JP2005051014A - Computation method of photovoltaic power generation simulation and computer-readable data storage medium recording computation program - Google Patents

Computation method of photovoltaic power generation simulation and computer-readable data storage medium recording computation program Download PDF

Info

Publication number
JP2005051014A
JP2005051014A JP2003280898A JP2003280898A JP2005051014A JP 2005051014 A JP2005051014 A JP 2005051014A JP 2003280898 A JP2003280898 A JP 2003280898A JP 2003280898 A JP2003280898 A JP 2003280898A JP 2005051014 A JP2005051014 A JP 2005051014A
Authority
JP
Japan
Prior art keywords
solar cell
temperature
rsh
curve
monthly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003280898A
Other languages
Japanese (ja)
Inventor
Atsushi Iga
淳 伊賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003280898A priority Critical patent/JP2005051014A/en
Publication of JP2005051014A publication Critical patent/JP2005051014A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a computation method for calculating a more accurate monthly temperature coefficient using an I-V curve forming method that is more accurate and has higher general-purpose so as to provide a method of computing an annual photovoltaic power generation simulation using the monthly temperature coefficient. <P>SOLUTION: The monthly temperature coefficient is calculated using insolation intensity specified on the basis of an I-V curve in a reference condition and the method of forming an I-V curve at the temperature of a solar cell, and the annual solar power generation is calculated by the use of the above coefficient. The method of forming the I-V curve can be made by two ways, one is that basic characteristic values (IL, Co, n, Rsh, and Rs) at temperatures of 25°C, b°C, and c°C are obtained, the basic characteristic values at a designated temperature are obtained through curvilinear interpolation, values are obtained through a Newton's method using the above basic characteristic values to form the I-V curve, and the other is that the points on the I-V curve in the reference condition are converted through a practical I-V curve conversion formula to form the I-V curve. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

太陽電池は、図8のごとく、太陽の光エネルギーを電気エネルギーに直接変換するものである。すなわち光電効果の一種である光起電力効果を応用し、起電力を発生させるものである。太陽電池中に適当なエネルギーを持った光(光子)が入射すると、自由な電子と正孔が発生する。太陽電池半導体中のpn接合近傍に達した電子と正孔は、それぞれn型半導体側、p型半導体側に拡散し、両電極部に集まるので、電力が取り出せ、電圧および電流が発生するというわけである。
本発明は、実際に設置した太陽電池の受光面に入射する月間日射エネルギー量を使い、その太陽電池の年間発電量を正確かつ簡単に予測計算(シミュレーション計算)する方法に関する。そのために、月別の温度係数を正確に算出する方法に関する。そのためには、日射強度と太陽電池温度および太陽電池特性値から正確にI−Vカーブを描く必要がある。したがって本発明は、太陽電池におけるI-Vカーブ 、P-Vカーブ を作成する方法およびこの方法を使った月別温度係数の算出方法と太陽光発電量シミュレーション計算方法に関する。
As shown in FIG. 8, the solar cell directly converts solar light energy into electric energy. That is, an electromotive force is generated by applying a photovoltaic effect which is a kind of photoelectric effect. When light (photon) having appropriate energy is incident on the solar cell, free electrons and holes are generated. Electrons and holes that have reached the vicinity of the pn junction in the solar cell semiconductor diffuse to the n-type semiconductor side and the p-type semiconductor side, respectively, and gather at both electrode parts, so that power can be taken out and voltage and current are generated. It is.
The present invention relates to a method for accurately and simply predicting (simulating) the annual power generation amount of a solar cell using the amount of solar radiation energy incident on the light receiving surface of the solar cell actually installed. Therefore, it is related with the method of calculating the monthly temperature coefficient correctly. For that purpose, it is necessary to draw an IV curve accurately from the solar radiation intensity, the solar cell temperature, and the solar cell characteristic value. Therefore, the present invention relates to a method for creating an IV curve and a PV curve in a solar cell, a monthly temperature coefficient calculation method using this method, and a photovoltaic power generation simulation calculation method.

太陽電池の受光面で受ける日射エネルギーを年間シミュレーション計算した例としては、新エネルギー総合開発機構の委託業務成果報告書((財)日本気象協会:「太陽光発電システム実用化技術開発周辺技術の研究開発『発電量基礎調査』」(1987))がある。しかしこの報告書は受光面(傾斜面)の日射エネルギーの計算であって、太陽電池の発電量まで正確にシミュレーション計算したものではなく、このような事例はほとんど見当らない。
発電量までを正確にシミュレーション計算した例としては、本発明者が発表した論文、すなわち電気学会論文1(伊賀他:「I-Vカーブ 作成法を用いた太陽光発電量シミュレーション計算プログラムの開発」、電学論D115 巻6号、1995)に見られるのみである。このように発電量までの正確な予測計算がない理由は、指定した日射強度・太陽電池温度におけるI-Vカーブ を描く技術が十分確立していなかったことによる。本発明者はこのI-Vカーブ を描く技術として前記の電気学会論文1に示した「実用的I-Vカーブ 作成法」を発明し、これを適用した発電量のシミュレーション計算方法を既に開発している。
一方、一般に年間発電量を簡易に計算する方法としては、月間日射量(KWh)に太陽電池定格出力と温度係数を掛けて、年間集計する方法が太陽電池メーカーなどでよく実施されている。
As an example of annual simulation calculation of solar radiation energy received by the light receiving surface of the solar cell, the commissioned work result report of New Energy Development Organization (Japan Meteorological Association: “Study on technology for developing technology for practical application of photovoltaic power generation system” Development "Basic Survey on Power Generation" (1987)). However, this report is a calculation of the solar radiation energy on the light-receiving surface (inclined surface), and is not an accurate simulation calculation up to the power generation amount of the solar cell, and there are almost no such cases.
Examples of accurate simulation calculations up to the amount of power generation include a paper published by the present inventor, namely, the Institute of Electrical Engineers of Japan (Iga et al .: “Development of a simulation program for photovoltaic power generation using the IV curve creation method”, Academic theory D115 Vol.6, 1995). The reason why there is no accurate prediction calculation up to the power generation amount is that the technology for drawing the IV curve at the specified solar radiation intensity and solar cell temperature was not well established. The inventor has invented the “practical IV curve creation method” shown in the aforementioned IEEJ paper 1 as a technique for drawing this IV curve, and has already developed a simulation calculation method of the power generation amount to which this technique is applied.
On the other hand, as a method for easily calculating the annual power generation amount, a method of summing up the annual amount by multiplying the monthly solar radiation amount (KWh) by the solar cell rated output and the temperature coefficient is often implemented by solar cell manufacturers.

前記のような従来の技術の現状に鑑み、より汎用的で精度の高いI-Vカーブ の作成法を使い、より正確な月別温度係数算出しこれを使った年間太陽光発電量のシミュレーション計算をより簡単に実施しようとするものである。従来は月別温度係数として一般に、夏期に0.8、冬期に0.9、春・秋に0.85を一律に使用することが多かった。しかし、この係数では発電量に大きい影響をあたえる地域差、個々の太陽電池特性値、設置架台などの影響が反映されていない。したがって、実態にあったこの係数を算出して適用しようとするものである。
そのために本発明では、この係数をより正確に算出するのに、指定した日射強度、太陽電池温度におけるI-Vカーブ の作成方法として、計算対象太陽電池の基準状態(日射強度1KW/m2,太陽電池温度25℃)の特性値(Isc,Iop,Vop,Voc,Rs)を使い太陽電池基本特性式を解くことにより基本特性値(IL,Co,n,Rsh) を求め、そして基準状態のI-Vカーブ を作成する方法を適用する。
すなわち、この基準状態のI-Vカーブ をもとに、次の(1) 、(2) に示す2方法により指定した日射強度・太陽電池温度におけるI-Vカーブ を描くものである。
(1) 日射強度1kw/m2において、基準温度(a℃=25℃)におけるI-Vカーブから他の温度(b℃,c℃)におけるI-Vカーブ を作成し、それぞれの温度における基本特性値(IL,Co,n,RsR,Rs)を求め、指定温度におけるこの基本特性値を曲線補間によりそれぞれ求め、次にこれらの基本特性値から指定温度・日射強度のI-Vカーブ を作成する。
(2) 基準状態のI-Vカーブ 上の各点について、「実用的I-Vカーブ 変換式」によって指定温度・日射強度に変換する。
In view of the current state of the prior art as described above, a more versatile and accurate IV curve creation method is used to calculate a more accurate monthly temperature coefficient, which makes it easier to calculate annual photovoltaic power generation simulations. It is something to be implemented. Conventionally, the monthly temperature coefficient is generally 0.8 in summer, 0.9 in winter, and 0.85 in spring / autumn. However, this coefficient does not reflect the effects of regional differences, individual solar cell characteristic values, installation bases, etc. that have a large effect on power generation. Therefore, this coefficient that matches the actual situation is calculated and applied.
Therefore, in the present invention, in order to calculate this coefficient more accurately, as a method for creating an IV curve at a specified solar radiation intensity and solar cell temperature, the calculation target solar cell reference state (solar radiation intensity 1 KW / m 2 , solar cell The basic characteristic value (IL, Co, n, Rsh) is obtained by solving the basic characteristic equation of the solar cell using the characteristic value (Isc, Iop, Vop, Voc, Rs) of the temperature 25 ° C, and the IV curve of the reference state Apply how to create.
That is, based on the IV curve in the reference state, the IV curve at the solar radiation intensity and solar cell temperature specified by the following two methods (1) and (2) is drawn.
(1) At an insolation intensity of 1 kw / m 2 , create IV curves at other temperatures (b ° C, c ° C) from IV curves at the reference temperature (a ° C = 25 ° C), and obtain basic characteristic values (IL , Co, n, RsR, Rs), obtain the basic characteristic values at the specified temperature by curve interpolation, and then create an IV curve of the specified temperature and solar radiation intensity from these basic characteristic values.
(2) Convert each point on the IV curve in the standard state to the specified temperature and solar radiation intensity using the “Practical IV curve conversion formula”.

請求項1の年間太陽光発電量シミュレーション計算方法は、
対象地点の日射量・直達比率、太陽電池設置方位・傾斜角などから計算した受光面日射強度と、対象地点の外気温・風速・受光面日射から計算した太陽電池温度から月別時刻別発電量を算出して月間集計し、次に、
該月間発電量(KWh)を月間受光面日射量(KWh)と太陽電池定格容量で除して月別温度係数を予め算出しておき、次に、
該月別温度係数に月間受光面日射量(KWh)と太陽電池定格容量を掛けて月間発電量を算出し、年間集計して年間太陽光発電量を計算する方法において、
太陽電池受光面の日射強度と太陽電池温度および太陽電池特性値から太陽電池電力を算出する過程で次の方法を使うことに特徴がある。
太陽電池基本式
I=IL-IO*{exp(q(V+RsI)/nKoT)-1}-(V+RsI)/Rsh
IO=CoT3 exp(-qEg/nKoT)
ここに、
I :出力電流[A] Co :飽和電流温度係数
V :出力電圧[V] Eg :エネルギーギャップ[eV]
IL :光起電流[A] T :太陽電池素子絶対温度[K]
IO :飽和電流[A] Ko :ボルツマン定数[J/K]
Rs :直流抵抗[Ω] q :電子の電荷量[C]
Rsh :並列抵抗[Ω]
n :接合定数
における基本特性値(IL,Co,n,Rsh,Rs)のそれぞれについて、a℃、b℃、c℃の値を求め、再び太陽電池基本式を使いそれぞれのa℃、b℃、c℃での値を補間することにより指定温度におけるそれぞれの基本特性(IL,Co,n,Rsh,Rs)を求め、指定した日射強度、太陽電池温度における電圧−電流カーブ(I-Vカーブ) を作成し、このI-Vカーブ 上のPmax点または指定電圧における電力を求める方法、を使うことを特徴とする。
請求項2の太陽光発電量シミュレーション計算方法は、対象地点の日射量・直達比率、太陽電池設置方位・傾斜角などから計算した受光面日射強度と、対象地点の外気温・風速・受光面日射から計算した太陽電池温度から月別時刻別発電量を算出して月間集計し、次に、
該月間発電量(KWh)を月間受光面日射量(KWh)と太陽電池定格容量で除して月別温度係数を予め算出しておき、次に、
該月別温度係数に月間受光面日射量(KWh)と太陽電池定格容量を掛けて月間発電量を算出し、年間集計して年間太陽光発電量を計算する方法において、
太陽電池受光面の日射強度と太陽電池温度および太陽電池特性値から太陽電池電力を算出する過程で次の方法を使うことに特徴がある。
太陽電池の特性値(Isc,Iop,Vop,Voc) から基準状態の電圧−電流カーブを作成し、この電圧−電流カーブから日射・温度の変換式により指定日射強度、指定太陽電池温度における電圧−電流カーブ(I-Vカーブ) を作成し、
このI-Vカーブ 上のPmax点または指定電圧における電力を求める方法
を使うことを特徴とする。
請求項3の太陽光発電量シミュレーション計算方法は
対象地点の月平均1日合計日射量・月平均直達比率、太陽電池設置方位・傾斜角、経緯度太陽赤緯から計算した月ごと時刻別受光面日射強度と、対象地点の外気温・風速・受光面日射から計算した月ごと時刻別太陽電池温度から月別時刻別発電量を算出して月間集計し、次に、
該月間発電量(KWh)を、単位面積当り太陽電池受光面日射量(KWh/ m2)と太陽電池定格容量(kw/kw/ m2)で除して月別温度係数を予め算出しておき、次に、
該月別温度係数に月間受光面日射量(KWh/ m2)と太陽電池定格容量(kw/kw/ m2)を掛けて月間発電量を算出し、年間集計して年間太陽光発電量を計算する方法において、
太陽電池受光面の日射強度と太陽電池温度および太陽電池特性値から太陽電池電力を算出する過程で、次の方法を使うことに特徴がある。
{01}電圧V、電流I、日射強度1kw/m2 での光起電流IL、飽和電流温度係数Co、接合定数n、並列抵抗Rsh、直列抵抗Rs、太陽電池温度T (絶対温度)を含んだ
関数:Func(V,I,IL,Co,n,Rsh,Rs,T) = IL - CoT3 exp(-qEg/nk0T)*(exp( q*(V+Rs*I)/(n*k0*T) )-1) - (V+Rs*I)/ Rsh - I を作成し、つぎに、
{02}該関数Func(V,I,IL,Co,n,Rsh,Rs,T)を変数Vで微分した
関数:Dif(V,I,IL,Co,n,Rsh,Rs,T)を作成し、
{03}太陽電池の基準状態(太陽電池温度Ta(298K(ta=25℃))、日射強度Ea(1kw/m2 ))での仕様値である、短絡電流Isca、最適電流Iopa−最適電圧Vopa 、開放電圧Vocaの点P1(0,Isca),P2(Vopa,Iopa),P3(Voca,0)を選択し、
{04}前記関数Func(V,I,IL,Co,n,Rsh,Rs,T)= 0のTに基準状態の温度Ta(298K),直列抵抗Rsに基準温度での値Rsa,および前記P1,P2,P3の点の値を代入し、IL,Co,n,Rshを未知数とする
関係式:Func(0,Isca,IL,Co,n,Rsh,Rsa,Ta)= 0,
関係式:Func(Voca,0,IL,Co,n,Rsh,Rsa,Ta)= 0,
関係式:Func(Vopa,Iopa,IL,Co,n,Rsh,Rsa,Ta)= 0を作成し、
{05}前記関数Dif(V,I,IL,Co,n,Rsh,Rs,T)= 0 に、基準状態の温度Ta(298K)、直列抵抗Rsに基準温度での値Rsa,および前記点P2の値(Vopa,Iopa) を代入して、IL,Co,n,Rshを未知数とする、
関係式:Dif(Vopa,Iopa,IL,Co,n,Rsh,Rsa,Ta)= 0を作成し、つぎに、
{06}前記4つの関係式:Func(0,Isca,IL,Co,n,Rsh,Rsa,Ta)= 0,Func(Voca,0,IL,Co,n,Rsh,Rsa,Ta)= 0,Func(Vopa,Iopa,IL,Co,n,Rsh,Rsa,Ta)= 0,Dif(Vopa,Iopa,IL,Co,n,Rsh,Rsa,Ta)= 0 を満たす解A(ILa,Coa,na,Rsha)を、非線形解法のプログラムによって算出し、つぎに、
{07}前記関数:Func(V,I,IL,Co,n,Rsh,Rs,T)= 0のIL,Co,n,Rshに、前記解A(ILa,Coa,na,Rsha) を代入して、さらにTに基準状態の温度Ta(298K)および直列抵抗Rsに値Rsaを代入し、変数V,Iの関係式:Func(V,I,ILa,Coa,na,Rsha,Rsa,Ta)= 0を作成し、
{08}この式を再び非線形解法のプログラムにより約40〜50点のVに対するIの解を求め、基準状態における電圧(V)−電流(I)および電圧(V)−電力(P)(電力(P)= 電圧(V)×電流(I))の関係の点(約40〜50点)を求め、これらの点を結んだ電圧V-電流Iカーブ(I-V カーブ),電圧V-電力Pカーブ(P-V カーブ)を作成し、つぎに、
{09}前記太陽電池の日射強度Eb (ここでは1kw/m2 )、太陽電池温度Tb(絶対温度:TbK=tb(℃)+273)における電圧Vb,電流Ibを求めるため、前記太陽電池の基準状態における日射強度Ea(1kw/m2 )、太陽電池温度Ta(298K:絶対温度:Ta=ta+273)における短絡電流Isca,直列抵抗Rsa,温度が1℃変化したときの前記短絡電流Isc の変動値α、温度が1℃変化したときの前記開放電圧Voc の変動値β、曲線補正因子Kとする
変換式(Va,Ia)→(Vb,Ib):
Ib = Ia + α*(tb - ta)
Vb = Va + β*(tb - ta) - Rsa*(Ib - Ia) - K*Ib*(tb - ta) を作成し、これに前記{08}で作成した電圧−電流の各点またはそれを結んだI-V カーブ上の各点をIa,Va値として使用し日射強度Eb(1kw/m2 )、太陽電池温度Tb(K)における各点(電圧Vb-電流Ib:約40〜50点)を求め、これらの点を結んだI-V カーブ,P-V カーブを作成し、つぎに、
{10}前記{09}で作成したI-V カーブ上から、近接しない任意の5点を選択し、これらの点(VQ1,IQ1),(VQ2,IQ2),(VQ3,IQ3),(VQ4,IQ4),(VQ5,IQ5) を前記関係式:Func(V,I,IL,Co,n,Rsh,Rs,Tb)= 0の変数V,I、に代入して、IL,Co,n,Rsh,Rsを未知数とする、
関係式:Func(VQ1,IQ1,IL,Co,n,Rsh,Rs,Tb)= 0,
関係式:Func(VQ2,IQ2,IL,Co,n,Rsh,Rs,Tb)= 0,
関係式:Func(VQ3,IQ3,IL,Co,n,Rsh,Rs,Tb)= 0,
関係式:Func(VQ4,IQ4,IL,Co,n,Rsh,Rs,Tb)= 0,
関係式:Func(VQ5,IQ5,IL,Co,n,Rsh,Rs,Tb)= 0を作成し、該5つの関係式の
解B(ILb,Cob,nb,Rshb,Rsb)を、非線形解法のプログラムによって算出し、つぎに、
{11}前記太陽電池の日射強度Ec(ここでは1kw/m2 ),太陽電池温度Tc (絶対温度:Tc(K)=tc(℃)+273)における電圧Vc,電流Icの関係についても前記{09}と同様に、
変換式(Va,Ia)→(Vc,Ic):
Ic = Ia + α*(tc - ta)
Vc = Va + β*(tc - ta) - Rsa*(Ic - Ia) - K*Ic*(tc - ta)を使い I-V カーブ,P-V カーブを作成し、
{12}前記{11}で作成したI-V カーブ上から近接しない任意の5点を選択し、これらの値(VR1,IR1),(VR2,IR2),(VR3,IR3),(VR4,IR4),(VR5,IR5) を前記関係式:Func(V,I,IL,Co,n,Rsh,Rs,Tc)= 0の変数V,Iに代入して、IL,Co,n,Rsh,Rsを未知数とする、
関係式:Func(VR1,IR1,IL,Co,n,Rsh,Rs,Tc)= 0,
関係式:Func(VR2,IR2,IL,Co,n,Rsh,Rs,Tc)= 0,
関係式:Func(VR3,IR3,IL,Co,n,Rsh,Rs,Tc)= 0,
関係式:Func(VR4,IR4,IL,Co,n,Rsh,Rs,Tc)= 0,
関係式:Func(VR5,IR5,IL,Co,n,Rsh,Rs,Tc)= 0
を作成し、該5つの関係式の解C(ILc,Coc,nc,Rshc,Rsc)を、非線形解法のプログラムによって、算出し、つぎに、
{13}指定した(すなわち月ごと各時刻における)日射強度Em, 太陽電池温度tmを取り込み、
{14}基準状態での前記温度ta(摂氏25℃:絶対温度Ta(K)=ta(℃)+273) における前記{06}の解A(ILa,Coa,na,Rsha)、前記温度tb(摂氏:Tb=tb+273) における前記{10}の解B(ILb,Cob,nb,Rshb,Rsb)、前記温度tc(摂氏:Tc=tc+273) における前記{12}の解C(ILc,Coc,nc,Rshc,Rsc)および入力値Rsa のそれぞれ(IL,Co,n,Rsh,Rs)に関して3点について曲線補間して、指定温度tmでの特性値M(ILm,Com,nm,Rshm,Rsm) を算出し、つぎに、
{15}ILmを実測された日射強度EmによりILm=ILm×Em÷Ea(Ea=1(KW/m2 )により補正した後、前記関係式:Func(V,I,IL,Co,n,Rsh,Rs,T)=0にILm,Com,nm,Rshm,Rsmを代入して、Func(V,I,ILm,Com,nm,Rshm,Rsm,Tm)=0 を作成し、電圧(V)-電流(I) の関係(約40〜50点)を非線形解法のプログラムによって求め、電圧(V)-電流(I)の関係またはそれを結んだI-V カーブ,P-V カーブを作成し、
{16}このI-Vカーブ 上のPmax点の電力またはパラメータとして指定した電圧における電力を求め、{17}この値を各月時刻ごとの電力値として、月・年間積算して月・年間発電量を求めることを特徴とする。
請求項4の太陽光発電量シミュレーション計算方法は、
対象地点の月平均1日合計日射量・月平均直達比率、太陽電池設置方位・傾斜角、経緯度太陽赤緯から計算した月ごと時刻別受光面日射強度と、対象地点の外気温・風速・受光面日射から計算した月ごと時刻別太陽電池温度から月別時刻別発電量を算出して月間集計し、次に、
該月間発電量(KWh)を、単位面積当り太陽電池受光面日射量(KWh/ m2)と太陽電池定格容量(kw/kw/ m2)で除して月別温度係数を予め算出しておき、次に、
該月別温度係数に月間受光面日射量(KWh/ m2)と太陽電池定格容量(kw/kw/ m2)を掛けて月間発電量を算出し、年間集計して年間太陽光発電量を計算する方法において、
太陽電池受光面の日射強度と太陽電池温度および太陽電池特性値から太陽電池電力を算出する過程で、次の方法を使うことに特徴がある。
{18}指定した(すなわち月ごと各時刻における)日射強度Em, 太陽電池温度tmを取り込み、
{19}前記{01}〜{08}により作成した基準状態(日射強度1kw/m2 ,太陽電池温度25℃)における電圧Va−電流Ia値(約40〜50点)について、前記{09}のIsca,α,β,Rsa,kを使って
変換式(Va,Ia)→(Vk,Ik):
Ik = Ia + Isca*(Em/Ea - 1) + α*(tm - ta)
Vk = Va + β*(tm - ta) - Rsa*(Ik - Ia) - K*Ik*(tm - ta)
によって変換し、これらの電圧V-電流I値または、それらを結んだI-V カーブ,P-V カーブを作成し、
{20}このI-Vカーブ 上のPmax点の電力またはパラメータとして指定した電圧における電力を求め、この値を各月の時刻ごとの電力値として、月・年間積算して月・年間発電量を求めることを特徴とする。
請求項5の太陽光発電量シミュレーション計算方法の処理プログラムを記録したコンピュータ読み取り可能なデータ記憶媒体は、請求項1、2、3、4記載の発明において、これらの方法が実施可能な処理プログラムを含むことを特徴とする。
The annual photovoltaic power generation simulation calculation method according to claim 1 is:
Monthly power generation from the solar radiation intensity calculated from the solar radiation intensity / direct ratio, solar cell installation orientation / tilt angle, etc., and the outside air temperature / wind speed / photosensitive solar radiation at the target spot. Calculate and aggregate monthly, then
A monthly temperature coefficient is calculated in advance by dividing the monthly power generation amount (KWh) by the monthly light receiving surface solar radiation amount (KWh) and the solar cell rated capacity,
In the method of calculating the monthly photovoltaic power generation amount by multiplying the monthly temperature coefficient by the monthly light receiving surface solar radiation amount (KWh) and the solar cell rated capacity,
It is characterized by using the following method in the process of calculating the solar cell power from the solar radiation intensity of the solar cell light receiving surface, the solar cell temperature, and the solar cell characteristic value.
Solar cell basic formula
I = IL-IO * {exp (q (V + RsI) / nKoT) -1}-(V + RsI) / Rsh
IO = CoT 3 exp (-qEg / nKoT)
here,
I: Output current [A] Co: Saturation current temperature coefficient V: Output voltage [V] Eg: Energy gap [eV]
IL: Photovoltaic current [A] T: Solar cell element absolute temperature [K]
IO: Saturation current [A] Ko: Boltzmann constant [J / K]
Rs: DC resistance [Ω] q: Charge amount of electrons [C]
Rsh: Parallel resistance [Ω]
n: For each of the basic characteristic values (IL, Co, n, Rsh, Rs) in the junction constant, values of a ° C., b ° C., and c ° C. are obtained, and again using the solar cell basic formula, the respective a ° C., b ° C. The basic characteristics (IL, Co, n, Rsh, Rs) at the specified temperature are obtained by interpolating the values at c ° C, and the voltage-current curve (IV curve) at the specified solar radiation intensity and solar cell temperature is obtained. The method is to create and use the method of calculating the power at the Pmax point or specified voltage on this IV curve.
The solar power generation amount simulation calculation method according to claim 2 is based on the solar radiation intensity calculated from the solar radiation amount / direct ratio of the target point, the solar cell installation direction / tilt angle, and the outside temperature / wind speed / light receiving surface solar radiation of the target point. Calculate the monthly power generation amount from the solar cell temperature calculated from
A monthly temperature coefficient is calculated in advance by dividing the monthly power generation amount (KWh) by the monthly light receiving surface solar radiation amount (KWh) and the solar cell rated capacity,
In the method of calculating the monthly photovoltaic power generation amount by multiplying the monthly temperature coefficient by the monthly light receiving surface solar radiation amount (KWh) and the solar cell rated capacity,
It is characterized by using the following method in the process of calculating the solar cell power from the solar radiation intensity of the solar cell light receiving surface, the solar cell temperature, and the solar cell characteristic value.
Create a voltage-current curve in the standard state from the solar cell characteristic values (Isc, Iop, Vop, Voc). From this voltage-current curve, convert the solar radiation and temperature into the specified solar radiation intensity and the voltage at the specified solar battery temperature. Create a current curve (IV curve)
It is characterized by using a method of obtaining the power at the Pmax point or specified voltage on this IV curve.
The solar power generation simulation calculation method according to claim 3 is: Monthly average daily solar radiation amount / monthly average direct delivery ratio, solar cell installation azimuth / tilt angle, and latitude / longitude solar declination at the target location. Calculate monthly power generation amount by month from solar cell temperature by hour calculated from solar radiation intensity and outside temperature, wind speed, light receiving surface solar radiation at the target point,
Divide the monthly power generation amount (KWh) by the solar cell light receiving surface solar radiation amount per unit area (KWh / m 2 ) and the solar cell rated capacity (kw / kw / m 2 ) to calculate the monthly temperature coefficient in advance. ,next,
Calculate the monthly power generation by multiplying the monthly temperature coefficient by the amount of solar radiation on the light-receiving surface (KWh / m 2 ) and the rated capacity of the solar cell (kw / kw / m 2 ). In the way to
It is characterized in that the following method is used in the process of calculating the solar cell power from the solar radiation intensity of the solar cell light receiving surface, the solar cell temperature, and the solar cell characteristic value.
{01} Including voltage V, current I, photovoltaic current IL at solar radiation intensity 1 kw / m 2 , saturation current temperature coefficient Co, junction constant n, parallel resistance Rsh, series resistance Rs, solar cell temperature T (absolute temperature) Function: Func (V, I, IL, Co, n, Rsh, Rs, T) = IL-CoT 3 exp (-qEg / nk0T) * (exp (q * (V + Rs * I) / (n * k0 * T)) -1)-(V + Rs * I) / Rsh-I, then
{02} A function obtained by differentiating the function Func (V, I, IL, Co, n, Rsh, Rs, T) with a variable V: Dif (V, I, IL, Co, n, Rsh, Rs, T) make,
{03} Solar cell reference condition (solar cell temperature Ta (298K (ta = 25 ° C)), solar radiation intensity Ea (1kw / m 2 )), short circuit current Isca, optimum current Iopa-optimum voltage Select Vopa, open voltage Voca point P1 (0, Isca), P2 (Vopa, Iopa), P3 (Voca, 0),
{04} The function Func (V, I, IL, Co, n, Rsh, Rs, T) = 0 where T is the reference state temperature Ta (298 K), the series resistance Rs is the value Rsa at the reference temperature, and Substituting the values of the points P1, P2, P3 and IL, Co, n, Rsh as unknowns: Func (0, Isca, IL, Co, n, Rsh, Rsa, Ta) = 0,
Relational expression: Func (Voca, 0, IL, Co, n, Rsh, Rsa, Ta) = 0,
Formula: Func (Vopa, Iopa, IL, Co, n, Rsh, Rsa, Ta) = 0
{05} The function Dif (V, I, IL, Co, n, Rsh, Rs, T) = 0, the reference state temperature Ta (298 K), the series resistance Rs, the value Rsa at the reference temperature, and the point Substituting the value of P2 (Vopa, Iopa) and making IL, Co, n, Rsh unknown
Create a relation: Dif (Vopa, Iopa, IL, Co, n, Rsh, Rsa, Ta) = 0, then
{06} The four relational expressions: Func (0, Isca, IL, Co, n, Rsh, Rsa, Ta) = 0, Func (Voca, 0, IL, Co, n, Rsh, Rsa, Ta) = 0 , Func (Vopa, Iopa, IL, Co, n, Rsh, Rsa, Ta) = 0, Dif (Vopa, Iopa, IL, Co, n, Rsh, Rsa, Ta) = 0 satisfying solution A (ILa, Coa , na, Rsha) is calculated by a nonlinear solution program, then
{07} The function: Substituting the solution A (ILa, Coa, na, Rsha) into IL, Co, n, Rsh with Func (V, I, IL, Co, n, Rsh, Rs, T) = 0 Then, substitute the value Rsa for the reference state temperature Ta (298K) and the series resistance Rs for T, and the relational expression of variables V and I: Func (V, I, ILa, Coa, na, Rsha, Rsa, Ta ) = 0
{08} This equation is again solved by a non-linear solution program to obtain a solution of I for V of about 40-50 points, and voltage (V) -current (I) and voltage (V) -power (P) (power) in the reference state (P) = voltage (V) x current (I)) relationship points (about 40-50 points), voltage V-current I curve (IV curve), voltage V-power P connecting these points Create a curve (PV curve), then
{09} In order to obtain the solar cell solar radiation intensity Eb (here 1 kw / m 2 ), solar cell temperature Tb (absolute temperature: TbK = tb (° C.) + 273), voltage Vb, and current Ib, In the solar radiation temperature Ea (1 kw / m 2 ), solar cell temperature Ta (298 K: absolute temperature: Ta = ta + 273), short circuit current Isca, series resistance Rsa, fluctuation value of the short circuit current Isc when the temperature changes by 1 ° C. Conversion formula (Va, Ia) → (Vb, Ib) where α, fluctuation value β of open circuit voltage Voc when temperature changes by 1 ° C., and curve correction factor K:
Ib = Ia + α * (tb-ta)
Vb = Va + β * (tb-ta)-Rsa * (Ib-Ia)-K * Ib * (tb-ta) is created, and each voltage-current point created in {08} above or Each point on the IV curve connecting the points is used as the Ia and Va values, and the solar radiation temperature Eb (1 kw / m 2 ) and each point at the solar cell temperature Tb (K) (voltage Vb-current Ib: about 40-50 points) And create IV and PV curves connecting these points.
{10} From the IV curve created in {09} above, select any five points that are not close to each other, and these points (VQ1, IQ1), (VQ2, IQ2), (VQ3, IQ3), (VQ4, IQ4 ), (VQ5, IQ5) are substituted into variables V, I of the above relational expression: Func (V, I, IL, Co, n, Rsh, Rs, Tb) = 0, and IL, Co, n, Rsh , Rs as unknown
Relational expression: Func (VQ1, IQ1, IL, Co, n, Rsh, Rs, Tb) = 0,
Relational expression: Func (VQ2, IQ2, IL, Co, n, Rsh, Rs, Tb) = 0,
Relational expression: Func (VQ3, IQ3, IL, Co, n, Rsh, Rs, Tb) = 0,
Relational expression: Func (VQ4, IQ4, IL, Co, n, Rsh, Rs, Tb) = 0,
Relational expression: Func (VQ5, IQ5, IL, Co, n, Rsh, Rs, Tb) = 0 is created, and the solution B (ILb, Cob, nb, Rshb, Rsb) of the five relational expressions is generated by a nonlinear solution method. And then
{11} The relationship between the voltage Vc and the current Ic at the solar radiation intensity Ec (here 1 kw / m 2 ) and solar cell temperature Tc (absolute temperature: Tc (K) = tc (° C.) + 273) 09},
Conversion formula (Va, Ia) → (Vc, Ic):
Ic = Ia + α * (tc-ta)
Create IV and PV curves using Vc = Va + β * (tc-ta)-Rsa * (Ic-Ia)-K * Ic * (tc-ta)
{12} Select any five points that are not close to each other on the IV curve created in {11}, and these values (VR1, IR1), (VR2, IR2), (VR3, IR3), (VR4, IR4) , (VR5, IR5) is substituted into variables V and I of the relational expression: Func (V, I, IL, Co, n, Rsh, Rs, Tc) = 0, and IL, Co, n, Rsh, Rs Is an unknown,
Relational expression: Func (VR1, IR1, IL, Co, n, Rsh, Rs, Tc) = 0,
Relational expression: Func (VR2, IR2, IL, Co, n, Rsh, Rs, Tc) = 0,
Relational expression: Func (VR3, IR3, IL, Co, n, Rsh, Rs, Tc) = 0,
Relational expression: Func (VR4, IR4, IL, Co, n, Rsh, Rs, Tc) = 0,
Relational expression: Func (VR5, IR5, IL, Co, n, Rsh, Rs, Tc) = 0
And the solution C (ILc, Coc, nc, Rshc, Rsc) of the five relational expressions is calculated by a non-linear solution program,
{13} Incorporates the specified solar radiation intensity Em and solar cell temperature tm (ie at each time of the month)
{14} The solution A (ILa, Coa, na, Rsha) of {06} at the temperature ta (25 ° C .: absolute temperature Ta (K) = ta (° C.) + 273) in the reference state, the temperature tb ( Celsius: Tb = tb + 273) {10} solution B (ILb, Cob, nb, Rshb, Rsb), temperature tc (Celsius: Tc = tc + 273), {12} solution C (ILc, Coc, nc) , Rshc, Rsc) and the input value Rsa (IL, Co, n, Rsh, Rs) are interpolated at three points, and the characteristic value M at the specified temperature tm (ILm, Com, nm, Rshm, Rsm) And then
After correction by {15} IL by irradiance Em actually measured the ILm 'm = ILm × Em ÷ Ea (Ea = 1 (KW / m 2), the relationship: Func (V, I, IL , Co, n ′, Rsh, Rs, T) = 0 and IL m, Com, nm, Rshm, Rsm is substituted, and Func (V, I, IL m, Com, nm, Rshm, Rsm, Tm) = 0 Create a voltage (V) -current (I) relationship (about 40-50 points) using a nonlinear solution program, and the relationship between the voltage (V) -current (I) or the IV curve and PV curve connecting them. Create
{16} Obtain the power at the Pmax point on this IV curve or the voltage specified as a parameter. {17} Using this value as the power value for each month time, the monthly and annual total is calculated to obtain the monthly and annual power generation. It is characterized by seeking.
The photovoltaic power generation amount simulation calculation method according to claim 4 is:
Monthly average daily irradiance of the target site, monthly average direct rate, solar cell installation direction / tilt angle, monthly solar radiation intensity calculated from the longitude and latitude and solar latitude, and the outside temperature, wind speed, Calculate the amount of power generation by time from the solar cell temperature by month calculated from the solar radiation on the light-receiving surface, total the month,
Divide the monthly power generation amount (KWh) by the solar cell light receiving surface solar radiation amount per unit area (KWh / m 2 ) and the solar cell rated capacity (kw / kw / m 2 ) to calculate the monthly temperature coefficient in advance. ,next,
Calculate the monthly power generation by multiplying the monthly temperature coefficient by the amount of solar radiation on the light-receiving surface (KWh / m 2 ) and the rated capacity of the solar cell (kw / kw / m 2 ). In the way to
It is characterized in that the following method is used in the process of calculating the solar cell power from the solar radiation intensity of the solar cell light receiving surface, the solar cell temperature, and the solar cell characteristic value.
{18} Incorporates the specified solar radiation intensity Em and solar cell temperature tm (ie at each time of the month)
{19} With respect to the voltage Va−current Ia value (about 40 to 50 points) in the reference state (intensity of solar radiation 1 kw / m 2 , solar cell temperature 25 ° C.) created by the above {01} to {08}, {09} Using Isca, α, β, Rsa, k, the conversion formula (Va, Ia) → (Vk, Ik):
Ik = Ia + Isca * (Em / Ea-1) + α * (tm-ta)
Vk = Va + β * (tm-ta)-Rsa * (Ik-Ia)-K * Ik * (tm-ta)
To create these voltage V-current I values or the IV curve and PV curve connecting them,
{20} Obtain power at the Pmax point on this IV curve or power at the voltage specified as a parameter, and use this value as the power value for each month's time to calculate the monthly and annual power generation. It is characterized by.
The computer-readable data storage medium storing the processing program of the photovoltaic power generation amount simulation calculation method according to claim 5 is the processing program capable of executing these methods according to claims 1, 2, 3, and 4. It is characterized by including.

請求項1,2,3,4の特徴としては、月別温度係数を使うことにより簡単かつ正確に年間発電量を算出できるところに特徴がある。
また、請求項1,2,3,4の特徴としては、特定の単結晶太陽電池に限定されず他の単結晶、多結晶、アモルファス太陽電池などについても、指定した日射強度・太陽電池温度のI-Vカーブ が汎用的で精度よく作成でき、そして太陽電池の発電量が正確にシミュレーション計算できることにある。
また、請求項1,3の特徴としては、請求項2,4と同様に汎用的で精度よく太陽電池の発電量がシミュレーション計算できることの他に、日射強度は1KW/m2で他の温度における特性値(例えば55℃などにおけるIsc,Iop,Vop,Voc など)が与えられている場合には、これらの値を使うことにより、α,β,Rs,Kが入手できなくても指定日射強度・太陽電池温度のI-Vカーブ が作成でき、発電量のシミュレーション計算ができることにある。
請求項5の特徴としては、請求項1,2,3,4による日射量および発電量のシミュレーション計算プログラムを記録した記憶媒体よりコンピュータ読み取り可能なため、容易に任意の条件における太陽光発電量のシミュレーション計算ができ、太陽光発電システムの設計、運用などに幅広い用途に直接役立つ。
The features of claims 1, 2, 3 and 4 are that the annual power generation amount can be calculated easily and accurately by using the monthly temperature coefficient.
In addition, the features of claims 1, 2, 3 and 4 are not limited to specific single crystal solar cells, and other single crystals, polycrystals, amorphous solar cells, etc., have the specified solar radiation intensity and solar cell temperature. The IV curve is versatile and can be created accurately, and the amount of power generated by the solar cell can be accurately simulated.
In addition, the features of claims 1 and 3 are the same as in claims 2 and 4, and the power generation amount of the solar cell can be calculated by simulation, and the solar radiation intensity is 1 KW / m 2 at other temperatures. When characteristic values (for example, Isc, Iop, Vop, Voc, etc. at 55 ° C, etc.) are given, by using these values, the specified solar radiation intensity can be obtained even if α, β, Rs, K cannot be obtained.・ The IV curve of the solar cell temperature can be created, and the simulation calculation of the power generation can be performed.
The feature of claim 5 is that it can be read by a computer from a storage medium in which a simulation calculation program for solar radiation and power generation according to claims 1, 2, 3, and 4 is recorded. Simulation calculation is possible, and it is directly useful for a wide range of applications such as the design and operation of photovoltaic power generation systems.

ここで本発明に関する事項、用語などについて説明する。
まず年間太陽光発電量の計算の全体を理解するために、本発明者らが既に開発している太陽光発電量シミュレーション計算プログラムの概要を説明する(電気学会論文1参照)。図3は太陽光発電量シミュレーション計算プログラムのブロック図を示すものであり、3つのサブプログラムすなわち、(1) (太陽電池)受光面日射エネルギー算出サブプログラム、(2) 太陽電池(モジュール)温度算出サブプログラム、(3) 太陽電池出力算出サブプログラムより構成されている。
Here, matters and terms relating to the present invention will be described.
First, in order to understand the overall calculation of the annual solar power generation amount, an outline of the solar power generation amount simulation calculation program already developed by the present inventors will be described (see IEEJ Paper 1). Fig. 3 shows a block diagram of the photovoltaic power generation simulation calculation program. Three subprograms: (1) (solar cell) light-receiving surface solar energy calculation subprogram, (2) solar cell (module) temperature calculation Subprogram, and (3) Solar cell output calculation subprogram.

(1) 受光面の日射エネルギー算出サブプログラムの特徴は、
・任意の地点、傾斜・方位角に設置した太陽電池や、種々の追尾方式の太陽電池の指定期間の日射量が精度よく計算できるよう、計算時間のベースは後述の太陽電池算出計算を含め、30分としている。
・太陽電池受光面日射量を求める方法としては図4で示すごとく、水平面全天日射量を直達光成分と散乱光成分に分離し、それぞれについて計算精度の高い方法で受光面日射強度を算出し、地面反射日射量も含めて総合して太陽の受光面日射量を求める方法としている。
・月平均−日合計日射量から月平均時刻別日射量を算出するため、次の手順(図5参照)で示すごとく計算精度の高い方法で求めている。
a.各月15日の日出・日入時刻を求める。
b.月平均−日合計日射量が基本サインカーブの面積(図5の横方向ハッチングの部分)になるようにy=a*sin(π/to*t)のaを求める。ただしt0は(日入−日出)の時間である。
c.月平均−日合計日射量が周期2倍のサインカーブの面積(図5の縦方向ハッチングの部分)になるようにy=b*sin((2π/to)*t-π/2)+b のbを求める
d.各時刻のyの値を上記基本サインカーブ(上記b)、周期2倍のサインカーブ(上記c)の式から求め、その平均値を各時刻の日射強度とする。
(1) The feature of the solar energy calculation subprogram on the light-receiving surface is
-The base of calculation time includes solar cell calculation calculation described later, so that the solar radiation amount of the specified period of solar cells installed at arbitrary points, tilt / azimuth and various tracking method solar cells can be calculated accurately, 30 minutes.
-As shown in Fig. 4, the solar cell light receiving surface solar radiation amount is divided into a direct horizontal light component and a scattered light component, and the light receiving surface solar radiation intensity is calculated by a method with high calculation accuracy for each. In addition, the amount of solar radiation on the light-receiving surface of the sun is determined in a comprehensive manner including the amount of solar radiation reflected on the ground.
In order to calculate the monthly average hourly solar radiation amount from the monthly average-daily total solar radiation amount, it is obtained by a method with high calculation accuracy as shown in the following procedure (see FIG. 5).
a. Find the sunrise and sunset times on the 15th of each month.
b. A of y = a * sin (π / to * t) is determined so that the monthly average-daily total solar radiation amount becomes the area of the basic sine curve (the hatched portion in FIG. 5). However t 0 is - the time (day entry sunrise).
c. Y = b * sin ((2π / to) * t-π / 2) + b so that the monthly average-daily total solar radiation amount is the area of the sine curve with the period doubled (the vertical hatching in FIG. 5) B of d. The value of y at each time is obtained from the equation of the basic sine curve (above b) and the sine curve having the cycle twice (above c), and the average value is used as the solar radiation intensity at each time.

(2) 太陽電池モジュール温度算出サブプログラムの特徴は、
・上記(1) で算出した月平均時刻ごと(30分ごと:以下同様)の受光面日射強度、月平均最高外気温・最低外気温から算出した月平均時刻ごとの外気温、および風速の入力値を使い、重回帰式により太陽電池(モジュール)温度を求めている。
(2) The characteristics of the solar cell module temperature calculation subprogram are:
・ Input the solar radiation intensity at the light receiving surface for each month average time calculated in (1) above (every 30 minutes: the same applies below), the outside temperature for each month average time calculated from the monthly average maximum outside temperature / minimum outside temperature, and the wind speed. Using the value, the solar cell (module) temperature is obtained by the multiple regression equation.

(3) 太陽電池出力算出サブプログラムの特徴は、前記のごとく、従来の技術ではせいぜい電気学会論文1のごとく特定の太陽のI-Vカーブ をベースに、各月・各時刻におけるI-Vカーブ を作成している。本発明では特定の種類の太陽電池に限定されない汎用的I-Vカーブ 作成法とそれを使った太陽電池発電量シミュレーション計算方法を提供するものである。   (3) As described above, the solar cell output calculation subprogram is characterized by creating an IV curve for each month and each time based on the IV curve of a specific sun as described in the paper of the Institute of Electrical Engineers of Japan at the most. Yes. The present invention provides a general-purpose IV curve creation method that is not limited to a specific type of solar cell, and a solar cell power generation simulation calculation method using the method.

つぎに、用語などについて説明する。
○太陽電池の温度は一般には、「太陽電池モジュール温度」と呼ばれているが、本発明では短縮して「太陽電池温度」とも呼んでいる。そしてこの温度は通常太陽電池モジュールに埋込んだ熱電対により測定する。なお、太陽電池はその構成の段階によりセル→モジュール→アレイという名称で呼ばれている。
Next, terms etc. will be explained.
The temperature of the solar cell is generally referred to as “solar cell module temperature”, but is shortened in the present invention and is also referred to as “solar cell temperature”. This temperature is usually measured by a thermocouple embedded in the solar cell module. The solar cell is called by the name of cell → module → array depending on the stage of its configuration.

○太陽電池温度に使っている記号については、小文字で示したt(℃) は摂氏を、大文字で示したT(K) は絶対温度を示す。すなわちT(K)=t(℃)+273 である。大文字Tは主として太陽電池基本式の中で使われており、その他のところではtが使われている。 ○ Regarding symbols used for solar cell temperature, t (° C) in lower case indicates Celsius and T (K) in upper case indicates absolute temperature. That is, T (K) = t (° C.) + 273. The capital letter T is mainly used in the solar cell basic formula, and t is used elsewhere.

○太陽電池出力・発電量については、太陽電池の瞬間の発生電圧Vと瞬間の発生電流Iの積を太陽電池の出力(単位WまたはKW)といい、その時間積算値が発電量(単位whまたはkwh) である。 ○ For solar cell output and power generation amount, the product of the instantaneous generation voltage V of the solar cell and the instantaneous generation current I is called the solar cell output (unit W or KW), and the time integrated value is the power generation amount (unit wh Or kwh).

○太陽電池基本特性式は次の式である。
I=IL-Co*T3*exp(-qEg/nKoT)*(exp(q(V+RsI)/nKoT)-1)-(V+RsI)/Rsh
ここに各記号は次のとおりである。
I :出力電流[A] Co :飽和電流温度係数
V :出力電圧[V] Eg :エネルギーギャップ[eV]
IL :光起電流[A] T :太陽電池素子絶対温度[K]
IO :飽和電流[A] Ko :ボルツマン定数[J/K]
Rs :直流抵抗[Ω] q :電子の電荷量[C]
Rsh :並列抵抗[Ω]
n :接合定数
上記式は半導体の基本式に基づく式で理論的式である。この式からI-Vカーブ 上の各点を求めるには、この式の左辺のIを右辺に移項し
Func(V,I,IL,Co,n,Rsh,Rs,T)
=IL-Co*T3*exp(-qEg/nKoT)*(exp q(V+RsI)/nKoT-1)-(V+RsI)/Rsh-I
の関数をつくり基本特性値(IL,Co,n,Rsh,Rs)の値を代入のうえ、V,I の関係を非線形解法プログラムで解いている。電気学会論文2(伊賀:「太陽電池の光照射状態での電圧−電流特性式を用いたI-Vカーブ 作成法とその活用」、電学論D116 巻10号、1996)を参照
○ The basic characteristic formula of the solar cell is the following formula.
I = IL-Co * T 3 * exp (-qEg / nKoT) * (exp (q (V + RsI) / nKoT) -1)-(V + RsI) / Rsh
Here, each symbol is as follows.
I: Output current [A] Co: Saturation current temperature coefficient V: Output voltage [V] Eg: Energy gap [eV]
IL: Photovoltaic current [A] T: Solar cell element absolute temperature [K]
IO: Saturation current [A] Ko: Boltzmann constant [J / K]
Rs: DC resistance [Ω] q: Charge amount of electrons [C]
Rsh: Parallel resistance [Ω]
n: Junction constant The above formula is a theoretical formula based on the basic formula of the semiconductor. To find each point on the IV curve from this equation, move I on the left side of this equation to the right side.
Func (V, I, IL, Co, n, Rsh, Rs, T)
= IL-Co * T 3 * exp (-qEg / nKoT) * (exp q (V + RsI) / nKoT-1)-(V + RsI) / Rsh-I
The relationship between V and I is solved by a nonlinear solution program after substituting the values of basic characteristic values (IL, Co, n, Rsh, Rs). Refer to IEEJ Paper 2 (Iga: “Method of Creating IV Curve Using Voltage-Current Characteristic Equation in Light Irradiation State of Solar Cell and Its Utilization”, Electrical Engineering D116 Volume 10, No. 1996)

○本発明では特性値については次のとおり使い分けている。
基本特性値は太陽電池基本式中にある基本特性である。
(1) (太陽電池)基本特性値…IL,Co,n,Rsh,Rs
(2) (太陽電池)特性値…Isc,Iop,Vop,Voc,α,β,Rs,K
なお、上記の通りRsは(1) 、(2) の両方で使われている。
In the present invention, the characteristic values are properly used as follows.
The basic characteristic value is a basic characteristic in the basic formula of the solar cell.
(1) (Solar cell) Basic characteristic values: IL, Co, n, Rsh, Rs
(2) (Solar cell) Characteristic value ... Isc, Iop, Vop, Voc, α, β, Rs, K
As described above, Rs is used in both (1) and (2).

○変換式については次のとおりである。
(1) 「実用的I-V カーブ変換式」
I1=I2+Isc(E1/(E2)-1)+α(t1-t2)
V1=V2+β(t1-t2)-Rs(I1-I2)-K*I1*(t1-t2)
(2) 「実用的I-V カーブ変換式」の逆変換式(逆の適用)
((1) の式のV2,I2について式を解いて変形したものである)
I2=I1+Isc(E2-E1)/E2+α(t2-t1)
V2=V1+β(t2-t1)-Rs(I2-I1)-K*I1*(t2-t1)
ここで、(1) 、(2) は一般に知られているJIS8913,8914,8919 の式と異なり、新しい優れた式である。(1) の式については特願平6−2626および前記電気学会論文1で使っている(図9参照)。
また、これらの式で使っている記号は基準状態での電圧値、電流値、日射強度、太陽電池温度をそれぞれV2,I2,E2,t2としている。また指定状態での電圧値、電流値、日射強度、太陽電池温度をV1,I1,E1,t1とする。
また、α:温度が1℃変化した時のIsc の変動値(A/℃)
β:温度が1℃変化した時のVoc の変動値(V/℃)
Rs:モジュールの直列抵抗(Ω)
K:曲線補正因子(Ω)
Isc:短絡電流
Top:最適電流
Vop:最適電圧
Voc:解放電圧 である。
基準状態の電圧−電流値と測定時日射強度・太陽電池温度条件における電圧−電流値の変換式の一覧を図9に示す。
そして、図9の下欄(1)、(2)式が「実用的I-V カーブ変換式」に、また図9の右欄の(3)、(4)式が「実用的I-V カーブ変換式」の逆変換式に相当する。
この図は電気学会論文3(伊賀:「実用的I-V カーブ作成法を使った太陽電池日射計」,電学論D,117 巻10号,1997)に掲載されたもので右端の欄および下欄が著者の式で下欄は特願平6−2626の中で論文発表の前に特許申請がなされている。一般には、まだ左端又は中央の欄の式が使われることもある。
太陽光を受光している状態での太陽電池の電圧V−電流値Iの関係を図7に示す。
図7に示すように電圧−電流値の関係曲線をI-V 曲線(又はI-V カーブ)といい電圧−電力値の関係曲線をP-V 曲線(又はP-V カーブ)という。そして最大電力(Pmax)のときの電圧(Vop )を最適電圧と、またそのときの電流(Iop )を最適電流という。
○ The conversion formula is as follows.
(1) "Practical IV curve conversion formula"
I1 = I2 + Isc (E1 / (E2) -1) + α (t1-t2)
V1 = V2 + β (t1-t2) -Rs (I1-I2) -K * I1 * (t1-t2)
(2) Inversion formula of “practical IV curve transformation formula” (inverse application)
(This is a modified version of V2 and I2 in equation (1))
I2 = I1 + Isc (E2-E1) / E2 + α (t2-t1)
V2 = V1 + β (t2-t1) -Rs (I2-I1) -K * I1 * (t2-t1)
Here, (1) and (2) are new and excellent formulas different from the commonly known formulas of JIS8913, 8914, and 8919. The equation (1) is used in Japanese Patent Application No. 6-2626 and the IEEJ Paper 1 (see FIG. 9).
Further, the symbols used in these equations are V2, I2, E2, and t2, respectively, for the voltage value, current value, solar radiation intensity, and solar cell temperature in the reference state. In addition, the voltage value, current value, solar radiation intensity, and solar cell temperature in the designated state are V1, I1, E1, and t1.
Α: Fluctuation value of Isc when temperature changes by 1 ° C (A / ° C)
β: Fluctuation value of Voc when the temperature changes by 1 ° C (V / ° C)
Rs: Module series resistance (Ω)
K: Curve correction factor (Ω)
Isc: Short circuit current
Top: Optimum current
Vop: Optimum voltage
Voc: Release voltage.
FIG. 9 shows a list of voltage-current value conversion formulas under the reference state voltage-current value and measurement-time solar radiation intensity / solar cell temperature conditions.
The lower columns (1) and (2) in FIG. 9 are “practical IV curve conversion equations”, and the right columns (3) and (4) in FIG. 9 are “practical IV curve conversion equations”. This corresponds to the inverse transformation formula of
This figure was published in IEEJ Paper 3 (Iga: “Polar Solar Radiation Meter Using a Practical IV Curve Preparation Method”, Electrotechnical D, Vol. 117, No. 10, 1997). In the author's formula, the lower column is a patent application filed in Japanese Patent Application No. 6-2626 prior to publication of the paper. In general, the leftmost or middle column formula may still be used.
FIG. 7 shows the relationship between the voltage V and the current value I of the solar cell in the state of receiving sunlight.
As shown in FIG. 7, the voltage-current value relationship curve is called an IV curve (or IV curve), and the voltage-power value relationship curve is called a PV curve (or PV curve). The voltage (Vop) at the maximum power (Pmax) is called the optimum voltage, and the current (Iop) at that time is called the optimum current.

請求項1,2,3,4の方法により、地域・太陽電池特性値・太陽電池架台など別にあらかじめ月別温度係数を計算しておくことにより、正確な年間発電量が簡単に算出できる。
また請求項1,2,3,4のI-V カーブ作成方法により、指定の日射強度・太陽電池温度におけるI-V カーブを作成し、太陽光発電量をシミュレーション計算する方法で次の効果が期待できる。
(1) 特定の種類や特定の太陽電池だけでなく一般的に、太陽電池の特性値(Isc,Iop,Vop,Voc,Rs,α,β,K)を入力し、その太陽電池を使ったシステムの月・年間発電量が正確に算出できる。すなわち適用する太陽電池の種類・設置個所・太陽電池架台等により、その発電量が正確に計算でき、効果的な太陽光発電システムの設計・運用などに役立つ。
(2) 前記「太陽光発電量シミュレーション計算プログラム(電気学会論文1)」と本発明を組合せてシステム化することにより、より精度の高い的確な発電量の計算が可能となるため、太陽光発電量シミュレーション計算がより効果的なものとなる。
(3) 太陽光発電量のシミュレーション計算において、従来からほとんどの個所で実施されてきた、受光面日射量の計算値に変換効率を掛けて発電量を求める方法に比べ、きめの細かい正確な計算ができているため、より深く細かい解析が可能である。すなわち該パラメーターによる効果の詳細な評価も可能となる。
(4) 請求項1,3の指定日射強度・太陽電池温度におけるI-V カーブを作成し、太陽光発電量をシミュレーション計算する方法では上記(1) ,(2) ,(3) で述べた効果の他に、太陽電池の特性値(Isc,Iop,Vop,Voc,α,β,Rs,K)がすべて入手できなくても、すなわち基準温度(25℃)以外の温度(例えば55℃)におけるI-V カーブやIsc,Iop,Vop,Voc の値が得られれば計算が可能となる場合がある。
請求項5では請求項1,2,3,4によるI-V カーブの作成法を含んだ太陽光発電量シミュレーション計算方法によるプログラムを記録媒体に入れ、必要時にコンピュータにより読み取り計算することが容易である。したがって太陽光発電システムの設計・工事・運用に広く役立つ。
By calculating the monthly temperature coefficient for each region, solar cell characteristic value, solar cell stand, etc. in advance by the method of claims 1, 2, 3, and 4, an accurate annual power generation amount can be easily calculated.
In addition, the following effects can be expected by the method of creating an IV curve at the specified solar radiation intensity and solar cell temperature by the IV curve creating method of claims 1, 2, 3 and 4, and calculating the amount of photovoltaic power generation by simulation.
(1) In general, not only a specific type or a specific solar cell, but also the characteristic values (Isc, Iop, Vop, Voc, Rs, α, β, K) of the solar cell are input and used. The monthly and annual power generation of the system can be calculated accurately. In other words, the amount of power generation can be accurately calculated according to the type, installation location, solar cell stand, etc. of the applied solar cell, which is useful for designing and operating an effective solar power generation system.
(2) By combining the above-mentioned “photovoltaic power generation simulation calculation program (The Institute of Electrical Engineers of Japan paper 1)” and the present invention into a system, it is possible to calculate a more accurate and accurate power generation amount. The quantity simulation calculation becomes more effective.
(3) In the simulation calculation of photovoltaic power generation, detailed and accurate calculation compared with the method of calculating the power generation amount by multiplying the calculated value of the solar radiation amount of the light receiving surface by conversion efficiency, which has been carried out in most places. Therefore, deeper and more detailed analysis is possible. That is, detailed evaluation of the effect by the parameter is also possible.
(4) The method described in (1), (2) and (3) above is used in the method of creating an IV curve for the specified solar radiation intensity and solar cell temperature in claims 1 and 3 and calculating the photovoltaic power generation by simulation. In addition, even if all the characteristic values of solar cells (Isc, Iop, Vop, Voc, α, β, Rs, K) are not available, that is, IV at a temperature other than the reference temperature (25 ° C) (eg 55 ° C) Calculation may be possible if curves, Isc, Iop, Vop, and Voc values are obtained.
In claim 5, it is easy to put a program by a photovoltaic power generation amount simulation calculation method including an IV curve creation method according to claims 1, 2, 3 and 4 into a recording medium and read and calculate by a computer when necessary. Therefore, it is widely useful for the design, construction and operation of photovoltaic power generation systems.

つぎに、本発明の実施形態を図面に基づき説明する。
図1は月別温度係数を算出するフロー図を示している。ここで、月平均時刻別発電量計算プログラムでは、本発明にかかわるI−Vカーブ作成法だけでなく本発明者らが既に開発している方法を適用してもよい。また図の中の破線でかこった部分については一般に発表されているデータがある場合はそのデータを活用してもよい。
図2は本実施形態の太陽光発電量シミュレーション計算方法の中核部分の一つである「指定の日射強度・太陽電池温度のI-V カーブの作成方法」を説明している。
S11 で太陽電池の特性値(Isc,Iop,Vop,Voc,α,β,Rs,K)を入力し、S12 で定数(Eg,Ko,e )を入力し、S13 で太陽電池の基準状態(日射強度1kw/m2、太陽電池温度25℃)における基本特性値(IL,Co,n,Rsh )を太陽電池基本特性式
I=IL-Co*T3exp(-qEg/nKoT)*(exp(q(V+RsI)/nKoT)-1)-(V+RSI)/Rsh
解くことにより求める。すなわち上記基本特性式に与えられた特性値(Isc,Iop,Vop,Voc )を代入して非線形の4つの連立方程式をつくり解く。
求めた基本特性値をILa,Coa,na,Rsha とすると、S14 において上記太陽電池基本特性式に再びこれらの基本特性値を代入し、電圧Vと電流Iの関係式を得る。この関係式において電圧Vに対する電流Iをこの特性式を解くことにより求め、I-V の関係を求め、基準状態のI-V カーブを作成する。
Next, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a flowchart for calculating the monthly temperature coefficient. Here, in the power generation amount calculation program according to the monthly average time, not only the IV curve creation method according to the present invention but also a method already developed by the present inventors may be applied. In addition, if there is publicly available data for the portion surrounded by a broken line in the figure, the data may be utilized.
FIG. 2 illustrates a “method for creating an IV curve of specified solar radiation intensity / solar cell temperature” which is one of the core parts of the photovoltaic power generation simulation calculation method of the present embodiment.
The solar cell characteristic values (Isc, Iop, Vop, Voc, α, β, Rs, K) are input at S11, the constants (Eg, Ko, e) are input at S12, and the solar cell reference state (S13) Basic characteristic values (IL, Co, n, Rsh) at solar radiation intensity 1kw / m 2 and solar cell temperature 25 ° C)
I = IL-Co * T 3 exp (-qEg / nKoT) * (exp (q (V + RsI) / nKoT) -1)-(V + RSI) / Rsh
Find by solving. That is, by substituting the characteristic values (Isc, Iop, Vop, Voc) given to the basic characteristic equation, four nonlinear simultaneous equations are created and solved.
Assuming that the obtained basic characteristic values are ILa, Coa, na, and Rsha, in S14, these basic characteristic values are substituted again into the above-mentioned solar cell basic characteristic expression, and a relational expression between the voltage V and the current I is obtained. In this relational expression, the current I with respect to the voltage V is obtained by solving this characteristic expression, the relation of IV is obtained, and the IV curve of the reference state is created.

S15 はS14 で作成したI-V カーブ上の各点について「実用的I-V カーブ変換式」を適用することにより、指定の日射強度、指定太陽電池温度におけるI-V カーブ(S19 )を求める。   In S15, the “practical I-V curve conversion formula” is applied to each point on the I-V curve created in S14 to obtain the I-V curve (S19) at the specified solar radiation intensity and the specified solar cell temperature.

一方S16 においては日射強度は1kw/m2のままで、25℃以外の温度b℃,c℃におけるI-V カーブを「実用的I-V カーブ変換式」によって求める。
S20 はb℃におけるI-V カーブ上の5点〜8点の値を使い、前記基本特性式を解くことにより基本特性値IL,Co,n,Rsh,Rsを求める。またS21 では同様にc℃における基本特性値を求めている。S22 は25℃,b℃,c℃におけるそれぞれの基本特性値から指定太陽電池温度における基本特性値を曲線補間により求める。
On the other hand, in S16, the solar radiation intensity remains at 1 kw / m 2 , and IV curves at temperatures other than 25 ° C. at b ° C. and c ° C. are obtained by “practical IV curve conversion formula”.
For S20, values of 5 to 8 points on the IV curve at b ° C. are used, and the basic characteristic values IL, Co, n, Rsh, and Rs are obtained by solving the basic characteristic equation. In S21, the basic characteristic value at c ° C. is similarly obtained. In S22, the basic characteristic value at the designated solar cell temperature is obtained from the basic characteristic values at 25 ° C., b ° C., and c ° C. by curve interpolation.

ここで求めた指定電圧における基本特性値ILは日射強度補正を加える。S23 ではこのようにして求めた基本特性値を、前記太陽電池基本特性式に適用して電圧Vと電流Iの関係すなわちI-V カーブを求める。
図3は、本発明者が開発した「太陽光発電量シミュレーション計算プログラム」のブロック図で既に電気学会論文1で示されている。前述のとおり本発明の中核部分である「指定の日射強度・太陽電池温度におけるI-V カーブの作成方法」は、「太陽電池出力算出サブプログラム」の中に組み込まれる。
The basic characteristic value IL at the specified voltage obtained here is corrected for solar radiation intensity. In S23, the basic characteristic value obtained in this way is applied to the basic characteristic expression of the solar cell to obtain the relationship between the voltage V and the current I, that is, the IV curve.
FIG. 3 is a block diagram of a “photovoltaic power generation simulation calculation program” developed by the present inventor and has already been shown in IEEJ paper 1. As described above, the “method of creating an IV curve at a specified solar radiation intensity / solar cell temperature”, which is a core part of the present invention, is incorporated in the “solar cell output calculation subprogram”.

図4、図5は前記「太陽光発電量シミュレーション計算プログラム」の中に含まれている特徴的な機能を説明したものである。   FIG. 4 and FIG. 5 explain characteristic functions included in the “photovoltaic power generation simulation program”.

図6は本発明を含んだ「太陽光発電量シミュレーション計算プログラム」を記録したデータ記憶媒体とコンピュータの図である。   FIG. 6 is a diagram of a data storage medium and a computer on which a “photovoltaic power generation simulation calculation program” including the present invention is recorded.

月別温度係数算出のフロー図である。It is a flowchart of monthly temperature coefficient calculation. 指定の日射強度・太陽電池温度のI-V カーブ作成方法のブロック図である。It is a block diagram of an IV curve creation method of specified solar radiation intensity and solar cell temperature. 太陽光発電量シミュレーション計算プログラム(既開発)のブロック図である。It is a block diagram of a photovoltaic power generation amount simulation calculation program (developed). 太陽電池受光面日射量の算出フロー図である。It is a calculation flow figure of the solar cell light-receiving surface solar radiation amount. 月平均時刻別日射量カーブ作成図である。It is a solar radiation amount curve creation figure according to monthly average time. 太陽光発電量シミュレーション計算プログラムを記録したデータ記憶媒体とコンピュータの図である。It is a figure of the data storage medium and computer which recorded the photovoltaic power generation amount simulation calculation program. 太陽電池出力特性曲線(I-V カーブ、P-V カーブ)である。It is a solar cell output characteristic curve (I-V curve, P-V curve). 太陽光発電のしくみの図である。It is a diagram of how solar power generation works. 測定時の日射強度・太陽電池温度における電圧V−電流値Iの基準状態への変換式である(電気学会論文3:「実用的I-V カーブ作成法を使った太陽電池日射計、電学論D、117 巻10号、1997より)This is the conversion formula of the voltage V-current value I at the solar radiation intensity and solar cell temperature at the time of measurement to the standard state (The Institute of Electrical Engineers of Japan: “Solar cell solarimeter using a practical IV curve creation method, Electrical theory D 117, No.10, 1997)

符号の説明Explanation of symbols

1 コンピュータ本体
2 キーボード
3 マウス
4 モニタ
5 記憶媒体
17 コンピュータ
DESCRIPTION OF SYMBOLS 1 Computer main body 2 Keyboard 3 Mouse 4 Monitor 5 Storage medium 17 Computer

Claims (5)

対象地点の日射量・直達比率、太陽電池設置方位・傾斜角などから計算した受光面日射強度と、対象地点の外気温・風速・受光面日射から計算した太陽電池温度から月別時刻別発電量を算出して月間集計し、次に、
該月間発電量(KWh)を月間受光面日射量(KWh)と太陽電池定格容量で除して月別温度係数を予め算出しておき、次に、
該月別温度係数に月間受光面日射量(KWh)と太陽電池定格容量を掛けて月間発電量を算出し、年間集計して年間太陽光発電量を計算する方法において、
太陽電池受光面の日射強度と太陽電池温度および太陽電池特性値から太陽電池電力を算出する過程で、
太陽電池基本式
I=IL-IO*{exp(q(V+RsI)/nKoT)-1}-(V+RsI)/Rsh
IO=CoT3 exp(-qEg/nKoT)
ここに、
I :出力電流[A] Co :飽和電流温度係数
V :出力電圧[V] Eg :エネルギーギャップ[eV]
IL :光起電流[A] T :太陽電池素子絶対温度[K]
IO :飽和電流[A] Ko :ボルツマン定数[J/K]
Rs :直流抵抗[Ω] q :電子の電荷量[C]
Rsh :並列抵抗[Ω]
n :接合定数
における基本特性値(IL,Co,n,Rsh,Rs)のそれぞれについて、a℃、b℃、c℃の値を求め、
それぞれのa℃、b℃、c℃での値を補間することにより指定温度におけるそれぞれの基本特性(IL,Co,n,Rsh,Rs)を求め、再び太陽電池基本式を使い
指定した日射強度、太陽電池温度における電圧−電流カーブ(I-Vカーブ) を作成し、このI-Vカーブ 上のPmax点または指定電圧における電力を求める方法
を使うことを特徴とする年間太陽光発電量シミュレーション計算方法。
Monthly power generation from the solar radiation intensity calculated from the solar radiation intensity / direct ratio, solar cell installation orientation / tilt angle, etc., and the outside air temperature / wind speed / photosensitive solar radiation at the target spot. Calculate and aggregate monthly, then
A monthly temperature coefficient is calculated in advance by dividing the monthly power generation amount (KWh) by the monthly light receiving surface solar radiation amount (KWh) and the solar cell rated capacity,
In the method of calculating the monthly photovoltaic power generation amount by multiplying the monthly temperature coefficient by the monthly light receiving surface solar radiation amount (KWh) and the solar cell rated capacity,
In the process of calculating solar cell power from the solar radiation intensity of the solar cell light receiving surface, the solar cell temperature and the solar cell characteristic value,
Solar cell basic formula
I = IL-IO * {exp (q (V + RsI) / nKoT) -1}-(V + RsI) / Rsh
IO = CoT 3 exp (-qEg / nKoT)
here,
I: Output current [A] Co: Saturation current temperature coefficient V: Output voltage [V] Eg: Energy gap [eV]
IL: Photovoltaic current [A] T: Solar cell element absolute temperature [K]
IO: Saturation current [A] Ko: Boltzmann constant [J / K]
Rs: DC resistance [Ω] q: Charge amount of electrons [C]
Rsh: Parallel resistance [Ω]
n: For each of the basic characteristic values (IL, Co, n, Rsh, Rs) in the junction constant, obtain values of a ° C., b ° C., and c ° C.,
Interpolate the values at a ° C, b ° C, and c ° C to obtain the basic characteristics (IL, Co, n, Rsh, Rs) at the specified temperature, and again use the solar cell basic formula to specify the solar radiation intensity. An annual photovoltaic power generation simulation calculation method characterized by using a method of creating a voltage-current curve (IV curve) at a solar cell temperature and obtaining power at a Pmax point or a specified voltage on the IV curve.
対象地点の日射量・直達比率、太陽電池設置方位・傾斜角などから計算した受光面日射強度と、対象地点の外気温・風速・受光面日射から計算した太陽電池温度から月別時刻別発電量を算出して月間集計し、次に、
該月間発電量(KWh)を月間受光面日射量(KWh)と太陽電池定格容量で除して月別温度係数を予め算出しておき、次に、
該月別温度係数に月間受光面日射量(KWh)と太陽電池定格容量を掛けて月間発電量を算出し、年間集計して年間太陽光発電量を計算する方法において、
太陽電池受光面の日射強度と太陽電池温度および太陽電池特性値から太陽電池電力を算出する過程で、
太陽電池の特性値(Isc,Iop,Vop,Voc) から基準状態の電圧−電流カーブを作成し、この電圧−電流カーブから日射・温度の変換式により指定日射強度、指定太陽電池温度における電圧−電流カーブ(I-Vカーブ) を作成し、
このI-Vカーブ 上のPmax点または指定電圧における電力を求める方法
を使うことを特徴とする年間太陽光発電量シミュレーション計算方法。
Monthly power generation from the solar radiation intensity calculated from the solar radiation intensity / direct ratio, solar cell installation orientation / tilt angle, etc., and the outside air temperature / wind speed / photosensitive solar radiation at the target spot. Calculate and aggregate monthly, then
A monthly temperature coefficient is calculated in advance by dividing the monthly power generation amount (KWh) by the monthly light receiving surface solar radiation amount (KWh) and the solar cell rated capacity,
In the method of calculating the monthly photovoltaic power generation amount by multiplying the monthly temperature coefficient by the monthly light receiving surface solar radiation amount (KWh) and the solar cell rated capacity,
In the process of calculating solar cell power from the solar radiation intensity of the solar cell light receiving surface, the solar cell temperature and the solar cell characteristic value,
Create a voltage-current curve in the standard state from the solar cell characteristic values (Isc, Iop, Vop, Voc). From this voltage-current curve, convert the solar radiation and temperature into the specified solar radiation intensity and the voltage at the specified solar battery temperature. Create a current curve (IV curve)
An annual photovoltaic power generation simulation calculation method characterized by using a method of obtaining power at a Pmax point or a specified voltage on the IV curve.
対象地点の月平均1日合計日射量・月平均直達比率、太陽電池設置方位・傾斜角、経緯度、太陽赤緯から計算した月ごと時刻別受光面日射強度と、対象地点の外気温・風速・受光面日射から計算した月ごと時刻別太陽電池温度から月別時刻別発電量を算出して月間集計し、次に、
該月間発電量(KWh)を、単位面積当り太陽電池受光面日射量(KWh/ m2)と太陽電池定格容量(kw/kw/ m2)で除して月別温度係数を算出し、次に、
該月別温度係数に月間受光面日射量(KWh/ m2)と太陽電池定格容量(kw/kw/ m2)を掛けて月間発電量を算出し、年間集計して年間太陽光発電量を計算する方法において、
太陽電池受光面の日射強度と太陽電池温度および太陽電池特性値から太陽電池電力を算出する過程で、
{01}電圧V、電流I、日射強度1kw/m2 での光起電流IL、飽和電流温度係数Co、接合定数n、並列抵抗Rsh、直列抵抗Rs、太陽電池温度T (絶対温度)を含んだ
関数:Func(V,I,IL,Co,n,Rsh,Rs,T) = IL - CoT3 exp(-qEg/nk0T)*(exp( q*(V+Rs*I)/(n*k0*T) )-1) - (V+Rs*I)/ Rsh - I を作成し、つぎに、
{02}該関数Func(V,I,IL,Co,n,Rsh,Rs,T)を変数Vで微分した
関数:Dif(V,I,IL,Co,n,Rsh,Rs,T)を作成し、
{03}太陽電池の基準状態(太陽電池温度Ta(298K(ta=25℃))、日射強度Ea(1kw/m2 )) での仕様値である、短絡電流Isca、最適電流Iopa −最適電圧Vopa 、開放電圧Vocaの点P1(0,Isca),P2(Vopa,Iopa),P3(Voca,0)を選択し、
{04}前記関数Func(V,I,IL,Co,n,Rsh,Rs,T)= 0の太陽電池温度Tに基準状態の温度Ta(298K),直列抵抗Rsに基準温度での値Rsa,および前記P1,P2,P3の点の値を代入し、IL,Co,n,Rshを未知数とする
関係式:Func(0,Isca,IL,Co,n,Rsh,Rsa,Ta)= 0,
関係式:Func(Voca,0,IL,Co,n,Rsh,Rsa,Ta)= 0,
関係式:Func(Vopa,Iopa,IL,Co,n,Rsh,Rsa,Ta)= 0を作成し、
{05}前記関数Dif(V,I,IL,Co,n,Rsh,Rs,T)= 0 に、基準状態の温度Ta(298K)、直列抵抗Rsに基準温度での値Rsa,および前記点P2の値(Vopa,Iopa) を代入して、IL,Co,n,Rshを未知数とする、
関係式:Dif(Vopa,Iopa,IL,Co,n,Rsh,Rsa,Ta)= 0を作成し、つぎに、
{06}前記4つの関係式:Func(0,Isca,IL,Co,n,Rsh,Rsa,Ta)= 0,Func(Voca,0,IL,Co,n,Rsh,Rsa,Ta)= 0,Func(Vopa,Iopa,IL,Co,n,Rsh,Rsa,Ta)= 0,Dif(Vopa,Iopa,IL,Co,n,Rsh,Rsa,Ta)= 0 を満たす解A(ILa,Coa,na,Rsha)を、非線形解法のプログラムによって算出し、つぎに、
{07}前記関数:Func(V,I,IL,Co,n,Rsh,Rs,T)= 0のIL,Co,n,Rshに、前記解A(ILa,Coa,na,Rsha) を代入して、さらにTに基準状態の温度Ta(298K)および直列抵抗Rsに値Rsaを代入し、変数V,Iの関係式:Func(V,I,ILa,Coa,na,Rsha,Rsa,Ta)= 0を作成し、
{08}この式を再び非線形解法のプログラムにより約40〜50点のVに対するIの解を求め、基準状態における電圧(V)−電流(I)および電圧(V)−電力(P)(電力(P)= 電圧(V)×電流(I))の関係の点(約40〜50点)を求め、これらの点を結んだ電圧V-電流Iカーブ(I-V カーブ),電圧V-電力Pカーブ(P-V カーブ)を作成し、つぎに、
{09}前記太陽電池の日射強度Eb(ここでは1kw/m2)、太陽電池温度Tb(絶対温度:Tb(K)=tb(℃)+273)における電圧Vb,電流Ibを求めるため、前記太陽電池の基準状態における日射強度Ea(1kw/m2 )、太陽電池温度Ta(298K:絶対温度:Ta=ta+273)における短絡電流Isca,直列抵抗Rsa,温度が1℃変化したときの前記短絡電流Isc の変動値α、温度が1℃変化したときの前記開放電圧Voc の変動値β、曲線補正因子Kとする
変換式(Va,Ia)→(Vb,Ib):
Ib = Ia + α*(tb - ta)
Vb = Va + β*(tb - ta) - Rsa*(Ib - Ia) - K*Ib*(tb - ta) を作成し、これに前記{08}で作成した電圧−電流の各点またはそれを結んだI-V カーブ上の各点をIa,Va値として使用し日射強度Eb(ここでは1kw/m2 )、太陽電池温度Tb(K)における各点(電圧Vb-電流Ib:約40〜50点)を求め、これらの点を結んだI-V カーブ,P-V カーブを作成し、つぎに、
{10}前記{09}で作成したI-V カーブ上から、近接しない任意の5点を選択し、これらの点(VQ1,IQ1),(VQ2,IQ2),(VQ3,IQ3),(VQ4,IQ4),(VQ5,IQ5) を前記関係式:Func(V,I,IL,Co,n,Rsh,Rs,Tb)= 0の変数V,I、に代入して、IL,Co,n,Rsh,Rsを未知数とする、
関係式:Func(VQ1,IQ1,IL,Co,n,Rsh,Rs,Tb)= 0,
関係式:Func(VQ2,IQ2,IL,Co,n,Rsh,Rs,Tb)= 0,
関係式:Func(VQ3,IQ3,IL,Co,n,Rsh,Rs,Tb)= 0,
関係式:Func(VQ4,IQ4,IL,Co,n,Rsh,Rs,Tb)= 0,
関係式:Func(VQ5,IQ5,IL,Co,n,Rsh,Rs,Tb)= 0を作成し、該5つの関係式の
解B(ILb,Cob,nb,Rshb,Rsb)を、非線形解法のプログラムによって算出し、つぎに、
{11}前記太陽電池の日射強度Ec(ここでは1kw/m2 ),太陽電池温度Tc (絶対温度:Tc(K)=tc(℃)+273)における電圧Vc,電流Icの関係についても前記{09}と同様に、
変換式(Va,Ia)→(Vc,Ic):
Ic = Ia + α*(tc - ta)
Vc = Va + β*(tc - ta) - Rsa*(Ic - Ia) - K*Ic*(tc - ta)を使い I-V カーブ,P-V カーブを作成し、
{12}前記{11}で作成したI-V カーブ上から近接しない任意の5点を選択し、これらの値(VR1,IR1),(VR2,IR2),(VR3,IR3),(VR4,IR4),(VR5,IR5) を前記関係式:Func(V,I,IL,Co,n,Rsh,Rs,Tc)= 0の変数V,Iに代入して、IL,Co,n,Rsh,Rsを未知数とする、
関係式:Func(VR1,IR1,IL,Co,n,Rsh,Rs,Tc)= 0,
関係式:Func(VR2,IR2,IL,Co,n,Rsh,Rs,Tc)= 0,
関係式:Func(VR3,IR3,IL,Co,n,Rsh,Rs,Tc)= 0,
関係式:Func(VR4,IR4,IL,Co,n,Rsh,Rs,Tc)= 0,
関係式:Func(VR5,IR5,IL,Co,n,Rsh,Rs,Tc)= 0
を作成し、該5つの関係式の解C(ILc,Coc,nc,Rshc,Rsc)を、非線形解法のプログラムによって、算出し、つぎに、
{13}指定した(すなわち月ごと各時刻における)日射強度Em, 太陽電池温度tmを取り込み、
{14}基準状態での前記温度ta(摂氏25℃:絶対温度Ta(K)=ta(℃)+273) における前記{06}の解A(ILa,Coa,na,Rsha)、前記温度tb(℃:Tb(K)=tb(℃)+273) における前記{10}の解B(ILb,Cob,nb,Rshb,Rsb)、前記温度tc(摂氏:Tc=tc+273) における前記{12}の解C(ILc,Coc,nc,Rshc,Rsc)および入力値Rsa のそれぞれ(IL,Co,n,Rsh,Rs)に関して3点について曲線補間して、指定温度tmでの特性値M(ILm,Com,nm,Rshm,Rsm) を算出し、つぎに、
{15}ILm を指定された日射強度EmによりILm=ILm×Em÷Ea (Ea=1(KW/m2))により補正した後、前記関係式:Func(V,I,IL,Co,n,Rsh,Rs,T)=0にILm,Com,nm,Rshm,Rsmを代入して、Func(V,I,ILm,Com,nm,Rshm,Rsm,Tm)=0 を作成し、電圧(V)-電流(I)の関係(約40〜50点)を非線形解法のプログラムによって求め、電圧(V)- 電流(I)の関係またはそれを結んだI-V カーブ,P-V カーブを作成し、
{16}このI-Vカーブ 上のPmax点の電力またはパラメータとして指定した電圧における電力を求める方法を
使うことを特徴とする年間太陽光発電量シミュレーション計算方法。
Monthly average daily solar radiation amount / monthly average direct rate, solar cell installation direction / tilt angle, longitude / latitude, solar declination calculated from the time of day, and the outside temperature / wind speed of the target point.・ Calculate the amount of power generation by time from the solar cell temperature by month calculated from the solar radiation on the light receiving surface and total the month,
Calculate the monthly temperature coefficient by dividing the monthly power generation (KWh) by the solar cell light receiving surface solar radiation (KWh / m 2 ) and solar cell rated capacity (kw / kw / m 2 ) per unit area, ,
Calculate the monthly power generation by multiplying the monthly temperature coefficient by the amount of solar radiation on the light-receiving surface (KWh / m 2 ) and the rated capacity of the solar cell (kw / kw / m 2 ). In the way to
In the process of calculating solar cell power from the solar radiation intensity of the solar cell light receiving surface, the solar cell temperature and the solar cell characteristic value,
{01} Including voltage V, current I, photovoltaic current IL at solar radiation intensity 1 kw / m 2 , saturation current temperature coefficient Co, junction constant n, parallel resistance Rsh, series resistance Rs, solar cell temperature T (absolute temperature) Function: Func (V, I, IL, Co, n, Rsh, Rs, T) = IL-CoT 3 exp (-qEg / nk0T) * (exp (q * (V + Rs * I) / (n * k0 * T)) -1)-(V + Rs * I) / Rsh-I, then
{02} A function obtained by differentiating the function Func (V, I, IL, Co, n, Rsh, Rs, T) with a variable V: Dif (V, I, IL, Co, n, Rsh, Rs, T) make,
{03} Solar cell reference conditions (solar cell temperature Ta (298K (ta = 25 ° C)), solar radiation intensity Ea (1kw / m 2 )), short circuit current Isca, optimum current Iopa-optimum voltage Select Vopa, open voltage Voca point P1 (0, Isca), P2 (Vopa, Iopa), P3 (Voca, 0),
{04} The function Func (V, I, IL, Co, n, Rsh, Rs, T) = 0, the solar cell temperature T, the reference state temperature Ta (298 K), the series resistance Rs, the value Rsa at the reference temperature , And the values of the points P1, P2, P3, and IL, Co, n, Rsh as an unknown relational expression: Func (0, Isca, IL, Co, n, Rsh, Rsa, Ta) = 0 ,
Relational expression: Func (Voca, 0, IL, Co, n, Rsh, Rsa, Ta) = 0,
Formula: Func (Vopa, Iopa, IL, Co, n, Rsh, Rsa, Ta) = 0
{05} The function Dif (V, I, IL, Co, n, Rsh, Rs, T) = 0, the reference state temperature Ta (298 K), the series resistance Rs, the value Rsa at the reference temperature, and the point Substituting the value of P2 (Vopa, Iopa) and making IL, Co, n, Rsh unknown
Create a relation: Dif (Vopa, Iopa, IL, Co, n, Rsh, Rsa, Ta) = 0, then
{06} The four relational expressions: Func (0, Isca, IL, Co, n, Rsh, Rsa, Ta) = 0, Func (Voca, 0, IL, Co, n, Rsh, Rsa, Ta) = 0 , Func (Vopa, Iopa, IL, Co, n, Rsh, Rsa, Ta) = 0, Dif (Vopa, Iopa, IL, Co, n, Rsh, Rsa, Ta) = 0 satisfying solution A (ILa, Coa , na, Rsha) is calculated by a nonlinear solution program, then
{07} The function: Substituting the solution A (ILa, Coa, na, Rsha) into IL, Co, n, Rsh with Func (V, I, IL, Co, n, Rsh, Rs, T) = 0 Then, substitute the value Rsa for the reference state temperature Ta (298K) and the series resistance Rs for T, and the relational expression of variables V and I: Func (V, I, ILa, Coa, na, Rsha, Rsa, Ta ) = 0
{08} This equation is again solved by a non-linear solution program to obtain a solution of I for V of about 40-50 points, and voltage (V) -current (I) and voltage (V) -power (P) (power) in the reference state (P) = voltage (V) x current (I)) relationship points (about 40-50 points), voltage V-current I curve (IV curve), voltage V-power P connecting these points Create a curve (PV curve), then
{09} In order to obtain the solar radiation intensity Eb (here 1 kw / m 2 ), solar cell temperature Tb (absolute temperature: Tb (K) = tb (° C.) + 273) of the solar cell, the solar cell Solar radiation intensity Ea (1 kw / m 2 ) in the standard state of the battery, short circuit current Isca, series resistance Rsa at the solar cell temperature Ta (298 K: absolute temperature: Ta = ta + 273), the short circuit current Isc when the temperature changes by 1 ° C. Conversion formula (Va, Ia) → (Vb, Ib), where the fluctuation value α of the current, the fluctuation value β of the open circuit voltage Voc when the temperature changes by 1 ° C., and the curve correction factor K:
Ib = Ia + α * (tb-ta)
Vb = Va + β * (tb-ta)-Rsa * (Ib-Ia)-K * Ib * (tb-ta) is created, and each voltage-current point created in {08} above or Each point on the IV curve connecting the two is used as the Ia and Va values, and the solar radiation temperature Eb (here 1 kw / m 2 ), each point at the solar cell temperature Tb (K) (voltage Vb-current Ib: about 40-50 Point), create an IV curve and PV curve connecting these points, and then
{10} From the IV curve created in {09} above, select any five points that are not close to each other, and these points (VQ1, IQ1), (VQ2, IQ2), (VQ3, IQ3), (VQ4, IQ4 ), (VQ5, IQ5) are substituted into variables V, I of the above relational expression: Func (V, I, IL, Co, n, Rsh, Rs, Tb) = 0, and IL, Co, n, Rsh , Rs as unknown
Relational expression: Func (VQ1, IQ1, IL, Co, n, Rsh, Rs, Tb) = 0,
Relational expression: Func (VQ2, IQ2, IL, Co, n, Rsh, Rs, Tb) = 0,
Relational expression: Func (VQ3, IQ3, IL, Co, n, Rsh, Rs, Tb) = 0,
Relational expression: Func (VQ4, IQ4, IL, Co, n, Rsh, Rs, Tb) = 0,
Relational expression: Func (VQ5, IQ5, IL, Co, n, Rsh, Rs, Tb) = 0 is created, and the solution B (ILb, Cob, nb, Rshb, Rsb) of the five relational expressions is generated by a nonlinear solution method. And then
{11} The relationship between the voltage Vc and the current Ic at the solar radiation intensity Ec (here 1 kw / m 2 ) and solar cell temperature Tc (absolute temperature: Tc (K) = tc (° C.) + 273) 09},
Conversion formula (Va, Ia) → (Vc, Ic):
Ic = Ia + α * (tc-ta)
Create IV and PV curves using Vc = Va + β * (tc-ta)-Rsa * (Ic-Ia)-K * Ic * (tc-ta)
{12} Select any five points that are not close to each other on the IV curve created in {11}, and these values (VR1, IR1), (VR2, IR2), (VR3, IR3), (VR4, IR4) , (VR5, IR5) is substituted into variables V and I of the relational expression: Func (V, I, IL, Co, n, Rsh, Rs, Tc) = 0, and IL, Co, n, Rsh, Rs Is an unknown,
Relational expression: Func (VR1, IR1, IL, Co, n, Rsh, Rs, Tc) = 0,
Relational expression: Func (VR2, IR2, IL, Co, n, Rsh, Rs, Tc) = 0,
Relational expression: Func (VR3, IR3, IL, Co, n, Rsh, Rs, Tc) = 0,
Relational expression: Func (VR4, IR4, IL, Co, n, Rsh, Rs, Tc) = 0,
Relational expression: Func (VR5, IR5, IL, Co, n, Rsh, Rs, Tc) = 0
And the solution C (ILc, Coc, nc, Rshc, Rsc) of the five relational expressions is calculated by a non-linear solution program,
{13} Incorporates the specified solar radiation intensity Em and solar cell temperature tm (ie at each time of the month)
{14} The solution A (ILa, Coa, na, Rsha) of {06} at the temperature ta (25 ° C .: absolute temperature Ta (K) = ta (° C.) + 273) in the reference state, the temperature tb ( ° C: solution B (ILb, Cob, nb, Rshb, Rsb) of {10} at Tb (K) = tb (° C) +273), solution of {12} at temperature tc (Celsius: Tc = tc + 273) C (ILc, Coc, nc, Rshc, Rsc) and input value Rsa (IL, Co, n, Rsh, Rs) are interpolated at three points, and characteristic value M (ILm, Com at specified temperature tm) is interpolated. , nm, Rshm, Rsm), then
{15} after correction by IL 'm = ILm × Em by the specified irradiance Em a ÷ Ea (Ea = 1 (KW / m 2)) ILm, the relationship: Func (V, I, IL , Co , n, Rsh, Rs, T) = 0, substitute IL m, Com, nm, Rshm, Rsm and Func (V, I, IL m, Com, nm, Rshm, Rsm, Tm) = 0 The voltage (V) -current (I) relationship (about 40-50 points) is obtained by a nonlinear solution program, and the voltage (V) -current (I) relationship or the IV curve, PV Create a curve
{16} An annual photovoltaic power generation simulation calculation method using a method of obtaining the power at the Pmax point on the IV curve or the voltage specified as a parameter.
対象地点の月平均1日合計日射量・月平均直達比率、太陽電池設置方位・傾斜角、経緯度太陽赤緯から計算した月ごと時刻別受光面日射強度と、対象地点の外気温・風速・受光面日射から計算した月ごと時刻別太陽電池温度から月別時刻別発電量を算出して月間集計し、次に、
該月間発電量(KWh)を、単位面積当り太陽電池受光面日射量(KWh/ m2)と太陽電池定格容量(kw/kw/ m2)で除して月別温度係数を算出し、次に、
該月別温度係数に月間受光面日射量(KWh/ m2)と太陽電池定格容量(kw/kw/ m2)を掛けて月間発電量を算出し、年間集計して年間太陽光発電量を計算する方法において、
太陽電池受光面の日射強度と太陽電池温度および太陽電池特性値から太陽電池電力を算出する過程で、
{17}指定した(すなわち月ごと各時刻における)日射強度Em, 太陽電池温度tmを取り込み、
{18}前記{01}〜{08}により作成した基準状態(日射強度1kw/m2 ,太陽電池温度25℃)における電圧Va−電流Ia値(約40〜50点)について、前記{09}のIsca,α,β,Rsa,kを使って
変換式(Va,Ia)→(Vk,Ik):
Ik = Ia + Isca*(Em/Ea - 1) + α*(tm - ta)
Vk = Va + β*(tm - ta) - Rsa*(Ik - Ia) - K*Ik*(tm - ta)
によって変換し、これらの電圧V-電流I値または、それらを結んだI-V カーブ,P-V カーブを作成し、
{19}このI-Vカーブ 上のPmax点の電力またはパラメータとして指定した電圧における電力を求め、この値を各月の時刻ごとの電力値として、月・年間積算して月・年間発電量を求める方法を使う
ことを特徴とする年間太陽光発電量シミュレーション計算方法。
Monthly average daily irradiance of the target site, monthly average direct rate, solar cell installation direction / tilt angle, monthly solar radiation intensity calculated from the longitude and latitude and solar latitude, and the outside temperature, wind speed, Calculate the amount of power generation by time from the solar cell temperature by month calculated from the solar radiation on the light-receiving surface, total the month,
Calculate the monthly temperature coefficient by dividing the monthly power generation (KWh) by the solar cell light receiving surface solar radiation (KWh / m 2 ) and solar cell rated capacity (kw / kw / m 2 ) per unit area, ,
Calculate the monthly power generation by multiplying the monthly temperature coefficient by the amount of solar radiation on the light-receiving surface (KWh / m 2 ) and the rated capacity of the solar cell (kw / kw / m 2 ). In the way to
In the process of calculating solar cell power from the solar radiation intensity of the solar cell light receiving surface, the solar cell temperature and the solar cell characteristic value,
{17} Incorporates the specified solar radiation intensity Em and solar cell temperature tm (ie at each time of the month)
{18} With respect to the voltage Va-current Ia value (about 40 to 50 points) in the reference state (intensity of solar radiation 1 kw / m 2 , solar cell temperature 25 ° C.) prepared by {01} to {08}, {09} Using Isca, α, β, Rsa, k, the conversion formula (Va, Ia) → (Vk, Ik):
Ik = Ia + Isca * (Em / Ea-1) + α * (tm-ta)
Vk = Va + β * (tm-ta)-Rsa * (Ik-Ia)-K * Ik * (tm-ta)
To create these voltage V-current I values or the IV curve and PV curve connecting them,
{19} Method of obtaining power at the Pmax point on this IV curve or power at the voltage specified as a parameter, and using this value as the power value at the time of each month, summing the month and year to obtain the monthly and annual power generation An annual photovoltaic power generation simulation calculation method characterized by using the
請求項1、2、3、4記載の太陽光発電量シミュレーション計算方法の処理プログラムを記録したコンピュータ読み取り可能なデータ記憶媒体。
A computer-readable data storage medium storing a processing program for a photovoltaic power generation amount simulation calculation method according to claim 1.
JP2003280898A 2003-07-28 2003-07-28 Computation method of photovoltaic power generation simulation and computer-readable data storage medium recording computation program Pending JP2005051014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003280898A JP2005051014A (en) 2003-07-28 2003-07-28 Computation method of photovoltaic power generation simulation and computer-readable data storage medium recording computation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003280898A JP2005051014A (en) 2003-07-28 2003-07-28 Computation method of photovoltaic power generation simulation and computer-readable data storage medium recording computation program

Publications (1)

Publication Number Publication Date
JP2005051014A true JP2005051014A (en) 2005-02-24

Family

ID=34266583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003280898A Pending JP2005051014A (en) 2003-07-28 2003-07-28 Computation method of photovoltaic power generation simulation and computer-readable data storage medium recording computation program

Country Status (1)

Country Link
JP (1) JP2005051014A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010106582A1 (en) * 2009-03-18 2010-09-23 株式会社パスコ Method and device for evaluation of solar radiation intensity
JP2012160498A (en) * 2011-01-31 2012-08-23 Hitachi Ltd Characteristic calculation method for solar cell and photovoltaic power generation system
KR101487818B1 (en) 2008-08-21 2015-01-29 엘지이노텍 주식회사 Method for Interpolating Virtual-Implemented Apparatus of Solar Cell
US9046234B2 (en) 2011-07-20 2015-06-02 Sharp Kabushiki Kaisha Simulated solar irradiation device and spectral adjustment method thereof
JP2017058202A (en) * 2015-09-15 2017-03-23 北陸電力株式会社 Estimation method of quantity of solar irradiation

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101487818B1 (en) 2008-08-21 2015-01-29 엘지이노텍 주식회사 Method for Interpolating Virtual-Implemented Apparatus of Solar Cell
WO2010106582A1 (en) * 2009-03-18 2010-09-23 株式会社パスコ Method and device for evaluation of solar radiation intensity
JP2010217107A (en) * 2009-03-18 2010-09-30 Pasuko:Kk Method and device for evaluating of solar radiation intensity
CN102105818A (en) * 2009-03-18 2011-06-22 株式会社博思科 Method and device for evaluation of solar radiation intensity
US8019117B2 (en) 2009-03-18 2011-09-13 Pasco Corporation Method and apparatus for evaluating solar radiation amount
JP2012160498A (en) * 2011-01-31 2012-08-23 Hitachi Ltd Characteristic calculation method for solar cell and photovoltaic power generation system
DE112012000396T5 (en) 2011-01-31 2013-10-02 Hitachi, Ltd. Method for calculating the properties of a solar cell and solar power generation plant
US9651631B2 (en) 2011-01-31 2017-05-16 Hitachi, Ltd. Method of calculating characteristics of solar cell and solar power generation system
DE112012000396B4 (en) 2011-01-31 2022-08-04 Hitachi, Ltd. Procedure for calculating the properties of a solar cell and solar power generation system
US9046234B2 (en) 2011-07-20 2015-06-02 Sharp Kabushiki Kaisha Simulated solar irradiation device and spectral adjustment method thereof
JP2017058202A (en) * 2015-09-15 2017-03-23 北陸電力株式会社 Estimation method of quantity of solar irradiation

Similar Documents

Publication Publication Date Title
Yaqoob et al. Comparative study with practical validation of photovoltaic monocrystalline module for single and double diode models
JP4799838B2 (en) Method for estimating and evaluating the amount of power generated by a solar power generation system
Gholami et al. Step-by-step guide to model photovoltaic panels: An up-to-date comparative review study
Keshavani et al. Modelling and simulation of photovoltaic array using Matlab/Simulink
Zielińska et al. Modelling of photovoltaic cells in variable conditions of temperature and intensity of solar insolation as a method of mapping the operation of the installation in real conditions
Adak et al. Development software program for extraction of photovoltaic cell equivalent circuit model parameters based on the Newton–Raphson method
Esmaeili Shayan et al. Modeling the Performance of Amorphous Silicon in Different Typologies of Curved Building-integrated Photovoltaic Conditions
JP2002270877A (en) Method for simulation-calculating solarlight generating amount and computer readable data storage medium with calculating program recorded therein
Nikhil et al. An improved simulation model for photovoltaic cell
Patel et al. Current-matching erases the anticipated performance gain of next-generation two-terminal Perovskite-Si tandem solar farms
JP2005051014A (en) Computation method of photovoltaic power generation simulation and computer-readable data storage medium recording computation program
Bayat et al. Energy, exergy and exergoeconomic analysis of a solar photovoltaic module
Peña et al. A new method for current–voltage curve prediction in photovoltaic modules
ÇİNİCİ et al. Comparison study in terms of the results of photovoltaic solar energy systems designed with PVsyst and MATLAB Simulink software
Tina et al. Energy assessment of enhanced fixed low concentration photovoltaic systems
Morcillo-Herrera et al. Method to calculate the electricity generated by a photovoltaic cell, based on its mathematical model simulations in MATLAB
Cibira PV cell electrical parameters dynamic modelling based on double-diode five-parameter reduced forms
Kim Solar energy generation forecasting and power output optimization of utility scale solar field
Rahman et al. Evaluation of power performance of solar module using two diode model with MATLAB simulation
CHUKWUKA et al. Technical and economic modeling of the 2.5 kW grid-tie residential photovoltaic system
Zhang et al. Research on general model and parameter characteristics of photovoltaic array
Zinßer et al. Holistic yield modeling, top-down loss analysis, and efficiency potential study of thin-film solar modules
Malik et al. Performance estimation of a Poly-Crystalline solar PV system
JP2016187244A (en) Photovoltaic power generation simulation calculation program in field
Tonita et al. Quantifying spectral albedo effects on bifacial photovoltaic module measurements and system model predictions