecessarily such as eccentric movement.

カプセル3が患者2に飲み込まれることにより口腔52から食道53を通過し、胃54内部へ到達する。
そして、胃54内部を観察する必要がある場合には、操作者は、制御装置4の例えばキーボード12から観察開始のコマンドに対応するキー入力を行う。すると、このキー入力による制御信号は、制御装置4の体外アンテナ14を経て電波で放射されてカプセル3側に送信される。
When the capsule 3 is swallowed by the patient 2, the capsule 3 passes through the esophagus 53 from the oral cavity 52 and reaches the stomach 54.
When it is necessary to observe the inside of the stomach 54, the operator performs key input corresponding to an observation start command from the control device 4, for example, the keyboard 12. Then, the control signal by this key input is radiated | emitted with an electromagnetic wave through the external antenna 14 of the control apparatus 4, and is transmitted to the capsule 3 side.

カプセル3は、アンテナ27で受信した信号により、動作開始の信号を検出し、照明素子23、撮像素子22、信号処理回路24等が駆動状態となる。   The capsule 3 detects an operation start signal based on a signal received by the antenna 27, and the illumination element 23, the imaging element 22, the signal processing circuit 24, and the like are in a driving state.

照明素子23は、対物レンズ21の視野方向に照明光を出射し、照明された部分の視野範囲の光学像が対物レンズ21の結像位置に配置された撮像素子22に結像されて光電変換され、信号処理回路24によりA/D変換されてデジタル信号処理された後、圧縮処理がされメモリ25に格納された後、無線回路26で変調され、アンテナ27から電波で放射される。   The illumination element 23 emits illumination light in the visual field direction of the objective lens 21, and an optical image of the illuminated portion in the visual field range is imaged on the image sensor 22 arranged at the imaging position of the objective lens 21 and subjected to photoelectric conversion. Then, after A / D conversion and digital signal processing are performed by the signal processing circuit 24, compression processing is performed, the data is stored in the memory 25, modulated by the radio circuit 26, and radiated by radio waves from the antenna 27.

この電波は、制御装置4の体外アンテナ14で受信され、パソコン本体11内の無線回路31で復調され、さらにA/D変換されてデータ処理回路32によりデジタルの映像信号に変換され、データ処理回路32のメモリやハードディスク16に格納されると共に、所定の速度で読み出されモニタ13に撮像素子22で撮像された光学画像がカラー表示される。   This radio wave is received by the external antenna 14 of the control device 4, demodulated by the radio circuit 31 in the personal computer main body 11, further A / D converted and converted into a digital video signal by the data processing circuit 32, and the data processing circuit The optical image stored in the memory 32 and the hard disk 16 and read out at a predetermined speed and captured by the image sensor 22 is displayed in color on the monitor 13.

操作者は、この画像を観察することにより、患者2の胃54内部等を観察することができる。この観察画像を見ながら、操作入力装置9のジョイスティックなどの操作手段を用いて、胃54内全域の観察が行えるように外部磁力のかけ方を容易にコントロールできる。   The operator can observe the inside of the stomach 54 of the patient 2 and the like by observing this image. While observing this observation image, it is possible to easily control how to apply the external magnetic force so that the entire region of the stomach 54 can be observed using an operation means such as a joystick of the operation input device 9.

さらに胃54内の観察が終了した後、カプセル3に対して磁場発生装置5で発生される回転磁場の向きを制御することにより、磁気的に誘導して胃54から十二指腸51側に移動させることができる。そして、十二指腸51においてもその管腔の向きに進行させるように回転磁場の向きを制御することにより円滑にカプセル3を推進させることができる。 また、小腸のように屈曲した管路内を進行させる場合においても図9(A)で説明したように螺旋状突起43がカプセル本体41の球面状の端部付近にまで形成してあるので、カプセル3を屈曲した管路内でも円滑に進行させることができる。   Further, after the observation in the stomach 54 is completed, the direction of the rotating magnetic field generated by the magnetic field generator 5 with respect to the capsule 3 is controlled to be magnetically guided and moved from the stomach 54 to the duodenum 51 side. Can do. The capsule 3 can be smoothly promoted by controlling the direction of the rotating magnetic field so that the duodenum 51 also advances in the direction of the lumen. In addition, even when advancing in a bent duct like the small intestine, as described in FIG. 9A, the spiral protrusion 43 is formed up to the vicinity of the spherical end of the capsule body 41. The capsule 3 can be smoothly advanced even in a bent pipe.

このように本実施例によれば、円滑にカプセル3を推進させることができるので、検査に要する時間を短縮でき、かつ術者及び患者の負担や疲労等を軽減できる。
また、本実施例のカプセル3は、無駄な動きがない分、磁場誘導効率が良くなり、カプセル本体41内のマグネット8及び体外の電磁石5a〜5cを小型化できるという効果もある。
Thus, according to the present embodiment, since the capsule 3 can be smoothly promoted, the time required for the examination can be shortened, and the burden on the operator and the patient, fatigue, and the like can be reduced.
In addition, the capsule 3 according to the present embodiment has an effect that the magnetic field induction efficiency is improved because there is no useless movement, and the magnet 8 inside the capsule body 41 and the electromagnets 5a to 5c outside the body can be downsized.

次に本発明の実施例2を図10を参照して説明する。図10は本発明の実施例2のカプセル3Bを示す。このカプセル3Bは実施例1のカプセル3が螺旋状突起部43の後端43bがカプセル本体3の後端に至る手前の位置となっていたのをより後方側に延出してカプセル本体41の端部近傍に形成している。   Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 10 shows a capsule 3B according to the second embodiment of the present invention. In this capsule 3B, the capsule 3 according to the first embodiment extends further rearward from the position where the rear end 43b of the spiral projection 43 reaches the rear end of the capsule body 3, and extends to the end of the capsule body 41. It is formed in the vicinity of the part.

その他の構成は実施例1のカプセル3と同様である。
本実施例の作用及び効果としては、後方側に移動させる場合にも、効率良く移動させることができると共に、屈曲した後方側に移動させる場合にも円滑に移動させることができる。
Other configurations are the same as those of the capsule 3 of the first embodiment.
As an effect | action and effect of a present Example, while moving to back side, while being able to move efficiently, also when moving to the bent back side, it can be moved smoothly.

図11は第1変形例のカプセル3Cを示す。図10に示すカプセル3Bの外形が略半球形状であったのに対して、このカプセル3Cは葉巻形状のように先端から後端までが滑らかに外径が変化している。
本カプセル3Cは、先端から後端までが滑らかに外径が変化しているので挿入性が良い作用及び効果を有する。
FIG. 11 shows a capsule 3C of the first modification. In contrast to the outer shape of the capsule 3B shown in FIG. 10, the outer diameter of the capsule 3C smoothly changes from the front end to the rear end, like a cigar shape.
This capsule 3C has an action and an effect with good insertability since the outer diameter smoothly changes from the front end to the rear end.

図12は第2変形例のカプセル3Dを示す。図13に示すカプセル3Dはそのカプセル本体41の外形が、中央部の円筒部の両端がテーパ状(円錐形状)に縮径にしたテーパ部61が形成されている。そして、先端側及び後端側はカットしたように平面状にしている。
先端カバー側及び後端部側がテーパ状に縮径にされているので、挿入性が良い。また、カットしたような形状にしているので、小型化が可能となる。
FIG. 12 shows a capsule 3D of a second modification. A capsule 3D shown in FIG. 13 is formed with a taper portion 61 in which the outer shape of the capsule body 41 is reduced in diameter so that both ends of the central cylindrical portion are tapered (conical shape). And the front end side and the rear end side are made flat as if they were cut.
Since the front cover side and the rear end side are tapered in diameter, the insertability is good. Moreover, since it has a cut shape, it can be miniaturized.

図13は第3変形例のカプセル3Eを示す。図13に示すカプセル3Eは図12のカプセル3Dにおいて、先端部及び後端部が平面状にする代わりに略球面状に丸くしたものである。   FIG. 13 shows a capsule 3E of the third modification. A capsule 3E shown in FIG. 13 is the same as the capsule 3D shown in FIG. 12, except that the front end portion and the rear end portion are rounded into a substantially spherical shape instead of being flat.

つまり、このカプセル3Eはカプセル本体41の外形が、中央部の円筒部の両端がテーパ状(円錐形状)に縮径にしたテーパ部61が形成されている。そして、先端側及び後端側の端部は略球面状にしている。
本変形例は、先端カバー側及び後端部側がテーパ状に縮径にされているので、挿入性が良い。
That is, in the capsule 3E, the outer shape of the capsule body 41 is formed with a tapered portion 61 in which both ends of the central cylindrical portion are tapered (conical shape). And the edge part of the front end side and the rear-end side is made into the substantially spherical shape.
In this modification, the front end cover side and the rear end side are tapered so that the insertability is good.

図14は第4変形例のカプセル3Fを示す。図14に示すカプセル3Fではカクセル本体41の外表面に形成された螺旋状突起43が例えば中央部の最も外径が大きい部分での螺旋状に突起43が形成されるピッチbが、これよりも先端側や後端側での外径が小さくなる部分に形成されている突起43のピッチa及びcと同じピッチ、つまりa=b=cに設定している。   FIG. 14 shows a capsule 3F of a fourth modification. In the capsule 3F shown in FIG. 14, the pitch b at which the spiral projection 43 formed on the outer surface of the caxel body 41 is formed in a spiral shape in the portion having the largest outer diameter at the central portion, for example, is larger than this. The pitch is set to the same pitch as the pitches a and c of the projections 43 formed in the portion where the outer diameter is reduced on the front end side and the rear end side, that is, a = b = c.

このようにカプセル3Fの外表面に形成した螺旋状突起43のピッチを一定に形成したことにより、カプセル3Fが回転して管腔臓器の内壁面の凹凸と係合して押し出される場合、管腔臓器の内壁面の凹凸は略一定であると考えられるので、効率良くカプセル3を推進させることができる。
また、ピッチが一定であるため、加工時に旋盤の回転に対して送り量を一定とすることにより簡単に加工ができ、低コストで製造ができる。
When the pitch of the spiral projections 43 formed on the outer surface of the capsule 3F is formed constant in this way, the capsule 3F rotates and engages with the unevenness of the inner wall surface of the luminal organ, and is pushed out. Since the unevenness of the inner wall surface of the organ is considered to be substantially constant, the capsule 3 can be efficiently promoted.
Further, since the pitch is constant, machining can be easily performed by making the feed amount constant with respect to the rotation of the lathe during machining, and manufacturing can be performed at low cost.

また、以下のような第5変形例のようにしても良い。
前述の各カプセル3B等は、後部に線やチューブの無い無索型であるが、このカプセル3B等の後端部(先端カバー39の逆側)に可撓性チューブを回転自在に取り付けた有索型のカプセル型医療装置にしても良い。
Moreover, you may make it like the following 5th modifications.
Each of the capsules 3B and the like described above is a non-wireless type having no line or tube at the rear, but a flexible tube is rotatably attached to the rear end (the opposite side of the tip cover 39) of the capsule 3B or the like. A cable-type capsule medical device may be used.

この場合、螺旋状構造体による推進とチューブによる押し引きを組み合わせることによって、より効果的にカプセル型医療装置を推進或いは後退させることができるという効果がある。   In this case, by combining the propulsion by the spiral structure and the push / pull by the tube, there is an effect that the capsule medical device can be propelled or retracted more effectively.

次に図15を参照して本発明の実施例3を説明する。図15(A)は本発明の実施例3のカプセル3Gを示し、図15(B)はこのカプセル3Gによる得られる取得画像例を示す。   Next, Embodiment 3 of the present invention will be described with reference to FIG. FIG. 15A shows a capsule 3G of Embodiment 3 of the present invention, and FIG. 15B shows an example of an acquired image obtained by this capsule 3G.

図15(A)に示すカプセル3Gは、例えば図10のカプセル3Bにおいて、螺旋状突起43内にその長手方向に沿って中空部62を設けた中空構造にして、その先端側の端部43aで開口する開口端62aにすると共に、その端部43aを視野角の内側となる位置まで延出し、この端部43aを図16(B)に示すように(取得画像により)観察できるようにしている。   A capsule 3G shown in FIG. 15A has, for example, a hollow structure in which a hollow portion 62 is provided in the spiral projection 43 along the longitudinal direction in the capsule 3B of FIG. In addition to the opening end 62a that opens, the end 43a extends to a position that is inside the viewing angle so that the end 43a can be observed (by an acquired image) as shown in FIG. .

また、このカプセル3Gではカプセル本体41の内部に中空部を設けて薬剤63を貯蔵可能とする収納部64を形成し、この収納部64と螺旋状突起43の中空部62とを結ぶチューブ65の間に送出駆動(放出駆動)或いは吸引駆動するマイクロポンプ66を設けて収納部64に貯蔵された薬剤63を螺旋状突起43の中空部62を経て先端の開口端62aから放出して、患部等に対して薬剤投与による治療の処置を行うことができるようにしている。   In the capsule 3G, a hollow portion is provided in the capsule body 41 to form a storage portion 64 that can store the medicine 63, and a tube 65 that connects the storage portion 64 and the hollow portion 62 of the spiral protrusion 43 is formed. A micropump 66 that is driven (release drive) or suction drive is provided between them, and the medicine 63 stored in the storage part 64 is discharged from the open end 62a of the distal end through the hollow part 62 of the spiral projection 43, and the affected part or the like. Therefore, it is possible to perform therapeutic treatment by drug administration.

また、上記マイクロポンプ66は逆回転させることにより、開口端62aから体液等の体内物質を吸引して収納部64に収納することもできるようにしている。例えば、最初は患部等において、収納部64に貯蔵された薬剤63を開口端62aから放出し、その後マイクロポンプ65を逆回転させることにより体液等の体内物質を収納部64に収納し、カプセル3Gを体内から排出させた後、収納部64の体内物質をカプセル3Gから取り出して詳しく検査することもできるようにしている。   Further, the micropump 66 is rotated in the reverse direction so that a body substance such as a body fluid can be sucked from the opening end 62a and stored in the storage portion 64. For example, in the affected part or the like, the medicine 63 stored in the storage part 64 is first released from the open end 62a, and then the micropump 65 is rotated in the reverse direction to store the body substance such as body fluid in the storage part 64, and the capsule 3G After the body is discharged from the body, the substance in the storage section 64 can be taken out of the capsule 3G and inspected in detail.

本実施例によれば、螺旋状構造体としての螺旋状突起43を薬剤63の放出にも利用するようにしているので、螺旋状構造体を推進にも薬剤63の放出にも利用でき、小型で体腔内の撮像を行う機能と治療のための薬剤放出機能とを備えたカプセル3Gを実現できる。
また、さらに体腔内の体液その他の体腔内物質の採取も行う機能を備えたカプセル3Gも実現できる。
According to the present embodiment, since the spiral projection 43 as the spiral structure is used for the release of the drug 63, the spiral structure can be used for both the propulsion and the release of the drug 63. Thus, it is possible to realize a capsule 3G having a function of imaging the body cavity and a function of releasing a drug for treatment.
Furthermore, a capsule 3G having a function of collecting body fluid in the body cavity and other substances in the body cavity can also be realized.

また、螺旋状突起43の端部43aを視野角の内側となる位置まで延出することにより、より推進力を向上させることができると共に、端部43aに設けた開口端62aから薬剤63を放出したり、体内物質を吸引する場合にその動作を取得画像により確認することができる。
なお、図15のカプセル3Gを薬剤63の放出にのみ利用したり、体内の物質の吸引採取にのみ利用しても良い。
Further, by extending the end 43a of the spiral projection 43 to a position that is inside the viewing angle, the propulsive force can be further improved, and the medicine 63 is released from the open end 62a provided in the end 43a. In the case of sucking in-vivo substances, the operation can be confirmed by the acquired image.
Note that the capsule 3G of FIG. 15 may be used only for the release of the medicine 63, or may be used only for aspiration collection of a substance in the body.

前述の螺旋状突起43の中空部開口端62aに圧力センサ、pHセンサ、温度センサ、血液センサ等の各種センサを設け、センサの配線を中空部62に沿わせて配置しても良い。センサは複数ある螺旋状突起43毎に異なる種類のセンサを設けても良いし、同じ種類のセンサでも良い。この場合、薬剤63の放出或いは体液の採取と同時に、センサで計測している部位、位置を画像で確認できるため、より便利である。   Various sensors such as a pressure sensor, a pH sensor, a temperature sensor, and a blood sensor may be provided at the hollow opening end 62 a of the spiral protrusion 43, and the sensor wiring may be disposed along the hollow portion 62. A different type of sensor may be provided for each of the plurality of spiral protrusions 43, or the same type of sensor may be used. In this case, since the site | part and position currently measured with the sensor can be confirmed with an image simultaneously with discharge | release of the chemical | medical agent 63 or collection | recovery of a bodily fluid, it is more convenient.

図16は変形例のカプセル3Hを示す。このカプセル3Hは図15(A)のカプセル3Gにおいて、カプセル3内部の収納部64は設けないで、カプセル3H内部に設けたマイクロポンプ65をチューブ65を介して2重に設けた2つの螺旋状突起43の中空部62に接続している。   FIG. 16 shows a modified capsule 3H. This capsule 3H is the same as the capsule 3G in FIG. 15A, but does not include the storage section 64 inside the capsule 3 and is provided with two spiral shapes in which the micropump 65 provided inside the capsule 3H is provided in a double manner via the tube 65. The projection 43 is connected to the hollow portion 62.

そして、マイクロポンプ65を例えば時計回り方向に回転させると、マイクロポンプ65は図17中で上側から下側に吸引を行う動作となり、図17中において断面で示す螺旋状突起43の中空部62に体液等を吸引して貯蔵することができる。   When the micropump 65 is rotated, for example, in the clockwise direction, the micropump 65 performs an operation of performing suction from the upper side to the lower side in FIG. 17, and the hollow portion 62 of the spiral protrusion 43 shown in cross section in FIG. Body fluids can be sucked and stored.

また、マイクロポンプ65を逆向きに回転させることにより、他方の螺旋状突起43の中空部62に体液等を吸引して貯蔵することができる。
つまり、本変形例では、2重に設けた螺旋状突起43の中空部62に、例えば異なる部位でそれぞれ体液等の体内物質、検査しようとする物質を吸引して採取することができる。本変形例は図15のカプセル3Hとほぼ同様の効果を有する。
Further, by rotating the micropump 65 in the reverse direction, body fluid or the like can be sucked and stored in the hollow portion 62 of the other spiral projection 43.
That is, in this modified example, in-vivo substances such as bodily fluids and substances to be examined can be collected by sucking into the hollow portions 62 of the double spiral projections 43, for example, at different sites. This modification has substantially the same effect as the capsule 3H of FIG.

なお、カプセル3等に内蔵した電磁場応答部となるマグネット8の代わりに、鉄等の強磁性体或いは磁性体で形成しても良い。また、磁場でなく、電場を印加し、カプセル3等には荷電体或いは誘電体を内蔵するようにしても良い。
なお、上述した各実施例等を部分的等で組み合わせて構成される実施例等も本発明に属する。
Instead of the magnet 8 serving as an electromagnetic field response unit built in the capsule 3 or the like, it may be formed of a ferromagnetic material such as iron or a magnetic material. Further, an electric field may be applied instead of a magnetic field, and a charged body or a dielectric body may be incorporated in the capsule 3 or the like.
It should be noted that embodiments configured by partially combining the above-described embodiments also belong to the present invention.

{付記]
1.被検体の管腔臓器内で検査又は処置などの医療行為を行なうカプセル型医療装置において、
本体が進行方向を対称軸に持つ回転対称体で構成され、本体の進行方向前部又は後部の少なくとも一方は、径が端部の方向に細くなる縮径部により構成され、本体内部に被検体外から印加される電磁場の回転に作用される電磁場応答部を備え、本体外表面に前記電磁場応答部による回転運動を推進力に変換するための螺旋状構造を備え、前記螺旋状構造の端部が本体端部近傍に達するように設置されていることを特徴とするカプセル型医療装置。
{Appendix]
1. In a capsule medical device that performs medical acts such as examinations or treatments within a luminal organ of a subject,
The main body is composed of a rotationally symmetric body having a traveling direction as the axis of symmetry, and at least one of the front part or the rear part of the main body in the traveling direction is composed of a reduced diameter portion whose diameter becomes narrower toward the end, An electromagnetic field response unit that is acted upon by rotation of an electromagnetic field applied from the outside, a helical structure for converting rotational motion by the electromagnetic field response unit into propulsive force on the outer surface of the main body, and an end of the helical structure Is a capsule-type medical device, characterized in that it is installed so as to reach the vicinity of the end of the main body.

2.被検体の管腔臓器内で検査又は処置などの医療行為を行なうカプセル型医療装置において、
本体が略円筒形状部分と本体両端における径が端部の方向に細くなる縮径部とで構成され、本体内部に被検体の外から印加される回転磁場に磁気的に作用される磁石を備え、本体外表面に前記磁石による回転運動を推進力に変換するための螺旋状構造を備え、前記螺旋状構造が前記本体略円筒形状部分と前記縮径部の両方に設置したことを特徴とするカプセル型医療装置。
(付記2の効果)管腔臓器内の狭窄部分において螺旋状構造を本体略円筒形状部分のみに設置した場合と比較して、推進しやすくなる。カプセル型医療装置内部に検査、処置に必要な部品の配置が可能。
2. In a capsule medical device that performs medical acts such as examinations or treatments within a luminal organ of a subject,
The main body is composed of a substantially cylindrical portion and a reduced diameter portion in which the diameters at both ends of the main body narrow in the direction of the end, and a magnet that is magnetically acted on a rotating magnetic field applied from outside the subject is provided inside the main body. The outer surface of the main body is provided with a helical structure for converting the rotational movement by the magnet into a propulsive force, and the helical structure is installed in both the substantially cylindrical portion of the main body and the reduced diameter portion. Capsule type medical device.
(Effect of Supplementary Note 2) Compared with the case where the spiral structure is installed only in the substantially cylindrical portion of the main body in the narrowed portion in the luminal organ, propulsion is facilitated. Parts necessary for inspection and treatment can be placed inside the capsule medical device.

3.前記螺旋状構造のピッチが本体の形状に依らず等しいことを特徴とする付記1又は2に記載のカプセル型医療装置。
(付記3の効果)回転によって得られる推進力がカプセル型医療装置の外表面において一定となるので、より滑らかかつ効果的な推進が実現できる。
3. 3. The capsule medical device according to appendix 1 or 2, wherein the pitch of the spiral structure is the same regardless of the shape of the main body.
(Effect of Supplementary Note 3) Since the propulsive force obtained by rotation is constant on the outer surface of the capsule medical device, smoother and more effective propulsion can be realized.

4.前記カプセル型医療装置の内部に少なくとも一つの撮像素子と、前記撮像素子に外部から取り入れられた光を集光するためのレンズ系と、前記本体の少なくとも一端に前記縮径部として、前記レンズ系に光を取り入れるための光透過部材とを具備し、前記螺旋状構造が前記撮像素子に写らない様に、前記光透過部材上に設置されたことを特徴とする付記1又は2、又は3のいずれかに記載のカプセル型医療装置。 4). At least one image sensor inside the capsule medical device, a lens system for collecting light taken into the image sensor from the outside, and the lens system as the reduced diameter portion at least at one end of the main body And a light transmitting member for taking in light, and installed on the light transmitting member so that the spiral structure is not reflected on the imaging device. The capsule medical device according to any one of the above.

5.前記電磁場応答部が、磁性体又は磁石であることを特徴とする付記1に記載のカプセル型医療装置。
6.前記電磁場応答部が、誘電体であることを特徴とする付記1に記載のカプセル型医療装置。
5). The capsule medical device according to appendix 1, wherein the electromagnetic field response unit is a magnetic body or a magnet.
6). 2. The capsule medical device according to appendix 1, wherein the electromagnetic field response unit is a dielectric.

7.前記カプセル型医療装置の前記略円筒形状部分と前記縮径部の接続部分において、前記螺旋状構造が滑らかに接続することを特徴とする付記2に記載のカプセル型医療装置。(付記7の効果)より滑らかな推進ができ、管腔臓器を誘導するのに適している。 7). The capsule medical device according to appendix 2, wherein the spiral structure is smoothly connected at a connection portion between the substantially cylindrical portion and the reduced diameter portion of the capsule medical device. (Effect of Supplementary Note 7) Smoother propulsion is possible, and it is suitable for guiding a luminal organ.

8.前記カプセル型医療装置の前記螺旋状構造が、複数の螺旋から構成されていることを特徴とする付記1から7のいずれかに記載のカプセル型医療装置。
(付記8の効果)螺旋の数が多くなると推進力が増加する。
8). 8. The capsule medical device according to any one of appendices 1 to 7, wherein the helical structure of the capsule medical device includes a plurality of spirals.
(Effect of Supplementary Note 8) The propulsive force increases as the number of spirals increases.

9.前記カプセル型医療装置において、前記縮径部がテーパ形状であることを特徴とする付記1から8のいずれかに記載のカプセル型医療装置。
10.前記カプセル型医療装置において、前記縮径部が半球状であることを特徴とした付記1から8のいずれかに記載のカプセル型医療装置。
11.前記カプセル型医療装置において、前記縮径部の末端部が略球面であることを特徴とする付記1から8のいずれかに記載のカプセル型医療装置。
(付記11の効果)先端部形状が略球面であるため、管腔臓器を誘導するのに適している。
9. 9. The capsule medical device according to any one of appendices 1 to 8, wherein the reduced diameter portion has a tapered shape.
10. 9. The capsule medical device according to any one of appendices 1 to 8, wherein the reduced diameter portion is hemispherical in the capsule medical device.
11. 9. The capsule medical device according to any one of appendices 1 to 8, wherein a terminal portion of the reduced diameter portion is substantially spherical.
(Effect of Supplementary Note 11) Since the tip shape is substantially spherical, it is suitable for guiding a luminal organ.

12.前記螺旋状構造が中空部分を有することを特徴とする付記1から11のいずれかに記載のカプセル型医療装置。
(付記12の効果)螺旋状構造内に薬剤又は体内物質の貯蔵手段が確保できるため、カプセル型医療装置の小型化が可能。
12 The capsule medical device according to any one of appendices 1 to 11, wherein the spiral structure has a hollow portion.
(Effect of Supplementary Note 12) Since a storage means for a medicine or a substance in the body can be secured in the spiral structure, the capsule medical device can be miniaturized.

13.前記カプセル型医療装置の内部に少なくとも薬剤を貯蔵する貯蔵手段と、前記貯蔵手段に貯蔵される薬剤と、前記薬剤を放出する放出手段とを具備し、中空構造とした前記螺旋状構造内を通って前記放出手段によって放出された薬剤が、前記螺旋状構造端部から放出されることを特徴とする付記12に記載のカプセル型医療装置。
(付記13の効果)螺旋状構造が薬剤放出用管路と併用できるため、カプセル型医療装置の小型化が可能。
13. The capsule medical device includes at least a storage means for storing a medicine, a medicine stored in the storage means, and a release means for releasing the medicine, and passes through the spiral structure having a hollow structure. 13. The capsule medical device according to appendix 12, wherein the medicine released by the releasing means is released from the end of the helical structure.
(Effect of Supplementary Note 13) Since the spiral structure can be used in combination with the drug release conduit, the capsule medical device can be downsized.

14.前記カプセル型医療装置の内部に少なくとも体内物質の吸入手段と、吸入物質を貯蔵する貯蔵手段とを具備し、中空構造とした前記螺旋状構造の端部を体内物質の吸入口としたことを特徴とする付記12に記載のカプセル型医療装置。 14 The capsule medical device includes at least a body substance inhalation unit and a storage unit for storing the inhalation substance, and an end portion of the spiral structure having a hollow structure is used as an inhalation port for the body substance. The capsule medical device according to appendix 12.

(付記14の効果)螺旋状構造が体外物質吸入管路と併用できるため、カプセル型医療装置の小型化が可能。 (Effect of Supplementary Note 14) Since the spiral structure can be used together with the extracorporeal substance inhalation conduit, the capsule medical device can be downsized.

15.前記カプセル型医療装置の内部に少なくとも一つの撮像素子と、前記撮像素子に外部から取り入れられた光を集光するためのレンズ系と、前記本体の少なくとも一端に前記縮径部として、前記レンズ系に光を取り入れるための光透過部材とを具備し、前記螺旋状構造が前記撮像素子に写る様に、前記光透過部材上に設置されたことを特徴とする付記13又は14に記載のカプセル型医療装置。
(付記15の効果)薬剤の放出又は体内物質の吸入を取得画像で確認できる。
15. At least one image sensor inside the capsule medical device, a lens system for collecting light taken into the image sensor from the outside, and the lens system as the reduced diameter portion at least at one end of the main body The capsule type according to appendix 13 or 14, further comprising: a light transmissive member for taking in light, and being installed on the light transmissive member so that the spiral structure is reflected on the image sensor. Medical device.
(Effect of Supplementary Note 15) The release of the drug or the inhalation of the substance in the body can be confirmed in the acquired image.

16.付記1から15のいずれかに記載のカプセル型医療装置と、前記カプセル型医療装置に設けられた電磁場応答部に作用する電磁場を発生させる電磁場発生手段と、前記電磁場発生手段による電磁場の向きを制御する電磁場制御手段とを備え、
前記電磁場発生手段が3軸方向に電磁場を発生させ、前記カプセル型医療装置を管腔臓器内で回転させることを特徴とするカプセル型医療装置誘導システム。
16. The capsule medical device according to any one of appendices 1 to 15, an electromagnetic field generating unit that generates an electromagnetic field that acts on an electromagnetic field response unit provided in the capsule medical device, and the direction of the electromagnetic field by the electromagnetic field generating unit is controlled Electromagnetic field control means for
A capsule medical device guidance system, wherein the electromagnetic field generating means generates an electromagnetic field in three axial directions to rotate the capsule medical device in a luminal organ.

本発明の実施例1を備えたカプセル医療装置誘導システムの概略の構成図。BRIEF DESCRIPTION OF THE DRAWINGS The block diagram of the outline of the capsule medical device guidance system provided with Example 1 of this invention. 図1のより詳細な構成を示すブロック図。The block diagram which shows the more detailed structure of FIG. 磁場発生装置の概略の構成を示す概略構成図。The schematic block diagram which shows the schematic structure of a magnetic field generator. カプセル型医療装置の外観を示す側面図。The side view which shows the external appearance of a capsule type medical device. カプセル型医療装置の内部構成を示す断面図。Sectional drawing which shows the internal structure of a capsule type medical device. 回転磁場を印加して推進速度を測定するためにシリコンチューブ内にサンプルのカプセルを挿入した水槽を示す側面図。The side view which shows the water tank which inserted the capsule of the sample in the silicon tube in order to apply a rotating magnetic field and to measure a propulsion speed. 端部に螺旋状突起を設けた第1のサンプルを示す図。The figure which shows the 1st sample which provided the helical protrusion in the edge part. 推進速度の測定結果を示す図。The figure which shows the measurement result of a propulsion speed. 屈曲した管路内を推進させる場合の作用の説明図。Explanatory drawing of an effect | action in the case of propelling the inside of the bent pipe line. 本発明の実施例2のカプセル型医療装置を示す側面図。The side view which shows the capsule type medical device of Example 2 of this invention. 第1変形例のカプセル型医療装置を示す側面図。The side view which shows the capsule type medical device of a 1st modification. 第2変形例のカプセル型医療装置を示す側面図。The side view which shows the capsule type medical device of a 2nd modification. 第3変形例のカプセル型医療装置を示す側面図。The side view which shows the capsule type medical device of a 3rd modification. 第4変形例のカプセル型医療装置の螺旋状突起のピッチを示す概略側面図。The schematic side view which shows the pitch of the helical protrusion of the capsule type medical device of a 4th modification. 本発明の実施例3のカプセル型医療装置及び取得画像を示す図。The figure which shows the capsule type medical device and acquired image of Example 3 of this invention. 変形例のカプセル型医療装置の構成を一部を切り欠いて示す側面図。The side view which cuts off a part and shows the structure of the capsule type medical device of a modification.

符号の説明Explanation of symbols

1…カプセル型医療装置誘導システム(カプセル誘導システム)
2…患者
3…カプセル型医療装置(カプセル)
4…カプセル制御装置(制御装置)
5…磁場発生装置
6…交流電源装置
8…マグネット
9…操作入力装置
11…パソコン本体
13…モニタ
14…体外アンテナ
15…CPU
16…ハードディスク
21…対物レンズ系
22…撮像素子
23…照明素子
39…先端カバー
40…本体外装部材
41…カプセル本体
43…螺旋状突起
43a、43b…端部
代理人 弁理士 伊藤 進
1 ... Capsule type medical device guidance system (capsule guidance system)
2 ... Patient 3 ... Capsule type medical device (capsule)
4. Capsule control device (control device)
DESCRIPTION OF SYMBOLS 5 ... Magnetic field generator 6 ... AC power supply device 8 ... Magnet 9 ... Operation input device 11 ... PC main body 13 ... Monitor 14 ... External antenna 15 ... CPU
DESCRIPTION OF SYMBOLS 16 ... Hard disk 21 ... Objective lens system 22 ... Imaging element 23 ... Illumination element 39 ... End cover 40 ... Main body exterior member 41 ... Capsule main body 43 ... Spiral protrusion 43a, 43b ... End agent Patent attorney Susumu Ito

Claims (5)

被検体の管腔臓器内で検査又は処置などの医療行為を行なうカプセル型医療装置において、
本体が進行方向を対称軸に持つ回転対称体で構成され、本体の進行方向前部又は後部の少なくとも一方は、径が端部の方向に細くなる縮径部により構成され、本体内部に被検体外から印加される電磁場の回転に作用される電磁場応答部を備え、本体外表面に前記電磁場応答部による回転運動を推進力に変換するための螺旋状構造を備え、前記螺旋状構造の端部が本体端部近傍に達するように設置されていることを特徴とするカプセル型医療装置。
In a capsule medical device that performs medical acts such as examinations or treatments within a luminal organ of a subject,
The main body is composed of a rotationally symmetric body having a traveling direction as the axis of symmetry, and at least one of the front part or the rear part of the main body in the traveling direction is composed of a reduced diameter portion whose diameter becomes narrower toward the end, An electromagnetic field response unit that is acted upon by rotation of an electromagnetic field applied from the outside, a helical structure for converting rotational motion by the electromagnetic field response unit into propulsive force on the outer surface of the main body, and an end of the helical structure Is a capsule-type medical device, characterized in that it is installed so as to reach the vicinity of the end of the main body.
被検体の管腔臓器内で検査又は処置などの医療行為を行なうカプセル型医療装置において、
本体が略円筒形状部分と本体両端における径が端部の方向に細くなる縮径部とで構成され、本体内部に被検体の外から印加される回転磁場に磁気的に作用される磁石を備え、本体外表面に前記磁石による回転運動を推進力に変換するための螺旋状構造を備え、前記螺旋状構造が前記本体略円筒形状部分と前記縮径部の両方に設置したことを特徴とするカプセル型医療装置。
In a capsule medical device that performs medical acts such as examinations or treatments within a luminal organ of a subject,
The main body is composed of a substantially cylindrical portion and a reduced diameter portion in which the diameters at both ends of the main body narrow in the direction of the end, and a magnet that is magnetically acted on a rotating magnetic field applied from outside the subject is provided inside the main body. The outer surface of the main body is provided with a helical structure for converting the rotational movement by the magnet into a propulsive force, and the helical structure is installed in both the substantially cylindrical portion of the main body and the reduced diameter portion. Capsule type medical device.
前記螺旋状構造のピッチが本体の形状に依らず等しいことを特徴とする請求項1又は2に記載のカプセル型医療装置。 The capsule medical device according to claim 1, wherein the pitch of the spiral structure is equal regardless of the shape of the main body. 前記カプセル型医療装置の内部に少なくとも一つの撮像素子と、前記撮像素子に外部から取り入れられた光を集光するためのレンズ系と、前記本体の少なくとも一端に前記縮径部として、前記レンズ系に光を取り入れるための光透過部材とを具備し、前記螺旋状構造が前記撮像素子に写らない様に、前記光透過部材上に設置されたことを特徴とする請求項1又は2、又は3のいずれかに記載のカプセル型医療装置。 At least one image sensor inside the capsule medical device, a lens system for collecting light taken into the image sensor from the outside, and the lens system as the reduced diameter portion at least at one end of the main body And a light transmitting member for taking in light, and is installed on the light transmitting member so that the spiral structure is not reflected on the image pickup device. The capsule medical device according to any one of the above. 請求項1から4のいずれかに記載のカプセル型医療装置と、前記カプセル型医療装置に設けられた電磁場応答部に作用する電磁場を発生させる電磁場発生手段と、前記電磁場発生手段による電磁場の向きを制御する電磁場制御手段とを備え、
前記電磁場発生手段が3軸方向に電磁場を発生させ、前記カプセル型医療装置を管腔臓器内で回転させることを特徴とするカプセル型医療装置誘導システム。
The capsule medical device according to any one of claims 1 to 4, an electromagnetic field generating unit that generates an electromagnetic field that acts on an electromagnetic field response unit provided in the capsule medical device, and a direction of an electromagnetic field by the electromagnetic field generating unit Electromagnetic field control means for controlling,
A capsule medical device guidance system, wherein the electromagnetic field generating means generates an electromagnetic field in three axial directions to rotate the capsule medical device in a luminal organ.
JP2003288273A 2003-08-06 2003-08-06 Capsule type medical device and capsule type medical device guidance system Expired - Fee Related JP4137740B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2003288273A JP4137740B2 (en) 2003-08-06 2003-08-06 Capsule type medical device and capsule type medical device guidance system
US10/910,738 US7623904B2 (en) 2003-08-06 2004-08-03 Medical apparatus, medical apparatus guide system, capsule type medical apparatus, and capsule type medical apparatus guide apparatus
CN2008100965381A CN101292857B (en) 2003-08-06 2004-08-06 Medical apparatus, medical apparatus guide system, capsule type medical apparatus, and guide apparatus thereof
CN2004800218881A CN1829466B (en) 2003-08-06 2004-08-06 Medical device, medical device guide system, capsule-type medical device, and capsule-type medical device guide device
EP04771603A EP1652466A4 (en) 2003-08-06 2004-08-06 Medical device, medical device guide system, capsule-type medical device, and capsule-type medical device guide device
KR1020067002345A KR100796077B1 (en) 2003-08-06 2004-08-06 Medical device, medical device guide system, capsule-type medical device, and capsule-type medical device guide device
PCT/JP2004/011628 WO2005013811A1 (en) 2003-08-06 2004-08-06 Medical device, medical device guide system, capsule-type medical device, and capsule-type medical device guide device
US11/823,598 US7697970B2 (en) 2003-08-06 2007-06-28 Medical apparatus, medical apparatus guide system, capsule type medical apparatus, and capsule type medical apparatus guide apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003288273A JP4137740B2 (en) 2003-08-06 2003-08-06 Capsule type medical device and capsule type medical device guidance system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008110590A Division JP2008178743A (en) 2008-04-21 2008-04-21 Capsule type medical device and capsule type medical device guiding system

Publications (3)

Publication Number Publication Date
JP2005052502A true JP2005052502A (en) 2005-03-03
JP2005052502A5 JP2005052502A5 (en) 2006-08-10
JP4137740B2 JP4137740B2 (en) 2008-08-20

Family

ID=34366984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003288273A Expired - Fee Related JP4137740B2 (en) 2003-08-06 2003-08-06 Capsule type medical device and capsule type medical device guidance system

Country Status (2)

Country Link
JP (1) JP4137740B2 (en)
CN (2) CN1829466B (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040269A1 (en) * 2005-10-05 2007-04-12 Olympus Medical Systems Corp. Capsule type medical device, its guidance system and guidance method and examinee insertion device
JP2007151729A (en) * 2005-12-02 2007-06-21 Olympus Medical Systems Corp Capsule type medical device, its guidance system and guidance method
JP2008178743A (en) * 2008-04-21 2008-08-07 Olympus Corp Capsule type medical device and capsule type medical device guiding system
JP2009066033A (en) * 2007-09-11 2009-04-02 Olympus Medical Systems Corp Capsule guidance system
US7872789B2 (en) 2006-08-09 2011-01-18 Seiko Epson Corporation Optical device, optical scanner, and image forming apparatus
CN104244799A (en) * 2012-02-16 2014-12-24 维布兰特公司 Gastrointestinal capsule
CN106990536A (en) * 2017-05-10 2017-07-28 重庆中域财众旅游文化产业投资有限公司 Equipment for virtual reality experience
CN109805883A (en) * 2019-02-02 2019-05-28 佛山职业技术学院 A kind of capsule endoscope drive system
US11504024B2 (en) 2018-03-30 2022-11-22 Vibrant Ltd. Gastrointestinal treatment system including a vibrating capsule, and method of use thereof
US11510590B1 (en) 2018-05-07 2022-11-29 Vibrant Ltd. Methods and systems for treating gastrointestinal disorders
US11638678B1 (en) 2018-04-09 2023-05-02 Vibrant Ltd. Vibrating capsule system and treatment method
LU501826B1 (en) * 2022-04-11 2023-10-11 Max Planck Gesellschaft Foldable structure
EP4260830A1 (en) * 2022-04-11 2023-10-18 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Tube-shaped robotic device with anisotropic surface structure

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5484651B2 (en) * 2006-11-13 2014-05-07 オリンパスメディカルシステムズ株式会社 Medical device position detection system and medical device guidance system
WO2008082005A1 (en) * 2006-12-28 2008-07-10 Olympus Medical Systems Corp. Capsule medical apparatus and body-cavity observation method
CA2762123C (en) 2008-09-11 2013-06-11 Acist Medical Systems, Inc. Physiological sensor delivery device and method
DE102009009616A1 (en) * 2009-02-19 2010-08-26 Siemens Aktiengesellschaft Endoscopic capsule with device for promoting movement in the case of movement-inhibiting edge friction
CN102665530B (en) * 2010-03-26 2014-11-26 奥林巴斯医疗株式会社 Capsule medical device guidance system and method for guiding capsule medical device
CN101849814B (en) * 2010-05-26 2012-12-12 上海理工大学 Active infrared wireless capsule endoscopy system
DE102011004825B4 (en) * 2011-02-28 2019-05-02 Siemens Healthcare Gmbh A method of controlling the transport of a magnetic moment endoscope capsule
WO2012155040A1 (en) 2011-05-11 2012-11-15 Acist Medical Systems, Inc. Intravascular sensing method and system
CN102743174B (en) * 2012-06-30 2016-06-29 安翰光电技术(武汉)有限公司 A kind of method controlling capsule or probe motion
CN103040426A (en) * 2012-12-20 2013-04-17 深圳市资福技术有限公司 System and method for controlling running orbit of capsule endoscope
CN103054542B (en) * 2012-12-20 2015-02-18 深圳市资福技术有限公司 System for controlling capsule endoscope motion
CN105411505B (en) * 2014-09-15 2019-08-23 上海安翰医疗技术有限公司 A kind of device and method that control capsule endoscope is moved in human body alimentary canal
CN103637803B (en) * 2013-11-14 2015-08-19 上海交通大学 Based on capsule endoscope space positioning system and the localization method of permanent magnetism and induction coil
KR101548646B1 (en) * 2014-01-21 2015-09-01 가톨릭관동대학교산학협력단 Trans-Platform Apparatus and Their Uses
US10244951B2 (en) 2014-06-10 2019-04-02 Acist Medical Systems, Inc. Physiological sensor delivery device and method
CN104013378B (en) * 2014-06-25 2016-04-27 天津理工大学 The control system of portable remote operating is wireless microchannel robot and method of work
CN106389061A (en) * 2015-08-10 2017-02-15 孙彪 Vibration capsule system for recovering and treating digestive tract function degradation and disorder
CN106594454A (en) * 2015-10-19 2017-04-26 沈阳新松机器人自动化股份有限公司 Fluid pipeline dredging robot
CN105662318B (en) * 2016-01-08 2018-01-26 大连理工大学 A kind of space universal rotary magnetic field man-machine interaction control method
US10500127B2 (en) * 2016-04-18 2019-12-10 Ankon Medical Technologies (Shanghai) Co., Ltd. Vivo device and method of using the same
US11826522B2 (en) * 2016-06-01 2023-11-28 Becton, Dickinson And Company Medical devices, systems and methods utilizing permanent magnet and magnetizable feature
CN106073689A (en) * 2016-06-02 2016-11-09 李红艳 Can the swallowing type medical treatment detector of temperature sensing
GB2554354B (en) 2016-09-21 2021-06-02 Vibrant Ltd Systems for adaptive treatment of disorders in the gastrointestinal tract
CN106618645A (en) * 2016-09-22 2017-05-10 孟红琳 Capsule type cell sampler
CN106725258A (en) * 2016-12-13 2017-05-31 天津盼易科技有限公司 One kind is based on electromechanical integration encapsulated medical device guiding system
US10905378B1 (en) 2017-01-30 2021-02-02 Vibrant Ltd Method for treating gastroparesis using a vibrating ingestible capsule
US10888277B1 (en) 2017-01-30 2021-01-12 Vibrant Ltd Method for treating diarrhea and reducing Bristol stool scores using a vibrating ingestible capsule
CN106880333A (en) * 2017-03-28 2017-06-23 重庆金山医疗器械有限公司 A kind of capsule endoscope control device
EP4059417A1 (en) * 2017-04-27 2022-09-21 Bard Access Systems, Inc. Magnetizing system for needle assemblies
US10537720B2 (en) 2018-04-09 2020-01-21 Vibrant Ltd. Method of enhancing absorption of ingested medicaments for treatment of parkinsonism
CN111954487A (en) 2018-04-20 2020-11-17 阿西斯特医疗系统有限公司 Evaluation of blood vessels
CN108724148B (en) * 2018-09-17 2019-01-01 湖南早晨纳米机器人有限公司 Nanometer robot control system
CN113272001B (en) 2019-01-03 2024-04-05 维布兰特公司 Devices and methods for delivering an ingestible medicament into the gastrointestinal tract of a user
CN109620107B (en) * 2019-01-09 2021-09-07 重庆金山医疗技术研究院有限公司 Capsule endoscope
GB201900780D0 (en) 2019-01-21 2019-03-06 Vibrant Ltd Device and method for delivering a flowable ingestible medicament into the gastrointestinal tract of a user
GB201901470D0 (en) 2019-02-04 2019-03-27 Vibrant Ltd Vibrating capsule for gastrointestinal treatment, and method of use thereof
CN110693445A (en) * 2019-10-15 2020-01-17 联博智能科技有限公司 Wireless capsule endoscope control system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH048343A (en) * 1990-04-25 1992-01-13 Olympus Optical Co Ltd Inserting device into testee body
JPH0663045A (en) * 1992-08-20 1994-03-08 Olympus Optical Co Ltd Ultrasonic endoscope
JP2001179700A (en) * 1999-12-28 2001-07-03 Tohoku Techno Arch Co Ltd Movable micromachine and its movement control system
JP2002000556A (en) * 2000-06-26 2002-01-08 Nonomura Tomosuke Endoscope
JP2003038424A (en) * 2001-07-30 2003-02-12 Olympus Optical Co Ltd Encapsulated endoscope
JP2004229922A (en) * 2003-01-30 2004-08-19 Olympus Corp Medical device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5681260A (en) * 1989-09-22 1997-10-28 Olympus Optical Co., Ltd. Guiding apparatus for guiding an insertable body within an inspected object

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH048343A (en) * 1990-04-25 1992-01-13 Olympus Optical Co Ltd Inserting device into testee body
JPH0663045A (en) * 1992-08-20 1994-03-08 Olympus Optical Co Ltd Ultrasonic endoscope
JP2001179700A (en) * 1999-12-28 2001-07-03 Tohoku Techno Arch Co Ltd Movable micromachine and its movement control system
JP2002000556A (en) * 2000-06-26 2002-01-08 Nonomura Tomosuke Endoscope
JP2003038424A (en) * 2001-07-30 2003-02-12 Olympus Optical Co Ltd Encapsulated endoscope
JP2004229922A (en) * 2003-01-30 2004-08-19 Olympus Corp Medical device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040269A1 (en) * 2005-10-05 2007-04-12 Olympus Medical Systems Corp. Capsule type medical device, its guidance system and guidance method and examinee insertion device
US8740774B2 (en) 2005-10-05 2014-06-03 Olympus Corporation Capsule-type medical apparatus, guidance system and guidance method therefor, and intrasubject insertion apparatus
JP2007151729A (en) * 2005-12-02 2007-06-21 Olympus Medical Systems Corp Capsule type medical device, its guidance system and guidance method
US7872789B2 (en) 2006-08-09 2011-01-18 Seiko Epson Corporation Optical device, optical scanner, and image forming apparatus
JP2009066033A (en) * 2007-09-11 2009-04-02 Olympus Medical Systems Corp Capsule guidance system
US8469879B2 (en) 2007-09-11 2013-06-25 Olympus Medical Systems Corp. Capsule guiding system and capsule guiding method
JP2008178743A (en) * 2008-04-21 2008-08-07 Olympus Corp Capsule type medical device and capsule type medical device guiding system
CN104244799A (en) * 2012-02-16 2014-12-24 维布兰特公司 Gastrointestinal capsule
CN106990536A (en) * 2017-05-10 2017-07-28 重庆中域财众旅游文化产业投资有限公司 Equipment for virtual reality experience
CN106990536B (en) * 2017-05-10 2023-05-26 重庆中域财众旅游文化产业投资有限公司 Device for virtual reality experience
US11504024B2 (en) 2018-03-30 2022-11-22 Vibrant Ltd. Gastrointestinal treatment system including a vibrating capsule, and method of use thereof
US11638678B1 (en) 2018-04-09 2023-05-02 Vibrant Ltd. Vibrating capsule system and treatment method
US11510590B1 (en) 2018-05-07 2022-11-29 Vibrant Ltd. Methods and systems for treating gastrointestinal disorders
CN109805883A (en) * 2019-02-02 2019-05-28 佛山职业技术学院 A kind of capsule endoscope drive system
LU501826B1 (en) * 2022-04-11 2023-10-11 Max Planck Gesellschaft Foldable structure
EP4260830A1 (en) * 2022-04-11 2023-10-18 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Tube-shaped robotic device with anisotropic surface structure
WO2023198706A1 (en) * 2022-04-11 2023-10-19 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Foldable structure

Also Published As

Publication number Publication date
JP4137740B2 (en) 2008-08-20
CN101292857A (en) 2008-10-29
CN1829466B (en) 2011-01-05
CN1829466A (en) 2006-09-06
CN101292857B (en) 2013-03-06

Similar Documents

Publication Publication Date Title
JP4137740B2 (en) Capsule type medical device and capsule type medical device guidance system
US8740774B2 (en) Capsule-type medical apparatus, guidance system and guidance method therefor, and intrasubject insertion apparatus
JP4503930B2 (en) Medical equipment
US7578788B2 (en) Capsule-type medical device
KR100796077B1 (en) Medical device, medical device guide system, capsule-type medical device, and capsule-type medical device guide device
JP5314913B2 (en) Capsule medical system
KR101080483B1 (en) Medical device control system
US7907986B2 (en) System and method for controlling a device in vivo
JP4231657B2 (en) Capsule medical device
US6958034B2 (en) Self propelled device
Moglia et al. Recent patents on wireless capsule endoscopy
JP4578740B2 (en) Capsule medical device
EP1795113A1 (en) Medical device guiding system
JP4902620B2 (en) Capsule guidance system
JP4827540B2 (en) In-subject insertion device
JP2004041709A (en) Capsule medical care device
WO2004069043A1 (en) Medical device-guiding system
JP2005103091A (en) Guiding system of capsule type medical apparatus
JP2006263167A (en) Medical device control system
JP4695678B2 (en) Capsule medical device
JP2005237979A (en) Capsule type medical treatment device
JP2008178743A (en) Capsule type medical device and capsule type medical device guiding system
CN116261419A (en) System and method for a triple imaging hybrid probe
JP2008168144A (en) Medical device control system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060622

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080604

R151 Written notification of patent or utility model registration

Ref document number: 4137740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees