JP2005052066A - Method for producing acylated sericin - Google Patents

Method for producing acylated sericin Download PDF

Info

Publication number
JP2005052066A
JP2005052066A JP2003285789A JP2003285789A JP2005052066A JP 2005052066 A JP2005052066 A JP 2005052066A JP 2003285789 A JP2003285789 A JP 2003285789A JP 2003285789 A JP2003285789 A JP 2003285789A JP 2005052066 A JP2005052066 A JP 2005052066A
Authority
JP
Japan
Prior art keywords
sericin
acid
acylated
lipase
acylating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003285789A
Other languages
Japanese (ja)
Inventor
Kouji Takahashi
幸資 高橋
Makoto Hattori
誠 服部
Tadashi Koda
正 好田
Masahito Ogino
雅人 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003285789A priority Critical patent/JP2005052066A/en
Publication of JP2005052066A publication Critical patent/JP2005052066A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for acylating sericin under mild conditions. <P>SOLUTION: Paying attention to the fact that a lipase has been applied to synthesizing a sugar fatty acid ester as one of food emulsifiers, the fact is applied to acylating a cocoon-derived sericin. The method for producing the acylated sericin comprises reacting sericin isolated from cocoon with an organic acid in the presence of a lipase in a non-aqueous solvent. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、セリシンをアシル化する方法に関し、より詳細には、繭から絹を除去した残渣であるセリシンを、リパーゼの存在下の穏やかな条件でアシル化してアシル化セリシンを製造する法に関する。   The present invention relates to a method for acylating sericin, and more particularly to a method for producing acylated sericin by acylating sericin, which is a residue obtained by removing silk from silkworms, under mild conditions in the presence of lipase.

セリシンはカイコのBombyx moriの絹糸腺から吐き出された繭糸を構成する水溶性の天然高分子タンパク質である。繭糸の全重量の約70%が絹糸となるフィブロインというタンパク質から構成され、残る20〜30%がセリシンで、繭糸の外側から内側に向かって水やアルカリに溶けやすい順序にほぼ4層の連続層構造によりフィブロインの周りを取り囲んでいる(非特許文献1)。この2つのタンパク質で繭糸の約97%を占め、残りの成分は、約1.2〜1.6%の炭水化物、1%の脂質、1%の色素、0.7%の無機物であり、これらの割合は繭の品種によって多少異なる。セリシンのアミノ酸組成については、セリンが約33%と非常に多く含まれており、スレオニン及びチロシンと合計すると約46%がヒドロキシアミノ酸となる。
絹製品としてその独特の光沢や風合いを出すにはニカワ質であるセリシンは不要なものであるために大部分が除去され、有効利用されずに廃棄処分されてきた。繭の生産量は世界中で約100万トンに及び、これは乾燥繭40万トンに相当する。この生糸加工の工程で約5万トンのセリシンが生成することになる(非特許文献2)。これを廃棄することはタンパク質資源のロスであるばかりでなく、廃水のBOD(生物化学的酸素要求量)を上げるので廃水処理にも少なからず経費を必要としている。したがって、未利用のタンパク質資源としてのセリシンを有効利用する技術の開発が急務である。
Sericin is a water-soluble natural high molecular weight protein that constitutes the silk thread spouted from the silk gland of Bombyx mori. Approximately 70% of the total weight of the silk thread is made up of a protein called fibroin, which becomes silk thread, and the remaining 20-30% is sericin. The structure surrounds fibroin (Non-Patent Document 1). These two proteins account for about 97% of the silk thread, the remaining components are about 1.2-1.6% carbohydrates, 1% lipids, 1% pigments, 0.7% minerals, these proportions are the varieties of silkworms It will vary slightly. As for the amino acid composition of sericin, serine is very much contained at about 33%, and when combined with threonine and tyrosine, about 46% is a hydroxy amino acid.
Since silky sericin is unnecessary to produce its unique luster and texture as a silk product, most of it has been removed and discarded without being effectively used. The production of firewood is about 1 million tons worldwide, which is equivalent to 400,000 tons of dry firewood. About 50,000 tons of sericin is produced in this raw silk processing step (Non-patent Document 2). Discarding this is not only a loss of protein resources, but also raises the BOD (Biochemical Oxygen Demand) of the wastewater, which necessitates considerable costs for wastewater treatment. Therefore, there is an urgent need to develop a technology that effectively uses sericin as an unused protein resource.

セリシンをアシル化して化粧料や薬剤に利用する方法として、繭のシルク残分を酸で加水分解し、得られたペプチド又はアミノ酸を脂肪酸等でアシル化することが知られている(特許文献1)。しかし、加水分解を行うためには、耐強酸性の設備が必要である等の問題があり、より温和な条件でセリシンをアシル化する方法が求められてきた。
一方、食品用途等において糖脂肪酸エステルの合成にリパーゼが応用されているが(特許文献2,3等)、本発明のセリシンのようなペプチドやアミノ酸のアシル化にリパーゼを応用した例は知られていなかった。
As a method of acylating sericin and using it for cosmetics and drugs, it is known to hydrolyze silkworm residue of silkworm with acid and acylate the obtained peptide or amino acid with fatty acid or the like (Patent Document 1). ). However, in order to carry out hydrolysis, there are problems such as the need for a strong acid-resistant facility, and a method for acylating sericin under milder conditions has been demanded.
On the other hand, lipases have been applied to the synthesis of sugar fatty acid esters in food applications (Patent Documents 2, 3 etc.), but examples of applying lipases to acylation of peptides and amino acids such as sericin of the present invention are known. It wasn't.

間和夫監修「わかりやすい絹の科学」文化出版局 (1990)Supervised by Kazuo Mama “Science of Silk” Culture Publishing Bureau (1990) Biotecnology Advances., 20, 91-100 (2002)Biotecnology Advances., 20, 91-100 (2002) 特開平06-256274JP 06-256274 特開昭62-289190JP 62-289190 特開平08-245680JP 08-245680

本発明は、繭のシルク残分であるセリシンを有効利用し、温和な条件でセリシンのアシル化を行うことのできる、アシル化セリシンの製法を提供することを目的とする。   An object of the present invention is to provide a method for producing an acylated sericin, which can effectively utilize sericin, which is a silk residue of straw, and can acylate sericin under mild conditions.

本発明者らは、食品用乳化剤のひとつである糖脂肪酸エステルの合成にリパーゼが応用されていることに注目し(特許文献2,3等)、繭由来のセリシンのアシル化に応用することを考え、その条件を検討することにより、本発明を完成させるに至った。
即ち、本発明は、繭から分離したセリシンを非水溶媒中でリパーゼの存在下において有機酸と反応させることから成るアシル化セリシンの製法である。
更に、本発明は、この製法により得られたアシル化セリシンを主成分とする界面活性剤、乳化剤又は調湿剤である。
The present inventors have noted that lipase has been applied to the synthesis of sugar fatty acid esters, which are one of food emulsifiers (Patent Documents 2, 3, etc.), and applied to acylation of sericin derived from koji. By thinking and studying the conditions, the present invention has been completed.
That is, the present invention is a process for producing an acylated sericin comprising reacting sericin separated from soot with an organic acid in a non-aqueous solvent in the presence of lipase.
Furthermore, the present invention is a surfactant, emulsifier or humidity control agent mainly composed of acylated sericin obtained by this production method.

本発明で用いるセリシンは繭から絹を除去して得られる。繭からセリシンを分離する方法に特に制限はないが、例えば以下のようにして行うことができる。
繭又は繭糸を電解アルカリ水(pH 11.5)に浸漬して、95℃で7時間加熱抽出し、冷却後乾燥する。加熱抽出時間は長くなると低分子化が進み、着色が起こるので7時間程度が適当である。乾燥は、凍結乾燥、噴霧乾燥、減圧乾燥等種々の方法で行うことができるが、乾燥物が綿状又は粉末状で扱いやすいため前2者が望ましい。減圧乾燥の場合は乾燥物が膜状になる。
The sericin used in the present invention is obtained by removing silk from cocoons. The method for separating sericin from the koji is not particularly limited, but can be performed, for example, as follows.
The cocoon or string is immersed in electrolytic alkaline water (pH 11.5), extracted by heating at 95 ° C. for 7 hours, cooled and dried. As the heat extraction time becomes longer, the molecular weight decreases and coloring occurs, so about 7 hours is appropriate. Drying can be performed by various methods such as freeze drying, spray drying, and reduced pressure drying, but the former two are desirable because the dried product is easy to handle in the form of cotton or powder. In the case of drying under reduced pressure, the dried product becomes a film.

本発明で用いるリパーゼとしてCandida antractica又はCandida cylindrea由来のリパーゼが好ましい。特に、リパーゼとして、Candida
antractica由来のNovozym 435(ノボザイムズジャパン社)及びCandida cylindrea由来のlipase OF(名糖産業)又はこれらの同等品が好ましい。
また酵素を分離回収することが容易となるように、リパーゼを固定化したものを用いることが好ましい。
The lipase used in the present invention is preferably a lipase derived from Candida antractica or Candida cylindrea. Especially as lipase, Candida
Novozym 435 (Novozymes Japan) derived from antractica and lipase OF (named sugar industry) derived from Candida cylindrea or their equivalents are preferred.
In addition, it is preferable to use a lipase immobilized so that the enzyme can be easily separated and recovered.

このリパーゼを用いてセリシンのセリン等の水酸基を有機酸によりアシル化する。エステル化反応は、加水分解反応を抑制するために、水の除去が必須であり、溶媒として非水溶媒を用いる。この非水とは水分5%以下、好ましくは1%以下をいい、最も好ましくはモレキュラーシーブなどの脱水剤等を用いて乾燥させたことをいう。このような溶媒としてヘキサン、ヘプタン、オクタン、イソオクタン、クロロホルム、酢酸エチル、アセトン、ベンゼン、石油エーテル等が挙げられる。但し、アセトンは微量のアルデヒドを含み、副反応生成物が生成し褐変するので好ましいとはいえない。
一方の基質である有機酸、特に脂肪酸を溶解する溶媒の脱水やアシル化により生成する水の除去のために、反応中でも溶媒の脱水することが望ましい。たとえば、溶媒を蒸留したり、脱水剤を添加する。
反応液中の有機酸、特に脂肪酸の量はセリシンの水酸基の1〜5倍当量程度が好ましく、リパーゼの量はセリシンの重量に対して1〜10倍量程度が好ましい。セリシンは有機溶媒に不溶であるために、例えば固定化リパーゼとセリシンが接触したときにセリシン表面の水酸基と接触したときにだけアシル化反応が進行すると考えられるので、セリシンおよび酵素量を両者の接触が常に維持できる程度の濃度で増大させることが好ましい。またそのため、反応中は反応液を攪拌しておくことが好ましい。
Using this lipase, hydroxyl groups such as serine of sericin are acylated with an organic acid. In the esterification reaction, removal of water is essential to suppress the hydrolysis reaction, and a non-aqueous solvent is used as the solvent. The non-water means 5% or less of moisture, preferably 1% or less, and most preferably means drying using a dehydrating agent such as molecular sieve. Examples of such a solvent include hexane, heptane, octane, isooctane, chloroform, ethyl acetate, acetone, benzene, petroleum ether and the like. However, acetone is not preferable because it contains a small amount of aldehyde and a side reaction product is produced and browns.
It is desirable to dehydrate the solvent during the reaction in order to dehydrate the solvent that dissolves the organic acid, particularly fatty acid, which is one of the substrates, and to remove the water produced by acylation. For example, the solvent is distilled or a dehydrating agent is added.
The amount of organic acid, particularly fatty acid, in the reaction solution is preferably about 1 to 5 times the equivalent of the hydroxyl group of sericin, and the amount of lipase is preferably about 1 to 10 times the weight of sericin. Since sericin is insoluble in organic solvents, for example, when the immobilized lipase and sericin come into contact, the acylation reaction is considered to proceed only when the sericin comes into contact with the hydroxyl group on the sericin surface. Is preferably increased at such a concentration that can always be maintained. Therefore, it is preferable to stir the reaction solution during the reaction.

反応温度は好ましくは35〜75℃,より好ましくは50〜65℃である。
有機酸はカルボキシル基を有する有機化合物であり、その種類は特に問わないが、好ましくは脂肪酸である。脂肪酸としては、例えば、カプロン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、アラキン酸、ベヘニン酸、カプロレイン酸、リンデル酸、ミリストレイン酸、パルミトレン酸、オレイン酸、カドレイン酸、エルカ酸、デカジエン酸、リノール酸、ヒラゴ酸、リノレン酸、エイコサトリエン酸、ドコサトリエン酸、ヘキサデカテトラエン酸、ステアリドン酸、アラキドン酸、ドコサテトラエン酸、エイコサペンタエン酸、イワシ酸、サビニン酸、イプロール酸、ヤラピノール酸、リシノール酸、フェロン酸等が挙げられる。
エステル化の程度に特に制限は無い。後述の実施例では、反応生成物(粗アシル化セリシン)を塩析で精製しているが、精製しなくとも実利的には十分有効であると考える。
本発明により得られるアシル化セリシンは、後述の実施例に示すように、優れた乳化特性を有することから食品や化粧品用の乳化剤、水分蒸発抑制や羊毛への高い収着性を示すことから皮膚や毛髪の調湿剤、界面活性剤等として利用することができる。

以下、実施例にて本発明を例証するが、本発明を限定することを意図するものではない。
The reaction temperature is preferably 35 to 75 ° C, more preferably 50 to 65 ° C.
The organic acid is an organic compound having a carboxyl group, and the kind thereof is not particularly limited, but is preferably a fatty acid. Examples of fatty acids include caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, caproleic acid, Linderic acid, myristoleic acid, palmitoleic acid, oleic acid, cadreic acid Acid, erucic acid, decadienoic acid, linoleic acid, hiragoic acid, linolenic acid, eicosatrienoic acid, docosatrienoic acid, hexadecatetraenoic acid, stearidonic acid, arachidonic acid, docosatetraenoic acid, eicosapentaenoic acid, succinic acid, sabinin Examples include acids, iprolic acid, yarapinolic acid, ricinoleic acid, and ferronic acid.
There is no particular limitation on the degree of esterification. In the examples described later, the reaction product (crude acylated sericin) is purified by salting out, but it is considered that it is practically effective without purification.
The acylated sericin obtained according to the present invention has excellent emulsifying properties, as shown in the examples described later, and therefore has an emulsifier for foods and cosmetics, moisture evaporation suppression, and high sorption to wool. And can be used as a hair conditioner, a surfactant, and the like.

The following examples illustrate the invention, but are not intended to limit the invention.

(1)繭からセリシンの分離
白繭繭層(乾繭)を電解アルカリ水(pH 11.5)に浸漬し95℃で7時間加熱抽出し、エタノールを10%濃度加えて濾過してセリシン溶液(セリシンMY-30N、シンコーシルク、和歌山)を調製した。この試料溶液を蒸留水に対して透析後、0.1M水酸化ナトリウムを用いてpH
7.0に調整し、60℃の湯浴で攪拌しながら1時間インキュベートした。次に遠心分離(室温、12,000 rpm、30分間)して回収した上清をメンブランフィルター(pore
size 0.45μm)を用いて吸引ろ過し、このろ液を凍結乾燥し、セリシンを得た。
(1) Separation of sericin from rice cake The white birch layer (dry rice cake) is immersed in electrolytic alkaline water (pH 11.5), heated and extracted at 95 ° C for 7 hours, filtered with 10% ethanol added, and sericin solution (sericin MY -30N, Shinko Silk, Wakayama). After dialysis of this sample solution against distilled water, pH was adjusted using 0.1M sodium hydroxide.
The mixture was adjusted to 7.0 and incubated for 1 hour with stirring in a 60 ° C. water bath. Next, the supernatant collected by centrifugation (room temperature, 12,000 rpm, 30 minutes) is collected into a membrane filter (pore
size 0.45 μm), and the filtrate was freeze-dried to obtain sericin.

得られたセリシンについてSDS-ポリアクリルアミド電気泳動(SDS-PAGE)及びサイズ排除クロマトグラフィーを行った。セリシンは種々の分子から構成され、さらに繭糸から熱水抽出する条件により、得られるセリシンの状態は異なる。本セリシン標品も分子量は均一ではなく、多分散であり、その分子量は約10,000〜120,000Daで、主分子量は18,700Daであった。
セリシンの化学的特徴を表1にまとめる。セリシンの等電点は3.8で、脂肪酸は0.1%(w/w)の割合で存在した。本セリシン標品のアミノ酸組成は既報(Biosci.
Biotecnol. Biochem., 62 (1), 145-147 (1998))のアミノ酸組成の特徴と一致していた。セリンは34.3%で、セリンも含めたハイドロキシアミノ酸の総量は45.9%であった。極性の中性、酸性、塩基性のアミノ酸の総量は43.8%であり、非極性のアミノ酸の総量は11.2%であった。塩基性アミノ酸残基よりも酸性残基が多いので等電点が酸性を示すと考えられる。

Figure 2005052066
The obtained sericin was subjected to SDS-polyacrylamide electrophoresis (SDS-PAGE) and size exclusion chromatography. Sericin is composed of various molecules, and the state of sericin obtained varies depending on the conditions under which hot water is extracted from the silk thread. This sericin preparation also had a molecular weight that was not uniform and polydispersed, and had a molecular weight of about 10,000 to 120,000 Da and a main molecular weight of 18,700 Da.
The chemical characteristics of sericin are summarized in Table 1. The isoelectric point of sericin was 3.8, and fatty acids were present at a rate of 0.1% (w / w). The amino acid composition of this sericin preparation has been reported (Biosci.
Biotecnol. Biochem., 62 (1), 145-147 (1998)). Serine was 34.3%, and the total amount of hydroxyamino acids including serine was 45.9%. The total amount of polar neutral, acidic and basic amino acids was 43.8%, and the total amount of nonpolar amino acids was 11.2%. Since there are more acidic residues than basic amino acid residues, the isoelectric point is considered to be acidic.
Figure 2005052066

(2)リパーゼを用いたセリシンのアシル化
ネジ口三角フラスコにセリシンを1g秤りとり、110℃で1時間加熱乾燥した。その後、予めモレキュラーシーブで脱水処理(10mg/ml)したヘキサン50mlを加え、ポリトロンPCU-2(KINEMATICA社製)でセリシンを微粉状(24,000rpm、約1分間)にしてからモレキュラーシーブを約2g加えて脱気した。ここにオレイン酸
3.5mlを加え、最後にNovozym 435(ノボザイムズジャパン社)を10 g加えて窒素置換して密栓した。この三角フラスコを60回/分で振とうしながら60℃、96時間インキュベートした。インキュベート終了後の反応混合物をヘキサン中でステンレスメッシュに通してモレキュラーシーブを除去した後、メンブランフィルター(pore
size 0.45μm)で吸引ろ過して残渣を回収した。これを直ちにビーカーに移し、クロロホルム/ヘキサン(5:1 (v/v))混合液を加えて室温で1時間静置した後、液面に浮いた大部分の酵素を上清とともに除去した。さらにガラス製の遠心管(i.d.
24×100mm)に移し、同混合液を加えて遠心分離(室温、3,000 rpm、5分間)して酵素を上清とともに除去した。酵素粒子を完全に除去するまでこの操作を繰り返した後、ヘキサンで沈殿を3回洗浄してから減圧乾固した。これを蒸留水に溶解し、蒸留水に対して透析後、0.1M水酸化ナトリウムでpH
7.0に調整してからメンブランフィルター(pore size 0.45μm)で吸引ろ過した。このろ液を凍結乾燥した粗アシル化セリシン標品の収率は84%(844mg)であった。
この粗アシル化セリシンを直ちに酸素吸収剤(A-2500HS、I.S.O. Inc.)とともに真空デシケーターに入れて脱気した後、塩析するまで低温室で保存した。
なお、Novozym 435を加えないで同様にインキュベートし、同様の方法で調製したセリシンをコントロールセリシンとした。
(2) Acylation of sericin using lipase 1 g of sericin was weighed into a conical flask with a screw cap and dried by heating at 110 ° C. for 1 hour. After that, add 50 ml of hexane that has been dehydrated with molecular sieves (10 mg / ml) in advance, make sericin fine powder (24,000 rpm, about 1 minute) with Polytron PCU-2 (manufactured by KINEMATICA), then add about 2 g of molecular sieves. And deaerated. Oleic acid here
3.5 ml was added, and finally 10 g of Novozym 435 (Novozymes Japan) was added and purged with nitrogen and sealed. The Erlenmeyer flask was incubated at 60 ° C. for 96 hours while shaking at 60 times / min. After completion of the incubation, the reaction mixture was passed through a stainless steel mesh in hexane to remove the molecular sieve, and then the membrane filter (pore
The residue was collected by suction filtration at a size of 0.45 μm. This was immediately transferred to a beaker, mixed with chloroform / hexane (5: 1 (v / v)) and allowed to stand at room temperature for 1 hour, and then most of the enzyme floating on the liquid surface was removed together with the supernatant. In addition, a glass centrifuge tube (id
24 × 100 mm), and the mixture was added and centrifuged (room temperature, 3,000 rpm, 5 minutes) to remove the enzyme together with the supernatant. This operation was repeated until the enzyme particles were completely removed, and the precipitate was washed three times with hexane and then dried under reduced pressure. This is dissolved in distilled water, dialyzed against distilled water, and pH adjusted with 0.1M sodium hydroxide.
After adjusting to 7.0, suction filtration was performed with a membrane filter (pore size 0.45 μm). The yield of the crude acylated sericin preparation obtained by freeze-drying this filtrate was 84% (844 mg).
The crude acylated sericin was immediately put in a vacuum desiccator together with an oxygen absorber (A-2500HS, ISO Inc.), and then stored in a cold room until salting out.
In addition, it incubated similarly, without adding Novozym 435, and the sericin prepared by the same method was used as control sericin.

(3)粗アシル化セリシンの精製
得られた粗アシル化セリシン標品中には未反応のセリシンが多く存在すると推測されるため塩析により精製した。
粗アシル化セリシンを1%濃度になるように0.2M酢酸緩衝液(pH 4.5)に溶解し、硫酸アンモニウムを終濃度35%飽和になるように攪拌しながら徐々に加えて1時間攪拌後、一晩低温室で静置した。これを遠心分離(12,000
rpm、30min、4℃)し、上清はそのまま、沈殿は蒸留水に再懸濁してから透析した後、0.1M水酸化ナトリウムでpH 7.0に調整し、上清画分はそのままメンブランフィルター(0.45μm)でろ過、沈殿画分は60℃に加熱溶解してから同様にろ過してそれぞれ凍結乾燥した。塩析沈殿画分の凍結乾燥標品をアシル化セリシンとし、使用するまで酸素吸収剤とともに真空デシケーターに入れて低温室で保存した。凍結乾燥して得られた精製アシル化セリシンの収率は8.4%(84mg)であった。
(3) Purification of crude acylated sericin Since the crude acylated sericin sample obtained was presumed to contain a large amount of unreacted sericin, it was purified by salting out.
Dissolve the crude acylated sericin in 0.2M acetic acid buffer (pH 4.5) to a concentration of 1%, gradually add ammonium sulfate with stirring to a final concentration of 35% and stir for 1 hour, then overnight. It was left in a low greenhouse. This is centrifuged (12,000
(rpm, 30 min, 4 ° C), the supernatant is left as it is, the precipitate is resuspended in distilled water, dialyzed, adjusted to pH 7.0 with 0.1 M sodium hydroxide, and the supernatant fraction is left as it is as a membrane filter (0.45). The precipitate fraction was dissolved by heating at 60 ° C., filtered in the same manner, and freeze-dried. The freeze-dried preparation of the salted out precipitate fraction was converted to acylated sericin, which was stored in a vacuum desiccator together with an oxygen absorbent until use. The yield of purified acylated sericin obtained by lyophilization was 8.4% (84 mg).

得られたアシル化セリシンの分子量を決定するためサイズ排除クロマトグラフィーを行った。各試料とも3連で測定し、平均値をもって主分子量とした結果、表2に示すようにアシル化セリシンの主分子量は22,000Daであった。

Figure 2005052066
なお表中、Sericin-OAは、オレイン酸によりアシル化されたセリシンをいう。 Size exclusion chromatography was performed to determine the molecular weight of the resulting acylated sericin. Each sample was measured in triplicate, and the average value was defined as the main molecular weight. As shown in Table 2, the main molecular weight of acylated sericin was 22,000 Da.
Figure 2005052066
In the table, Sericin-OA refers to sericin acylated with oleic acid.

アシル化セリシンの化学分析結果を表3及び表4に示す。

Figure 2005052066
The chemical analysis results of acylated sericin are shown in Tables 3 and 4.
Figure 2005052066

Figure 2005052066
表3の脂肪酸含量を見ると、アシル化セリシンはコントロールセリシン及びセリシンよりも脂肪酸含量が約10倍に増加している。また表4に示すように、アシル化セリシンのオレイン酸含量はコントロールセリシン及びセリシンより約19倍高かった。
これらの結果は、Novozym 435によるヘキサン中の固相エステル合成反応によりセリシンがアシル化されたことを示している。
Figure 2005052066
Looking at the fatty acid content in Table 3, the acylated sericin has a fatty acid content approximately 10 times higher than the control sericin and sericin. Moreover, as shown in Table 4, the oleic acid content of acylated sericin was about 19 times higher than that of control sericin and sericin.
These results indicate that sericin was acylated by a solid phase ester synthesis reaction in hexane by Novozym 435.

以下、実施例1で得たアシル化セリシンの界面活性特性を調べた。
試験例1 乳化性試験
アシル化セリシンを0.1%濃度となるように、0.1Mリン酸-0.05Mクエン酸緩衝液(McIlvaine緩衝液、pH 7.0)に溶解した。この溶液2mlを水相、コーン油0.5mlを油相としてそれぞれ試験管内にとり、径7mmのジェネレーターシャフト(PTA
7)を取り付けたポリトロンPCU-2(KINEMATICA社製)を用いて25℃で24,000 rpm、1分間ホモジナイズして水中油滴型(o/w)エマルションを調製した。
o/w型エマルション調製後、恒温層を用いて30℃に保持しながら水相底部から0、10、30、60及び120分後に50μl分取し、0.1% SDS溶液で50倍に希釈して攪拌後、500
nmの吸光度を3連で測定して濁度とした。
比較のため、セリシン(上記アシル化前のセリシン)、上記コントロールセリシン及び牛血清アルブミン(BSA)(和光純薬)を用いた。
乳化活性EAI(emulsifing activity index)は、Pearce and Kinsellaの方法(J. Agric. Food
Chem., 26, 716-723 (1978))にしたがって下式に従って算出した。
EAI=2 T /φC
T=2.3A/l(A=A500、l=10−2m(光路長))
T:濁度、 A:希釈倍率を考慮に入れた500 nmにおける吸光度(A500×50)
φ=油相の割合(=0.2)、C=標品濃度(0.1%=103 g/m3
試験の結果を図1に示す。アシル化によりEAI値は有意に増加しており、得られたアシル化セリシンが優れた乳化能を有していることを示している。
Hereinafter, the surface active properties of the acylated sericin obtained in Example 1 were examined.
Test Example 1 Emulsification test Acylated sericin was dissolved in 0.1M phosphate-0.05M citrate buffer (McIlvaine buffer, pH 7.0) to a concentration of 0.1%. Take 2 ml of this solution as an aqueous phase and 0.5 ml of corn oil as an oil phase in a test tube.
An oil-in-water (o / w) emulsion was prepared by homogenizing at 24,000 rpm for 1 minute at 25 ° C. using Polytron PCU-2 (manufactured by KINEMATICA) equipped with 7).
After preparing the o / w emulsion, take 50 μl after 0, 10, 30, 60 and 120 minutes from the bottom of the aqueous phase while maintaining at 30 ° C using a thermostatic layer, and dilute 50 times with 0.1% SDS solution. After stirring, 500
The absorbance at nm was measured in triplicate to determine turbidity.
For comparison, sericin (the sericin before acylation), the control sericin and bovine serum albumin (BSA) (Wako Pure Chemical Industries) were used.
The emulsifying activity index (EAI) is determined by the method of Pearce and Kinsella (J. Agric. Food
Chem., 26, 716-723 (1978)).
EAI = 2 T / φC
T = 2.3 A / l (A = A 500 , l = 10 −2 m (optical path length))
T: Turbidity, A: Absorbance at 500 nm taking into account dilution factor (A 500 × 50)
φ = Oil phase ratio (= 0.2), C = Standard concentration (0.1% = 10 3 g / m 3 )
The test results are shown in FIG. The acylation significantly increased the EAI value, indicating that the resulting acylated sericin has excellent emulsifying ability.

試験例2 油滴界面への吸着性試験
試験例1と同様にエマルションを調製し、乳化直後及び乳化60分後に試験管底部からエマルションを1.5ml分取して1,000 rpm、25℃で5分間遠心分離を行い、油相と水相に分離した。この水相の1mlを分取して再度20,000
rpm、25℃で30分間遠心分離し、この水相からさらに0.7ml分取して同緩衝液で2倍希釈した後、同様に遠心分離した。この操作を2回繰り返し、得られた水相のタンパク質含量をミクロビュレット法(J.
Am. Oil Chem. Soc., 76, 1291-1295 (1999))で測定し、水相におけるタンパク質吸着率を算出した。
結果を図2に示す。乳化直後(0min)では添加したアシル化セリシンが約30%と最も高い吸着率を示し、次いでBSA(約12%)、コントロールセリシン(約9%)の順であった。この結果は、アシル化セリシンの油滴界面への良好な吸着を示している。
この結果から、アシル化セリシンは油滴界面により多くの分子が吸着、配向することで優れた乳化活性及び乳化安定性を示すものと考えられる。
Test Example 2 Adsorption to oil droplets interface Emulsion was prepared in the same manner as in Test Example 1. Immediately after emulsification and 60 minutes after emulsification, 1.5 ml of the emulsion was taken from the bottom of the test tube and centrifuged at 1,000 rpm at 25 ° C for 5 minutes. Separation was carried out to separate an oil phase and an aqueous phase. Aliquot 1 ml of this water phase and again 20,000
Centrifugation was performed at rpm and 25 ° C. for 30 minutes, and another 0.7 ml was taken from this aqueous phase, diluted twice with the same buffer, and then centrifuged in the same manner. This operation was repeated twice, and the protein content of the obtained aqueous phase was determined by the microburette method (J.
Am. Oil Chem. Soc., 76, 1291-1295 (1999)), and the protein adsorption rate in the aqueous phase was calculated.
The results are shown in FIG. Immediately after emulsification (0 min), the added acylated sericin showed the highest adsorption rate of about 30%, followed by BSA (about 12%) and control sericin (about 9%). This result shows good adsorption of acylated sericin on the oil droplet interface.
From this result, it is considered that acylated sericin exhibits excellent emulsification activity and emulsion stability by adsorbing and orienting more molecules at the oil droplet interface.

試験例3 保湿性試験
アシル化セリシン及びコントロールセリシンをそれぞれ蒸留水に溶解し、0.1M NaOHを用いてpH 7.0に調整して60℃で10分間攪拌した後、18,000
rpmで10分間遠心分離した。この上清をメンブレンフィルター(pore size 0.45μm)でろ過後、ミクロビュレット法に供して濃度を測定して2.0%(w/v)に調整した。この試料溶液を白金製オープン型容器に約30mg採取後、直ちに示差熱熱重量同時測定装置(TG/DTA
6200、セイコーインスツルメンツ、千葉)にセットし、水分量の重量変化及びリファレンスとの温度差を測定した。測定条件は30℃から180℃まで、昇温速度5℃/minで、リファレンスにサファイアプレート(Al2O3)30mgを用いてガスフローをせずに行い、各3連で測定した。
揮発性収着物質の脱離反応などの解析に有用なTG曲線の時間微分曲線である微分熱重量曲線(DTG曲線)のピークトップの温度における蒸発速度を最大蒸発速度(Vmax)とした。試料の親水性及び保湿性が高ければ、水分の蒸発を抑制するためTVmaxは高温側にシフトし、単位時間あたりの蒸発量も抑制されるためVmaxは低下すると考えられる。
結果を図3に示す。アシル化セリシンが水分の蒸発を効果的に抑制していることが分かる。
Test Example 3 Moisturizing Test Acylated sericin and control sericin were each dissolved in distilled water, adjusted to pH 7.0 with 0.1M NaOH, stirred at 60 ° C. for 10 minutes, and then 18,000
Centrifuge for 10 minutes at rpm. The supernatant was filtered through a membrane filter (pore size 0.45 μm), then subjected to the microburette method, and the concentration was measured and adjusted to 2.0% (w / v). After collecting about 30 mg of this sample solution in a platinum open-type container, the differential thermothermal gravimetric simultaneous measurement device (TG / DTA
6200, Seiko Instruments Inc., Chiba), and the weight change of moisture content and the temperature difference from the reference were measured. The measurement conditions were from 30 ° C. to 180 ° C., a heating rate of 5 ° C./min, and 30 mg of sapphire plate (Al 2 O 3 ) was used as a reference without gas flow, and measurements were made in triplicate.
The evaporation rate at the peak top temperature of the differential thermogravimetric curve (DTG curve), which is a time differential curve of the TG curve useful for the analysis of the volatile sorbent desorption reaction, etc. was taken as the maximum evaporation rate (Vmax). If the sample has high hydrophilicity and moisture retention, TVmax shifts to a high temperature side in order to suppress moisture evaporation, and Vmax decreases because the amount of evaporation per unit time is also suppressed.
The results are shown in FIG. It can be seen that acylated sericin effectively suppresses evaporation of moisture.

実施例1で得られたアシル化セリシンの乳化性試験の結果を示す図である。It is a figure which shows the result of the emulsification test of the acylated sericin obtained in Example 1. 実施例1で得られたアシル化セリシンの油滴界面への吸着性試験の結果を示す図である。It is a figure which shows the result of the adsorptivity test to the oil droplet interface of the acylated sericin obtained in Example 1. 実施例1で得られたアシル化セリシンの保湿性試験の結果を示す図である。It is a figure which shows the result of the moisture retention test of the acylated sericin obtained in Example 1.

Claims (5)

繭から分離したセリシンを非水溶媒中でリパーゼの存在下において有機酸と反応させることから成るアシル化セリシンの製法。 A process for producing an acylated sericin comprising reacting sericin isolated from straw with an organic acid in a non-aqueous solvent in the presence of lipase. 前記リパーゼがCandida antractica又はCandida cylindrea由来のリパーゼである請求項1に記載の製法。 The process according to claim 1, wherein the lipase is a lipase derived from Candida antractica or Candida cylindrea. 前記有機酸が脂肪酸である請求項1又は2に記載の製法。 The process according to claim 1 or 2, wherein the organic acid is a fatty acid. 反応温度が35〜75℃である請求項1〜3のいずれか一項に記載の製法。 The process according to any one of claims 1 to 3, wherein the reaction temperature is 35 to 75 ° C. 請求項1〜4のいずれか一項に記載の製法により得られたアシル化セリシンを主成分とする界面活性剤、乳化剤又は調湿剤。
A surfactant, emulsifier, or humidity control agent comprising as a main component acylated sericin obtained by the production method according to any one of claims 1 to 4.
JP2003285789A 2003-08-04 2003-08-04 Method for producing acylated sericin Pending JP2005052066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003285789A JP2005052066A (en) 2003-08-04 2003-08-04 Method for producing acylated sericin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003285789A JP2005052066A (en) 2003-08-04 2003-08-04 Method for producing acylated sericin

Publications (1)

Publication Number Publication Date
JP2005052066A true JP2005052066A (en) 2005-03-03

Family

ID=34365313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003285789A Pending JP2005052066A (en) 2003-08-04 2003-08-04 Method for producing acylated sericin

Country Status (1)

Country Link
JP (1) JP2005052066A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008273907A (en) * 2007-05-07 2008-11-13 Dai Ichi Kogyo Seiyaku Co Ltd Cosmetic for hair dressing
WO2016181902A1 (en) * 2015-05-08 2016-11-17 国立研究開発法人理化学研究所 Method for producing organic acid using euglena
WO2024040769A1 (en) * 2022-08-25 2024-02-29 中国食品发酵工业研究院有限公司 Sericin protein peptide having moisturizing function, method for preparing same, and use thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008273907A (en) * 2007-05-07 2008-11-13 Dai Ichi Kogyo Seiyaku Co Ltd Cosmetic for hair dressing
WO2016181902A1 (en) * 2015-05-08 2016-11-17 国立研究開発法人理化学研究所 Method for producing organic acid using euglena
WO2024040769A1 (en) * 2022-08-25 2024-02-29 中国食品发酵工业研究院有限公司 Sericin protein peptide having moisturizing function, method for preparing same, and use thereof

Similar Documents

Publication Publication Date Title
CN104356200B (en) A kind of anti-oxidation peptide and preparation method thereof
EP0648078A1 (en) Purification of zein from corn gluten meal
MX2011007148A (en) Zein composition.
FR2889416A1 (en) COMPOSITION OF PEAS PROTEINS
CN111659328B (en) Preparation process of linseed oil microcapsule and product thereof
BRPI0806601A2 (en) biofuel and protein production from a raw material
Kuepethkaew et al. Use of TPP and ATPS for partitioning and recovery of lipase from Pacific white shrimp (Litopenaeus vannamei) hepatopancreas
US8404884B2 (en) Process for the extraction of macromolecules from a biomass using thin stillage
CN114891127B (en) Preparation method of octenyl succinic anhydride starch-based emulsifier with high emulsifying property
Takechi et al. Use of sericin as an ingredient of salad dressing
JP2005052066A (en) Method for producing acylated sericin
CN101333245B (en) Method for separating human serum albumin
JP6006545B2 (en) Proteoglycan production method
SU472491A3 (en) The method of obtaining fat and protein from plant material
US11453707B2 (en) Protein product and preparation method thereof
CN109438552B (en) Method for preparing defatted soybean meal iron-storing polypeptide by using protease and application
CN1872882B (en) Method for preparing laver amylose
CN110760376B (en) Novel algae oil purification method
CN110183550A (en) A kind of preparation process of refined heparin sodium
EP2912049B1 (en) Method for producing sophorose from sophorolipids
WO2015162568A1 (en) Process for the production of lipids from biomass employing oleaginous yeast
CN108220372A (en) It is a kind of to prepare collagen from black sea cucumbers from East China Sea anti-oxidation peptide method with microbial protease enzymolysis
KR101115283B1 (en) Process for preparing a complex of omega-3 unsaturated fatty acid and ascorbic acid
JPWO2003042236A1 (en) Method for producing concentrated and purified protein using clay mineral composition
US11213053B1 (en) Separation and further processing of commingled biomass streams containing highly variable protein and fat concentrations to produce digestible proteins and fats

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090608