JP2002270877A - Method for simulation-calculating solarlight generating amount and computer readable data storage medium with calculating program recorded therein - Google Patents

Method for simulation-calculating solarlight generating amount and computer readable data storage medium with calculating program recorded therein

Info

Publication number
JP2002270877A
JP2002270877A JP2001071916A JP2001071916A JP2002270877A JP 2002270877 A JP2002270877 A JP 2002270877A JP 2001071916 A JP2001071916 A JP 2001071916A JP 2001071916 A JP2001071916 A JP 2001071916A JP 2002270877 A JP2002270877 A JP 2002270877A
Authority
JP
Japan
Prior art keywords
rsh
curve
temperature
voltage
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001071916A
Other languages
Japanese (ja)
Inventor
Atsushi Iga
淳 伊賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001071916A priority Critical patent/JP2002270877A/en
Publication of JP2002270877A publication Critical patent/JP2002270877A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that since a general method for drawing I-V, P-V curves in a designated solar radiation intensity/solar battery temperature from characteristics values (Isc, Iop, Vop, Voc, α, β, Rs, K) in a reference state (solar radiation intensity 1 kw/m<2> , solar battery temperature of 25 deg.C) of the solar battery is not established, a method for accurately calculating the monthly and yearly solarlight generating amounts by simulating for general purpose is not sufficiently established. SOLUTION: A method for calculating by simulating the solarlight generating amount comprises the steps of (1) obtaining basic characteristic value (IL, Co, n, Rsh, Rs) at 20, b and c deg.C as a general purpose method for forming the I-V curve at the solar radiation intensity, solar battery temperature designated from the I-V curve of the reference state, obtaining the basic characteristic values at the designated temperature by a curve interpolation, obtaining the values by a Newton method by using these values, and forming the I-V curve. Or, the method comprises the steps of (2) converting the points of the I-V curve of the reference state via a 'practical I-V curve conversion formula', and forming the I-V curve. The generating amount is calculated by simulating by applying these two methods to a practical use and as a core part of the 'solarlight generating amount simulating calculating program'.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】太陽電池は、図7のごとく、
太陽の光エネルギーを電気エネルギーに直接変換するも
のである。すなわち光電効果の一種である光起電力効果
を応用し、起電力を発生させるものである。太陽電池中
に適当なエネルギーを持った光(光子)が入射すると、
自由な電子と正孔が発生する。太陽電池半導体中のpn
接合近傍に達した電子と正孔は、それぞれn型半導体
側、p型半導体側に拡散し、両電極部に集まるので、電
力が取り出せ、電圧および電流が発生するというわけで
ある。本発明は、実際に設置した太陽電池の受光面に入
射する月・年間日射エネルギー量の予測計算に加え、そ
の太陽電池の年間発電量を正確に予測計算(シミュレー
ション計算)する方法に関する。一般に月・年間の太陽
電池発電量を正確に予測計算するためには、各月・各時
刻におけるその太陽電池の電圧−電流カーブ(I-Vカーフ゛)
を描き、このI-V カーブを使い最大電力または運転電圧
における電力を求め積算して求めることが必要である。
本発明は、太陽電池におけるI-Vカーフ゛ およびP-Vカーフ゛ を
作成する方法およびこの方法を使った太陽光発電量シミ
ュレーション計算方法に関する。
BACKGROUND OF THE INVENTION As shown in FIG.
It converts solar light energy directly into electrical energy. That is, an electromotive force is generated by applying a photovoltaic effect, which is a kind of photoelectric effect. When light (photon) with appropriate energy enters the solar cell,
Free electrons and holes are generated. Pn in solar cell semiconductor
The electrons and holes that have reached the vicinity of the junction diffuse to the n-type semiconductor side and the p-type semiconductor side, respectively, and collect at both electrode portions, so that power can be taken out and a voltage and a current are generated. The present invention relates to a method for accurately predicting (simulating) the annual power generation of a solar cell, in addition to predicting and calculating the monthly and annual solar energy incident on the light receiving surface of a solar cell actually installed. In general, in order to accurately predict and calculate the amount of solar cell power generated each month and year, the voltage-current curve (IV kerf)
It is necessary to obtain the maximum power or the power at the operating voltage by using this IV curve and to integrate and obtain it.
The present invention relates to a method for producing an IV kerf and a PV kerf in a solar cell and a method for calculating a solar power generation amount using the method.

【0002】[0002]

【従来の技術】太陽電池が受ける日射エネルギーを年間
シミュレーション計算した例としては新エネルギー総合
開発機構の委託業務成果報告書((財)日本気象協会:
「太陽光発電システム実用化技術開発周辺技術の研究開
発『発電量基礎調査』」(1987))がある。しかしこの
報告書においては、受光面の日射エネルギーの計算であ
って、太陽電池の発電量まで正確にシミュレーション計
算して算出した事例はほとんど見当らない。発電量まで
を正確にシュミレーション計算した例としては、本発明
者が発表した論文、すなわち電気学会論文1(伊賀他:
「I-Vカーフ゛ 作成法を用いた太陽光発電量シミュレーショ
ン計算プログラムの開発」、電学論D115 巻6号、199
5)に見られるのみである。このように発電量までの正
確な予測計算がない理由は、指定した日射強度・太陽電
池温度におけるI-Vカーフ゛ を描く技術が十分確立していな
かったことによる。本発明者はこのI-Vカーフ゛ を描く技術
として前記の電気学会論文1に示した「実用的I-Vカーフ゛
作成法」を発明し、これを適用した発電量のシミュレー
ション計算方法を既に開発している。しかし、この論文
で示した「実用的I-Vカーフ゛ 作成法」においては、特定の
単結晶太陽電池(昭和シェル石油GL133)の基準状態で
のI-Vカーフ゛ をベースに、計算対象の太陽電池のI-Vカーフ゛
を作成しているため、他の単結晶太陽電池や多結晶、ア
モルファスなどの太陽電池まで正確に適用できるかとい
う疑問が残っている。
2. Description of the Related Art An example of an annual simulation calculation of solar radiation energy received by a solar cell is a report of a commissioned work result of the New Energy Agency (Japan Meteorological Association).
"R & D of technology for developing photovoltaic power generation systems for practical use: Basic research on power generation" (1987)). However, in this report, there is hardly any case in which the calculation of solar radiation energy on the light receiving surface is performed by accurate simulation calculation up to the power generation amount of the solar cell. As an example of accurate simulation calculation up to the power generation, a paper published by the present inventors, that is, a paper 1 of the Institute of Electrical Engineers of Japan (Iga et al .:
"Development of PV power generation simulation calculation program using IV kerf creation method", Denki Kagaku D115 vol.6,199
Only seen in 5). The reason why there is no accurate prediction calculation up to the power generation amount is that the technique for drawing the IV curve at the specified solar radiation intensity and solar cell temperature has not been sufficiently established. The present inventor has described the “practical IV kerf” as a technique for drawing this IV kerf described in the above-mentioned paper 1 of the Institute of Electrical Engineers of Japan.
We have invented a method of creating power generation and have already developed a simulation calculation method for power generation using this method. However, in the “method of preparing a practical IV kerf” described in this paper, the IV kerf of the solar cell to be calculated is based on the IV kerf of a specific single-crystal solar cell (Showa Shell Sekiyu GL133) in the standard state.
The question remains whether it can be applied to other single-crystal solar cells, polycrystalline and amorphous solar cells accurately.

【0003】[0003]

【発明が解決しようとする課題】前記のような従来の技
術の現状に鑑み、より汎用的で精度の高いI-Vカーフ゛ の作
成法を発明し、これを使った太陽光発電量のシミュレー
ション計算を実施しようとするものである。本発明で
は、指定した日射強度、太陽電池温度におけるI-Vカーフ゛
の作成方法として、計算対象太陽電池の基準状態(日射
強度1KW/m2,太陽電池温度25℃)の特性値(Isc,Iop,V
op,Voc,Rs)を使い太陽電池基本特性式を解くことにより
基本特性値(IL,Co,n,Rsh) を求め、そして基準状態のI-
Vカーフ゛ を作成している。そして、この基準状態のI-Vカーフ
゛ をもとに、次の(1) 、(2) に示す2方法により指定し
た日射強度・太陽電池温度におけるI-Vカーフ゛ を描くもの
である。 (1) 日射強度1kw/m2において、基準温度(a℃=25℃)
におけるI-Vカーフ゛から他の温度(b℃,c℃)におけるI
-Vカーフ゛ を作成し、それぞれの温度における基本特性値
(IL,Co,n,RsR,Rs)を求め、指定温度におけるこの基本
特性値を曲線補間によりそれぞれ求め、次にこれらの基
本特性値から指定温度・日射強度のI-Vカーフ゛ を作成す
る。 (2) 基準状態のI-Vカーフ゛ 上の各点について、「実用的I-
Vカーフ゛ 変換式」によって指定温度・日射強度に変換す
る。
In view of the state of the prior art as described above, a more general-purpose and accurate IV kerf preparation method was invented, and a simulation calculation of the amount of photovoltaic power generation was carried out using the method. What you want to do. In the present invention, the IV kerf at a specified solar radiation intensity and solar cell temperature is used.
As a method of creating the characteristic values, the characteristic values (Isc, Iop, V) of the reference state of the calculation target solar cell (solar intensity 1 KW / m 2 , solar cell temperature 25 ° C.)
op, Voc, Rs) to obtain the basic characteristic value (IL, Co, n, Rsh) by solving the basic characteristic equation of the solar cell.
V-curves are being created. Then, based on the IV kerf in the reference state, the IV kerf at the solar radiation intensity and solar cell temperature designated by the following two methods (1) and (2) is drawn. (1) At a solar radiation intensity of 1 kw / m 2 , the standard temperature (a ° C = 25 ° C)
From IV kerf at other temperatures (b ° C, c ° C)
-V kerf is calculated, basic characteristic values (IL, Co, n, RsR, Rs) at each temperature are obtained, and the basic characteristic values at the designated temperature are respectively obtained by curve interpolation. Then, from these basic characteristic values, Create an IV calf with the specified temperature and solar radiation intensity. (2) For each point on the IV kerf in the reference state,
V-curve conversion formula "to convert to specified temperature and solar radiation intensity.

【0004】[0004]

【課題を解決するための手段】請求項1の太陽光発電量
シミュレーション計算方法は、太陽電池基本式 I=IL-IO*{exp(q(V+RsI)/nKoT)-1}-(V+RsI)/Rsh IO=CoT3 exp(-qEg/nKoT) ここに、 I :出力電流[A] Co :飽和電流温度係数 V :出力電圧[V] Eg :エネルギーギャップ[eV] IL :光起電流[A] T :太陽電池素子絶対温度[K] IO :飽和電流[A] Ko :ボルツマン定数[J/K] Rs :直流抵抗[Ω] q :電子の電荷量[C] Rsh :並列抵抗[Ω] n :接合定数 における基本特性値(IL,Co,n,Rsh,Rs)のそれぞれについ
て、a℃、b℃、c℃の値を求め、再び太陽電池基本式
を使いそれぞれのa℃、b℃、c℃での値を補間するこ
とにより指定温度におけるそれぞれの基本特性(IL,Co,
n,Rsh,Rs)を求め、指定した日射強度、太陽電池温度に
おける電圧−電流カーブ(I-Vカーフ゛) を作成し、このI-Vカ
ーフ゛ 上のPmax点または指定電圧における電力を求め、こ
れを月・年間積算して、月・年間発電量を求めることを
特徴とする。請求項2の太陽光発電量シミュレーション
計算方法は、太陽電池の特性値(Isc,Iop,Vop,Voc) から
日射・温度の変換式により基準状態の電圧−電流カーブ
を作成し、この電圧−電流カーブから指定日射強度、指
定太陽電池温度における電圧−電流カーブ(I-Vカーフ゛) を
作成し、このI-Vカーフ゛ 上のPmax点または指定電圧におけ
る電力を求め、これを月・年間積算して、月・年間発電
量を求めることを特徴とする。請求項3の太陽光発電量
シミュレーション計算方法は請求項1の前記特徴ととも
に、{01}電圧V、電流I、日射強度1kw/m2 での光起
電流IL、飽和電流温度係数Co、接合定数n、並列抵抗Rs
h、直列抵抗Rs、太陽電池温度T (絶対温度)を含んだ
関数:Func(V,I,IL,Co,n,Rsh,Rs,T) = IL - CoT3 exp(-
qEg/nk0T)*(exp( q*(V+Rs*I)/(n*k0*T) )-1) - (V+Rs*
I)/ Rsh - I を作成し、つぎに、{02}該関数Func(V,
I,IL,Co,n,Rsh,Rs,T)を変数Vで微分した関数:Dif(V,I,
IL,Co,n,Rsh,Rs,T)を作成し、{03}太陽電池の基準状
態(太陽電池温度Ta(298K(ta=25℃))、日射強度Ea(1
kw/m2 ))での仕様値である、短絡電流Isca、最適電流I
opa−最適電圧Vopa 、開放電圧Vocaの点P1(0,Isca),P2
(Vopa,Iopa),P3(Voca,0)を選択し、{04}前記関数Func
(V,I,IL,Co,n,Rsh,Rs,T)= 0のTに基準状態の温度Ta(298
K),直列抵抗Rsに基準温度での値Rsa,および前記P1,P2,
P3の点の値を代入し、IL,Co,n,Rshを未知数とする 関係式:Func(0,Isca,IL,Co,n,Rsh,Rsa,Ta)= 0, 関係式:Func(Voca,0,IL,Co,n,Rsh,Rsa,Ta)= 0, 関係式:Func(Vopa,Iopa,IL,Co,n,Rsh,Rsa,Ta)= 0を作成
し、{05}前記関数Dif(V,I,IL,Co,n,Rsh,Rs,T)= 0
に、基準状態の温度Ta(298K)、直列抵抗Rsに基準温度
での値Rsa,および前記点P2の値(Vopa,Iopa) を代入し
て、IL,Co,n,Rshを未知数とする、関係式:Dif(Vopa,Iop
a,IL,Co,n,Rsh,Rsa,Ta)= 0を作成し、つぎに、{06}前
記4つの関係式:Func(0,Isca,IL,Co,n,Rsh,Rsa,Ta)= 0,
Func(Voca,0,IL,Co,n,Rsh,Rsa,Ta)= 0,Func(Vopa,Iopa,
IL,Co,n,Rsh,Rsa,Ta)= 0,Dif(Vopa,Iopa,IL,Co,n,Rsh,R
sa,Ta)= 0 を満たす解A(ILa,Coa,na,Rsha)を、非線形解
法のプログラムによって算出し、つぎに、{07}前記関
数:Func(V,I,IL,Co,n,Rsh,Rs,T)= 0のIL,Co,n,Rshに、
前記解A(ILa,Coa,na,Rsha) を代入して、さらにTに基
準状態の温度Ta(298K)および直列抵抗Rsに値Rsaを代入
し、変数V,Iの関係式:Func(V,I,ILa,Coa,na,Rsha,Rsa,T
a)=0を作成し、{08}この式を再び非線形解法のプログ
ラムにより約40〜50点のVに対するIの解を求め、基準状
態における電圧(V)−電流(I)および電圧(V)−電力(P)
(電力(P)= 電圧(V)×電流(I))の関係の点(約40〜50点)
を求め、これらの点を結んだ電圧V-電流Iカーブ(I-V
カーブ),電圧V-電力Pカーブ(P-V カーブ)を作成し、つ
ぎに、{09}前記太陽電池の日射強度Eb (ここでは1kw
/m2 )、太陽電池温度Tb(絶対温度:TbK=tb(℃)+273)に
おける電圧Vb,電流Ibを求めるため、前記太陽電池の基
準状態における日射強度Ea(1kw/m2 )、太陽電池温度Ta
(298K:絶対温度:Ta=ta+273)における短絡電流Isca,直
列抵抗Rsa,温度が1℃変化したときの前記短絡電流Is
c の変動値α、温度が1℃変化したときの前記開放電圧
Voc の変動値β、曲線補正因子Kとする 変換式(Va,Ia)→(Vb,Ib): Ib = Ia + α*(tb - ta) Vb = Va + β*(tb - ta) - Rsa*(Ib - Ia) - K*Ib*(tb
- ta) を作成し、これに前記{08}で作成した電圧−電
流の各点またはそれを結んだI-V カーブ上の各点をIa,V
a値として使用し日射強度Eb(1kw/m2 )、太陽電池温度Tb
(K)における各点(電圧Vb-電流Ib:約40〜50点)を求め、
これらの点を結んだI-V カーブ,P-V カーブを作成し、
つぎに、{10}前記{09}で作成したI-V カーブ上か
ら、近接しない任意の5点を選択し、これらの点(VQ1,I
Q1),(VQ2,IQ2),(VQ3,IQ3),(VQ4,IQ4),(VQ5,IQ5) を前記
関係式:Func(V,I,IL,Co,n,Rsh,Rs,Tb)= 0の変数V,I、に
代入して、IL,Co,n,Rsh,Rsを未知数とする、 関係式:Func(VQ1,IQ1,IL,Co,n,Rsh,Rs,Tb)= 0, 関係式:Func(VQ2,IQ2,IL,Co,n,Rsh,Rs,Tb)= 0, 関係式:Func(VQ3,IQ3,IL,Co,n,Rsh,Rs,Tb)= 0, 関係式:Func(VQ4,IQ4,IL,Co,n,Rsh,Rs,Tb)= 0, 関係式:Func(VQ5,IQ5,IL,Co,n,Rsh,Rs,Tb)= 0を作成
し、該5つの関係式の解B(ILb,Cob,nb,Rshb,Rsb)を、非
線形解法のプログラムによって算出し、つぎに、{11}
前記太陽電池の日射強度Ec(ここでは1kw/m2 ),太陽電
池温度Tc (絶対温度:Tc(K)=tc(℃)+273)における電圧
Vc,電流Icの関係についても前記{09}と同様に、 変換式(Va,Ia)→(Vc,Ic): Ic = Ia + α*(tc - ta) Vc = Va + β*(tc - ta) - Rsa*(Ic - Ia) - K*Ic*(tc
- ta)を使い I-V カーブ,P-V カーブを作成し、{12}
前記{11}で作成したI-V カーブ上から近接しない任意
の5点を選択し、これらの値(VR1,IR1),(VR2,IR2),(VR
3,IR3),(VR4,IR4),(VR5,IR5) を前記関係式:Func(V,I,I
L,Co,n,Rsh,Rs,Tc)= 0の変数V,Iに代入して、IL,Co,n,R
sh,Rsを未知数とする、 関係式:Func(VR1,IR1,IL,Co,n,Rsh,Rs,Tc)= 0, 関係式:Func(VR2,IR2,IL,Co,n,Rsh,Rs,Tc)= 0, 関係式:Func(VR3,IR3,IL,Co,n,Rsh,Rs,Tc)= 0, 関係式:Func(VR4,IR4,IL,Co,n,Rsh,Rs,Tc)= 0, 関係式:Func(VR5,IR5,IL,Co,n,Rsh,Rs,Tc)= 0 を作成し、該5つの関係式の解C(ILc,Coc,nc,Rshc,Rsc)
を、非線形解法のプログラムによって、算出し、つぎ
に、{13}指定した(すなわち月ごと各時刻における)
日射強度Em, 太陽電池温度tmを取り込み、{14}基準状
態での前記温度ta(摂氏25℃:絶対温度Ta(K)=ta(℃)+2
73) における前記{06}の解A(ILa,Coa,na,Rsha)、前記
温度tb(摂氏:Tb=tb+273) における前記{10}の解B(IL
b,Cob,nb,Rshb,Rsb)、前記温度tc(摂氏:Tc=tc+273) に
おける前記{12}の解C(ILc,Coc,nc,Rshc,Rsc)および入
力値Rsa のそれぞれ(IL,Co,n,Rsh,Rs)に関して3点につ
いて曲線補間して、指定温度tmでの特性値M(ILm,Com,n
m,Rshm,Rsm) を算出し、つぎに、{15}ILmを実測され
た日射強度EmによりILm=ILm×Em÷Ea(Ea=1(KW/m2 )に
より補正した後、前記関係式:Func(V,I,IL,Co,n,Rsh,R
s,T)=0にILm,Com,nm,Rshm,Rsmを代入して、Func(V,I,
ILm,Com,nm,Rshm,Rsm,Tm)=0 を作成し、電圧(V)-電流
(I) の関係(約40〜50点)を非線形解法のプログラムによ
って求め、電圧(V)-電流(I)の関係またはそれを結んだI
-V カーブ,P-V カーブを作成し、{16}このI-Vカーフ゛ 上
のPmax点の電力またはパラメータとして指定した電圧に
おける電力を求め、この値を各月時刻ごとの電力値とし
て、月・年間積算して月・年間発電量を求めることを特
徴とする。請求項4の太陽光発電量シミュレーション計
算方法は、請求項2の前記特徴とともに、{20}指定し
た(すなわち月ごと各時刻における)日射強度Em, 太陽
電池温度tmを取り込み、{21}前記{01}〜{08}によ
り作成した基準状態(日射強度1kw/m2 ,太陽電池温度25
℃)における電圧Va−電流Ia値(約40〜50点)につ
いて、前記{09}のIsca,α,β,Rsa,kを使って 変換式(Va,Ia)→(Vk,Ik): Ik = Ia + Isca*(Em/Ea - 1) + α*(tm - ta) Vk = Va + β*(tm - ta) - Rsa*(Ik - Ia) - K*Ik*(tm
- ta) によって変換し、これらの電圧V-電流I値または、それ
らを結んだI-V カーブ,P-V カーブを作成し、{22}こ
のI-Vカーフ゛ 上のPmax点の電力またはパラメータとして指
定した電圧における電力を求め、この値を各月の時刻ご
との電力値として、月・年間積算して月・年間発電量を
求めることを特徴とする。請求項5の太陽光発電量シミ
ュレーション計算方法の処理プログラムを記録したコン
ピュータ読み取り可能なデータ記憶媒体は、請求項1、
2、3、4記載の発明において、これらの方法が実施可
能な処理プログラムを含むことを特徴とする。
According to a first aspect of the present invention, there is provided a method for calculating a simulation of a solar power generation amount, wherein a basic formula of a solar cell is I = IL-IO * {exp (q (V + RsI) / nKoT) -1}-(V + RsI) / Rsh IO = CoT 3 exp (-qEg / nKoT) where I: output current [A] Co: saturation current temperature coefficient V: output voltage [V] Eg: energy gap [eV] IL: photovoltaic Current [A] T: Absolute temperature of solar cell element [K] IO: Saturation current [A] Ko: Boltzmann constant [J / K] Rs: DC resistance [Ω] q: Electric charge [C] Rsh: Parallel resistance [Ω] n: For each of the basic characteristic values (IL, Co, n, Rsh, Rs) in the junction constant, obtain the values of a ° C., b ° C., and c ° C., and use the solar cell basic formula again to obtain each a ° C. , B ° C, and c ° C, the respective basic characteristics (IL, Co,
n, Rsh, Rs), create a voltage-current curve (IV curve) at the specified solar radiation intensity and solar cell temperature, calculate the Pmax point on this IV curve, or the power at the specified voltage, and calculate this month / year. It is characterized by integrating and calculating the monthly and annual power generation. The method for calculating a simulation of the amount of photovoltaic power generation according to claim 2 is to create a voltage-current curve in a reference state from the solar cell characteristic values (Isc, Iop, Vop, Voc) by a solar radiation / temperature conversion formula. A voltage-current curve (IV curve) at the designated solar radiation intensity and designated solar cell temperature is created from the curve, the Pmax point on this IV curve or the power at the designated voltage is calculated, and this is integrated monthly and yearly to obtain a monthly and yearly sum. It is characterized by calculating the amount of power generation. The method for calculating the amount of simulation of the amount of photovoltaic power generation according to claim 3 includes, together with the features of claim 1, {01} voltage V, current I, photovoltaic current IL at a solar radiation intensity of 1 kw / m 2 , saturation current temperature coefficient Co, junction constant n, parallel resistance Rs
Function including h, series resistance Rs, and solar cell temperature T (absolute temperature): Func (V, I, IL, Co, n, Rsh, Rs, T) = IL-CoT 3 exp (-
qEg / nk0T) * (exp (q * (V + Rs * I) / (n * k0 * T)) -1)-(V + Rs *
I) / Rsh-I, and then {02} the function Func (V,
A function obtained by differentiating I, IL, Co, n, Rsh, Rs, T) with a variable V: Dif (V, I,
IL, Co, n, Rsh, Rs, T) were created, and the {03} solar cell's reference state (solar cell temperature Ta (298 K (ta = 25 ° C.)), solar radiation intensity Ea (1
kw / m 2 )) The short circuit current Isca and the optimum current I
opa-point P1 (0, Isca), P2 of the optimum voltage Vopa and the open circuit voltage Voca
Select (Vopa, Iopa), P3 (Voca, 0), {04}
(V, I, IL, Co, n, Rsh, Rs, T) = T at reference temperature T (298
K), the value of the series resistance Rs at the reference temperature Rsa, and the P1, P2,
Substituting the value of point P3 and setting IL, Co, n, and Rsh as unknowns.Relational expression: Func (0, Isca, IL, Co, n, Rsh, Rsa, Ta) = 0, Relational expression: Func (Voca , 0, IL, Co, n, Rsh, Rsa, Ta) = 0, Relationship: Func (Vopa, Iopa, IL, Co, n, Rsh, Rsa, Ta) = 0 Dif (V, I, IL, Co, n, Rsh, Rs, T) = 0
Into the reference state temperature Ta (298 K), the value Rsa at the reference temperature and the value of the point P2 (Vopa, Iopa) to the series resistance Rs, IL, Co, n, Rsh as unknown, Relational expression: Dif (Vopa, Iop
a, IL, Co, n, Rsh, Rsa, Ta) = 0, and then {06} the four relational expressions: Func (0, Isca, IL, Co, n, Rsh, Rsa, Ta) = 0,
Func (Voca, 0, IL, Co, n, Rsh, Rsa, Ta) = 0, Func (Vopa, Iopa,
IL, Co, n, Rsh, Rsa, Ta) = 0, Dif (Vopa, Iopa, IL, Co, n, Rsh, R
A solution A (ILa, Coa, na, Rsha) satisfying sa, Ta) = 0 is calculated by a nonlinear solution program, and then the {07} function: Func (V, I, IL, Co, n, Rsh, Rs, T) = 0 IL, Co, n, Rsh
Substituting the solution A (ILa, Coa, na, Rsha), further substituting the value of the reference state temperature Ta (298 K) and the series resistance Rs for T, and the relational expression of the variables V and I: Func (V , I, ILa, Coa, na, Rsha, Rsa, T
a) = 0, and {08} This equation is again solved by a nonlinear solution program for about 40 to 50 points of V with respect to V, and the voltage (V) -current (I) and voltage (V) in the reference state are obtained. )-Power (P)
(Power (P) = Voltage (V) x Current (I)) (approximately 40-50 points)
And the voltage V-current I curve (IV
Curve), voltage V-power P curve (PV curve), and then {09} the solar radiation intensity Eb of the solar cell (here 1kw
/ m 2), the solar cell temperature Tb (absolute temperature: TbK = tb (℃) Voltage at + 273) Vb, for determining the current Ib, solar radiation intensity in the reference state of the solar cell Ea (1kw / m 2), a solar cell Temperature Ta
(298 K: absolute temperature: Ta = ta + 273), the short-circuit current Isca, the series resistance Rsa, and the short-circuit current Is when the temperature changes by 1 ° C.
the open circuit voltage when the temperature changes by 1 ° C.
Voc fluctuation value β and curve correction factor K Conversion equation (Va, Ia) → (Vb, Ib): Ib = Ia + α * (tb-ta) Vb = Va + β * (tb-ta)-Rsa * (Ib-Ia)-K * Ib * (tb
-ta), and each of the voltage-current points created in the above {08} or each point on the IV curve connecting the points is Ia, V
Use as a value irradiance Eb (1kw / m 2), the solar cell temperature Tb
Find each point (voltage Vb-current Ib: about 40-50 points) in (K),
Create IV curve and PV curve connecting these points,
Next, from the IV curve created in {10} above {09}, any five non-adjacent points are selected, and these points (VQ1, I
Q1), (VQ2, IQ2), (VQ3, IQ3), (VQ4, IQ4), (VQ5, IQ5) Substituting 0 for variables V, I, and making IL, Co, n, Rsh, Rs an unknown number, Relational expression: Func (VQ1, IQ1, IL, Co, n, Rsh, Rs, Tb) = 0, Relational expression: Func (VQ2, IQ2, IL, Co, n, Rsh, Rs, Tb) = 0, Relational expression: Func (VQ3, IQ3, IL, Co, n, Rsh, Rs, Tb) = 0, Relational expression : Func (VQ4, IQ4, IL, Co, n, Rsh, Rs, Tb) = 0, relational expression: Create Func (VQ5, IQ5, IL, Co, n, Rsh, Rs, Tb) = 0, The solution B (ILb, Cob, nb, Rshb, Rsb) of the five relational expressions is calculated by a nonlinear solution program, and then {11}
Voltage at the solar cell's solar radiation intensity Ec (here, 1 kw / m 2 ) and solar cell temperature Tc (absolute temperature: Tc (K) = tc (° C) +273)
Regarding the relationship between Vc and current Ic, similarly to the above {09}, the conversion equation (Va, Ia) → (Vc, Ic): Ic = Ia + α * (tc−ta) Vc = Va + β * (tc− ta)-Rsa * (Ic-Ia)-K * Ic * (tc
-Create an IV curve and PV curve using ta), {12}
Select any five points that are not close to each other on the IV curve created in {11} and calculate their values (VR1, IR1), (VR2, IR2), (VR
3, IR3), (VR4, IR4), (VR5, IR5) with the above relational expression: Func (V, I, I
(L, Co, n, Rsh, Rs, Tc) = 0
Relational expression: Func (VR1, IR1, IL, Co, n, Rsh, Rs, Tc) = 0, Relational expression: Func (VR2, IR2, IL, Co, n, Rsh, Rs , Tc) = 0, Relational expression: Func (VR3, IR3, IL, Co, n, Rsh, Rs, Tc) = 0, Relational expression: Func (VR4, IR4, IL, Co, n, Rsh, Rs, Tc ) = 0, relational expression: Func (VR5, IR5, IL, Co, n, Rsh, Rs, Tc) = 0, and the solution C (ILc, Coc, nc, Rshc, Rsc) of the five relational expressions
Is calculated by the nonlinear solution program, and then {13} is specified (that is, at each time every month)
The solar radiation intensity Em and the solar cell temperature tm are taken in, and the temperature ta (25 ° C .: absolute temperature Ta (K) = ta (° C.) + 2 in the {14} reference state is taken.
73), the solution A (ILa, Coa, na, Rsha) of the {06} and the solution B (ILa, Coa, na, Rsha) of the {10} at the temperature tb (Celsius: Tb = tb + 273).
b, Cob, nb, Rshb, Rsb), the solution C (ILc, Coc, nc, Rshc, Rsc) of the {12} at the temperature tc (Celsius: Tc = tc + 273) and the input value Rsa, respectively (IL, Co , n, Rsh, Rs), curve interpolation is performed for three points, and the characteristic value M (ILm, Com, n
m, Rshm, calculates Rsm), then after corrected by {15} IL by irradiance Em actually measured the ILm 'm = ILm × Em ÷ Ea (Ea = 1 (KW / m 2), wherein Relational expression: Func (V, I, IL, Co, n, Rsh, R
s, T) = 0 by substituting IL m, Com, nm, Rshm, Rsm, and Func (V, I,
IL m, Com, nm, Rshm, Rsm, Tm) = 0, and the voltage (V) -current
The relationship (I) (approximately 40 to 50 points) is obtained by a nonlinear solution program, and the relationship between voltage (V) and current (I) or I
-V curve and PV curve are created, and {16} the power at the Pmax point on this IV kerf or the power at the voltage specified as a parameter is calculated, and this value is calculated as the power value for each month and time, and is integrated monthly and yearly. It is characterized by calculating monthly and annual power generation. According to a fourth aspect of the present invention, in addition to the feature of the second aspect, the solar power generation amount simulation calculation method fetches a solar radiation intensity Em and a solar cell temperature tm specified at {20} (that is, at each time every month), and {21} the {}. Reference conditions created from 01} to 08 {(insolation intensity 1 kw / m 2 , solar cell temperature 25
C)), the conversion formula (Va, Ia) → (Vk, Ik) using the Isca, α, β, Rsa, k of {09} with respect to the voltage Va−current Ia value (about 40 to 50 points): Ik = Ia + Isca * (Em / Ea-1) + α * (tm-ta) Vk = Va + β * (tm-ta)-Rsa * (Ik-Ia)-K * Ik * (tm
-ta), convert these voltage V-current I value or IV curve and PV curve connecting them, and {22} power at Pmax point on this IV kerf or power at voltage specified as parameter , And this value is used as a power value for each time of each month to calculate the monthly / annual power generation amount by monthly / annual integration. A computer-readable data storage medium storing a processing program of the method for calculating a simulation of the amount of photovoltaic power generation according to claim 5,
The invention described in 2, 3, or 4 is characterized in that these methods include a processing program that can be executed.

【0005】本発明の請求項1,2,3,4の特徴とし
ては、特定の単結晶太陽電池に限定されず他の単結晶、
多結晶、アモルファス太陽電池などについても、指定し
た日射強度・太陽電池温度のI-Vカーフ゛ が汎用的で精度よ
く作成でき、そして太陽電池の発電量が正確にシミュレ
ーション計算できることにある。また、請求項1,3の
特徴としては、請求項2,4と同様に汎用的で精度よく
太陽電池の発電量がシミュレーション計算できることの
他に、日射強度は1KW/m2で他の温度における特性値(例
えば55℃などにおけるIsc,Iop,Vop,Voc など)が与え
られている場合には、これらの値を使うことにより、
α,β,Rs,Kが入手できなくても指定日射強度・太
陽電池温度のI-Vカーフ゛ が作成でき、発電量のシミュレー
ション計算ができることにある。請求項5の特徴として
は、請求項1,2,3,4による日射量および発電量の
シミュレーション計算プログラムを記録した記憶媒体よ
りコンピュータ読み取り可能なため、容易に任意の条件
における太陽光発電量のシミュレーション計算ができ、
太陽光発電システムの設計、運用などに幅広い用途に直
接役立つ。
The features of the first, second, third and fourth aspects of the present invention are not limited to a specific single-crystal solar cell, but include other single-crystal solar cells.
Also for polycrystalline and amorphous solar cells, the IV kerf of the specified solar radiation intensity and solar cell temperature can be generally and accurately created, and the power generation amount of the solar cell can be accurately calculated by simulation. The features of the first and third aspects are that, similarly to the second and fourth aspects, in addition to being able to simulate and calculate the power generation amount of the solar cell with high accuracy, the solar radiation intensity is 1 KW / m 2 at other temperatures. If characteristic values (for example, Isc, Iop, Vop, Voc at 55 ° C., etc.) are given, by using these values,
Even if α, β, Rs, and K are not available, an IV kerf of designated solar radiation intensity and solar cell temperature can be created, and simulation calculation of power generation can be performed. The feature of claim 5 is that since it is computer-readable from a storage medium in which a simulation calculation program for the amount of solar radiation and the amount of power generation according to the first, second, third, and fourth aspects is recorded, the amount of solar power generation under arbitrary conditions can be easily determined. Simulation calculation is possible,
It is directly useful for a wide range of applications in the design and operation of solar power generation systems.

【0006】ここで本発明に関する事項、用語などにつ
いて説明する。まず太陽光発電量シミュレーション計算
プログラムの概要を説明する(電気学会論文1参照)。
図2は太陽光発電量シミュレーション計算プログラムの
ブロック図を示すものであり、3つのサブプログラムす
なわち、(1) (太陽電池)受光面日射エネルギー算出サ
ブプログラム、(2) 太陽電池(モジュール)温度算出サ
ブプログラム、(3) 太陽電池出力算出サブプログラムよ
り構成されている。
Here, matters and terms related to the present invention will be described. First, an outline of a photovoltaic power generation simulation calculation program will be described (see IEEJ paper 1).
FIG. 2 shows a block diagram of the solar power generation amount simulation calculation program, and includes three subprograms: (1) (solar cell) light receiving surface solar radiation energy calculation subprogram, and (2) solar cell (module) temperature calculation. It consists of a subprogram and (3) a solar cell output calculation subprogram.

【0007】(1) 受光面の日射エネルギー算出サブプロ
グラムの特徴は、 ・任意の地点、傾斜・方位角に設置した太陽電池や、種
々の追尾方式の太陽電池の指定期間の日射量が精度よく
計算できるよう、計算時間のベースは後述の太陽電池算
出計算を含め、30分としている。 ・太陽電池受光面日射量を求める方法としては図3で示
すごとく、水平面全天日射量を直達光成分と散乱光成分
に分離し、それぞれについて計算精度の高い方法で受光
面日射強度を算出し、地面反射日射量も含めて総合して
太陽の受光面日射量を求める方法としている。 ・月平均−日合計日射量から月平均時刻別日射量を算出
するため、次の手順で図4で示すごとく計算精度の高い
方法で求めている。 a.各月15日の日出・日入時刻を求める。 b.月平均−日合計日射量が基本サインカーブの面積
(図4の横方向ハッチングの部分)になるようにy=a*s
in(π/to*t)のaを求める。ただしt0は(日入−日出)
の時間である。 c.月平均−日合計日射量が周期2倍のサインカーブの
面積(図4の縦方向ハッチングの部分)になるようにy=
b・sin((2π/to)*t-π/2)+b のbを求める d.各時刻のyの値を上記基本サインカーブ(上記
b)、周期2倍のサインカーブ(上記c)の式から求
め、その平均値を各時刻の日射強度とする。
(1) The characteristics of the solar radiation energy calculation subprogram on the light receiving surface are as follows: The solar radiation amount of a solar cell installed at an arbitrary point, an inclination or an azimuth, or a solar cell of various tracking methods during a designated period is accurately determined. The base of the calculation time is 30 minutes, including the calculation of the solar cell calculation described later, so that the calculation can be performed. -As a method of obtaining the solar radiation on the light receiving surface of the solar cell, as shown in Fig. 3, the total solar radiation on the horizontal plane is separated into direct light components and scattered light components, and the light receiving surface solar radiation intensity is calculated by a method with high calculation accuracy for each. And the total amount of solar radiation on the light-receiving surface of the sun, including the amount of solar radiation reflected on the ground. -Monthly average-In order to calculate the monthly average daily amount of solar radiation from the total daily amount of solar radiation, it is obtained by a method having high calculation accuracy as shown in FIG. 4 in the following procedure. a. Calculate the sunrise and sunset times on the 15th of each month. b. Y = a * s so that the monthly average minus the total solar radiation is the area of the basic sine curve (the horizontal hatching in FIG. 4)
Find a of in (π / to * t). Where t 0 is (sunset-sunrise)
It's time. c. Y = so that the monthly average-total daily solar radiation is the area of the sine curve twice as long as the period (the vertical hatching in FIG. 4)
Find b of b · sin ((2π / to) * t-π / 2) + b d. The value of y at each time is obtained from the formula of the basic sine curve (b) and the sine curve of twice the cycle (c), and the average value is defined as the solar radiation intensity at each time.

【0008】(2) 太陽電池モジュール温度算出サブプロ
グラムの特徴は、 ・上記(1) で算出した月平均時刻ごと(30分ごと:以
下同様)の受光面日射強度、月平均最高外気温・最低外
気温から算出した月平均時刻ごとの外気温、および風速
の入力値を使い、重回帰式により太陽電池(モジュー
ル)温度を求めている。
(2) The features of the solar cell module temperature calculation subprogram are as follows:-Intensity of light on the light-receiving surface at each monthly average time (every 30 minutes: the same applies hereinafter) calculated in (1) above; Using the input values of the outside air temperature and the wind speed for each monthly average time calculated from the outside air temperature, the solar cell (module) temperature is obtained by a multiple regression equation.

【0009】(3) 太陽電池出力算出サブプログラムの特
徴は、前記のごとく、従来の技術ではせいぜい電気学会
論文1のごとく特定の太陽のI-Vカーフ゛ をベースに、各月
・各時刻におけるI-Vカーフ゛ を作成している。本発明では
特定の種類の太陽電池に限定されない汎用的I-Vカーフ゛ 作
成法とそれを使った太陽電池発電量シミュレーション計
算方法を提供するものである。
(3) As described above, the characteristics of the solar cell output calculation subprogram are as follows. In the prior art, the IV kerf at each month and each time is based on the IV kerf of a specific sun at best, as described in the IEEJ Technical Paper 1. Creating. An object of the present invention is to provide a general-purpose IV kerf creation method which is not limited to a specific type of solar cell and a solar cell power generation amount simulation calculation method using the method.

【0010】つぎに、用語などについて説明する。 ○太陽電池の温度は一般には、「太陽電池モジュール温
度」と呼ばれているが、本発明では短縮して「太陽電池
温度」とも呼んでいる。そしてこの温度は通常太陽電池
モジュールに埋込んだ熱電対により測定する。なお、太
陽電池はその構成の段階によりセル→モジュール→アレ
イという名称で呼ばれている。
Next, terms and the like will be described. O The temperature of a solar cell is generally called "solar cell module temperature", but in the present invention, is shortened and also called "solar cell temperature". This temperature is usually measured with a thermocouple embedded in the solar cell module. In addition, the solar cell is called by the name of cell → module → array depending on the stage of its configuration.

【0011】○太陽電池温度に使っている記号について
は、小文字で示したt(℃) は摂氏を、大文字で示したT
(K) は絶対温度を示す。すなわちT(K)=t(℃)+273 で
ある。大文字Tは主として太陽電池基本式の中で使われ
ており、その他のところではtが使われている。
Regarding the symbols used for the solar cell temperature, t (° C.) shown in lower case is Celsius and T is shown in upper case.
(K) indicates the absolute temperature. That is, T (K) = t (° C.) + 273. The capital letter T is mainly used in the solar cell basic formula, and t is used in other places.

【0012】○太陽電池出力・発電量については、太陽
電池の瞬間の発生電圧Vと瞬間の発生電流Iの積を太陽
電池の出力(単位WまたはKW)といい、その時間積算値
が発電量(単位whまたはkwh) である。
Regarding the output and power generation amount of the solar cell, the product of the instantaneous generated voltage V and the instantaneous generated current I of the solar cell is called the output (unit: W or KW) of the solar cell, and the integrated value of the time is the power generation amount. (Unit wh or kwh).

【0013】○太陽電池基本特性式は次の式である。 I=IL-Co*T3*exp(-qEg/nKoT)*(exp(q(V+RsI)/nKoT)-1)-
(V+RsI)/Rsh ここに各記号は次のとおりである。 I :出力電流[A] Co :飽和電流温度係数 V :出力電圧[V] Eg :エネルギーギャップ[eV] IL :光起電流[A] T :太陽電池素子絶対温度[K] IO :飽和電流[A] Ko :ボルツマン定数[J/K] Rs :直流抵抗[Ω] q :電子の電荷量[C] Rsh :並列抵抗[Ω] n :接合定数 上記式は半導体の基本式に基づく式で理論的式である。
この式からI-Vカーフ゛ 上の各点を求めるには、この式の左
辺のIを右辺に移項し Func(V,I,IL,Co,n,Rsh,Rs,T)=IL-Co*T3*exp(-qEg/nKoT)
*(exp q(V+RsI)/nKoT-1)-(V+RsI)/Rsh-I の関数をつくり基本特性値(IL,Co,n,Rsh,Rs)の値を代入
のうえ、V,I の関係を非線形解法プログラムで解いてい
る。電気学会論文2(伊賀:「太陽電池の光照射状態で
の電圧−電流特性式を用いたI-Vカーフ゛ 作成法とその活
用」、電学論D116巻10号、1996)を参照
The basic characteristic formula of the solar cell is as follows. I = IL-Co * T 3 * exp (-qEg / nKoT) * (exp (q (V + RsI) / nKoT) -1)-
(V + RsI) / Rsh where the symbols are as follows. I: Output current [A] Co: Saturation current temperature coefficient V: Output voltage [V] Eg: Energy gap [eV] IL: Photovoltaic current [A] T: Solar cell element absolute temperature [K] IO: Saturation current [ A] Ko: Boltzmann's constant [J / K] Rs: DC resistance [Ω] q: Electron charge [C] Rsh: Parallel resistance [Ω] n: Junction constant The above equation is theoretically based on the basic equation of semiconductor. It is a formula.
To find each point on the IV kerf from this equation, transfer I on the left side of this equation to the right side, and Func (V, I, IL, Co, n, Rsh, Rs, T) = IL-Co * T 3 * exp (-qEg / nKoT)
* (exp q (V + RsI) / nKoT-1)-(V + RsI) / Rsh-I and create a function of basic characteristic value (IL, Co, n, Rsh, Rs) , I is solved by a nonlinear solution program. See IEEJ paper 2 (Iga: "IV kerf preparation method using voltage-current characteristic equation in solar cell light irradiation state and its utilization", IEEJ D116, No. 10, 1996).

【0014】○本発明では特性値については次のとおり
使い分けている。基本特性値は太陽電池基本式中にある
基本特性である。 (1) (太陽電池)基本特性値…IL,Co,n,Rsh,Rs (2) (太陽電池)特性値…Isc,Iop,Vop,Voc,α,β,Rs,K なお、上記の通りRsは(1) 、(2) の両方で使われてい
る。
In the present invention, the characteristic values are properly used as follows. The basic characteristic value is a basic characteristic in the solar cell basic formula. (1) (Solar cell) basic characteristic value: IL, Co, n, Rsh, Rs (2) (Solar cell) characteristic value: Isc, Iop, Vop, Voc, α, β, Rs, K Rs is used in both (1) and (2).

【0015】○変換式については次のとおりである。 (1) 「実用的I-V カーブ変換式」 I1=I2+Isc(E1/(E2)-1)+α(t1-t2) V1=V2+β(t1-t2)-Rs(I1-I2)-K・I1・(t1-t2) (2) 「実用的I-V カーブ変換式」の逆変換式(逆の適
用) ((1) の式のV2,I2について式を解いて変形したもので
ある) I2=I1+Isc(E2-E1)/E2+α(t2-t1) V2=V1+β(t2-t1)-Rs(I2-I1)-K・I1・(t2-t1) ここで、(1) 、(2) は一般に知られているJIS8913,891
4,8919 の式と異なり、新しい優れた式である。(1) の
式については特願平6−2626および前記電気学会論
文1で使っている(図8参照)。また、これらの式で使
っている記号は基準状態での電圧値、電流値、日射強
度、太陽電池温度をそれぞれV2,I2,E2,t2と
している。また指定状態での電圧値、電流値、日射強
度、太陽電池温度をV1,I1,E1,t1とする。 また、α:温度が1℃変化した時のIsc の変動値(A/
℃) β:温度が1℃変化した時のVoc の変動値(V/℃) Rs:モジュールの直列抵抗(Ω) K:曲線補正因子(Ω) Isc:短絡電流 Top:最適電流 Vop:最適電圧 Voc:解放電圧 である。 基準状態の電圧−電流値と測定時日射強度・太陽電池温
度条件における電圧−電流値の変換式の一覧を図8に示
す。そして、図8の下欄(1)、(2)式が「実用的I-V カー
ブ変換式」に、また図8の右欄の(3)、(4)式が「実用的
I-V カーブ変換式」の逆変換式に相当する。この図は電
気学会論文3(伊賀:「実用的I-V カーブ作成法を使っ
た太陽電池日射計」,電学論D,117 巻10号,1997)
に掲載されたもので右端の欄および下欄が著者の式で下
欄は特願平6−2626の中で論文発表の前に特許申請
がなされている。一般には、まだ左端又は中央の欄の式
が使われることもある。太陽光を受光している状態での
太陽電池の電圧V−電流値Iの関係を図6に示す。図6
に示すように電圧−電流値の関係曲線をI-V 曲線(又は
I-V カーブ)といい電圧−電力値の関係曲線をP-V 曲線
(又はP-V カーブ)という。そして最大電力(Pmax)の
ときの電圧(Vop )を最適電圧と、またそのときの電流
(Iop )を最適電流という。
The conversion formula is as follows. (1) `` Practical IV curve conversion formula '' I1 = I2 + Isc (E1 / (E2) -1) + α (t1-t2) V1 = V2 + β (t1-t2) -Rs (I1-I2)- K ・ I1 ・ (t1-t2) (2) Inverse conversion formula of “practical IV curve conversion formula” (application of reverse) (It is a modified version of V2 and I2 in (1) by solving the formula) I2 = I1 + Isc (E2-E1) / E2 + α (t2-t1) V2 = V1 + β (t2-t1) -Rs (I2-I1) -K ・ I1 ・ (t2-t1) 1) and (2) are commonly known JIS8913,891
Unlike the 4,8919 formula, it is a new and excellent formula. The equation (1) is used in Japanese Patent Application No. 6-2626 and the above-mentioned paper 1 of the Institute of Electrical Engineers of Japan (see FIG. 8). The symbols used in these equations are V2, I2, E2, and t2, respectively, for the voltage value, current value, solar radiation intensity, and solar cell temperature in the reference state. The voltage value, the current value, the solar radiation intensity, and the solar cell temperature in the designated state are defined as V1, I1, E1, and t1. Α: fluctuation value of Isc when temperature changes by 1 ° C. (A /
° C) β: Voc fluctuation when temperature changes by 1 ° C (V / ° C) Rs: Module series resistance (Ω) K: Curve correction factor (Ω) Isc: Short-circuit current Top: Optimal current Vop: Optimal voltage Voc: Release voltage. FIG. 8 shows a list of conversion equations of the voltage-current value in the reference state and the voltage-current value under the solar radiation intensity at measurement and the solar cell temperature condition. Equations (1) and (2) in the lower column of FIG. 8 correspond to “practical IV curve conversion equations”, and equations (3) and (4) in the right column of FIG.
It corresponds to the inverse conversion formula of "IV curve conversion formula". This figure is IEEJ paper 3 (Iga: "Solar cell pyranometer using a practical IV curve creation method", IEEJ, Vol. 117, No. 10, 1997)
The rightmost column and the lower column are the formulas of the author, and the lower column is a patent application filed in Japanese Patent Application No. 6-2626 before publication of a paper. In general, the formula in the leftmost or middle column may still be used. FIG. 6 shows a relationship between the voltage V and the current value I of the solar cell in a state of receiving sunlight. FIG.
As shown in the following, the voltage-current relationship curve is transformed into an IV curve (or
A voltage-power relationship curve called an IV curve is called a PV curve (or PV curve). The voltage (Vop) at the maximum power (Pmax) is called an optimum voltage, and the current (Iop) at that time is called an optimum current.

【0016】[0016]

【発明の実施の形態】つぎに、本発明の実施形態を図面
に基づき説明する。図1は本実施形態の太陽光発電量シ
ミュレーション計算方法の発電量計算の中核部分である
「指定の日射強度・太陽電池温度のI-V カーブの作成方
法」を説明している。S11 で太陽電池の特性値(Isc,Io
p,Vop,Voc,α,β,Rs,K)を入力し、S12 で定数(Eg,Ko,
e )を入力し、S13 で太陽電池の基準状態(日射強度1k
w/m2、太陽電池温度25℃)における基本特性値(IL,Co,
n,Rsh )を太陽電池基本特性式 I=IL-Co*T3exp(-qEg/nKoT)*(exp(q(V+RsI)/nKoT)-1)-(V
+RSI)/Rsh 解くことにより求める。すなわち上記基本特性式に与え
られた特性値(Isc,Iop,Vop,Voc )を代入して非線形の
4つの連立方程式をつくり解く。求めた基本特性値をIL
a,Coa,na,Rsha とすると、S14 において上記太陽電池基
本特性式に再びこれらの基本特性値を代入し、電圧Vと
電流Iの関係式を得る。この関係式において電圧Vに対
する電流Iをこの特性式を解くことにより求め、I-V の
関係を求め、基準状態のI-V カーブを作成する。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 illustrates a “method of creating an IV curve of designated solar radiation intensity / solar cell temperature” which is a core part of power generation calculation in the solar power generation simulation calculation method of the present embodiment. In S11, the characteristic values (Isc, Io
p, Vop, Voc, α, β, Rs, K), and constants (Eg, Ko,
e), and in S13, the reference state of the solar cell (solar intensity 1k
w / m 2 , solar cell temperature 25 ° C) (IL, Co,
n, Rsh) to the basic solar cell characteristic equation I = IL-Co * T 3 exp (-qEg / nKoT) * (exp (q (V + RsI) / nKoT) -1)-(V
+ RSI) / Rsh Determined by solving. That is, by substituting the characteristic values (Isc, Iop, Vop, Voc) given to the above basic characteristic expressions, four nonlinear simultaneous equations are created and solved. The calculated basic characteristic value is IL
Assuming that a, Coa, na, and Rsha, these basic characteristic values are again substituted into the solar cell basic characteristic expression in S14, and a relational expression between the voltage V and the current I is obtained. In this relational expression, the current I with respect to the voltage V is obtained by solving this characteristic expression, the relation of IV is obtained, and an IV curve in a reference state is created.

【0017】S15 はS14 で作成したI-V カーブ上の各点
について「実用的I-V カーブ変換式」を適用することに
より、指定の日射強度、指定太陽電池温度におけるI-V
カーブ(S19 )を求める。
In step S15, by applying the “practical IV curve conversion formula” to each point on the IV curve created in step S14, the IV at the designated solar radiation intensity and designated solar cell temperature is obtained.
Find the curve (S19).

【0018】一方S16 においては日射強度は1kw/m2のま
まで、25℃以外の温度b℃,c℃におけるI-V カーブを
「実用的I-V カーブ変換式」によって求める。S20 はb
℃におけるI-V カーブ上の5点〜8点の値を使い、前記
基本特性式を解くことにより基本特性値IL,Co,n,Rsh,Rs
を求める。またS21 では同様にc℃における基本特性値
を求めている。S22 は25℃,b℃,c℃におけるそれぞれ
の基本特性値から指定太陽電池温度における基本特性値
を曲線補間により求める。
On the other hand, in S16, while the solar radiation intensity remains at 1 kw / m 2 , an IV curve at a temperature b ° C. or c ° C. other than 25 ° C. is obtained by a “practical IV curve conversion formula”. S20 is b
The basic characteristic values IL, Co, n, Rsh, and Rs are obtained by solving the basic characteristic formula using the values of 5 to 8 points on the IV curve at ° C.
Ask for. In S21, the basic characteristic value at c ° C. is similarly obtained. In step S22, a basic characteristic value at the designated solar cell temperature is obtained from the respective basic characteristic values at 25 ° C, b ° C, and c ° C by curve interpolation.

【0019】ここで求めた指定電圧における基本特性値
ILは日射強度補正を加える。S23 ではこのようにして求
めた基本特性値を、前記太陽電池基本特性式に適用して
電圧Vと電流Iの関係すなわちI-V カーブを求める。図
2は、本発明者が開発した「太陽光発電量シミュレーシ
ョン計算プログラム」のブロック図で既に電気学会論文
1で示されている。前述のとおり本発明の中核部分であ
る「指定の日射強度・太陽電池温度におけるI-V カーブ
の作成方法」は、「太陽電池出力算出サブプログラム」
の中に組み込まれる。
The basic characteristic value at the specified voltage obtained here
IL adds solar intensity correction. In S23, the basic characteristic value obtained in this manner is applied to the solar cell basic characteristic formula to obtain the relationship between the voltage V and the current I, that is, an IV curve. FIG. 2 is a block diagram of the “photovoltaic power generation amount simulation calculation program” developed by the present inventor, which is already shown in the IEEJ Transactions 1. As described above, the core part of the present invention, "method of creating an IV curve at a specified solar radiation intensity and solar cell temperature," is a "solar cell output calculation subprogram".
Incorporated in

【0020】図3、図4は前記「太陽光発電量シミュレ
ーション計算プログラム」の中に含まれている特徴的な
機能を説明したものである。
FIG. 3 and FIG. 4 illustrate the characteristic functions included in the “solar power generation amount simulation calculation program”.

【0021】図5は本発明を含んだ「太陽光発電量シミ
ュレーション計算プログラム」を記録したデータ記憶媒
体とコンピュータの図である。
FIG. 5 is a diagram of a data storage medium and a computer in which a "solar power generation amount simulation calculation program" including the present invention is recorded.

【0022】[0022]

【発明の効果】請求項1,2,3,4の方法により、指
定の日射強度・太陽電池温度におけるI-V カーブを作成
し、太陽光発電量をシミュレーション計算する方法で次
の効果が期待できる。 (1) 特定の種類や特定の太陽電池だけでなく一般的に、
太陽電池の特性値(Isc,Iop,Vop,Voc,Rs,α,β,K)を入
力し、その太陽電池を使ったシステムの月・年間発電量
が正確に算出できる。すなわち適用する太陽電池の種類
等に影響されず、その発電量が計算でき、効果的な太陽
光発電システムの設計・運用などに役立つ。 (2) 前記「太陽光発電量シミュレーション計算プログラ
ム(電気学会論文1)」と本発明を組合わせてシステム
化することにより、より精度の高い的確な発電量の計算
が可能となるため、太陽光発電量シミュレーション計算
の効果がより有効なものとなる。 (3) 太陽光発電量のシミュレーション計算において、従
来からほとんどの個所で実施されてきた、受光面日射量
の計算値に変換効率を掛けて発電量を求める方法に比
べ、きめの細かい正確な計算ができているため、より深
く細かい解析が可能である。すなわち該パラメーターに
よる効果の詳細な評価も可能となる。 (4) 請求項1,3の指定日射強度・太陽電池温度におけ
るI-V カーブを作成し、太陽光発電量をシミュレーショ
ン計算する方法では上記(1) ,(2) ,(3) で述べた効果
の他に、太陽電池の特性値(Isc,Iop,Vop,Voc,α,β,R
s,K)がすべて入手できなくても、すなわち基準温度(2
5℃)以外の温度(例えば55℃)におけるI-V カーブやI
sc,Iop,Vop,Voc の値が得られれば計算が可能となる場
合がある。請求項5では請求項1,2,3,4によるI-
V カーブの作成法を含んだ太陽光発電量シミュレーショ
ン計算方法によるプログラムを記録媒体に入れ、必要時
にコンピュータにより読み取り計算することが容易であ
る。したがって太陽光発電システムの設計・工事・運用
に広く役立つ。
According to the method of the first, second, third and fourth aspects, the following effects can be expected by a method of creating an IV curve at a specified solar radiation intensity and solar cell temperature and performing a simulation calculation of the amount of photovoltaic power generation. (1) In general, not only specific types and specific solar cells,
By inputting the characteristic values (Isc, Iop, Vop, Voc, Rs, α, β, K) of the solar cell, the monthly / annual power generation of the system using the solar cell can be accurately calculated. In other words, the amount of power generation can be calculated without being affected by the type of the solar cell to be applied, which is useful for designing and operating an effective solar power generation system. (2) By combining the above-mentioned “photovoltaic power generation simulation calculation program (IEEJ thesis 1)” and the present invention to form a system, it is possible to calculate power generation with higher accuracy and accuracy. The effect of the power generation simulation calculation becomes more effective. (3) In the simulation calculation of the amount of photovoltaic power generation, finer and more accurate calculation than the method of multiplying the calculated value of the amount of solar radiation on the light-receiving surface by the conversion efficiency to calculate the amount of power generation, which has been conventionally performed in most places. Because of this, deeper and more detailed analysis is possible. That is, detailed evaluation of the effect by the parameter becomes possible. (4) In the method of creating an IV curve at the specified solar radiation intensity and solar cell temperature and simulating and calculating the amount of photovoltaic power generation according to claims 1 and 3, the effects described in (1), (2) and (3) above are obtained. In addition, the characteristic values (Isc, Iop, Vop, Voc, α, β, R
s, K) are not available, that is, the reference temperature (2
IV curve and I at temperatures other than 5 ° C (eg 55 ° C)
If the values of sc, Iop, Vop, and Voc are obtained, calculation may be possible. In claim 5, I- according to claims 1, 2, 3, and 4
A program based on a method of calculating the amount of photovoltaic power generation, including a method of creating a V-curve, is stored in a recording medium, and is easily read and calculated by a computer when necessary. Therefore, it is widely useful for the design, construction and operation of photovoltaic power generation systems.

【図面の簡単な説明】[Brief description of the drawings]

【図1】指定の日射強度・太陽電池温度のI-V カーブ作
成方法のブロック図である。
FIG. 1 is a block diagram of a method for creating an IV curve of designated solar radiation intensity and solar cell temperature.

【図2】太陽光発電量シミュレーション計算プログラム
(既開発)のブロック図である。
FIG. 2 is a block diagram of a solar power generation amount simulation calculation program (developed already).

【図3】太陽電池受光面日射量の算出フロー図である。FIG. 3 is a flowchart for calculating the amount of solar radiation on the light receiving surface of a solar cell.

【図4】月平均時刻別日射量カーブ作成の図である。FIG. 4 is a diagram illustrating creation of an insolation curve by monthly average time.

【図5】太陽光発電量シミュレーション計算プログラム
を記録したデータ記憶媒体とコンピュータの図である。
FIG. 5 is a diagram of a data storage medium and a computer on which a solar power generation amount simulation calculation program is recorded.

【図6】太陽電池出力特性曲線(I-V カーブ、P-V カー
ブ)である。
FIG. 6 shows solar cell output characteristic curves (IV curve, PV curve).

【図7】太陽光発電のしくみの図である。FIG. 7 is a diagram of a mechanism of solar power generation.

【図8】測定時の日射強度・太陽電池温度における電圧
V−電流値Iの基準状態への変換式である(電気学会論
文3:「実用的I-V カーブ作成法を使った太陽電池日射
計、電学論D、117 巻10号、1997より)
FIG. 8 is a conversion equation of a voltage V-current value I at the time of measurement of solar irradiance and solar cell temperature to a reference state (IEEE's paper 3: “Solar cell pyranometer using a practical IV curve creation method, (Electronics D, Vol. 117, No. 10, 1997)

【符号の説明】[Explanation of symbols]

1 コンピュータ本体 2 キーボード 3 マウス 4 モニタ 5 記憶媒体 17 コンピュータ DESCRIPTION OF SYMBOLS 1 Computer main body 2 Keyboard 3 Mouse 4 Monitor 5 Storage medium 17 Computer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】太陽電池基本式 I=IL-IO*{exp(q(V+RsI)/nKoT)-1}-(V+RsI)/Rsh IO=CoT3 exp(-qEg/nKoT) ここに、 I :出力電流[A] Co :飽和電流温度係数 V :出力電圧[V] Eg :エネルギーギャップ[eV] IL :光起電流[A] T :太陽電池素子絶対温度[K] IO :飽和電流[A] Ko :ボルツマン定数[J/K] Rs :直流抵抗[Ω] q :電子の電荷量[C] Rsh :並列抵抗[Ω] n :接合定数 における基本特性値(IL,Co,n,Rsh,Rs)のそれぞれについ
て、a℃、b℃、c℃の値を求め、それぞれのa℃、b
℃、c℃での値を補間することにより指定温度における
それぞれの基本特性(IL,Co,n,Rsh,Rs)を求め、再び太陽
電池基本式を使い指定した日射強度、太陽電池温度にお
ける電圧−電流カーブ(I-Vカーフ゛) を作成し、このI-Vカーフ
゛ 上のPmax点または指定電圧における電力を求め、これ
を月・年間積算して、月・年間発電量を求めることを特
徴とする太陽光発電量シミュレーション計算方法。
[Claim 1] Basic solar cell formula I = IL-IO * {exp (q (V + RsI) / nKoT) -1}-(V + RsI) / Rsh IO = CoT 3 exp (-qEg / nKoT) Where, I: output current [A] Co: saturation current temperature coefficient V: output voltage [V] Eg: energy gap [eV] IL: photovoltaic current [A] T: solar cell element absolute temperature [K] IO: saturation Current [A] Ko: Boltzmann's constant [J / K] Rs: DC resistance [Ω] q: Electron charge [C] Rsh: Parallel resistance [Ω] n: Basic characteristic value (IL, Co, n) in junction constant , Rsh, Rs), the values of a ° C., b ° C., and c ° C. are obtained, and the respective values of a ° C., b
Calculate the respective basic characteristics (IL, Co, n, Rsh, Rs) at the specified temperature by interpolating the values at ℃ and c ℃, and again use the solar cell basic formula to specify the solar radiation intensity and the voltage at the solar cell temperature -A photovoltaic power generation system that creates a current curve (IV kerf), finds the power at the Pmax point or a specified voltage on this IV kerf, and integrates this monthly and yearly to determine the monthly and annual power generation. Quantity simulation calculation method.
【請求項2】太陽電池の特性値(Isc,Iop,Vop,Voc) から
基準状態の電圧−電流カーブを作成し、この電圧−電流
カーブから日射・温度の変換式により指定日射強度、指
定太陽電池温度における電圧−電流カーブ(I-Vカーフ゛) を
作成し、このI-Vカーフ゛ 上のPmax点または指定電圧におけ
る電力を求め、これを月・年間積算して、月・年間発電
量を求めることを特徴とする太陽光発電量シミュレーシ
ョン計算方法。
2. A reference-state voltage-current curve is created from the characteristic values (Isc, Iop, Vop, Voc) of the solar cell, and the designated solar radiation intensity and designated solar radiation are calculated from the voltage-current curve using a solar radiation / temperature conversion formula. A voltage-current curve (IV curve) at battery temperature is created, the power at the Pmax point on this IV curve or at a specified voltage is determined, and this is integrated monthly and annually to determine the monthly and annual power generation. Solar power generation simulation calculation method.
【請求項3】{01}電圧V、電流I、日射強度1kw/m2
での光起電流IL、飽和電流温度係数Co、接合定数n、並
列抵抗Rsh、直列抵抗Rs、太陽電池温度T (絶対温度)
を含んだ関数:Func(V,I,IL,Co,n,Rsh,Rs,T) = IL - Co
T3 exp(-qEg/nk0T)*(exp( q*(V+Rs*I)/(n*k0*T) )-1) -
(V+Rs*I)/ Rsh - I を作成し、つぎに、 {02}該関数Func(V,I,IL,Co,n,Rsh,Rs,T)を変数Vで微
分した関数:Dif(V,I,IL,Co,n,Rsh,Rs,T)を作成し、 {03}太陽電池の基準状態(太陽電池温度Ta(298K(ta=
25℃))、日射強度Ea(1kw/m2 )) での仕様値である、
短絡電流Isca、最適電流Iopa −最適電圧Vopa、開放電
圧Vocaの点P1(0,Isca),P2(Vopa,Iopa),P3(Voca,0)を選
択し、 {04}前記関数Func(V,I,IL,Co,n,Rsh,Rs,T)= 0の太陽
電池温度Tに基準状態の温度Ta(298K),直列抵抗Rsに基
準温度での値Rsa,および前記P1,P2,P3の点の値を代入
し、IL,Co,n,Rshを未知数とする 関係式:Func(0,Isca,IL,Co,n,Rsh,Rsa,Ta)= 0, 関係式:Func(Voca,0,IL,Co,n,Rsh,Rsa,Ta)= 0, 関係式:Func(Vopa,Iopa,IL,Co,n,Rsh,Rsa,Ta)= 0を作成
し、 {05}前記関数Dif(V,I,IL,Co,n,Rsh,Rs,T)= 0 に、基
準状態の温度Ta(298K)、直列抵抗Rsに基準温度での値R
sa,および前記点P2の値(Vopa,Iopa) を代入して、IL,C
o,n,Rshを未知数とする、関係式:Dif(Vopa,Iopa,IL,Co,
n,Rsh,Rsa,Ta)= 0を作成し、つぎに、 {06}前記4つの関係式:Func(0,Isca,IL,Co,n,Rsh,Rs
a,Ta)= 0,Func(Voca,0,IL,Co,n,Rsh,Rsa,Ta)= 0,Func(V
opa,Iopa,IL,Co,n,Rsh,Rsa,Ta)= 0,Dif(Vopa,Iopa,IL,C
o,n,Rsh,Rsa,Ta)= 0 を満たす解A(ILa,Coa,na,Rsha)
を、非線形解法のプログラムによって算出し、つぎに、 {07}前記関数:Func(V,I,IL,Co,n,Rsh,Rs,T)= 0のIL,
Co,n,Rshに、前記解A(ILa,Coa,na,Rsha) を代入して、
さらにTに基準状態の温度Ta(298K)および直列抵抗Rs
に値Rsaを代入し、変数V,Iの関係式:Func(V,I,ILa,Coa,
na,Rsha,Rsa,Ta)=0を作成し、 {08}この式を再び非線形解法のプログラムにより約40
〜50点のVに対するIの解を求め、基準状態における電圧
(V)−電流(I)および電圧(V)−電力(P)(電力(P)= 電圧
(V)×電流(I))の関係の点(約40〜50点)を求め、これら
の点を結んだ電圧V-電流Iカーブ(I-V カーブ),電圧V-
電力Pカーブ(P-V カーブ)を作成し、つぎに、 {09}前記太陽電池の日射強度Eb(ここでは1kw/m2)、
太陽電池温度Tb(絶対温度:Tb(K)=tb(℃)+273)におけ
る電圧Vb,電流Ibを求めるため、前記太陽電池の基準状
態における日射強度Ea(1kw/m2 )、太陽電池温度Ta(298
K:絶対温度:Ta=ta+273)における短絡電流Isca,直列抵
抗Rsa,温度が1℃変化したときの前記短絡電流Isc の
変動値α、温度が1℃変化したときの前記開放電圧Voc
の変動値β、曲線補正因子Kとする 変換式(Va,Ia)→(Vb,Ib): Ib = Ia + α*(tb - ta) Vb = Va + β*(tb - ta) - Rsa*(Ib - Ia) - K*Ib*(tb
- ta) を作成し、これに前記{08}で作成した電圧−電
流の各点またはそれを結んだI-V カーブ上の各点をIa,V
a値として使用し日射強度Eb(ここでは1kw/m2 )、太陽電
池温度Tb(K)における各点(電圧Vb-電流Ib:約40〜50点)
を求め、これらの点を結んだI-Vカーブ,P-V カーブを
作成し、つぎに、 {10}前記{09}で作成したI-V カーブ上から、近接し
ない任意の5点を選択し、これらの点(VQ1,IQ1),(VQ2,I
Q2),(VQ3,IQ3),(VQ4,IQ4),(VQ5,IQ5) を前記関係式:Fun
c(V,I,IL,Co,n,Rsh,Rs,Tb)= 0の変数V,I、に代入して、
IL,Co,n,Rsh,Rsを未知数とする、 関係式:Func(VQ1,IQ1,IL,Co,n,Rsh,Rs,Tb)= 0, 関係式:Func(VQ2,IQ2,IL,Co,n,Rsh,Rs,Tb)= 0, 関係式:Func(VQ3,IQ3,IL,Co,n,Rsh,Rs,Tb)= 0, 関係式:Func(VQ4,IQ4,IL,Co,n,Rsh,Rs,Tb)= 0, 関係式:Func(VQ5,IQ5,IL,Co,n,Rsh,Rs,Tb)= 0を作成
し、該5つの関係式の解B(ILb,Cob,nb,Rshb,Rsb)を、非
線形解法のプログラムによって算出し、つぎに、 {11}前記太陽電池の日射強度Ec(ここでは1kw/m2 ),
太陽電池温度Tc (絶対温度:Tc(K)=tc(℃)+273)におけ
る電圧Vc,電流Icの関係についても前記{09}と同様
に、 変換式(Va,Ia)→(Vc,Ic): Ic = Ia + α*(tc - ta) Vc = Va + β*(tc - ta) - Rsa*(Ic - Ia) - K*Ic*(tc
- ta)を使い I-V カーブ,P-V カーブを作成し、 {12}前記{11}で作成したI-V カーブ上から近接しな
い任意の5点を選択し、これらの値(VR1,IR1),(VR2,IR
2),(VR3,IR3),(VR4,IR4),(VR5,IR5) を前記関係式:Func
(V,I,IL,Co,n,Rsh,Rs,Tc)= 0の変数V,Iに代入して、IL,
Co,n,Rsh,Rsを未知数とする、 関係式:Func(VR1,IR1,IL,Co,n,Rsh,Rs,Tc)= 0, 関係式:Func(VR2,IR2,IL,Co,n,Rsh,Rs,Tc)= 0, 関係式:Func(VR3,IR3,IL,Co,n,Rsh,Rs,Tc)= 0, 関係式:Func(VR4,IR4,IL,Co,n,Rsh,Rs,Tc)= 0, 関係式:Func(VR5,IR5,IL,Co,n,Rsh,Rs,Tc)= 0 を作成し、該5つの関係式の解C(ILc,Coc,nc,Rshc,Rsc)
を、非線形解法のプログラムによって、算出し、つぎ
に、 {13}指定した(すなわち月ごと各時刻における)日射
強度Em, 太陽電池温度tmを取り込み、 {14}基準状態での前記温度ta(摂氏25℃:絶対温度Ta
(K)=ta(℃)+273) における前記{06}の解A(ILa,Coa,
na,Rsha)、前記温度tb(℃:Tb(K)=tb(℃)+273)におけ
る前記{10}の解B(ILb,Cob,nb,Rshb,Rsb)、前記温度tc
(摂氏:Tc=tc+273) における前記{12}の解C(ILc,Coc,
nc,Rshc,Rsc)および入力値Rsa のそれぞれ(IL,Co,n,Rs
h,Rs)に関して3点について曲線補間して、指定温度tm
での特性値M(ILm,Com,nm,Rshm,Rsm) を算出し、つぎ
に、 {15}ILm を指定された日射強度EmによりILm=ILm×E
m÷Ea (Ea=1(KW/m2))により補正した後、前記関係式:F
unc(V,I,IL,Co,n,Rsh,Rs,T)=0にILm,Com,nm,Rshm,Rsm
を代入して、Func(V,I,ILm,Com,nm,Rshm,Rsm,Tm)=0
を作成し、電圧(V)-電流(I)の関係(約40〜50点)を非線
形解法のプログラムによって求め、電圧(V)- 電流(I)の
関係またはそれを結んだI-V カーブ,P-V カーブを作成
し、 {16}このI-Vカーフ゛ 上のPmax点の電力またはパラメータ
として指定した電圧における電力を求め、この値を各月
時刻ごとの電力値として、月・年間積算して月・年間発
電量を求めることを特徴とする太陽光発電量シミュレー
ション計算方法。
3. {01} voltage V, current I, solar radiation intensity 1 kw / m 2
Current IL, saturation current temperature coefficient Co, junction constant n, parallel resistance Rsh, series resistance Rs, solar cell temperature T (absolute temperature)
Function: Func (V, I, IL, Co, n, Rsh, Rs, T) = IL-Co
T 3 exp (-qEg / nk0T) * (exp (q * (V + Rs * I) / (n * k0 * T)) -1)-
(V + Rs * I) / Rsh-I is created, and then {02} a function obtained by differentiating the function Func (V, I, IL, Co, n, Rsh, Rs, T) with the variable V: Dif (V, I, IL, Co, n, Rsh, Rs, T) and create {03} solar cell reference state (solar cell temperature Ta (298K (ta =
25 ° C)) and the solar radiation intensity Ea (1 kw / m 2 )).
Short-circuit current Isca, optimal current Iopa-optimal voltage Vopa, open voltage Voca points P1 (0, Isca), P2 (Vopa, Iopa), P3 (Voca, 0) are selected, {04} the function Func (V, I, IL, Co, n, Rsh, Rs, T) = 0, the reference temperature Ta (298 K) at the solar cell temperature T, the value Rsa at the reference temperature at the series resistance Rs, and the P1, P2, P3. Substituting the value of the point and making IL, Co, n, Rsh an unknown.Relationship: Func (0, Isca, IL, Co, n, Rsh, Rsa, Ta) = 0, Relational equation: Func (Voca, 0 , IL, Co, n, Rsh, Rsa, Ta) = 0, relational expression: Func (Vopa, Iopa, IL, Co, n, Rsh, Rsa, Ta) = 0, and the function Dif ( V, I, IL, Co, n, Rsh, Rs, T) = 0, the reference state temperature Ta (298 K), the series resistance Rs and the reference temperature value R
sa, and the value of point P2 (Vopa, Iopa)
o, n, Rsh as unknowns, relational expression: Dif (Vopa, Iopa, IL, Co,
n, Rsh, Rsa, Ta) = 0, and then {06} the above four relational expressions: Func (0, Isca, IL, Co, n, Rsh, Rs
a, Ta) = 0, Func (Voca, 0, IL, Co, n, Rsh, Rsa, Ta) = 0, Func (V
opa, Iopa, IL, Co, n, Rsh, Rsa, Ta) = 0, Dif (Vopa, Iopa, IL, C
o, n, Rsh, Rsa, Ta) = 0 Solution A (ILa, Coa, na, Rsha)
Is calculated by a nonlinear solution program. Then, {07} the above function: Func (V, I, IL, Co, n, Rsh, Rs, T) = 0 IL,
Substituting the solution A (ILa, Coa, na, Rsha) into Co, n, Rsh,
Further, T represents the reference temperature Ta (298 K) and the series resistance Rs.
And the relational expression of the variables V and I: Func (V, I, ILa, Coa,
na, Rsha, Rsa, Ta) = 0 and {08}
Find the solution of I to V at ~ 50 points and calculate the voltage in the reference state.
(V)-current (I) and voltage (V)-power (P) (power (P) = voltage
(V) × current (I)) (approximately 40-50 points), and the voltage V-current I curve (IV curve) and voltage V-
A power P curve (PV curve) is created, and then {09} the solar radiation intensity Eb of the solar cell (here, 1 kw / m 2 ),
In order to obtain the voltage Vb and the current Ib at the solar cell temperature Tb (absolute temperature: Tb (K) = tb (° C.) + 273), the solar radiation intensity Ea (1 kw / m 2 ) in the reference state of the solar cell and the solar cell temperature Ta (298
K: absolute temperature: Ta = ta + 273), the short-circuit current Isca, the series resistance Rsa, the variation value α of the short-circuit current Isc when the temperature changes by 1 ° C., and the open-circuit voltage Voc when the temperature changes by 1 ° C.
Conversion factor (Va, Ia) → (Vb, Ib): Ib = Ia + α * (tb−ta) Vb = Va + β * (tb−ta) −Rsa * (Ib-Ia)-K * Ib * (tb
-ta), and each of the voltage-current points created in {08} or each point on the IV curve connecting them is represented by Ia, V
Used as a value, solar radiation intensity Eb (here 1 kw / m 2 ), each point in solar cell temperature Tb (K) (voltage Vb-current Ib: about 40-50 points)
, And create an IV curve and a PV curve connecting these points. Then, select any five non-close points from the IV curve created in {10} above {09}, and select these points ( VQ1, IQ1), (VQ2, I
Q2), (VQ3, IQ3), (VQ4, IQ4), (VQ5, IQ5)
c (V, I, IL, Co, n, Rsh, Rs, Tb) = 0
Let IL, Co, n, Rsh, Rs be unknown.Relationship: Func (VQ1, IQ1, IL, Co, n, Rsh, Rs, Tb) = 0, Relationship: Func (VQ2, IQ2, IL, Co , n, Rsh, Rs, Tb) = 0, Relationship: Func (VQ3, IQ3, IL, Co, n, Rsh, Rs, Tb) = 0, Relationship: Func (VQ4, IQ4, IL, Co, n , Rsh, Rs, Tb) = 0, and a relational expression: Func (VQ5, IQ5, IL, Co, n, Rsh, Rs, Tb) = 0 is created, and a solution B (ILb, Cob, nb, Rshb, Rsb) is calculated by a nonlinear solution program, and then {11} the solar radiation intensity Ec of the solar cell (here, 1 kw / m 2 ),
The relationship between the voltage Vc and the current Ic at the solar cell temperature Tc (absolute temperature: Tc (K) = tc (° C.) + 273) is also obtained in the same manner as in the above {09}, by the conversion equation (Va, Ia) → (Vc, Ic). : Ic = Ia + α * (tc-ta) Vc = Va + β * (tc-ta)-Rsa * (Ic-Ia)-K * Ic * (tc
-ta) to create an IV curve and a PV curve, and select any five points that are not close to each other from the IV curve created in {12} above {11}, and these values (VR1, IR1), (VR2, IR
2), (VR3, IR3), (VR4, IR4), (VR5, IR5)
(V, I, IL, Co, n, Rsh, Rs, Tc) = 0
Let Co, n, Rsh, Rs be unknown.Relational expression: Func (VR1, IR1, IL, Co, n, Rsh, Rs, Tc) = 0, Relational expression: Func (VR2, IR2, IL, Co, n , Rsh, Rs, Tc) = 0, Relational expression: Func (VR3, IR3, IL, Co, n, Rsh, Rs, Tc) = 0, Relational expression: Func (VR4, IR4, IL, Co, n, Rsh , Rs, Tc) = 0, and a relational expression: Func (VR5, IR5, IL, Co, n, Rsh, Rs, Tc) = 0 is created, and the solution C (ILc, Coc, nc, Rshc, Rsc)
Is calculated by a nonlinear solving program. Then, the solar radiation intensity Em and the solar cell temperature tm specified at {13} (that is, at each time each month) are taken in, and the temperature ta (Celsius) in the {14} reference state is obtained. 25 ° C: Absolute temperature Ta
(K) = ta (° C.) + 273), the solution A (ILa, Coa,
na, Rsha), the solution B (ILb, Cob, nb, Rshb, Rsb) of the {10} at the temperature tb (° C .: Tb (K) = tb (° C.) + 273), and the temperature tc
(Celsius: Tc = tc + 273), the solution C (ILc, Coc,
nc, Rshc, Rsc) and input value Rsa (IL, Co, n, Rs
h, Rs), the curve is interpolated at three points and the specified temperature tm
Then, the characteristic value M (ILm, Com, nm, Rshm, Rsm) is calculated, and then, {15} ILm is set to IL m = ILm × E by the designated solar radiation intensity Em.
After correcting by m ÷ Ea (Ea = 1 (KW / m 2 )), the relational expression: F
unc (V, I, IL, Co, n, Rsh, Rs, T) = 0 when IL m, Com, nm, Rshm, Rsm
And Func (V, I, IL m, Com, nm, Rshm, Rsm, Tm) = 0
The voltage (V) -current (I) relationship (approximately 40-50 points) is obtained by a nonlinear solution program, and the voltage (V) -current (I) relationship or the IV curve, PV A curve is created, and the power at the Pmax point on this IV kerf or the power at the voltage specified as a parameter is found, and this value is used as the power value for each month and time, and the monthly and yearly power is accumulated. A method for calculating a simulation of the amount of photovoltaic power generation, characterized in that the amount is calculated.
【請求項4】{20}指定した(すなわち月ごと各時刻に
おける)日射強度Em, 太陽電池温度tmを取り込み、 {21}前記{01}〜{08}により作成した基準状態(日
射強度1kw/m2 ,太陽電池温度25℃)における電圧Va−
電流Ia値(約40〜50点)について、前記{09}のIs
ca,α,β,Rsa,kを使って 変換式(Va,Ia)→(Vk,Ik): Ik = Ia + Isca*(Em/Ea - 1) + α*(tm - ta) Vk = Va + β*(tm - ta) - Rsa*(Ik - Ia) - K*Ik*(tm
- ta) によって変換し、これらの電圧V-電流I値または、それ
らを結んだI-V カーブ,P-V カーブを作成し、 {22}このI-Vカーフ゛ 上のPmax点の電力またはパラメータ
として指定した電圧における電力を求め、この値を各月
の時刻ごとの電力値として、月・年間積算して月・年間
発電量を求めることを特徴とする太陽光発電量シミュレ
ーション計算方法。
4. A reference state (insolation intensity of 1 kW / infrared light) designated by {20} (ie, at each time of each month) and the solar cell temperature tm taken in {21} above {01} to {08}. m 2 , solar cell temperature 25 ° C)
Regarding the current Ia value (about 40 to 50 points),
Using ca, α, β, Rsa, k, conversion formula (Va, Ia) → (Vk, Ik): Ik = Ia + Isca * (Em / Ea-1) + α * (tm-ta) Vk = Va + β * (tm-ta)-Rsa * (Ik-Ia)-K * Ik * (tm
-ta), convert these voltage V-current I value or IV curve and PV curve connecting them, and {22} power of Pmax point on this IV kerf or power at voltage specified as parameter And calculating this value as the power value for each time of each month, and calculating the monthly / annual power generation amount by monthly / yearly integration.
【請求項5】請求項1、2、3、4記載の太陽光発電量
シミュレーション計算方法の処理プログラムを記録した
コンピュータ読み取り可能なデータ記憶媒体。
5. A computer-readable data storage medium on which a processing program of the method for calculating the amount of photovoltaic power generation simulation according to claim 1, 2, 3, or 4 is recorded.
JP2001071916A 2001-03-14 2001-03-14 Method for simulation-calculating solarlight generating amount and computer readable data storage medium with calculating program recorded therein Pending JP2002270877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001071916A JP2002270877A (en) 2001-03-14 2001-03-14 Method for simulation-calculating solarlight generating amount and computer readable data storage medium with calculating program recorded therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001071916A JP2002270877A (en) 2001-03-14 2001-03-14 Method for simulation-calculating solarlight generating amount and computer readable data storage medium with calculating program recorded therein

Publications (1)

Publication Number Publication Date
JP2002270877A true JP2002270877A (en) 2002-09-20

Family

ID=18929577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001071916A Pending JP2002270877A (en) 2001-03-14 2001-03-14 Method for simulation-calculating solarlight generating amount and computer readable data storage medium with calculating program recorded therein

Country Status (1)

Country Link
JP (1) JP2002270877A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006093176A (en) * 2004-09-21 2006-04-06 Atsushi Iga Solar energy power generation system output estimation and evaluation method
KR100726712B1 (en) 2005-07-28 2007-06-12 한국전기연구원 Method of Simulation for Photovoltaic Array
KR100933894B1 (en) * 2007-11-13 2009-12-28 한국전기연구원 Solar cell characteristic curve simulation system and method
KR100939330B1 (en) 2007-11-06 2010-01-28 한국전기연구원 Apparatus and control method for simulation of photovoltaic array
WO2012105197A1 (en) * 2011-01-31 2012-08-09 株式会社日立製作所 Method for calculating characteristics of solar cell and solar power generation system
JP2013131658A (en) * 2011-12-22 2013-07-04 Hitachi Ltd Solar battery and photovoltaic power generation system
JP2013529051A (en) * 2010-05-07 2013-07-11 アドバンスド エナージィ インダストリーズ,インコーポレイテッド Photovoltaic power generation prediction system and method
CN111077932A (en) * 2019-12-23 2020-04-28 中电科仪器仪表(安徽)有限公司 Satellite sailboard power supply array simulator and voltage clamping method thereof
JP2021023048A (en) * 2019-07-29 2021-02-18 中国電力株式会社 Power generation output calculation device and power generation output calculation method
CN114039546A (en) * 2021-11-18 2022-02-11 河海大学常州校区 Photovoltaic array fault positioning method and device based on photovoltaic module I-V curve reconstruction
CN116186560A (en) * 2023-04-26 2023-05-30 江西师范大学 Temperature similarity characterization method based on effective thermodynamic temperature value

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006093176A (en) * 2004-09-21 2006-04-06 Atsushi Iga Solar energy power generation system output estimation and evaluation method
KR100726712B1 (en) 2005-07-28 2007-06-12 한국전기연구원 Method of Simulation for Photovoltaic Array
KR100939330B1 (en) 2007-11-06 2010-01-28 한국전기연구원 Apparatus and control method for simulation of photovoltaic array
KR100933894B1 (en) * 2007-11-13 2009-12-28 한국전기연구원 Solar cell characteristic curve simulation system and method
JP2013529051A (en) * 2010-05-07 2013-07-11 アドバンスド エナージィ インダストリーズ,インコーポレイテッド Photovoltaic power generation prediction system and method
US9651631B2 (en) 2011-01-31 2017-05-16 Hitachi, Ltd. Method of calculating characteristics of solar cell and solar power generation system
WO2012105197A1 (en) * 2011-01-31 2012-08-09 株式会社日立製作所 Method for calculating characteristics of solar cell and solar power generation system
JP2012160498A (en) * 2011-01-31 2012-08-23 Hitachi Ltd Characteristic calculation method for solar cell and photovoltaic power generation system
JP2013131658A (en) * 2011-12-22 2013-07-04 Hitachi Ltd Solar battery and photovoltaic power generation system
JP2021023048A (en) * 2019-07-29 2021-02-18 中国電力株式会社 Power generation output calculation device and power generation output calculation method
JP7272158B2 (en) 2019-07-29 2023-05-12 中国電力株式会社 Power generation output calculation device and power generation output calculation method
CN111077932A (en) * 2019-12-23 2020-04-28 中电科仪器仪表(安徽)有限公司 Satellite sailboard power supply array simulator and voltage clamping method thereof
CN111077932B (en) * 2019-12-23 2022-02-25 中电科思仪科技(安徽)有限公司 Satellite sailboard power supply array simulator and voltage clamping method thereof
CN114039546A (en) * 2021-11-18 2022-02-11 河海大学常州校区 Photovoltaic array fault positioning method and device based on photovoltaic module I-V curve reconstruction
CN116186560A (en) * 2023-04-26 2023-05-30 江西师范大学 Temperature similarity characterization method based on effective thermodynamic temperature value

Similar Documents

Publication Publication Date Title
Segev et al. Equivalent circuit models for triple-junction concentrator solar cells
Tian et al. Detailed performance model for photovoltaic systems
Chan et al. Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators
Sarkar Effect of various model parameters on solar photovoltaic cell simulation: a SPICE analysis
Vankadara et al. An accurate analytical modeling of solar photovoltaic system considering R s and R sh under partial shaded condition
JP2002270877A (en) Method for simulation-calculating solarlight generating amount and computer readable data storage medium with calculating program recorded therein
Adak et al. Development software program for extraction of photovoltaic cell equivalent circuit model parameters based on the Newton–Raphson method
TW201042416A (en) A maximum power tracking system for photovoltaic power generation systems
Parisi et al. Thin film CIGS solar cells, photovoltaic modules, and the problems of modeling
Masmoudi et al. Identification of Internal Parameters of a Mono-Crystalline Photovoltaic Cell Models and Experimental Ascertainment
Nikhil et al. An improved simulation model for photovoltaic cell
JP2002270878A (en) Method for evaluating output of solar battery, computer readable data recording medium for recording output evaluation program and apparatus for evaluating output
Shannan et al. Two diode model for parameters extraction of PV module
Zinßer et al. Optical and electrical loss analysis of thin-film solar cells combining the methods of transfer matrix and finite elements
Adak et al. Development software program for finding photovoltaic cell open-circuit voltage and fill factor based on the photovoltaic cell one-diode equivalent circuit model
Peña et al. A new method for current–voltage curve prediction in photovoltaic modules
Çinici et al. Comparison study in terms of the results of photovoltaic solar energy systems designed with PVsyst and MATLAB Simulink software
JP2005051014A (en) Computation method of photovoltaic power generation simulation and computer-readable data storage medium recording computation program
Chukwuka et al. Technical and economic modeling of the 2.5 kW grid-tie residential photovoltaic system
JP2005051048A (en) Method of evaluating amount of power generated by field photovoltaic power generating system, computer-readable recording medium recording evaluation program, and evaluation system
Truc et al. Improved Sliding Mode Control Based on Perturb & Observe for Maximum Power Point Tracking from PV System
Steiner et al. CPVIndia–Energy yield forecasting with PVsyst
Isa et al. Numerical modelling of the effect of temperature and thickness on the electrical properties of polycrystalline semi-conductor solar cells [CdTe and Cu (in, Ga) Se2 (CIGS)] using one dimensional device simulation
Muhammadsharif et al. A Simple and Efficient Determination of the Ideality Factor of Solar Cells and Modules from the Knee Point of the Shunt Resistance Curve
Kabadi et al. Behavioral Modeling of Perovskite Solar Cells and Study of its properties based on composition