JP2005050696A - Manufacturing method of gas discharge display device - Google Patents

Manufacturing method of gas discharge display device Download PDF

Info

Publication number
JP2005050696A
JP2005050696A JP2003281877A JP2003281877A JP2005050696A JP 2005050696 A JP2005050696 A JP 2005050696A JP 2003281877 A JP2003281877 A JP 2003281877A JP 2003281877 A JP2003281877 A JP 2003281877A JP 2005050696 A JP2005050696 A JP 2005050696A
Authority
JP
Japan
Prior art keywords
substrate
electrode
conductive
manufacturing
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003281877A
Other languages
Japanese (ja)
Other versions
JP3940105B2 (en
Inventor
Takashi Komatsu
隆史 小松
Tomohiro Komori
智裕 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2003281877A priority Critical patent/JP3940105B2/en
Priority to KR1020040035912A priority patent/KR100612228B1/en
Publication of JP2005050696A publication Critical patent/JP2005050696A/en
Application granted granted Critical
Publication of JP3940105B2 publication Critical patent/JP3940105B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/12Sanitary or hygienic devices for mouthpieces or earpieces, e.g. for protecting against infection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/08Mouthpieces; Microphones; Attachments therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simplified manufacturing method of a gas discharge display device capable of holding high dimensional precision of an electrode with manufacturing cost restrained. <P>SOLUTION: On the method of forming an electrode at least on one of a pair of base plates facing each other, the electrode is formed on a second base plate 3 by forming a metallic thin film 13 having the same shape as the electrode on the second base plate 3 on a base plate for molding 12 made of an insulation body or a dielectric body; subsequently making silver particles 20 covered by a covering film having an electrified surface adhere on the metallic thin film 13 by electrifying a part of the base plate for molding 12 excluding the metallic thin film 13; subsequently making the silver particles 20 adhere on the second base plate 3 by making the base plate for molding 12 and the second base plate 3 face each other and impressing a voltage between them, and by subsequently baking the second base plate 3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、プラズマディスプレイ等のガス放電表示装置の製造方法に関する。   The present invention relates to a method for manufacturing a gas discharge display device such as a plasma display.

ガス放電表示装置を用いた表示装置の一例としては、プラズマディスプレイがある。従来のガス放電表示装置の製造方法として、様々な方法が提案されており、例えば銀ペーストを塗布する方法(例えば、特許文献1参照)、電極シートを貼り付ける方法(例えば、特許文献2参照)等がある。
図10及び図11は、従来のガス放電表示装置の製造方法を示す図である。従来のガス放電表示装置の製造方法は、図10(a)に示すように、まずガラスによって形成された基板101上の全面に感光性銀ペースト102が塗布される。それから、図10(b)に示すように、等間隔に配置された光透過用孔103が配置されたフォトマスク104を介して光を基板101へ向けて照射し、露光を行う。その後、感光性銀ペースト102を現像することにより、露光された部分以外の感光性銀ペースト102が除去される。現像を行った後の基板101は、図10(c)に示すように、露光されて残った感光性銀ペースト102によって形成された電極105部分のみが、基板101上に等間隔に貼り付けられている。それから、電極105と共に基板101が焼成されて、電極105が形成される。
An example of a display device using a gas discharge display device is a plasma display. Various methods have been proposed as a method for manufacturing a conventional gas discharge display device. For example, a method of applying a silver paste (see, for example, Patent Document 1) and a method of attaching an electrode sheet (for example, see Patent Document 2). Etc.
10 and 11 are diagrams illustrating a conventional method for manufacturing a gas discharge display device. In the conventional method of manufacturing a gas discharge display device, as shown in FIG. 10A, first, a photosensitive silver paste 102 is applied to the entire surface of a substrate 101 formed of glass. Then, as shown in FIG. 10B, exposure is performed by irradiating light toward the substrate 101 through a photomask 104 in which light transmission holes 103 arranged at equal intervals are arranged. Thereafter, the photosensitive silver paste 102 is developed to remove the photosensitive silver paste 102 other than the exposed portion. As shown in FIG. 10C, the substrate 101 after the development is pasted on the substrate 101 at equal intervals only by the portions of the electrode 105 formed by the exposed photosensitive silver paste 102. ing. Then, the substrate 101 is baked together with the electrode 105 to form the electrode 105.

また、図11には凹部内に形成された電極の製造方法が示されている。図11(a)に示すように、まず凹部106aを有する基板106上の全体に感光性を有する銀系の電極シート107を貼り付ける。それから、図11(b)に示すように、電極シート107の上から電極のパターンが形成されたフォトマスク108を用いて電極シート107の露光を行い、次いで、電極シート107の現像を行い、焼成を行うことにより、図11(c)に示すように、予めフォトマスク108によって形成されていた形状どおりに電極109が形成される。
また、凹部内に電極を形成する従来の方法として、基板の全面に感光性銀ペーストを塗布し、露光して現像を行う方法も報告されている。
特開2001−325888号公報 特開2001−291468号公報
FIG. 11 shows a method for manufacturing the electrode formed in the recess. As shown in FIG. 11A, first, a silver-based electrode sheet 107 having photosensitivity is attached to the entire surface of the substrate 106 having the recess 106a. Then, as shown in FIG. 11B, the electrode sheet 107 is exposed using a photomask 108 on which an electrode pattern is formed, and then the electrode sheet 107 is developed and baked. By performing the above, as shown in FIG. 11C, the electrode 109 is formed according to the shape previously formed by the photomask 108.
In addition, as a conventional method for forming an electrode in a recess, a method is also reported in which a photosensitive silver paste is applied to the entire surface of a substrate, and development is performed by exposure.
JP 2001-325888 A JP 2001-291468 A

しかしながら、従来の銀ペーストを塗布する方法においては、銀ペーストを基板の全面に塗布し、露光させて現像を行っていたので、大半の高価な銀を現像時点で捨ててしまうこととなり、コストが嵩んでいた。また、工程が煩雑で長いといった問題があった。また、凹部の内部に電極シートを貼り付ける方法では、形成する場合、ローラ等によって押圧しても、凹部内まで完全に押しつけることができないため、簡単に電極を形成することができない。従って、印刷手法による電極シートの転写が不可能であった。また、いったん露光して現像していたために、電極に線太りや収縮が生じ電極の寸法精度が保持できない恐れがあった。   However, in the conventional method of applying a silver paste, the silver paste is applied to the entire surface of the substrate and exposed and developed, so that most of the expensive silver is thrown away at the time of development, which is costly. It was bulky. In addition, the process is complicated and long. In addition, in the method of attaching the electrode sheet inside the recess, the electrode cannot be easily formed because it cannot be completely pressed into the recess even when pressed by a roller or the like. Therefore, it is impossible to transfer the electrode sheet by a printing method. In addition, since exposure and development have been performed once, there is a fear that the electrode may be thickened or contracted, and the dimensional accuracy of the electrode cannot be maintained.

本発明は上記の事情に鑑みてなされたものであり、製造コストが抑えられ、製造工程が簡略化され、電極の寸法精度を高いままに保持でき、基板が凹凸を有していても電極を形成することが可能なガス放電表示装置の製造方法を提供することを目的としている。   The present invention has been made in view of the above circumstances, manufacturing costs can be reduced, the manufacturing process can be simplified, the dimensional accuracy of the electrodes can be kept high, and the electrodes can be formed even if the substrate has irregularities. An object of the present invention is to provide a method of manufacturing a gas discharge display device that can be formed.

上記の課題を解決するために、本発明は次の様なガス放電表示装置の製造方法を採用した。
すなわち、本発明に係る請求項1記載のガス放電表示装置の製造方法は、対向配置される一対の基板の少なくとも一方の基板上に電極を形成する方法であって、絶縁体もしくは誘電体からなる平板上に、前記基板上に形成する電極と同一の形状の導電膜を形成し、次いで、前記平板の前記導電膜を除く部分を帯電させて前記導電膜上に表面が帯電した絶縁膜で被覆された導電性粒子を付着させ、次いで、前記平板と前記基板とを対向させ、これら平板と基板との間に電圧を印加して前記導電膜上に付着させた導電性粒子を前記基板に付着させ、次いで、前記導電性粒子を前記基板と共に焼成し、前記基板上に電極を形成することを特徴とする。
In order to solve the above problems, the present invention employs the following method for manufacturing a gas discharge display device.
In other words, the method for manufacturing a gas discharge display device according to claim 1 of the present invention is a method of forming an electrode on at least one of a pair of substrates arranged opposite to each other, and is made of an insulator or a dielectric. A conductive film having the same shape as the electrode formed on the substrate is formed on a flat plate, and then a portion of the flat plate except the conductive film is charged and covered with an insulating film whose surface is charged on the conductive film Then, the conductive particles deposited on the conductive film are adhered to the substrate by applying a voltage between the flat plate and the substrate, and applying a voltage between the flat plate and the substrate. And then firing the conductive particles together with the substrate to form an electrode on the substrate.

本発明においては、平板上に、基板上に形成する電極と同一の形状の導電膜を形成し、次いで、平板の導電膜を除く部分を帯電させて、帯電した絶縁膜で被覆した導電性粒子を導電膜上に付着させ、次いで、対向する平板と基板との間に電圧を印加して導電性粒子を基板に付着させ、次いで基板を焼成し、基板上に電極を形成する。
そのため、導電性粒子は導電膜上のみに付着され、平板の帯電部分には付着されない。これにより、必要な導電性粒子の付着量が少なくてすみ、その結果、銀の使用量が低減される。また、平板と基板とを対向させ、これらの間に電圧を印加すればよいので、電極の製造工程が簡略化される。また、溶剤や現像液等の液体類を一切用いないので、電極の製造工程を全て気相環境のもとで行える。
また、基板の凹部の内部に電極を形成する場合においても、電極を基板上に押え付ける必要がないために、容易に電極を形成することが可能となる。
In the present invention, a conductive particle having the same shape as an electrode formed on a substrate is formed on a flat plate, and then a portion excluding the conductive film on the flat plate is charged and coated with a charged insulating film. Then, a voltage is applied between the opposing flat plate and the substrate to attach the conductive particles to the substrate, and then the substrate is baked to form an electrode on the substrate.
Therefore, the conductive particles are attached only on the conductive film and not on the charged portion of the flat plate. This requires less adhesion of conductive particles, and as a result, the amount of silver used is reduced. Further, since the flat plate and the substrate are opposed to each other and a voltage is applied between them, the electrode manufacturing process is simplified. In addition, since no liquids such as a solvent and a developer are used, all electrode manufacturing processes can be performed in a gas phase environment.
Further, even when the electrode is formed inside the concave portion of the substrate, it is not necessary to press the electrode onto the substrate, so that the electrode can be easily formed.

請求項2記載のガス放電表示装置の製造方法は、請求項1記載のガス放電表示装置の製造方法において、前記導電性粒子を前記導電膜上に付着させる際に、前記導電膜を接地した状態で前記平板を帯電させ、次いで、前記導電性粒子を前記平板上に塗布することにより、前記導電膜のみに前記導電性粒子を付着させることを特徴とする。   The method of manufacturing a gas discharge display device according to claim 2 is the method of manufacturing the gas discharge display device according to claim 1, wherein the conductive film is grounded when the conductive particles are adhered onto the conductive film. The conductive particles are adhered only to the conductive film by charging the flat plate and then applying the conductive particles on the flat plate.

本発明においては、導電性粒子を導電膜上に付着させる際に、平板の導電膜以外の部分を帯電させ、導電性粒子を平板上に塗布し、導電膜のみに導電性粒子を付着させる。これにより、平板において導電膜の形成されていない部分が、絶縁膜と同一の極性に帯電する。このため、絶縁膜によって覆われた導電性粒子と、導電膜の形成されていない部分とが反発し合い、導電性粒子は平板の導電膜が形成されていない部分に付着することはない。これにより、平板の導電膜上だけに導電性粒子が付着し、その他の部分には付着しないことになる。そのため、ドラム等によって、平板の全体にわたって導電性粒子を塗布することで、導電膜上のみに導電性粒子を容易に付着させることができる。   In the present invention, when the conductive particles are deposited on the conductive film, the portion other than the flat conductive film is charged, the conductive particles are applied on the flat plate, and the conductive particles are deposited only on the conductive film. As a result, the portion of the flat plate where the conductive film is not formed is charged with the same polarity as the insulating film. For this reason, the electroconductive particle covered with the insulating film and the part in which the electrically conductive film is not formed repel each other, and the electroconductive particle does not adhere to the part in which the flat conductive film is not formed. Thereby, electroconductive particle adheres only on a flat conductive film, and does not adhere to another part. Therefore, the conductive particles can be easily attached only on the conductive film by applying the conductive particles over the entire plate with a drum or the like.

請求項3記載のガス放電表示装置の製造方法は、請求項1または2記載のガス放電表示装置の製造方法において、前記絶縁膜で被覆された導電性粒子は、金属粒子の表面を絶縁性樹脂で被覆してなることを特徴とする。   The method for manufacturing a gas discharge display device according to claim 3 is the method for manufacturing a gas discharge display device according to claim 1 or 2, wherein the conductive particles covered with the insulating film are formed of an insulating resin on the surface of the metal particles. It is characterized by being coated with.

本発明においては、導電性粒子は金属粒子の表面が絶縁性樹脂によって被覆されていることで、被覆している絶縁膜が帯電するために、絶縁膜を平板の帯電と同一の極性に帯電させて平板に対して導電性粒子を付着させないようにすることができる。また、絶縁膜は、絶縁性樹脂によって構成されているので、焼成を行うことで容易に除去され、電極内に残ることはない。これにより、電極の形成後に電流を流すことが可能となる。   In the present invention, the conductive particles are coated with an insulating resin on the surface of the metal particles, so that the coated insulating film is charged. Therefore, the insulating film is charged with the same polarity as that of the flat plate. Thus, the conductive particles can be prevented from adhering to the flat plate. Further, since the insulating film is made of an insulating resin, it is easily removed by baking and does not remain in the electrode. This allows a current to flow after the electrodes are formed.

本発明に係るガス放電表示装置の製造方法によれば、平板上に、基板上に形成する電極と同一の形状の導電膜を形成し、次いで、平板の導電膜を除く部分を帯電させ、帯電した絶縁膜で被覆した導電性粒子を導電膜上に付着させ、次いで、対向する平板と基板との間に電圧を印加して導電性粒子を基板に付着させ、次いで基板を焼成し、基板上に電極を形成するので、必要な導電性粒子の付着量が少なくてすみ、その結果、導電性粒子の使用量を低減することができ、ガス放電表示装置の製造コストを低減することができる。また、平板と基板とを対向させ、これらの間に電圧を印加すればよいので、製造工程が簡略化され、製造工程の時間を短縮することができる。また、電極を形成する工程を気相環境のもとで行うので、ペーストやインク、現像液といった液体類が不要になり、電極の製造工程を簡便化することができる。
また、基板の凹部の内部に電極を形成する場合においても、電極を基板上に押え付ける必要がないので、放電セルを形成する基板についても電極を容易に製造することができる。
According to the method for manufacturing a gas discharge display device according to the present invention, a conductive film having the same shape as an electrode formed on a substrate is formed on a flat plate, and then a portion excluding the conductive film on the flat plate is charged and charged. The conductive particles coated with the insulating film are deposited on the conductive film, and then a voltage is applied between the opposing flat plate and the substrate to adhere the conductive particles to the substrate. Since the electrode is formed on the electrode, the amount of necessary conductive particles attached can be reduced. As a result, the amount of conductive particles used can be reduced, and the manufacturing cost of the gas discharge display device can be reduced. Moreover, since a flat plate and a board | substrate are made to oppose and a voltage should just be applied between these, a manufacturing process is simplified and the time of a manufacturing process can be shortened. Further, since the step of forming the electrode is performed in a gas phase environment, liquids such as paste, ink, and developer are not necessary, and the electrode manufacturing process can be simplified.
Further, even when the electrode is formed inside the concave portion of the substrate, it is not necessary to press the electrode onto the substrate, so that the electrode can be easily manufactured even for the substrate on which the discharge cell is formed.

また、導電性粒子を導電膜上に付着させる際に、平板の導電膜以外の部分を帯電させ、導電性粒子を平板上に塗布し、導電膜のみに導電性粒子を付着させるので、帯電した導電性粒子を薄膜上のみに付着させることができ、電極の製造工程が簡略化でき、電極の製造にかかる時間を短縮させることができる。   In addition, when the conductive particles are attached on the conductive film, the portion other than the conductive film on the flat plate is charged, and the conductive particles are applied on the flat plate so that the conductive particles are attached only to the conductive film. The conductive particles can be attached only on the thin film, the electrode manufacturing process can be simplified, and the time required for manufacturing the electrode can be shortened.

また、導電性粒子を、金属粒子の表面を絶縁性樹脂によって被覆した構成としたので、絶縁膜を平板の帯電と同極に帯電させて、平板に対して導電性粒子を付着させないようにすることができる。そのため、導電膜上のみに導電性粒子を付着させることが容易にでき、製造工程を簡略化できる。また、絶縁膜が絶縁性樹脂によって構成されているので、焼成を行うことで絶縁性樹脂を熱によって分解・除去し、絶縁性樹脂が電極に残ることは無い。   In addition, since the conductive particles have a structure in which the surface of the metal particles is coated with an insulating resin, the insulating film is charged to the same polarity as the charging of the flat plate so that the conductive particles do not adhere to the flat plate. be able to. Therefore, the conductive particles can be easily attached only on the conductive film, and the manufacturing process can be simplified. Further, since the insulating film is made of an insulating resin, the insulating resin is decomposed and removed by heat by baking, and the insulating resin does not remain on the electrode.

本発明のガス放電表示装置の製造方法に係る各実施例について説明する。
なお、本発明の各実施例は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
Examples according to the method for manufacturing a gas discharge display device of the present invention will be described.
Each example of the present invention is specifically described for better understanding of the gist of the invention, and does not limit the present invention unless otherwise specified.

図1は、本発明の実施例1のガス放電表示装置の製造方法により得られた電極を備えたプラズマディスプレイ(ガス放電表示装置)を示す図である。
このプラズマディスプレイ1は、対向配置されたガラスからなる第1の基板2と第2の基板3とにより構成されている。第2の基板3の内表面には、ストライプ状に複数の走査電極4と維持電極5とが形成され、これらの走査電極4、維持電極5は透明な誘電体層6により覆われている。また、誘電体層6は、図示は省略しているMgO等からなる保護膜により覆われて保護されている。なお、第2の基板3の内表面において、走査電極4と維持電極5とは交互に形成されている。
FIG. 1 is a view showing a plasma display (gas discharge display device) provided with electrodes obtained by the method for manufacturing a gas discharge display device of Example 1 of the present invention.
The plasma display 1 is composed of a first substrate 2 and a second substrate 3 made of glass arranged to face each other. A plurality of scan electrodes 4 and sustain electrodes 5 are formed in a stripe shape on the inner surface of the second substrate 3, and these scan electrodes 4 and sustain electrodes 5 are covered with a transparent dielectric layer 6. The dielectric layer 6 is covered and protected by a protective film made of MgO or the like not shown. Note that the scan electrodes 4 and the sustain electrodes 5 are alternately formed on the inner surface of the second substrate 3.

一方、第1の基板2の内表面には、ガス放電を行う空間である放電セル7を形成するために、走査電極4、維持電極5の延在方向と交差する方向に、所定の高さを有する複数の隔壁8がストライプ状に設けられており、複数の放電セル7が隔壁8によって区画形成されている。   On the other hand, a predetermined height is formed on the inner surface of the first substrate 2 in a direction intersecting with the extending direction of the scan electrodes 4 and the sustain electrodes 5 in order to form discharge cells 7 that are spaces for gas discharge. A plurality of barrier ribs 8 are provided in stripes, and a plurality of discharge cells 7 are partitioned by the barrier ribs 8.

複数の隔壁8は第1の基板2とは異なる別部材からなっていてもよいが、図1に示すように、プラズマディスプレイ1の製造工程を簡略化するために、複数の隔壁8は第1の基板2と一体形成されていることが望ましい。
また、放電セル7は凹曲面7aを有するものとされており、各放電セル7内には、アドレス電極9と、反射率の高い誘電体層10と、赤(R)、緑(G)、青(B)のうちいずれかの色を発光する蛍光体11とが順次積層されている。
The plurality of partition walls 8 may be made of a different member from the first substrate 2, but as shown in FIG. 1, in order to simplify the manufacturing process of the plasma display 1, the plurality of partition walls 8 are the first It is desirable to be formed integrally with the substrate 2.
Each discharge cell 7 has a concave curved surface 7a. Within each discharge cell 7, an address electrode 9, a highly reflective dielectric layer 10, red (R), green (G), A phosphor 11 that emits one of the colors of blue (B) is sequentially stacked.

プラズマディスプレイ1は、放電セル7の内部にNe、He等の希ガスを封入した状態で、上記の第1の基板2と第2の基板3とを合わせて、周囲をシール材等により封着した構成となっている。
また、上記走査電極4、維持電極5、アドレス電極9の一方の端部は、表示領域の外部にまで延出形成されており、これらに接続された端子に選択的に所定の電圧を印加することにより、選択的に放電セル7内の走査電極4、維持電極5、アドレス電極9間に放電を発生させ、この放電により放電セル7内の蛍光体11から所定の色の励起光を発生させ、外部に表示するようになっている。
The plasma display 1 has a discharge gas 7 filled with a rare gas such as Ne or He, and the first substrate 2 and the second substrate 3 are combined and sealed with a sealing material or the like. It has become the composition.
One end of each of the scan electrode 4, the sustain electrode 5, and the address electrode 9 extends to the outside of the display area, and a predetermined voltage is selectively applied to terminals connected thereto. As a result, a discharge is selectively generated between the scan electrode 4, the sustain electrode 5, and the address electrode 9 in the discharge cell 7, and excitation light of a predetermined color is generated from the phosphor 11 in the discharge cell 7 by this discharge. , To be displayed outside.

次に、第2の基板3におけるガス放電表示装置の製造方法について図2〜図7に基づき説明する。
まず、図2に示すように、ガラスにより形成された型用基板(平板)12上に、第2の基板3上に形成する電極と同一の形状の金属薄膜(導電膜)13を形成する。型用基板12は、その上に所望の電極形状に導電体を形成し、後に第1の基板もしくは第2の基板の上に、型用基板12上に形成した導電体を転写するものであって、型用基板12自体は、基板としてプラズマディスプレイ1を構成する部材ではない。
Next, the manufacturing method of the gas discharge display apparatus in the 2nd board | substrate 3 is demonstrated based on FIGS.
First, as shown in FIG. 2, a metal thin film (conductive film) 13 having the same shape as the electrode formed on the second substrate 3 is formed on a mold substrate (flat plate) 12 made of glass. The mold substrate 12 is formed by forming a conductor in a desired electrode shape thereon, and then transferring the conductor formed on the mold substrate 12 onto the first substrate or the second substrate. The mold substrate 12 itself is not a member constituting the plasma display 1 as a substrate.

次いで、図3に示すように、金属薄膜13が形成された型用基板12の全体にスコロトロン14によって電子を照射する。スコロトロン14は、電子照射口16にグリッド17を有した帯電装置である。スコロトロン14の内部では−800Vの電位となっており、コロナ放電を引き起こすことでグリッド17から電子を照射する。スコロトロン14から延びた一方の導線はスコロトロン用電源18に接続されている。また、スコロトロン14から延びるもう一方の導線は、アースされている。スコロトロン用電源18は、800Vの電源であって、スコロトロン用電源18からスコロトロン14とは別の方向に延びた側の導線はアースされている。   Next, as shown in FIG. 3, the scorotron 14 irradiates the entire mold substrate 12 on which the metal thin film 13 is formed. The scorotron 14 is a charging device having a grid 17 at the electron irradiation port 16. Inside the scorotron 14, the potential is −800 V, and electrons are irradiated from the grid 17 by causing corona discharge. One conducting wire extending from the scorotron 14 is connected to a scorotron power supply 18. The other conductor extending from the scorotron 14 is grounded. The scorotron power supply 18 is an 800V power supply, and the conductor on the side extending from the scorotron power supply 18 in a direction different from that of the scorotron 14 is grounded.

一方、金属薄膜13は型用基板12上で電極に接続されており、かつ、金属薄膜13に接続された電極から延びた導線がアースさせられている。これにより、金属薄膜13上は帯電せずに電位がゼロとなる。そのため、金属薄膜13が形成されていないガラス部分15のみがスコロトロン14から照射される電子によって帯電させられることになる。   On the other hand, the metal thin film 13 is connected to an electrode on the mold substrate 12, and a conductive wire extending from the electrode connected to the metal thin film 13 is grounded. As a result, the metal thin film 13 is not charged and the potential becomes zero. Therefore, only the glass portion 15 where the metal thin film 13 is not formed is charged by the electrons irradiated from the scorotron 14.

電子照射終了後、金属薄膜13から延びた導線は型用基板12から切り離されて、ガラス部分15のみが−800Vに帯電した型用基板12が形成される。   After the electron irradiation is completed, the conductive wire extending from the metal thin film 13 is cut off from the mold substrate 12 to form the mold substrate 12 in which only the glass portion 15 is charged to −800V.

次に、型用基板12に、塗布装置を用いて導電性粒子を付着させる。導電性粒子としては、図4(a)に示すようなポリエステルの被覆膜(絶縁膜)19によって表面を被覆した銀粒子(導電性粒子)20が好適である。図4(b)に示すように、容器21には銀粒子20が貯留されている。容器21内部の銀粒子20は、いったん円筒状の塗布部材22に塗布され、塗布部材22に付着した銀粒子20が型用基板12上に塗布される。   Next, conductive particles are adhered to the mold substrate 12 using a coating apparatus. As the conductive particles, silver particles (conductive particles) 20 whose surface is coated with a polyester coating film (insulating film) 19 as shown in FIG. As shown in FIG. 4B, silver particles 20 are stored in the container 21. The silver particles 20 inside the container 21 are once applied to a cylindrical application member 22, and the silver particles 20 attached to the application member 22 are applied onto the mold substrate 12.

その際、銀粒子20の被覆膜19は、塗布部材22と供給部材23との回転により生じる銀粒子20同士の摩擦により負に帯電している。また、同じく型用基板12のガラス部分15も負に帯電している。従って、塗布部材22によって型用基板12上の全体にわたって銀粒子20を塗布しても、同一の極性同士の帯電によって銀粒子20の被覆膜19と型用基板12のガラス部分15とが反発し合う。そのため、図5に示すように、ガラス部分15には銀粒子20が付着せずに、金属薄膜13上のみに銀粒子20が付着する。   At that time, the coating film 19 of the silver particles 20 is negatively charged due to friction between the silver particles 20 generated by the rotation of the application member 22 and the supply member 23. Similarly, the glass portion 15 of the mold substrate 12 is negatively charged. Therefore, even if the silver particles 20 are applied over the entire mold substrate 12 by the application member 22, the coating film 19 of the silver particles 20 and the glass portion 15 of the mold substrate 12 are repelled by charging with the same polarity. Hold on. Therefore, as shown in FIG. 5, the silver particles 20 are attached only on the metal thin film 13 without the silver particles 20 attaching to the glass portion 15.

その後、型用基板12上の銀粒子20を第2の基板3に転写する。図6に示すように、金属薄膜13上のみに銀粒子20を付着させた型用基板12の金属薄膜13に、転写用電源24の負極側を接続し、転写用電源24の正極側にスイッチ25を介して電極26を接続する。なお、この電極26に第2の基板3が貼り付けられている。次いで、型用基板12の金属薄膜13が形成された面と、第2の基板3の電極を形成させる面とを対向させる。   Thereafter, the silver particles 20 on the mold substrate 12 are transferred to the second substrate 3. As shown in FIG. 6, the negative electrode side of the transfer power supply 24 is connected to the metal thin film 13 of the mold substrate 12 having the silver particles 20 attached only on the metal thin film 13, and the switch is connected to the positive electrode side of the transfer power supply 24. The electrode 26 is connected via 25. Note that the second substrate 3 is attached to the electrode 26. Next, the surface of the mold substrate 12 on which the metal thin film 13 is formed is opposed to the surface of the second substrate 3 on which the electrodes are formed.

ここで、スイッチ25を入れると、型用基板12と第2の基板3との間に電圧が印加され、銀粒子20が帯電している電位よりも高電位の電圧を印加することで銀粒子20が第2の基板3上に移動する。電圧を印加し、電界が生じて銀粒子20が電界に引かれることで、銀粒子20が型用基板12から第2の基板3上に移る。ここでは、転写用電源24により正極側の第2の基板3と負極側の型用基板12との間に3kVの電圧を印加する。電圧印加後には、第2の基板3上に、型用基板12上に形成された金属薄膜13と同一の形状で銀粒子20が付着されている。その後、銀粒子20が付着された第2の基板3を550〜600℃の温度で焼成し、銀粒子20を被覆していたポリエステルの被覆膜19を分解・除去すると共に、銀粒子20同士を固着させる。こうして、図7に示すように、所望の形状どおりの走査電極4、維持電極5が形成される。   Here, when the switch 25 is turned on, a voltage is applied between the mold substrate 12 and the second substrate 3, and the silver particles 20 are applied by applying a voltage higher than the potential at which the silver particles 20 are charged. 20 moves onto the second substrate 3. A voltage is applied, an electric field is generated, and the silver particles 20 are attracted by the electric field, so that the silver particles 20 are transferred from the mold substrate 12 onto the second substrate 3. Here, a voltage of 3 kV is applied between the positive-side second substrate 3 and the negative-side mold substrate 12 by the transfer power source 24. After the voltage application, silver particles 20 are attached on the second substrate 3 in the same shape as the metal thin film 13 formed on the mold substrate 12. Thereafter, the second substrate 3 to which the silver particles 20 are adhered is baked at a temperature of 550 to 600 ° C., and the polyester coating film 19 that has covered the silver particles 20 is decomposed and removed. To fix. In this way, as shown in FIG. 7, the scan electrode 4 and the sustain electrode 5 having a desired shape are formed.

上記のプラズマディスプレイ1におけるガス放電表示装置の製造方法においては、型用基板12上に、第2の基板3上に形成する走査電極4、維持電極5と同一の形状の金属薄膜13を形成し、次いで、型用基板12上の金属薄膜13を除く部分を帯電させ、表面が帯電した被覆膜19で被覆した銀粒子20を金属薄膜13上に付着させ、次いで、型用基板12と第2の基板3との間を対向させてこれら型用基板12と第2の基板3との間に電圧を印加して銀粒子20を第2の基板3に付着させ、次いで第2の基板3を焼成し、第2の基板3上に走査電極4、維持電極5を形成する。
このように走査電極4、維持電極5を製造することで、銀ペーストを第2の基板3上の全体にわたって塗布する必要がなく、また、電極以外の部分の銀ペーストを除去する必要がないために銀の使用量が低減される。また、プラズマディスプレイ1の製造工程が簡略化される。また、ペーストやインク、現像液といった液体類を一切用いなくて済み、製造工程を全て気相環境のもとで行える。
In the method of manufacturing a gas discharge display device in the plasma display 1, the metal thin film 13 having the same shape as the scan electrode 4 and the sustain electrode 5 formed on the second substrate 3 is formed on the mold substrate 12. Next, the portion excluding the metal thin film 13 on the mold substrate 12 is charged, and the silver particles 20 coated with the coating film 19 whose surface is charged are adhered on the metal thin film 13, and then the mold substrate 12 and the second substrate The silver substrate 20 is attached to the second substrate 3 by applying a voltage between the mold substrate 12 and the second substrate 3 with the two substrates 3 facing each other, and then the second substrate 3. Then, the scan electrode 4 and the sustain electrode 5 are formed on the second substrate 3.
By manufacturing the scan electrode 4 and the sustain electrode 5 in this way, it is not necessary to apply the silver paste over the entire second substrate 3, and it is not necessary to remove the silver paste in portions other than the electrodes. In addition, the amount of silver used is reduced. Moreover, the manufacturing process of the plasma display 1 is simplified. Further, it is not necessary to use any liquids such as paste, ink, and developer, and the entire manufacturing process can be performed in a gas phase environment.

これにより、高価な銀の使用量を低減することができ、プラズマディスプレイ1の製造コストを低減することが可能となる。また、製造工程が簡略化されるために、電極の製造にかかる時間が短縮される。また、電極の製造工程を全て気相環境のもとで行えるので、電極の製造を簡便に行える。   Thereby, the usage-amount of expensive silver can be reduced and the manufacturing cost of the plasma display 1 can be reduced. In addition, since the manufacturing process is simplified, the time required for manufacturing the electrode is shortened. Further, since all the electrode manufacturing processes can be performed in a gas phase environment, the electrode can be manufactured easily.

また、銀粒子20を第2の基板3上の金属薄膜13上に付着させる際に、金属薄膜13をアースした状態でスコロトロン14によって型用基板12を負に帯電させ、予め摩擦によって負に帯電させておいた被覆膜19によって覆われた銀粒子20を、型用基板12上の金属薄膜13が形成された表面に塗布し、金属薄膜13のみに銀粒子20を付着させる。   In addition, when the silver particles 20 are deposited on the metal thin film 13 on the second substrate 3, the substrate 12 for mold is negatively charged by the scorotron 14 while the metal thin film 13 is grounded, and negatively charged by friction in advance. The silver particles 20 covered with the coating film 19 that has been applied are applied to the surface of the mold substrate 12 on which the metal thin film 13 is formed, and the silver particles 20 are attached only to the metal thin film 13.

これにより、銀粒子20を型用基板12上の全体にわたって塗布しても、型用基板12における金属薄膜13が形成されていない部分が負に帯電しているために、同じく負に帯電した銀粒子20が、金属薄膜13の形成されていない部分で反発し合い、銀粒子20が第2の基板3上のガラス部分15に付着せず、金属薄膜13上だけに銀粒子20が付着する。また、塗布部材22によって、型用基板12の全体にわたって銀粒子20を塗布しても、金属薄膜13上のみに銀粒子20を付着させることができるので、金属薄膜13上のみに容易に銀粒子20を付着させることができる。   Thus, even when the silver particles 20 are applied over the entire mold substrate 12, the portion of the mold substrate 12 where the metal thin film 13 is not formed is negatively charged. The particles 20 repel each other at a portion where the metal thin film 13 is not formed, and the silver particles 20 do not adhere to the glass portion 15 on the second substrate 3, and the silver particles 20 adhere only on the metal thin film 13. Further, even if the silver particles 20 are applied to the entire mold substrate 12 by the application member 22, the silver particles 20 can be attached only on the metal thin film 13, so that the silver particles can be easily applied only on the metal thin film 13. 20 can be deposited.

また、銀粒子20は、表面をポリエステルによって形成された被覆膜19で被覆している。銀粒子20が絶縁性樹脂のポリエステルで形成された被覆膜19によって被覆されていることで銀粒子20の表面が摩擦により負に帯電することができる。従って、負に帯電した型用基板12のガラス部分15と反発し合い、型用基板12における金属薄膜13上のみに銀粒子20を付着させることができる。   Moreover, the silver particle 20 has coat | covered the surface with the coating film 19 formed with polyester. Since the silver particles 20 are covered with the coating film 19 formed of the insulating resin polyester, the surface of the silver particles 20 can be negatively charged by friction. Therefore, the glass particles 15 of the mold substrate 12 charged negatively repel each other, and the silver particles 20 can be attached only on the metal thin film 13 in the mold substrate 12.

本発明に係るガス放電表示装置の製造方法の実施例2について、図8、図9に基づき説明する。なお、図6及び図7と同一の構成要素には同一符号を付し説明を省略する。   Example 2 of the method for manufacturing a gas discharge display device according to the present invention will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected to the component same as FIG.6 and FIG.7, and description is abbreviate | omitted.

本実施形態においては、既に説明した、図1におけるプラズマディスプレイ1の、第1の基板2にアドレス電極9を形成する。第1の基板2には、放電セル7を形成するために隔壁8が設けてあり、アドレス電極9を形成する第1の基板2の表面は平らではなく、凹曲面7aを有している。
第1の基板2においても第2の基板3上への電極の形成と同様に、型用基板26上に所望の形状に金属薄膜27を形成し、型用基板26のガラス部分28を負に帯電させ、予め負に帯電した銀粒子20を型用基板28の表面全体にわたって塗布し、金属薄膜27上に銀粒子20を付着させる。図8に示すように、金属薄膜27上に残った銀粒子20を第1の基板2と型用基板26との間に電圧を印加して電界を発生させる。この電界により、金属薄膜27上の銀粒子20を第1の基板2上に移動させる。そして、図9に示すように、第1の基板2上の凹曲面7a内にアドレス電極9を形成する。
In the present embodiment, the address electrodes 9 are formed on the first substrate 2 of the plasma display 1 shown in FIG. The first substrate 2 is provided with barrier ribs 8 for forming the discharge cells 7, and the surface of the first substrate 2 on which the address electrodes 9 are formed is not flat but has a concave curved surface 7a.
In the first substrate 2, similarly to the formation of the electrode on the second substrate 3, a metal thin film 27 is formed in a desired shape on the mold substrate 26, and the glass portion 28 of the mold substrate 26 is made negative. The silver particles 20 that are charged and negatively charged in advance are applied over the entire surface of the mold substrate 28, and the silver particles 20 are deposited on the metal thin film 27. As shown in FIG. 8, a voltage is applied between the first substrate 2 and the mold substrate 26 for the silver particles 20 remaining on the metal thin film 27 to generate an electric field. By this electric field, the silver particles 20 on the metal thin film 27 are moved onto the first substrate 2. Then, as shown in FIG. 9, the address electrode 9 is formed in the concave curved surface 7 a on the first substrate 2.

本実施形態におけるガス放電表示装置の製造方法においては、電極を基板に対して押圧するわけではなく、銀粒子20を電気的な力によって移動させてアドレス電極9を形成することとなるので、凹曲面7aを有する第1の基板2上においても容易にアドレス電極9を形成することが可能である。   In the method for manufacturing a gas discharge display device according to the present embodiment, the electrodes are not pressed against the substrate, but the silver particles 20 are moved by an electric force to form the address electrodes 9. The address electrodes 9 can be easily formed even on the first substrate 2 having the curved surface 7a.

なお、本実施例においては、金属薄膜13上に付着させる導電性粒子として銀粒子20を用いたが、導電性粒子は銀粒子20に限定されるものではなく、銀粒子20以外の導電性粒子、例えば、ニッケル粒子や銅粒子等を用いてもよい。特に、銀粒子20を用いれば被覆膜19を焼成によって容易に除去することができ、しかも、ニッケル粒子や銅粒子に比べて酸化され難く、通常の大気中における焼成が可能であるから、銀粒子20であることが望ましい。   In this embodiment, the silver particles 20 are used as the conductive particles to be deposited on the metal thin film 13. However, the conductive particles are not limited to the silver particles 20, and the conductive particles other than the silver particles 20 are used. For example, nickel particles or copper particles may be used. In particular, if the silver particles 20 are used, the coating film 19 can be easily removed by firing, and is less oxidized than nickel particles or copper particles, and can be fired in ordinary air. The particles 20 are desirable.

また、本実施例においては、銀粒子20を被覆する被覆膜19をポリエステルによって形成したが、予め摩擦等によって負に帯電することができるのであれば、ポリエステルに限定されるわけではなく、他の絶縁性樹脂の材料によって被覆膜を形成しても良い。   Further, in this embodiment, the coating film 19 that covers the silver particles 20 is formed of polyester. The coating film may be formed of the insulating resin material.

また、銀粒子20の被覆膜19は、塗布部材22と供給部材23との回転により生じる銀粒子20同士の摩擦により負に帯電させることとしたが、銀粒子20を型用基板12上に塗布する前に銀粒子20の被覆膜19を帯電させることができるのであれば、銀粒子20を容器21の内部に貯留する前に予め銀粒子20に摩擦させることで負に帯電させてもよく、容器21に振動を与えて銀粒子20に摩擦を与えてもよい。また、別の手段を用いて銀粒子20を負に帯電させてもよい。   Further, the coating film 19 of the silver particles 20 is negatively charged by friction between the silver particles 20 generated by the rotation of the application member 22 and the supply member 23, but the silver particles 20 are placed on the mold substrate 12. If the coating film 19 of the silver particles 20 can be charged before coating, the silver particles 20 may be negatively charged by friction with the silver particles 20 in advance before storing the silver particles 20 in the container 21. Alternatively, the container 21 may be vibrated to give friction to the silver particles 20. Further, the silver particles 20 may be negatively charged using another means.

また、本実施例においては、型用基板12上に、第1の基板2上及び第2の基板3上に形成する電極と同一形状の金属薄膜13を貼り付けたが、この金属薄膜13は、導電性のあるもので微細な形状が形成できるものであればよく、例えば、クロムを蒸着させ、フォトリソグラフィーによって所定形状に金属薄膜13を形成してもかまわない。
また、型用基板12の材料としては、絶縁体もしくは誘電体であればよく、耐久性の優れたものが好ましい。
In this embodiment, the metal thin film 13 having the same shape as the electrodes formed on the first substrate 2 and the second substrate 3 is attached on the mold substrate 12. Any conductive material that can form a fine shape may be used. For example, chromium may be deposited and the metal thin film 13 may be formed into a predetermined shape by photolithography.
Further, the material of the mold substrate 12 may be an insulator or a dielectric, and a material having excellent durability is preferable.

本発明の実施例1のプラズマディスプレイを示す部分分解斜視図である。It is a partial exploded perspective view which shows the plasma display of Example 1 of this invention. 本発明に係る実施例1のガス放電表示装置の製造方法に用いられる型用基板を示す平面図である。It is a top view which shows the type | mold board | substrate used for the manufacturing method of the gas discharge display apparatus of Example 1 which concerns on this invention. 本発明に係る実施例1のガス放電表示装置の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the gas discharge display apparatus of Example 1 which concerns on this invention. 本発明に係る実施例1のガス放電表示装置の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the gas discharge display apparatus of Example 1 which concerns on this invention. 本発明に係る実施例1のガス放電表示装置の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the gas discharge display apparatus of Example 1 which concerns on this invention. 本発明に係る実施例1のガス放電表示装置の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the gas discharge display apparatus of Example 1 which concerns on this invention. 本発明に係る実施例1のガス放電表示装置の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the gas discharge display apparatus of Example 1 which concerns on this invention. 本発明に係る実施例2のガス放電表示装置の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the gas discharge display apparatus of Example 2 which concerns on this invention. 本発明に係る実施例2のガス放電表示装置の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the gas discharge display apparatus of Example 2 which concerns on this invention. 従来のガス放電表示装置の製造方法の一例を示す過程図である。It is process drawing which shows an example of the manufacturing method of the conventional gas discharge display apparatus. 従来のガス放電表示装置の製造方法の他の一例を示す過程図である。It is process drawing which shows another example of the manufacturing method of the conventional gas discharge display apparatus.

符号の説明Explanation of symbols

2 第1の基板
3 第2の基板
4 走査電極
5 維持電極
9 アドレス電極
12 型用基板
13 金属薄膜
19 被覆膜
20 銀粒子
27 金属薄膜
28 型用基板
2 First substrate 3 Second substrate 4 Scan electrode 5 Sustain electrode 9 Address electrode 12 Type substrate 13 Metal thin film 19 Coating film 20 Silver particle 27 Metal thin film 28 Type substrate

Claims (3)

対向配置される一対の基板の少なくとも一方の基板上に電極を形成する方法であって、
絶縁体もしくは誘電体からなる平板上に、前記基板上に形成する電極と同一の形状の導電膜を形成し、
次いで、前記平板の前記導電膜を除く部分を帯電させて前記導電膜上に表面が帯電した絶縁膜で被覆された導電性粒子を付着させ、
次いで、前記平板と前記基板とを対向させ、これら平板と基板との間に電圧を印加して前記導電膜上に付着させた導電性粒子を前記基板に付着させ、
次いで、前記導電性粒子を前記基板と共に焼成し、前記基板上に電極を形成することを特徴とするガス放電表示装置の製造方法。
A method of forming an electrode on at least one of a pair of substrates disposed opposite to each other,
On a flat plate made of an insulator or dielectric, a conductive film having the same shape as the electrode formed on the substrate is formed,
Next, the portion excluding the conductive film of the flat plate is charged to attach conductive particles coated with an insulating film whose surface is charged on the conductive film,
Next, the flat plate and the substrate are opposed to each other, and a conductive particle adhered to the conductive film by applying a voltage between the flat plate and the substrate is attached to the substrate.
Next, the conductive particles are baked together with the substrate, and an electrode is formed on the substrate.
前記導電性粒子を前記導電膜上に付着させる際に、
前記導電膜を接地した状態で前記平板を帯電させ、次いで、前記導電性粒子を前記平板上に塗布することにより、前記導電膜のみに前記導電性粒子を付着させることを特徴とする請求項1記載のガス放電表示装置の製造方法。
When depositing the conductive particles on the conductive film,
2. The conductive particles are attached only to the conductive film by charging the flat plate in a state where the conductive film is grounded, and then applying the conductive particles on the flat plate. The manufacturing method of the gas discharge display apparatus of description.
前記絶縁膜で被覆された導電性粒子は、金属粒子の表面を絶縁性樹脂で被覆してなることを特徴とする請求項1または2記載のガス放電表示装置の製造方法。

3. The method of manufacturing a gas discharge display device according to claim 1, wherein the conductive particles coated with the insulating film are formed by coating the surfaces of metal particles with an insulating resin.

JP2003281877A 2003-07-29 2003-07-29 Method for manufacturing gas discharge display device Expired - Fee Related JP3940105B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003281877A JP3940105B2 (en) 2003-07-29 2003-07-29 Method for manufacturing gas discharge display device
KR1020040035912A KR100612228B1 (en) 2003-07-29 2004-05-20 Methode of manufacturing for gas discharge display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003281877A JP3940105B2 (en) 2003-07-29 2003-07-29 Method for manufacturing gas discharge display device

Publications (2)

Publication Number Publication Date
JP2005050696A true JP2005050696A (en) 2005-02-24
JP3940105B2 JP3940105B2 (en) 2007-07-04

Family

ID=34267260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003281877A Expired - Fee Related JP3940105B2 (en) 2003-07-29 2003-07-29 Method for manufacturing gas discharge display device

Country Status (2)

Country Link
JP (1) JP3940105B2 (en)
KR (1) KR100612228B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008069148A1 (en) * 2006-12-05 2008-06-12 Kabushiki Kaisha Toshiba Pattern forming apparatus, and pattern forming method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008069148A1 (en) * 2006-12-05 2008-06-12 Kabushiki Kaisha Toshiba Pattern forming apparatus, and pattern forming method

Also Published As

Publication number Publication date
JP3940105B2 (en) 2007-07-04
KR100612228B1 (en) 2006-08-11
KR20050013920A (en) 2005-02-05

Similar Documents

Publication Publication Date Title
CA2044267C (en) Plasma display panel and method of producing the same
JP2005536016A (en) Use of printing and other techniques to place microcomponents
EP0690467A1 (en) Fluorescent screen structure and field emission display and methods for manufacturing these
EP1696465B1 (en) Electron emission device and method for manufacturing the same
JPH10116563A (en) Plasma display panel and its manufacture
JPH0512991A (en) Manufacture of plasma display panel
JP3940105B2 (en) Method for manufacturing gas discharge display device
JPH04229926A (en) Electrophotographic formation of luminous screen on substrate of color crt
JPH0243064A (en) Electrostatic latent image forming apparatus
KR930004994B1 (en) Plasma display paneled of manufacturing
KR100560485B1 (en) Apparatus for printing electrode of plasma display panel and manufacturing method of plasma display panel using the apparatus
US4156165A (en) Device for the electronic generation of an electrostatic charge pattern
KR100268725B1 (en) Method for forming partition of plasma display pannel and plasma display pannel thereby
JPH06223725A (en) Gas discharge display device
KR100406817B1 (en) Manufacturing method of field emission display device
JPH08293259A (en) Method for forming gas-discharge display panel and its electrode
JP2699809B2 (en) Fluorescent display tube
JPH08703Y2 (en) Front panel for display
JPH10188806A (en) Black matrix applying method
JP3033356B2 (en) Anode substrate manufacturing method
JP3309017B2 (en) Method of manufacturing gas discharge display panel
KR100526697B1 (en) Partition Wall of Plasma Display Device and Formation Method
US8164248B2 (en) Image display apparatus
JPS6244931A (en) Discharge gas display panel
JP2596239B2 (en) Method of forming vacuum display panel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees