JP2005050605A - Ground-fault interrupter - Google Patents

Ground-fault interrupter Download PDF

Info

Publication number
JP2005050605A
JP2005050605A JP2003204455A JP2003204455A JP2005050605A JP 2005050605 A JP2005050605 A JP 2005050605A JP 2003204455 A JP2003204455 A JP 2003204455A JP 2003204455 A JP2003204455 A JP 2003204455A JP 2005050605 A JP2005050605 A JP 2005050605A
Authority
JP
Japan
Prior art keywords
circuit
main circuit
electrode plate
power supply
earth leakage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003204455A
Other languages
Japanese (ja)
Other versions
JP4085911B2 (en
Inventor
Hisanobu Asano
久伸 浅野
Koji Asakawa
浩司 浅川
Yasuhiro Takahashi
康弘 高橋
Mitsuhiro Mitsushige
三弘 満重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric FA Components and Systems Co Ltd
Priority to JP2003204455A priority Critical patent/JP4085911B2/en
Priority to KR1020040016079A priority patent/KR100935068B1/en
Priority to CNB2004100295305A priority patent/CN100446149C/en
Publication of JP2005050605A publication Critical patent/JP2005050605A/en
Application granted granted Critical
Publication of JP4085911B2 publication Critical patent/JP4085911B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H83/00Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
    • H01H83/02Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by earth fault currents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/66Power reset mechanisms
    • H01H71/68Power reset mechanisms actuated by electromagnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H83/00Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
    • H01H83/02Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by earth fault currents
    • H01H83/04Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by earth fault currents with testing means for indicating the ability of the switch or relay to function properly

Abstract

<P>PROBLEM TO BE SOLVED: To provide a space-saving ground-fault interrupter of a simple structure equipped with a switch for voltage withstanding test so as to be able to respond to a voltage withstanding test carried out after shipment. <P>SOLUTION: The ground-fault interrupter having an overcurrent and leakage protection functional parts mounted on a single body case 11 is equipped with a manual operation switch for voltage withstanding test turning on and off a power feeding circuit feeding interphase voltage of a main circuit to a leakage detecting circuit 7. The switch is structured of an electrode plate 22 for power supply mounted on a printed board 7a of the leakage detecting circuit 7 to be directly pressed against a main circuit conductor 1a (a primary conductor penetrating a zero-phase-sequence current transformer 6), and a switching operation piece 24 made of an insulating material intercalated between the electrode plate and the main circuit conductor for attaching and detaching the electrode plate to and from the main circuit conductor by a manual operation, with a knob part 24a of the switching operation piece made to faced a window hole opened to a cover of the interrupter case. Further, the leakage detection circuit is disconnected from the main circuit by the knob part drawn out to an OFF position at implementation of the voltage withstanding test. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、低電圧配電系統に適用する過電流保護および地絡保護機能を備えた漏電遮断器に関し、詳しくは漏電遮断器の耐電圧試験を行う際に漏電検出回路を主回路から切り離す耐電圧テスト用スイッチの組立構造に係わる。
【0002】
【従来の技術】
低電圧配電系統の保護機器として配線用遮断器,漏電遮断器が周知であり、現在国内で使われている漏電遮断器はその本体ケースに過電流保護機能部品と地絡保護機能部品をすべて組み込んだ構成のものが一般的である。また、最近の漏電遮断器では、需要家サイドでの使い勝手性を高めるために、同じフレームの配線用遮断器,漏電遮断器で外形サイズを統一した上で、その本体ケースに組み込む主要部品をできるだけ共用化するように構成した単体構造のものが主流となっている(例えば、特許文献1参照。)。
次に、前記した漏電遮断器(3相電源用)の回路図を図6に、またその組立構造を図7および図8に示す。まず、図6において、1はR,S,T相の主回路、2は主回路接点、3は主回路接点2の開閉機構部、4は操作ハンドル、5は主回路に流れる過負荷電流,短絡電流を検出して開閉機構をトリップ動作させる過電流引外し装置である。
【0003】
また、配電系統の地絡事故を検出して遮断器をトリップ動作させる漏電引外し装置は、R,S,T相の主回路1を一次導体として主回路1の不平衡電流を検出する零相変流器6と、零相変流器6の二次出力レベルから地絡発生を検知する漏電検出回路(ICを含む電子回路)7と、漏電検出回路7からの出力を受けて開閉機構3をトリップ動作させるトリップコイルユニット8とからなる。ここで、漏電検出回路7はその電源として、主回路1との間に配線した電源線9,整流回路10を介して主回路1の相間電圧を給電するようにしている。なお、図示例では主回路1のR−T相の相間電圧を漏電検出回路7に給電しているが、R,S,T相の各相電圧を直流に変換して給電する場合もある。
一方、図7,図8において、11は下部ケース11aと上部カバー11bからなる遮断器のケース、12,13は電源側,負荷側の主回路端子、14は主回路接点2の固定接触子、15は可動接触子、16は可動接触子15を支持した回動式の接触子ホルダ、17は消弧装置である。また、開閉機構部3は良く知られているように、前記接触子ホルダ16と操作ハンドル4との間を連繋したトグルリンク3aと開閉スプリング3bを組み合わせたトグルリンク機構,およびラッチ18,ラッチ受け19,トリップクロスバー20を組み合わせたラッチ機構との組立体からなり、トリップクロスバー20には前記した過電流引外し装置5の操作端であるアーマチュア5a,および漏電引外し装置のトリップコイルユニット8の操作端であるスライダが対向している。
【0004】
また、図8で示すように、本体ケース11には相間隔壁11cを形成して本体ケース内に組付けた各相の部品相互間を絶縁隔離し、また先記の漏電検出回路7はICなどの電子部品をプリント板7aに実装して保護ケースに収容した上で、本体ケース11の内部(零相変流器6の両側と下部ケース11aの側壁との間のスペース)に組み込み、主回路1の導体との間に電源線9(図6参照)としてハーネスを配線している。
上記漏電遮断器の開閉動作は周知の通りであり、操作ハンドル4をON,OFF位置に移動操作すると、操作ハンドル4に連動して開閉機構部3のトグルリンク機構が反転動作し、可動接触子15が開閉動作する。また、主回路接点2が閉極(ON)している図示の投入状態では、ラッチ18がラッチ受け19に係止され、ラッチ受け19はこの位置でトリップクロスバー20に拘束されている。この状態から主回路に過負荷電流,短絡電流が流れて過電流引外し装置5が作動すると、アーマチュア5aを介してトリップクロスバー20が反時計方向に回動し、ラッチ受け19とラッチ18との係合を釈放する。これにより開閉機構部3がトリップ動作し、可動接触子15が固定接触子14から開離して主回路の電流を遮断する。同様に主回路1に地絡電流が流れて漏電引外し装置のトリップコイルユニット8が作動すると、トリップクロスバー20を釈放位置に駆動する。これにより開閉機構部3がトリップ動作し、過電流による動作と同様に可動接触子15が開極して主回路1を断路する。なお、トリップ動作後に遮断器を再投入するには、トリップ位置に停止している操作ハンドル4をトリップ位置から一旦OFF位置に戻してラッチ機構をリセットさせた上で、さらに操作ハンドル4をOFFからON位置に移動することにより可動接触子15が閉極する。
【0005】
ところで、漏電遮断器の製品は所定の絶縁耐力を確保することが規格で規定されており、そのために製品ごとに耐電圧試験を行って絶縁破壊が生じないことを確認するようにしている。この耐電圧試験は、漏電遮断器の主回路接点をOFFにした状態で、主回路端子の相間に試験電圧を印加して行うようにしており、その試験電圧は漏電遮断器の定格電圧ごとに規定されていて、例えば定格電圧400〜600Vの漏電遮断器での試験電圧は2500Vである。
この耐電圧試験を行う場合に、図6に示した漏電検出回路(IC)7と主回路1との間に電源線9の配線を施した製品の組立状態で試験を行うと、主回路1の相間に印加した高い試験電圧が漏電検出回路7に加わってICなどが破壊してしまう。そこで、国内の遮断器メーカーでは漏電検出回路7に給電する電源線9を主回路1に接続配線する以前の組立段階で耐電圧試験を実施するようにしているが現状である。
【0006】
一方、欧米諸国などで生産されている漏電遮断器は先記した単一構造の国内製品とはタイプが異なり、配線用遮断器に別構造の独立した漏電検出ユニット(零相変流器,漏電検出回路などを装備してユニット化したオプション品)を組合せて使用するのが一般的である。
【0007】
【特許文献1】
特許第3246562号明細書
【特許文献2】
米国特許出願公開第2001/0022713A1号明細書
【0008】
【発明が解決しようとする課題】
先記のように、現在国内の市場に出回っている漏電遮断器は、製品出荷後にユーザーサイドで耐電圧試験を行うことを想定してないために、欧米諸国の製品に装備されているような耐電圧テスト用スイッチを備えてない。したがって、海外規格認定を取得した製品については輸出先国の現地で行う耐電圧試験に対応できるようにするために、耐電圧テスト用スイッチの装備が必要となる。
ところで、図7,図8に示した単体構造の漏電遮断器は、本体ケース内に配線用遮断器との共用部品および漏電保護の機能部品が殆ど残余スペースを残すことなくびっしりと組み込まれている。このために、本体ケースの外形サイズ(配線用遮断器のケースと同一サイズに統一)を変えずに、耐電圧テスト用スイッチを内装するスペースを新たに確保するには、設計面で従来製品の構成部品およびレイアウトを変更する必要があり、そのために多大な開発費と時間がかかる問題がある。
【0009】
そこで、本発明の目的は、外形サイズを配線用遮断器と同じサイズに統一した本体ケースに過電流保護および漏電保護機能部品を装備した単体構造の漏電遮断器を対象に、在来製品に標準装備されている各種機能部品,およびそのレイアウトに変更を加えることなしに、耐電圧テスト用スイッチを追加装備して製品出荷後に実施する耐電圧試験にも簡単に対応できるようにした漏電遮断器を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するために、本発明によれば、ケース内に主回路接点の開閉機構,過電流引外し装置,主回路を一次導体とする零相変流器, および漏電検出回路を含む漏電引外し装置を組み込んだ単体構造になる漏電遮断器であって、主回路の相間電圧を漏電検出回路に給電する給電回路を入り, 切りする手動操作式の耐電圧テスト用スイッチを装備したものにおいて、
(1) 前記の耐電圧テスト用スイッチを、漏電検出回路のプリント板から引き出してその先端を主回路導体に直接押接する電源用電極板と、該電極板と主回路導体との間に割り込み介装した上で、外部からの手動操作により電源用電極板を一次導体に接離させる絶縁物製の摘まみ付き開閉操作片とで構成し、その開閉操作片の摘まみ部を遮断器のケースカバーに開口した窓穴に臨ませて配置する(請求項1)。
【0011】
(2) 前記の耐電圧テスト用スイッチを、主回路導体から引き出してその先端を漏電検出回路のプリント板に設けた電源端子に押接する電源用電極板と、該電極板と前記電源端子との間に割り込み介装した上で、外部からの手動操作により電極板をプリント板の電源端子に接離させる絶縁物製の摘まみ付き開閉操作片とから構成し、その開閉操作片の摘まみ部を遮断器のケースカバーに開口した窓穴に臨ませて配置する(請求項2)。
(3) ここで、前記の電極板は、ばね性を有する舌片状の導電材で形成し、当接相手側部材に向けて押圧付勢するようにする(請求項3)。
上記の構成において、漏電遮断器の通常の使用状態では開閉操作片の摘まみ部をON位置にセットしておく。これにより、耐電圧テスト用スイッチの電源用電極板が相手側部材である主回路導体,ないしはプリント板の電源端子に当接して主回路の相間電圧が漏電検出回路に給電される。一方、耐電圧試験を行う際に、スイッチの操作つまみ部を遮断器本体のケースに開口した窓穴から引き出してOFF位置に切り換えると、これに従動して開閉操作片(絶縁物)が電源電極片と当接相手部材との間に割り込んで双方の間を開離して漏電検出回路を主回路から断路する。これにより、耐電圧試験電圧が漏電検出回路に印加されることがなく安全に試験を行うことができる。
【0012】
しかも、スイッチOFFの状態では、絶縁物の開閉操作片を挟んで主回路導体と漏電検出回路との間が絶縁されるので試験電圧に対応した絶縁距離を確保しておく必要がなく、これにより耐電圧テスト用スイッチを省スペース化し、漏電遮断器の主要部品,レイアウトを変更せずに遮断器ケース内に残る僅かな空きスペースを利用して耐電圧テスト用スイッチを組み込むことができる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を図1〜図5に示す実施例に基づいて説明する。なお、実施例の図中で図6〜図8に対応する部材には同じ符号を付してその詳細な説明は省略する。
〔実施例1〕
本発明の請求項1に対応する実施例を図1〜図4で説明する。まず、図3に漏電遮断器の回路図を示す。図3において、21が本発明により漏電遮断器に追加装備した耐電圧テスト用スイッチであり、該スイッチを主回路1の相間電圧を漏電検出回路7に給電する給電回路に配置し、耐電圧試験の際にスイッチをOFF操作して前記給電回路を断路するようにしている。
【0014】
ここで、上記の耐電圧テスト用スイッチ21は、図1で示すように上方から遮断器ケース11の下部ケース11aに組み込んで零相変流器6の上に跨がるように配置した漏電検出回路7に組合せて次記のように構成している。
まず、漏電検出回路7は左右2枚に分割したプリント板7aをコ字形のケース7bに収設し、上方から零相変流器6の上に跨がるよう差し込んで遮断器ケース11の下部ケース11aに組み込むようにする。そして、この漏電検出回路7の組立体に対して、左右に並ぶプリント板7aから前方に引き出してその先端を負荷側端子13に連なる主回路の導体1a(零相変流器6を貫通する一次導体)の導体表面に直接押接させるように配置した電源用電極板22(耐電圧テスト用スイッチの可動接触子)と、この電源用電極板22と主回路導体1aとの間に割り込むように介装した絶縁物製(樹脂成形品)の開閉操作片24とで耐電圧テスト用スイッチを構成している。なお、23は漏電検出回路7と漏電遮断器のトリップコイル8(図3参照)との間を接続する配線用のハーネスである。
【0015】
次に、前記した耐電圧テスト用スイッチの詳細な組立構造,およびその開閉動作を図4(a),(b) で説明する。まず、電源用電極板22は、ばね性を有する導電材片をL形に折り曲げて形成し、その基部をプリント板7aに固定して漏電検出回路7の電源入力端子に接続した上で、先端をケース7bの前方に引き出して主回路導体1aの端面に直接押接するように配置している。なお、25は電極板22を背後から主回路導体1aに押圧付勢するように追加したコイルばねである。
また、開閉操作片24は図1で示すように門形を呈した形状で、その上端には摘まみ部24aを、また左右の下端側には前記電極板22に対応する隔壁部24bを形成し、図2で表すように前記摘まみ部24aを遮断器ケース11の上部カバー11bに開口したスリット状の窓穴11b−1に臨ませ、手動操作でON,OFF位置に出入させるよう配置している。
【0016】
そして、常時は図4(a) で表すように摘まみ部24aを矢印方向に押し込んで開閉操作片24をON位置にセットしておく。この状態では開閉操作片24の隔壁部24bが下方に後退し、電極板22は主回路導体1aに当接している。この状態では、図3で主回路1の相間電圧が漏電検出回路7に給電される。
一方、漏電遮断器の納入先現地で耐電圧試験を行う際には、図4(b) で表すように試験に先立って開閉操作片24の摘まみ部24aを手動操作により上方に引き上げてOFF位置に移動する。これにより、開閉操作片24の隔壁部24bが電極板22と主回路導体1aとの間に割り込んで電極板22を離脱させる。この状態になると、図3の漏電検出回路7が主回路1から完全に切り離されので、耐電圧試験を安全に行うことができる。なお、図4(b) のスイッチOFFの状態では、電極板22と主回路導体1aとの間が開閉操作片24の隔壁部(絶縁物製)24bを挟んで隔離されているので、高い絶縁耐力が確保できる。
【0017】
そして、耐電圧試験の終了後は、開閉操作片24を図4(a) のON位置に戻すことで、再び主回路1の相間電圧が漏電検出回路7に給電されるようになり、漏電遮断器は通常の使用状態に復帰する。
〔実施例2〕
次に、本発明の請求項2に係る別な実施例の構成を図5に示す。図5(a),(b) は先記実施例の図4(a),(b) に対応した耐電圧テスト用スイッチのON,OFF状態を表した図であり、この実施例においては先記実施例1とは逆にばね性を有する導電材で作られた電源用電極板26を主回路導体1aに固定設置し、その電極板26の先端を漏電検出回路7のプリント板7aに設けた電源端子27に押接するように配置している。なお、開閉操作片24は図4と同様な構造配置として電極板26と電源端子27との間に介装している。
【0018】
上記構成において、図5(a) のように開閉操作片24の摘まみ部24aをON位置に押し込むと、隔壁部24bが下方に後退して電極板26がプリント板7aに設けた電源端子27に当接し、この状態で図3における主回路1の相間電圧が漏電検出回路7に給電される。
一方、耐電圧試験の実施に際して、開閉操作片24の摘まみ部24aを図5(b) に示すOFF位置に引き上げると、隔壁部24bが電極板26と電源端子27との間に入り込んで両者の間を離脱させる。これにより、実施例1で述べたと同様に耐電圧テスト用スイッチがOFFとなって主回路1と漏電検出回路7との間を断路する。そして、耐電圧試験の終了後は、開閉操作片24を図5(a) のON位置に戻すことで、再び主回路1の相間電圧が漏電検出回路7に給電できるようになり、漏電遮断器は通常の使用状態に戻る。
【0019】
【発明の効果】
以上述べたように本発明の構成によれば、配線用遮断器と同じ外形サイズに統一して構成した単体構造になる漏電遮断器において、そのケースに組み込んだ過負荷保護,漏電保護機能部品およびそのレイアウトをそのままに、耐電圧テスト用スイッチを追加装備することかでき、またこの耐電圧テスト用スイッチをOFF操作して漏電検出回路を主回路から断路することで、漏電遮断器の製品出荷後に行う耐電圧試験にも容易に対応させることができる。
また、漏電遮断器の在来製品に簡単な電源用電極板および開閉操作片の部品を追加するだけで耐電圧テスト用スイッチを構成でき、しかも耐電圧テスト用スイッチの構成部品を漏電検出回路のプリント基板,主回路導体(零相変流器の一次導体)に組み合わせて配置したことでスイッチの省スペース化が図れる。
【図面の簡単な説明】
【図1】本発明の実施例1に係る漏電遮断器の要部部品の分解斜視図
【図2】図1の漏電遮断器の平面図
【図3】図1の漏電遮断器の回路図
【図4】図1における耐電圧テスト用スイッチの構造,動作の説明図で、(a),(b) はそれぞれスイッチのON,OFF状態を表す側視断面図
【図5】本発明の実施例2に係る耐電圧テスト用スイッチの構造,動作の説明図で、(a),(b) はそれぞれスイッチのON,OFF状態を表す側視断面図
【図6】本発明の実施対象となる漏電遮断器の従来回路図
【図7】図6の漏電遮断器の構成断面図
【図8】図7の漏電遮断器の内部構造を表す斜視図
【符号の説明】
1 主回路
1a 主回路導体
3 開閉機構部
5 過電流引外し装置
6 零相変流器
7 漏電検出回路
7a プリント板
7b ケース
11 漏電遮断器のケース
11a 下部ケース
11b 上部カバー
11b−1 窓穴
21 耐電圧テスト用スイッチ
22,26 電源用電極板
24 開閉操作片
24a 摘まみ部
27 電源端子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an earth leakage breaker having an overcurrent protection function and a ground fault protection function applied to a low voltage distribution system, and more specifically, withstand voltage for disconnecting an earth leakage detection circuit from a main circuit when conducting a withstand voltage test of the earth leakage breaker. It relates to the assembly structure of the test switch.
[0002]
[Prior art]
Circuit breakers and earth leakage circuit breakers are well known as protection devices for low-voltage distribution systems. Current earth leakage circuit breakers currently used in Japan incorporate all overcurrent protection function parts and ground fault protection function parts in the main body case. The one with the configuration is common. Also, in recent earth leakage circuit breakers, in order to improve the usability on the customer side, the outer dimensions of the wiring breakers and earth leakage circuit breakers of the same frame are standardized, and the main parts to be incorporated in the main body case can be as much as possible. A single structure that is configured to be shared is the mainstream (see, for example, Patent Document 1).
Next, a circuit diagram of the above-described earth leakage breaker (for a three-phase power source) is shown in FIG. 6, and its assembly structure is shown in FIGS. First, in FIG. 6, 1 is an R, S, T phase main circuit, 2 is a main circuit contact, 3 is an opening / closing mechanism part of the main circuit contact 2, 4 is an operation handle, 5 is an overload current flowing through the main circuit, This is an overcurrent trip device that detects the short-circuit current and trips the switching mechanism.
[0003]
An earth leakage trip device that detects a ground fault in the distribution system and trips the circuit breaker is a zero-phase circuit that detects an unbalanced current in the main circuit 1 using the R, S, T phase main circuit 1 as a primary conductor. A current transformer 6, a leakage detection circuit (electronic circuit including IC) 7 that detects the occurrence of a ground fault from the secondary output level of the zero-phase current transformer 6, and an opening / closing mechanism 3 that receives the output from the leakage detection circuit 7 And a trip coil unit 8 for tripping. Here, the leakage detection circuit 7 feeds the inter-phase voltage of the main circuit 1 through the power supply line 9 and the rectifier circuit 10 wired between the main circuit 1 as its power source. In the illustrated example, the VT phase interphase voltage of the main circuit 1 is supplied to the leakage detection circuit 7. However, the R, S, and T phase voltages may be converted into direct current and supplied.
On the other hand, in FIGS. 7 and 8, 11 is a circuit breaker case comprising a lower case 11a and an upper cover 11b, 12, 13 are main circuit terminals on the power supply side and load side, 14 is a fixed contact for the main circuit contact 2, Reference numeral 15 is a movable contact, 16 is a rotary contact holder that supports the movable contact 15, and 17 is an arc extinguishing device. Further, as is well known, the opening / closing mechanism 3 includes a toggle link mechanism combining a toggle link 3a connecting the contact holder 16 and the operation handle 4 and an opening / closing spring 3b, and a latch 18 and a latch receiver. 19, an assembly with a latch mechanism combined with a trip cross bar 20, and the trip cross bar 20 includes an armature 5a which is an operation end of the above-described overcurrent trip device 5 and a trip coil unit 8 of an earth leakage trip device. The slider which is the operation end of is facing.
[0004]
Further, as shown in FIG. 8, a phase interval wall 11c is formed in the main body case 11 to insulate and isolate the components of each phase assembled in the main body case, and the above-described leakage detection circuit 7 is an IC or the like. Are mounted on the printed circuit board 7a and accommodated in a protective case, and then incorporated into the main body case 11 (the space between both sides of the zero-phase current transformer 6 and the side wall of the lower case 11a), and the main circuit A harness is wired as a power supply line 9 (see FIG. 6) between the two conductors.
The opening / closing operation of the earth leakage circuit breaker is well known, and when the operation handle 4 is moved to the ON / OFF position, the toggle link mechanism of the opening / closing mechanism unit 3 is reversed in conjunction with the operation handle 4 to move the movable contactor. 15 opens and closes. In the illustrated closing state in which the main circuit contact 2 is closed (ON), the latch 18 is locked to the latch receiver 19, and the latch receiver 19 is restrained by the trip cross bar 20 at this position. When overload current and short-circuit current flow in the main circuit from this state and the overcurrent trip device 5 operates, the trip crossbar 20 rotates counterclockwise via the armature 5a, and the latch receiver 19 and the latch 18 Release the engagement. As a result, the opening / closing mechanism 3 trips, and the movable contact 15 is separated from the fixed contact 14 to cut off the current of the main circuit. Similarly, when a ground fault current flows through the main circuit 1 and the trip coil unit 8 of the leakage trip device operates, the trip crossbar 20 is driven to the release position. As a result, the opening / closing mechanism 3 trips, and the movable contact 15 opens to disconnect the main circuit 1 in the same manner as the operation due to overcurrent. In order to reopen the circuit breaker after the trip operation, the operation handle 4 stopped at the trip position is temporarily returned from the trip position to the OFF position, the latch mechanism is reset, and the operation handle 4 is further turned off. The movable contact 15 is closed by moving to the ON position.
[0005]
By the way, it is stipulated in the standard that a product of an earth leakage breaker secures a predetermined dielectric strength, and for that purpose, a withstand voltage test is performed for each product to confirm that dielectric breakdown does not occur. This withstand voltage test is performed by applying a test voltage between the phases of the main circuit terminals with the main circuit contact of the earth leakage breaker turned off, and the test voltage is determined for each rated voltage of the earth leakage breaker. For example, the test voltage in an earth leakage breaker with a rated voltage of 400 to 600V is 2500V.
When performing this withstand voltage test, if the test is performed in the assembled state of the product in which the power supply line 9 is provided between the leakage detection circuit (IC) 7 and the main circuit 1 shown in FIG. A high test voltage applied between the two phases is applied to the leakage detection circuit 7 and the IC is destroyed. Therefore, a domestic circuit breaker maker performs a withstand voltage test at an assembly stage before connecting and wiring the power supply line 9 for supplying power to the leakage detection circuit 7 to the main circuit 1.
[0006]
On the other hand, the earth leakage circuit breakers produced in Europe and the United States are different in type from the domestic products with the single structure described above, and the independent earth leakage detection unit (zero-phase current transformer, earth leakage current) with a separate structure for the circuit breaker for wiring. It is common to use a combination of optional components that are equipped with a detection circuit.
[0007]
[Patent Document 1]
Japanese Patent No. 3246562 [Patent Document 2]
US Patent Application Publication No. 2001 / 0022713A1
[Problems to be solved by the invention]
As mentioned above, the earth leakage circuit breakers currently on the domestic market are not equipped with the withstand voltage test on the user side after product shipment. There is no withstand voltage test switch. Therefore, with regard to products that have obtained overseas standard certification, it is necessary to equip a withstand voltage test switch in order to be able to cope with the withstand voltage test performed locally in the export destination country.
By the way, the earth leakage circuit breaker having the single structure shown in FIGS. 7 and 8 has the common parts for the circuit breaker and the functional parts for the earth leakage protection incorporated in the main body case tightly without leaving any remaining space. . For this reason, in order to secure a new space for installing the withstand voltage test switch without changing the external size of the main body case (unified to the same size as the case of the circuit breaker for wiring) It is necessary to change the component parts and layout, which causes a problem of enormous development costs and time.
[0009]
Therefore, the object of the present invention is standard for conventional products for single-unit earth leakage circuit breakers equipped with overcurrent protection and leakage protection functional parts in the body case with the same outer size as the circuit breaker for wiring. An earth leakage circuit breaker that is equipped with an additional switch for withstand voltage test so that it can easily cope with withstand voltage tests conducted after product shipment without changing the various functional parts and layout. It is to provide.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, a leakage current including a switching mechanism for a main circuit contact, an overcurrent tripping device, a zero-phase current transformer having the main circuit as a primary conductor, and a leakage detection circuit in the case. An earth leakage circuit breaker with a trip unit and equipped with a manually operated withstand voltage test switch that turns on and off the power supply circuit that feeds the interphase voltage of the main circuit to the leakage detection circuit. ,
(1) The above-mentioned withstand voltage test switch is pulled out from the printed circuit board of the leakage detection circuit, and the power supply electrode plate whose end is directly pressed against the main circuit conductor, and an interrupt is interposed between the electrode plate and the main circuit conductor. And an open / close operation piece with a knob made of an insulator that allows the power supply electrode plate to be brought into and out of contact with the primary conductor by manual operation from the outside. It arrange | positions facing the window hole opened to the cover (Claim 1).
[0011]
(2) A power electrode plate for pulling out the withstand voltage test switch from the main circuit conductor and pressing the tip of the switch on the power supply terminal provided on the printed circuit board of the leakage detection circuit, and the electrode plate and the power terminal It consists of an open / close operation piece with an insulating knob that allows the electrode plate to be brought into and out of contact with the power supply terminal of the printed board by manual operation from the outside with an interrupt in between. Is arranged so as to face a window hole opened in the case cover of the circuit breaker (claim 2).
(3) Here, the electrode plate is formed of a tongue-shaped conductive material having a spring property, and is pressed and urged toward the abutting counterpart member (Claim 3).
In the above configuration, in the normal use state of the earth leakage circuit breaker, the knob portion of the opening / closing operation piece is set to the ON position. As a result, the power supply electrode plate of the withstand voltage test switch comes into contact with the main circuit conductor as a counterpart member or the power supply terminal of the printed board, and the interphase voltage of the main circuit is supplied to the leakage detection circuit. On the other hand, when conducting the withstand voltage test, if the switch operation knob is pulled out of the window hole opened in the case of the circuit breaker body and switched to the OFF position, the open / close operation piece (insulator) follows the power supply electrode. The leakage detection circuit is disconnected from the main circuit by interrupting between the piece and the abutting counterpart member and separating between the two. Thereby, the withstand voltage test voltage can be safely tested without being applied to the leakage detection circuit.
[0012]
In addition, when the switch is OFF, the main circuit conductor and the leakage detection circuit are insulated with an insulating opening / closing operation piece interposed therebetween, so there is no need to secure an insulation distance corresponding to the test voltage. The withstand voltage test switch can be saved in space, and the withstand voltage test switch can be incorporated by utilizing a small space remaining in the breaker case without changing the main components and layout of the earth leakage breaker.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described based on the examples shown in FIGS. In addition, in the figure of an Example, the same code | symbol is attached | subjected to the member corresponding to FIGS. 6-8, and the detailed description is abbreviate | omitted.
[Example 1]
An embodiment corresponding to claim 1 of the present invention will be described with reference to FIGS. First, FIG. 3 shows a circuit diagram of the leakage breaker. In FIG. 3, reference numeral 21 denotes a withstand voltage test switch additionally provided in the earth leakage circuit breaker according to the present invention. The switch is arranged in a power supply circuit for supplying the interphase voltage of the main circuit 1 to the earth leakage detection circuit 7 to withstand the withstand voltage test. In this case, the power supply circuit is disconnected by turning off the switch.
[0014]
Here, the withstand voltage test switch 21 is installed in the lower case 11a of the circuit breaker case 11 from above as shown in FIG. The circuit 7 is combined as follows.
First, the leakage detection circuit 7 is arranged in a U-shaped case 7b in which a printed board 7a divided into two left and right parts is placed so as to straddle over the zero-phase current transformer 6 from above and below the breaker case 11 It is incorporated in the case 11a. Then, with respect to the assembly of the leakage detection circuit 7, the main circuit conductor 1 a (primary passing through the zero-phase current transformer 6) is drawn forward from the printed boards 7 a arranged side by side and connected to the load side terminal 13 at the tip. The power supply electrode plate 22 (movable contact of the withstand voltage test switch) arranged so as to be in direct contact with the conductor surface of the conductor) and the power supply electrode plate 22 and the main circuit conductor 1a are interrupted. A withstand voltage test switch is constituted by the open / close operation piece 24 made of an insulating material (resin molded product). Reference numeral 23 denotes a wiring harness that connects between the leakage detection circuit 7 and the trip coil 8 (see FIG. 3) of the leakage breaker.
[0015]
Next, the detailed assembly structure of the withstand voltage test switch and the opening / closing operation thereof will be described with reference to FIGS. 4 (a) and 4 (b). First, the power electrode plate 22 is formed by bending a conductive material piece having a spring property into an L shape, and fixing the base to the printed board 7a and connecting it to the power input terminal of the leakage detection circuit 7. Is pulled out in front of the case 7b so as to be in direct contact with the end face of the main circuit conductor 1a. Reference numeral 25 denotes a coil spring added to press and urge the electrode plate 22 from the back toward the main circuit conductor 1a.
Further, as shown in FIG. 1, the opening / closing operation piece 24 has a gate shape, and a knob portion 24a is formed on the upper end thereof, and a partition wall portion 24b corresponding to the electrode plate 22 is formed on the lower left and right sides. Then, as shown in FIG. 2, the knob 24a faces the slit-shaped window hole 11b-1 opened in the upper cover 11b of the circuit breaker case 11, and is arranged so as to be moved in and out by the manual operation. ing.
[0016]
Then, as always shown in FIG. 4A, the knob 24a is pushed in the direction of the arrow to set the opening / closing operation piece 24 at the ON position. In this state, the partition wall 24b of the opening / closing operation piece 24 is retracted downward, and the electrode plate 22 is in contact with the main circuit conductor 1a. In this state, the interphase voltage of the main circuit 1 is supplied to the leakage detection circuit 7 in FIG.
On the other hand, when conducting a withstand voltage test at the site where the earth leakage circuit breaker is delivered, as shown in FIG. 4B, prior to the test, the knob 24a of the opening / closing operation piece 24 is manually pulled up to turn it off. Move to position. As a result, the partition wall 24b of the opening / closing operation piece 24 is interrupted between the electrode plate 22 and the main circuit conductor 1a, and the electrode plate 22 is detached. In this state, the leakage detection circuit 7 of FIG. 3 is completely disconnected from the main circuit 1, so that the withstand voltage test can be performed safely. In the state where the switch is OFF in FIG. 4B, the electrode plate 22 and the main circuit conductor 1a are separated from each other with the partition wall portion 24b (made of an insulating material) 24b of the opening / closing operation piece 24 interposed therebetween. Yield strength can be secured.
[0017]
After the withstand voltage test is completed, the switching operation piece 24 is returned to the ON position in FIG. 4A, so that the interphase voltage of the main circuit 1 is again supplied to the leakage detection circuit 7, and the leakage breaker is cut off. The instrument returns to normal use.
[Example 2]
Next, FIG. 5 shows a configuration of another embodiment according to claim 2 of the present invention. FIGS. 5A and 5B are diagrams showing the ON / OFF state of the withstand voltage test switch corresponding to FIGS. 4A and 4B of the previous embodiment. Contrary to the first embodiment, a power supply electrode plate 26 made of a conductive material having a spring property is fixedly installed on the main circuit conductor 1a, and the tip of the electrode plate 26 is provided on the printed board 7a of the leakage detection circuit 7. The power supply terminal 27 is disposed so as to be pressed. The opening / closing operation piece 24 is interposed between the electrode plate 26 and the power supply terminal 27 in the same structural arrangement as in FIG.
[0018]
In the above configuration, when the knob 24a of the opening / closing operation piece 24 is pushed into the ON position as shown in FIG. 5A, the partition wall 24b retreats downward, and the power supply terminal 27 provided on the printed board 7a is provided with the electrode plate 26. In this state, the interphase voltage of the main circuit 1 in FIG. 3 is supplied to the leakage detection circuit 7.
On the other hand, when the withstand voltage test is performed, when the knob 24a of the opening / closing operation piece 24 is pulled up to the OFF position shown in FIG. 5 (b), the partition wall 24b enters between the electrode plate 26 and the power terminal 27, Leave between. As a result, the withstand voltage test switch is turned off as described in the first embodiment, and the main circuit 1 and the leakage detection circuit 7 are disconnected. After the endurance test, the switching operation piece 24 is returned to the ON position in FIG. 5 (a), so that the interphase voltage of the main circuit 1 can be supplied again to the leakage detection circuit 7, and the leakage breaker Returns to normal use.
[0019]
【The invention's effect】
As described above, according to the configuration of the present invention, in the earth leakage circuit breaker having a single structure integrally configured to the same external size as the circuit breaker for wiring, the overload protection, the earth leakage protection functional component incorporated in the case, and It is possible to add an additional withstand voltage test switch without changing the layout, and after turning off the withstand voltage test switch and disconnecting the leak detection circuit from the main circuit, after the product has been shipped It can be easily adapted to the withstand voltage test to be performed.
In addition, it is possible to configure a withstand voltage test switch simply by adding a simple power supply electrode plate and open / close operation piece parts to a conventional earth leakage circuit breaker product. Space saving of the switch can be achieved by arranging it in combination with the printed circuit board and the main circuit conductor (primary conductor of the zero-phase current transformer).
[Brief description of the drawings]
FIG. 1 is an exploded perspective view of essential parts of an earth leakage breaker according to Embodiment 1 of the present invention. FIG. 2 is a plan view of the earth leakage breaker of FIG. 4 is an explanatory view of the structure and operation of a withstand voltage test switch in FIG. 1, in which (a) and (b) are cross-sectional side views showing the ON and OFF states of the switch, respectively. FIG. FIG. 6 is a cross-sectional side view showing the ON / OFF state of the switch, respectively, according to the structure and operation of the withstand voltage test switch according to FIG. Fig. 7 is a conventional circuit diagram of the circuit breaker. Fig. 7 is a cross-sectional view of the configuration of the earth leakage breaker shown in Fig. 6;
DESCRIPTION OF SYMBOLS 1 Main circuit 1a Main circuit conductor 3 Switching mechanism part 5 Overcurrent trip device 6 Zero phase current transformer 7 Leakage detection circuit 7a Print board 7b Case 11 Earth leakage circuit breaker case 11a Lower case 11b Upper cover 11b-1 Window hole 21 Withstand voltage test switches 22, 26 Electrode plate 24 for power supply Opening / closing operation piece 24a Knob 27 Power supply terminal

Claims (3)

ケース内に主回路接点の開閉機構,過電流引外し装置,主回路を一次導体とする零相変流器, および漏電検出回路を含む漏電引外し装置を組み込んだ単体構造になる漏電遮断器であって、主回路の相間電圧を漏電検出回路に給電する給電回路を入り, 切りする手動操作式の耐電圧テスト用スイッチを装備したものにおいて、
前記耐電圧テスト用スイッチを、漏電検出回路のプリント板から引出してその先端を主回路導体に直接押接する電源用電極板と、該電極板と主回路導体との間に割り込み介装し、手動操作により電源用電極板を一次導体に接離させる絶縁物製の摘まみ付き開閉操作片とで構成し、その開閉操作片の摘まみ部を遮断器のケースカバーに開口した窓穴に臨ませて配置したことを特徴とする漏電遮断器。
An earth leakage circuit breaker with a single structure that incorporates an open / close mechanism for the main circuit contact, an overcurrent trip device, a zero-phase current transformer with the main circuit as the primary conductor, and an earth leakage trip device including a leakage detection circuit in the case. With a manually operated withstand voltage test switch that turns on and off the power supply circuit that feeds the interphase voltage of the main circuit to the leakage detection circuit,
The withstand voltage test switch is pulled out from the printed circuit board of the leakage detection circuit, and the power supply electrode plate is directly pressed against the main circuit conductor, and an interrupt is interposed between the electrode plate and the main circuit conductor. It consists of an open / close operation piece with an insulating knob that allows the power supply electrode plate to be brought into contact with and separated from the primary conductor by operation, and the knob of the open / close operation piece faces the window hole opened in the case cover of the circuit breaker. An earth leakage circuit breaker characterized by
ケース内に主回路接点の開閉機構,過電流引外し装置,主回路を一次導体とする零相変流器, および漏電検出回路を含む漏電引外し装置を組み込んだ単体構造になる漏電遮断器であって、主回路の相間電圧を漏電検出回路に給電する給電回路を入り, 切りする手動操作式の耐電圧テスト用スイッチを装備したものにおいて、
前記の耐電圧テスト用スイッチを、主回路導体から引出してその先端を漏電検出回路のプリント板に設けた電源端子に押接する電源用電極板と、該電極板と前記電源端子との間に割り込み介装し、手動操作により電源用電極板をプリント板の電源端子に接離させる絶縁物製の摘まみ付き開閉操作片とから構成し、その開閉操作片の摘まみ部を遮断器のケースカバーに開口した窓穴に臨ませて配置したことを特徴とする漏電遮断器。
An earth leakage circuit breaker with a single structure that incorporates an open / close mechanism for the main circuit contact, an overcurrent trip device, a zero-phase current transformer with the main circuit as the primary conductor, and an earth leakage trip device including a leakage detection circuit in the case. With a manually operated withstand voltage test switch that turns on and off the power supply circuit that feeds the interphase voltage of the main circuit to the leakage detection circuit,
The above-mentioned withstand voltage test switch is pulled out from the main circuit conductor and its tip is pressed against the power supply terminal provided on the printed circuit board of the leakage detection circuit, and an interrupt is provided between the electrode plate and the power supply terminal. It is composed of an open / close operation piece with an insulating knob that allows the power supply electrode plate to be brought into contact with and separated from the power terminal of the printed board by manual operation. The handle of the open / close operation piece is covered with the case cover of the circuit breaker. An earth leakage circuit breaker characterized by being placed facing a window hole opened in the window.
請求項1または2に記載の漏電遮断器において、電極板がばね性を有する導電材で形成されていることを特徴とする漏電遮断器。3. The earth leakage circuit breaker according to claim 1, wherein the electrode plate is made of a conductive material having a spring property.
JP2003204455A 2003-07-31 2003-07-31 Earth leakage breaker Expired - Fee Related JP4085911B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003204455A JP4085911B2 (en) 2003-07-31 2003-07-31 Earth leakage breaker
KR1020040016079A KR100935068B1 (en) 2003-07-31 2004-03-10 Earth leakage breaker
CNB2004100295305A CN100446149C (en) 2003-07-31 2004-03-18 Leakage breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003204455A JP4085911B2 (en) 2003-07-31 2003-07-31 Earth leakage breaker

Publications (2)

Publication Number Publication Date
JP2005050605A true JP2005050605A (en) 2005-02-24
JP4085911B2 JP4085911B2 (en) 2008-05-14

Family

ID=34263458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003204455A Expired - Fee Related JP4085911B2 (en) 2003-07-31 2003-07-31 Earth leakage breaker

Country Status (3)

Country Link
JP (1) JP4085911B2 (en)
KR (1) KR100935068B1 (en)
CN (1) CN100446149C (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2892559A1 (en) * 2005-10-21 2007-04-27 Fuji Elec Fa Components & Sys Dielectric test switch for ground fault circuit-breaker, has fixed electrodes placed, in form of cassette, in lower region of switch case and maintained on electrode holding element, and bridge type mobile contacts placed above electrodes
FR2901633A1 (en) * 2006-05-22 2007-11-30 Fuji Elec Fa Components & Sys Ground fault circuit breaker for protecting multi-phase circuit, has ground fault detection circuit, trip coil and megger test switch constructed to form three units that are installed together on side of current transformer in enclosure
JP2010009919A (en) * 2008-06-26 2010-01-14 Mitsubishi Electric Corp Earth leakage breaker
KR101094038B1 (en) 2009-11-13 2011-12-19 미쓰비시덴키 가부시키가이샤 Ground fault interrupter
KR101106915B1 (en) 2009-11-05 2012-01-25 미쓰비시덴키 가부시키가이샤 Earth leakage breaker
JP2019074530A (en) * 2017-10-16 2019-05-16 シュネーデル、エレクトリック、インダストリーズ、エスアーエスSchneider Electric Industries Sas Current measurement device, manufacturing method, and protection module and differential circuit breaker including the device
CN110531206A (en) * 2019-08-27 2019-12-03 广东电网有限责任公司 Split-phase type low-voltage ground fault detection means

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090111513A1 (en) * 2005-11-10 2009-04-30 Omron Corporation Operation input device and electronic device using the same
JP4816246B2 (en) * 2006-05-23 2011-11-16 富士電機機器制御株式会社 Earth leakage breaker
JP4893358B2 (en) * 2007-02-19 2012-03-07 富士電機機器制御株式会社 Earth leakage trip device for earth leakage breaker

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000331588A (en) * 1999-05-20 2000-11-30 Mitsubishi Electric Corp Remote-controlled relay
JP3846528B2 (en) * 1999-07-23 2006-11-15 三菱電機株式会社 Earth leakage breaker
ES2164593B1 (en) * 2000-03-17 2003-05-16 Ge Power Controls Iberica S L DETECTION DEVICE FROM GROUND TO EARTH.
JP2002170477A (en) * 2000-11-30 2002-06-14 Mitsubishi Electric Corp Ground leakage breaker

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2892559A1 (en) * 2005-10-21 2007-04-27 Fuji Elec Fa Components & Sys Dielectric test switch for ground fault circuit-breaker, has fixed electrodes placed, in form of cassette, in lower region of switch case and maintained on electrode holding element, and bridge type mobile contacts placed above electrodes
FR2901633A1 (en) * 2006-05-22 2007-11-30 Fuji Elec Fa Components & Sys Ground fault circuit breaker for protecting multi-phase circuit, has ground fault detection circuit, trip coil and megger test switch constructed to form three units that are installed together on side of current transformer in enclosure
JP2010009919A (en) * 2008-06-26 2010-01-14 Mitsubishi Electric Corp Earth leakage breaker
KR101106915B1 (en) 2009-11-05 2012-01-25 미쓰비시덴키 가부시키가이샤 Earth leakage breaker
KR101094038B1 (en) 2009-11-13 2011-12-19 미쓰비시덴키 가부시키가이샤 Ground fault interrupter
JP2019074530A (en) * 2017-10-16 2019-05-16 シュネーデル、エレクトリック、インダストリーズ、エスアーエスSchneider Electric Industries Sas Current measurement device, manufacturing method, and protection module and differential circuit breaker including the device
JP7195107B2 (en) 2017-10-16 2022-12-23 シュネーデル、エレクトリック、インダストリーズ、エスアーエス CURRENT MEASURING DEVICE, MANUFACTURING METHOD AND PROTECTION MODULE AND DIFFERENTIAL BREAKER CONTAINING SAME
CN110531206A (en) * 2019-08-27 2019-12-03 广东电网有限责任公司 Split-phase type low-voltage ground fault detection means

Also Published As

Publication number Publication date
CN100446149C (en) 2008-12-24
KR20050014644A (en) 2005-02-07
CN1581396A (en) 2005-02-16
KR100935068B1 (en) 2009-12-31
JP4085911B2 (en) 2008-05-14

Similar Documents

Publication Publication Date Title
JP4200291B2 (en) Earth leakage breaker
JP4839772B2 (en) Withstand voltage test switch and earth leakage breaker
JP2008159456A (en) Ground-fault interrupter
JP4085911B2 (en) Earth leakage breaker
JP4123081B2 (en) Earth leakage breaker
JP4253700B2 (en) Earth leakage breaker
CN1841616B (en) Residual current circuit breaker
JP2006120563A (en) Ground fault interrupter
JP4852380B2 (en) Circuit breaker
JP4921931B2 (en) Circuit breaker
JP4972998B2 (en) Earth leakage breaker
JP2008041580A (en) Ground-fault interrupter
JP4487673B2 (en) Earth leakage breaker
JP2004319135A (en) Earth leakage breaker
JP2008262935A (en) Ground fault breaker
CN214152829U (en) Arc striking device of miniature circuit breaker
JP2004311195A (en) Tripolar circuit breaker having tracking short circuit detection function, and distribution board
JP2809904B2 (en) Earth leakage breaker
JP4967453B2 (en) Earth leakage breaker
JP2000294105A (en) Wiring breaker
JPH07147724A (en) Circuit breaker and its test method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees