JP2005049633A - Liquid crystal element and optical head device - Google Patents

Liquid crystal element and optical head device Download PDF

Info

Publication number
JP2005049633A
JP2005049633A JP2003281853A JP2003281853A JP2005049633A JP 2005049633 A JP2005049633 A JP 2005049633A JP 2003281853 A JP2003281853 A JP 2003281853A JP 2003281853 A JP2003281853 A JP 2003281853A JP 2005049633 A JP2005049633 A JP 2005049633A
Authority
JP
Japan
Prior art keywords
liquid crystal
layer
transparent
crystal element
transparent electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003281853A
Other languages
Japanese (ja)
Other versions
JP4269836B2 (en
Inventor
Atsushi Koyanagi
篤史 小柳
Yoshiharu Oi
好晴 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2003281853A priority Critical patent/JP4269836B2/en
Publication of JP2005049633A publication Critical patent/JP2005049633A/en
Application granted granted Critical
Publication of JP4269836B2 publication Critical patent/JP4269836B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a liquid crystal element wherein variation of thickness of a liquid crystal layer in an effective area generated by thermal expansion of a liquid crystal is suppressed, in the liquid crystal element filled with the liquid crystal. <P>SOLUTION: In the liquid crystal element provided with a first transparent substrate 11A, a first transparent electrode 12A, the liquid crystal layer 13, a second transparent electrode 12B and a second transparent substrate 11B which are disposed in this order, a solid transparent layer 15 and a transparent layer 16 consisting of an air layer 16A on the outer side of the effective area and a solid transparent layer 16B in the region containing the effective area are formed in this order from the liquid crystal layer side between the second transparent substrate 11B and the second transparent electrode 12B. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、印加電圧の大きさに応じて入射光に対する液晶の実質的屈折率またはリタデーション値を変化させ、出射光を制御する液晶素子に関するもので、特に温度変化に対して安定した光学特性が必要とされる光通信または光ヘッド装置に用いる液晶素子およびその光ヘッド装置に関する。   The present invention relates to a liquid crystal element that controls the emitted light by changing the substantial refractive index or retardation value of the liquid crystal with respect to incident light according to the magnitude of the applied voltage, and in particular has stable optical characteristics against temperature changes. The present invention relates to a liquid crystal element used for required optical communication or an optical head device and the optical head device.

従来の液晶素子としては、例えば図6に示すように、上下のガラス基板101および102と、このガラス基板101および102間の端部側をシール材103で封止された密封空間に液晶が封入された液晶層104などとを有する構成のものが知られている。
ところが、この液晶素子に用いられる液晶は、一般的に液体であり、液晶を密封空間に充填するために用いられる固体材料から成るシール材103に比べ、熱膨張率が大きい。その結果、図6に示すような構成の従来の液晶素子では、温度上昇に対しては図7に示すように液晶層104は厚さ方向に膨張するとともに、温度低下に対しては図8に示すように液晶層104は厚さ方向に縮小する。
このように、液晶素子に用いられる液晶は、温度変化に対して液晶層104の厚さが、シール材103近傍に比べて、液晶層104の中央部側で大きく変動することが分かっている(例えば、特許公報1参照)。なお、図7および図8において、符号101、102はガラス基板である。
As a conventional liquid crystal element, for example, as shown in FIG. 6, liquid crystal is sealed in a sealed space in which upper and lower glass substrates 101 and 102 and an end portion between the glass substrates 101 and 102 are sealed with a sealing material 103. A liquid crystal layer 104 having a liquid crystal layer 104 is known.
However, the liquid crystal used in the liquid crystal element is generally a liquid, and has a higher coefficient of thermal expansion than the sealing material 103 made of a solid material used to fill the liquid crystal in the sealed space. As a result, in the conventional liquid crystal element configured as shown in FIG. 6, the liquid crystal layer 104 expands in the thickness direction as shown in FIG. As shown, the liquid crystal layer 104 shrinks in the thickness direction.
As described above, it is known that the thickness of the liquid crystal layer 104 in the liquid crystal used in the liquid crystal element varies greatly on the central side of the liquid crystal layer 104 compared to the vicinity of the sealant 103 with respect to temperature change ( For example, see Patent Publication 1). 7 and 8, reference numerals 101 and 102 denote glass substrates.

また、入射光の大半を反射し一部を透過する一対の反射ミラー間に液晶層が狭持され、液晶層に電圧を印加することにより液晶層の実質的屈折率を変化させる液晶エタロン型の波長可変フィルタが提案されている。このような波長可変フィルタでは、温度変化に応じて液晶層の厚さが変動すると、反射ミラー間の距離が変動し、透過ピーク波長が大きく変動する問題がある。
そこで、温度変化に対して透過ピーク波長の変動を抑えるために、クランプ部材を液晶素子の両端に連結させ、液晶層の厚さ変動を抑制することにより、反射ミラー間の距離の変動を抑制する構成のものが提案されている(例えば、特許公報2参照)。
In addition, a liquid crystal etalon type in which a liquid crystal layer is sandwiched between a pair of reflecting mirrors that reflects most of incident light and transmits part of it, and changes the substantial refractive index of the liquid crystal layer by applying a voltage to the liquid crystal layer. A tunable filter has been proposed. Such a wavelength tunable filter has a problem that when the thickness of the liquid crystal layer varies according to the temperature change, the distance between the reflection mirrors varies, and the transmission peak wavelength varies greatly.
Therefore, in order to suppress the fluctuation of the transmission peak wavelength with respect to the temperature change, the clamp member is connected to both ends of the liquid crystal element, and the fluctuation in the distance between the reflection mirrors is suppressed by suppressing the thickness fluctuation of the liquid crystal layer. The thing of a structure is proposed (for example, refer patent document 2).

また、光ヘッド装置に搭載して用いられる液晶素子においては、温度変化に対して液晶層の厚さが面内で変化することにより、液晶素子を透過する光の透過波面が変形し、情報記録媒体である光ディスク上での集光性が劣化し、安定した情報の記録および再生ができない問題が生じる。そこで、この問題を解決するために、液晶層内に気泡を封入した構成のものが提案されている(例えば、特許公報1参照)。
このような構成とすると、液晶の熱膨張が気泡に吸収されるため、液晶層の厚さ変動に伴う透過波面の変形は抑制させることができる。
In addition, in a liquid crystal element used by being mounted on an optical head device, the transmission wavefront of light transmitted through the liquid crystal element is deformed by changing the thickness of the liquid crystal layer in the plane with respect to a temperature change, and information recording The light condensing property on the optical disk as a medium deteriorates, and there arises a problem that stable information cannot be recorded and reproduced. In order to solve this problem, a configuration in which bubbles are enclosed in a liquid crystal layer has been proposed (see, for example, Patent Publication 1).
With such a configuration, since the thermal expansion of the liquid crystal is absorbed by the bubbles, deformation of the transmitted wavefront accompanying the thickness variation of the liquid crystal layer can be suppressed.

また、液晶表示装置において、高い放熱効果を得るために、放熱用ガラス基板と液晶層に接するガラス基板との間に空気層を配する構成のものが提案されている(例えば、特許公報3参照)。
特開2003−45065号公報。 特開2000−10080号公報。 特開平10−123964号公報。
Further, in a liquid crystal display device, in order to obtain a high heat dissipation effect, a configuration in which an air layer is disposed between a glass substrate for heat dissipation and a glass substrate in contact with the liquid crystal layer has been proposed (see, for example, Patent Document 3). ).
JP2003-45065A. JP 2000-10080 A. JP-A-10-123964.

ところが、特許文献1に開示された液晶素子構成では、液晶層内に封入された気泡の位置を固定することが困難であり、衝撃や温度変化により気泡が有効エリア内に進入した時、入射光が散乱され問題となる。
また、特許文献2に開示された液晶素子では、液晶素子両端にクランプを用いることにより液晶素子両端の液晶層の厚さ変動を抑えることはできるが、信号光として実際に利用する光束が透過する領域である有効エリアの液晶層の厚さ変動を抑えることはできない。
また、特許文献3に開示された液晶素子構成では、有効エリア内に空気層を形成しているため、有効エリア内の液晶層の厚さ変動を抑えることはできない。
However, in the configuration of the liquid crystal element disclosed in Patent Document 1, it is difficult to fix the position of the bubbles enclosed in the liquid crystal layer. When the bubbles enter the effective area due to impact or temperature change, Are scattered and become a problem.
Further, in the liquid crystal element disclosed in Patent Document 2, fluctuations in the thickness of the liquid crystal layer at both ends of the liquid crystal element can be suppressed by using clamps at both ends of the liquid crystal element, but a light beam actually used as signal light is transmitted. The variation in the thickness of the liquid crystal layer in the effective area that is the area cannot be suppressed.
Further, in the liquid crystal element configuration disclosed in Patent Document 3, since the air layer is formed in the effective area, it is not possible to suppress the thickness variation of the liquid crystal layer in the effective area.

そこで本発明は、液晶を充填した液晶素子において、液晶の熱膨張により発生する、有効エリア内の液晶層の厚さ変動を抑えることができるとともに、液晶エタロン型の波長可変フィルタにおいて、液晶の熱膨張に起因する反射ミラー間の距離の変動を抑えることにより透過ピーク波長の変動を低減できる液晶素子および光ヘッド装置を提供することを目的とする。   Therefore, the present invention can suppress the variation in the thickness of the liquid crystal layer in the effective area caused by the thermal expansion of the liquid crystal in the liquid crystal element filled with the liquid crystal, and the liquid crystal etalon type wavelength tunable filter. An object of the present invention is to provide a liquid crystal element and an optical head device capable of reducing the fluctuation of the transmission peak wavelength by suppressing the fluctuation of the distance between the reflecting mirrors caused by the expansion.

本発明の液晶素子は、第1の透明基板と、第1の透明電極と、液晶層と、第2の透明電極と、第2の透明基板とがこの順序に配設された液晶素子であって、前記第1の透明基板と第1の透明電極との間および/または前記第2の透明基板と第2の透明電極との間に、前記液晶層側から固体透明層および透明層が形成され、前記透明層は有効エリア外に空気層を含む固体層であることを特徴とする液晶素子を提供する。
上記構成によれば、液晶の熱膨張を吸収する空気層を有効エリア外に設けたため、有効エリア内の液晶層の厚さ変動を抑えた液晶素子を得ることができる。また、空気層は固体透明層により液晶層と分離した位置に固定されるため、有効エリア内に侵入し光学特性の劣化を回避できる。
The liquid crystal element of the present invention is a liquid crystal element in which a first transparent substrate, a first transparent electrode, a liquid crystal layer, a second transparent electrode, and a second transparent substrate are arranged in this order. Then, a solid transparent layer and a transparent layer are formed from the liquid crystal layer side between the first transparent substrate and the first transparent electrode and / or between the second transparent substrate and the second transparent electrode. The transparent layer is a solid layer including an air layer outside the effective area.
According to the above configuration, since the air layer that absorbs the thermal expansion of the liquid crystal is provided outside the effective area, it is possible to obtain a liquid crystal element in which the thickness variation of the liquid crystal layer in the effective area is suppressed. Further, since the air layer is fixed at a position separated from the liquid crystal layer by the solid transparent layer, it can enter the effective area and avoid deterioration of the optical characteristics.

また、本発明の液晶素子は、表面を含む第1の透明基板と液晶層との間の平面および表面を含む第2の透明基板と液晶層との間の平面に、反射ミラーが形成されている液晶素子を提供する。
上記構成によれば、液晶エタロン型の波長可変フィルタにおいて、液晶素子に空気層を配置することにより、反射ミラー間の距離の変動を抑制することで透過ピーク波長の温度変化に対する変動を抑制できる。
In the liquid crystal element of the present invention, a reflection mirror is formed on a plane between the first transparent substrate including the surface and the liquid crystal layer and a plane between the second transparent substrate including the surface and the liquid crystal layer. A liquid crystal device is provided.
According to the above configuration, in the liquid crystal etalon type wavelength tunable filter, by arranging the air layer in the liquid crystal element, the fluctuation of the transmission peak wavelength with respect to the temperature change can be suppressed by suppressing the fluctuation of the distance between the reflection mirrors.

また、本発明の液晶素子は、第1の透明基板と、第1の反射ミラーと、第1の透明電極と、液晶層と、第2の透明電極と、第2の反射ミラーと、第2の透明基板とがこの順序に配設された液晶素子であって、前記第1の反射ミラーと第1の透明電極との間および/または第2の反射ミラーと第2の透明電極との間に、前記液晶層側から固体透明層および透明層が形成され、前記透明層は少なくとも有効エリア内が空気層である液晶素子を提供する。
上記構成によれば、液晶エタロン型の波長可変フィルタにおいて、液晶素子の有効エリア内にも空気層を配置することにより、反射ミラー間の距離の変動を抑制することで透過ピーク波長の温度変化に対する変動を抑制できる。
The liquid crystal element of the present invention includes a first transparent substrate, a first reflection mirror, a first transparent electrode, a liquid crystal layer, a second transparent electrode, a second reflection mirror, and a second reflection mirror. Liquid crystal elements arranged in this order, between the first reflecting mirror and the first transparent electrode and / or between the second reflecting mirror and the second transparent electrode. Further, a solid transparent layer and a transparent layer are formed from the liquid crystal layer side, and the transparent layer provides a liquid crystal element in which at least an effective area is an air layer.
According to the above configuration, in the liquid crystal etalon-type wavelength tunable filter, the air layer is also disposed in the effective area of the liquid crystal element, thereby suppressing the variation in the distance between the reflection mirrors, thereby preventing the transmission peak wavelength from changing with temperature. Variation can be suppressed.

また、本発明の光ヘッド装置は、光源と、この光源からの出射光を光記録媒体上に集光するための対物レンズと、前記光記録媒体へ集光されるとともに前記光記録媒体により反射された出射光を検出する光検出部とを備える光ヘッド装置において、請求項1から3のいずれか1項に記載の液晶素子が光源と対物レンズとの間の光路中に配置されている光ヘッド装置を提供する。
上記構成によれば、有効エリア面内のリタデーション値の変動が小さな液晶素子が作成でき、この液晶素子を光ヘッド装置に搭載することにより、光ディスク上での光の集光性が優れた光ヘッド装置を得ることができる。
The optical head device according to the present invention includes a light source, an objective lens for condensing the light emitted from the light source on the optical recording medium, and the optical recording medium that is condensed and reflected by the optical recording medium. An optical head device comprising a light detection unit for detecting the emitted light, wherein the liquid crystal element according to any one of claims 1 to 3 is disposed in an optical path between the light source and the objective lens. A head device is provided.
According to the above configuration, a liquid crystal element having a small variation in the retardation value within the effective area plane can be created, and by mounting this liquid crystal element on the optical head device, an optical head having excellent light collecting properties on an optical disk. A device can be obtained.

本発明によれば、液晶の熱膨張を吸収する空気層を有効エリア外に設けるため、有効エリア内の液晶層の厚さ変動を抑えた液晶素子を得ることができる。また、空気層が固体透明層により液晶層と分離した位置に固定されるため、有効エリア内に侵入し光学特性の劣化を回避できる。   According to the present invention, since the air layer that absorbs the thermal expansion of the liquid crystal is provided outside the effective area, it is possible to obtain a liquid crystal element in which the thickness variation of the liquid crystal layer in the effective area is suppressed. Further, since the air layer is fixed at a position separated from the liquid crystal layer by the solid transparent layer, it can enter the effective area and avoid deterioration of the optical characteristics.

以下、本発明の好適な実施形態について、添付図面を参照しながら説明する。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

[第1の実施形態]
図1は本発明の第1の実施形態に係る液晶素子である液晶エタロン型の波長可変フィルタの構成例を示す側断面図である。以下、図面を参照しながら本実施形態の液晶素子10を詳細に説明する。
第1の実施形態の液晶素子10は、基本的構成として、第1の透明基板11Aと、第1の透明電極12Aと、液晶層13と、第2の透明電極12Bと、第2の透明基板11Bとをこの順序に備えているが、特にこの外に、第2の透明基板11Bと第2の透明電極12Bとの間に、液晶層13側から固体透明層15および透明層16が順序に形成されている。なお、液晶層13を所定の厚さに保持するために、公知のスペーサ(図示せず)がシール材14A、14Bに混入して用いられている。
[First Embodiment]
FIG. 1 is a side sectional view showing a configuration example of a liquid crystal etalon type tunable filter which is a liquid crystal element according to the first embodiment of the present invention. Hereinafter, the liquid crystal element 10 of the present embodiment will be described in detail with reference to the drawings.
The liquid crystal element 10 of the first embodiment includes, as a basic configuration, a first transparent substrate 11A, a first transparent electrode 12A, a liquid crystal layer 13, a second transparent electrode 12B, and a second transparent substrate. 11B in this order, in particular, the solid transparent layer 15 and the transparent layer 16 are arranged in this order from the liquid crystal layer 13 side between the second transparent substrate 11B and the second transparent electrode 12B. Is formed. In order to keep the liquid crystal layer 13 at a predetermined thickness, a known spacer (not shown) is mixed with the sealing materials 14A and 14B.

透明基板11A、11Bには、例えばガラス基板、アクリルやポリカーボネートなどの有機材料基板、水晶やLiNbOなどの無機結晶からなる無機材料基板などが使用できる。また、透明基板11A、11Bの厚さとしては、固体透明層15よりも形状弾性変形を起こしにくい程度に厚い方がよい。なお、この第1の透明基板11Aおよび第2の透明基板11Bには、液晶層13とは反対側の表面に、必要に応じて反射防止膜(図示せず)を形成するのが好ましい。 As the transparent substrates 11A and 11B, for example, a glass substrate, an organic material substrate such as acrylic or polycarbonate, an inorganic material substrate made of an inorganic crystal such as crystal or LiNbO 3 can be used. Further, the thickness of the transparent substrates 11 </ b> A and 11 </ b> B is preferably thicker than the solid transparent layer 15 so as not to cause elastic deformation. In addition, it is preferable to form an antireflection film (not shown) on the first transparent substrate 11A and the second transparent substrate 11B on the surface opposite to the liquid crystal layer 13 as necessary.

透明電極12A、12Bとしては、InにSnOが添加されたITOなどの酸化物膜や、Au、Alなどの金属膜を用いることができる。ITO膜を用いる方が金属膜に比べ、光の透過性が高く、機械的耐久性が優れているため好ましい。なお、この透明電極12A、12Bは、矩形波用の交流電源Pに接続されており、この交流電源Pを用いて電圧を液晶層13に印加することにより、透過ピーク波長を駆動できるようになっている。 As the transparent electrodes 12A and 12B, an oxide film such as ITO in which SnO 2 is added to In 2 O 3 or a metal film such as Au or Al can be used. It is preferable to use an ITO film because it has higher light transmission and better mechanical durability than a metal film. The transparent electrodes 12A and 12B are connected to a rectangular wave AC power supply P, and the transmission peak wavelength can be driven by applying a voltage to the liquid crystal layer 13 using the AC power supply P. ing.

固体透明層15は、例えばガラス、アクリルやポリカーボネートなどの有機材料、水晶やLiNbOなどの無機結晶からなる無機材料などからなり、透明基板11A、11Bよりも薄い方が固体透明層15の形状弾性変形が起きやすいので好ましい。 The solid transparent layer 15 is made of, for example, an organic material such as glass, acrylic or polycarbonate, an inorganic material made of an inorganic crystal such as crystal or LiNbO 3, and the thinner the transparent substrates 11A and 11B, the shape elasticity of the solid transparent layer 15 is. It is preferable because deformation is likely to occur.

透明層16は、有効エリア外に空気層16Aを含む固体層であり、有効エリアを含む領域には固体透明層16Bが形成されている。
このうち、空気層16Aは、1気圧程度の気体であることが好ましく、さらに空気である方が製造工程上簡便であることから好ましい。さらに、空気層16Aは、液晶に比べて体積弾性変形が大きな物質であればよい。また、空気層16Aは、密封されていても、されていなくてもいずれでもよく、体積弾性変形の起こしやすさからは密封されていないほうが好ましい。また、空気層16Aの厚さとしては、2μm以上であればよく、厚すぎると厚み斑が発生しやすいため薄い方が好ましく、面積としては小さい方が液晶素子10の大きさが小型になるため好ましいが、形状弾性変形を起こす程度の大きさは必要である。
一方、固体透明層16Bは、例えばガラス、透明接着剤やアクリルやポリカーボネートなどの有機材料、水晶やLiNbOなどの無機結晶からなる無機材料などからなり、空気よりも弾性変形を起こしにくいものがよい。
The transparent layer 16 is a solid layer including an air layer 16A outside the effective area, and a solid transparent layer 16B is formed in a region including the effective area.
Of these, the air layer 16A is preferably a gas of about 1 atm, and more preferably air because it is simpler in the manufacturing process. Further, the air layer 16A may be a substance that has a large volume elastic deformation as compared with the liquid crystal. Further, the air layer 16A may be either sealed or not, and is preferably not sealed from the viewpoint of easy volume elastic deformation. Further, the thickness of the air layer 16A may be 2 μm or more, and if it is too thick, it is easy to cause unevenness in thickness, so that the thinner one is preferable. The smaller the area, the smaller the size of the liquid crystal element 10. Although it is preferable, it needs to be large enough to cause shape elastic deformation.
On the other hand, the solid transparent layer 16B is made of, for example, glass, a transparent adhesive, an organic material such as acrylic or polycarbonate, an inorganic material made of an inorganic crystal such as crystal or LiNbO 3, and the like, which is less likely to cause elastic deformation than air. .

なお、固体透明層15および透明層16は、第1の透明基板11Aと第1の透明電極12Aとの間、または第2の透明基板11Bと第2の透明電極12Bとの間のいずれでもよく、また、両方に形成してもよいが、一方の間に形成する方が液晶素子を作製する工程数が少なく、作業効率がよいので好ましい。   The solid transparent layer 15 and the transparent layer 16 may be either between the first transparent substrate 11A and the first transparent electrode 12A or between the second transparent substrate 11B and the second transparent electrode 12B. In addition, although it may be formed in both, it is preferable to form between the two because the number of steps for manufacturing a liquid crystal element is small and the working efficiency is good.

さらに、本発明に使用する液晶としては、通常、液晶ディスプレイなどで使用されるネマチック液晶が好ましく用いられるが、特にこれには限定されず、電圧印加に伴い実質的な屈折率またはリタデーション値を変化させる液晶であれば、スメクチック液晶や強誘電液晶、反強誘電液晶などでもよい。また、液晶以外でも、固体化された高分子液晶や高分子網目中に液晶が分散した高分子/液晶複合体や液晶ゲルなどいずれでもよい。   Further, as the liquid crystal used in the present invention, nematic liquid crystal usually used in a liquid crystal display or the like is preferably used, but is not particularly limited thereto, and the substantial refractive index or retardation value changes with voltage application. As long as the liquid crystal to be used is a smectic liquid crystal, a ferroelectric liquid crystal, an antiferroelectric liquid crystal, or the like. In addition to liquid crystals, solid polymer liquid crystals, polymer / liquid crystal composites in which liquid crystals are dispersed in a polymer network, or liquid crystal gels may be used.

従って、液晶素子を本実施形態のように構成することにより、温度上昇に対しては図2に示すように、また温度低下に対しては図3に示すように、液晶層13内の液晶の熱膨張は有効エリア外にある空気層16Aに吸収されるため、信号光として実際に利用する光束Lが透過する領域である有効エリア内の液晶層13での液晶の厚さ変動は抑制される。その結果、液晶の熱膨張起因による液晶層13の光路長およびリタデーション値の変動を確実に抑えることができるようになる。なお、図2、3において、図1と同一符号のものは同一要素のものを示す。   Therefore, by configuring the liquid crystal element as in this embodiment, as shown in FIG. 2 for the temperature rise and as shown in FIG. Since the thermal expansion is absorbed by the air layer 16A outside the effective area, variation in the thickness of the liquid crystal in the liquid crystal layer 13 in the effective area, which is an area through which the light beam L actually used as signal light is transmitted, is suppressed. . As a result, fluctuations in the optical path length and retardation value of the liquid crystal layer 13 due to the thermal expansion of the liquid crystal can be reliably suppressed. 2 and 3, the same reference numerals as those in FIG. 1 denote the same elements.

また、光ヘッド装置(例えば、特開2003−45065号公報において、図7に記載のもの)の部分に、本発明の第1の実施形態に係る液晶素子10を用いることにより、液晶層13内の液晶部分の熱膨張は有効エリア外にある空気層16Aに吸収されるため、有効エリア内の液晶層13の液晶部分の厚さ変動が抑制される。その結果、従来は液晶の熱膨張に起因して液晶素子10を透過する光に発生していた透過波面の変形を、抑制させることができるようになり、光ディスク上での集光特性の劣化が抑えられる。また、衝撃や温度変化により空気が有効エリア内に侵入することによる光学特性の劣化を抑制することもできるようになる。   In addition, by using the liquid crystal element 10 according to the first embodiment of the present invention in the portion of the optical head device (for example, the one described in FIG. Since the thermal expansion of the liquid crystal portion is absorbed by the air layer 16A outside the effective area, variation in the thickness of the liquid crystal portion of the liquid crystal layer 13 in the effective area is suppressed. As a result, it is possible to suppress the deformation of the transmitted wavefront that has conventionally occurred in the light transmitted through the liquid crystal element 10 due to the thermal expansion of the liquid crystal, and the light condensing characteristic on the optical disk is deteriorated. It can be suppressed. In addition, it is possible to suppress deterioration of optical characteristics due to air entering the effective area due to impact or temperature change.

[第2の実施形態]
図4は本発明の第2の実施形態の液晶素子20である液晶エタロン型の波長可変フィルタの構成例を示す側断面図である。なお、図4において、図1と同一機能のものには同一符号を付している。
この第2の実施形態の液晶素子20である液晶エタロン型の波長可変フィルタは、第1の透明基板11Aおよび第2の透明基板11Bの液晶層13側に、反射ミラー21Aおよび21Bが形成されていること以外は図1に示す第1の実施形態と同じである。また、本実施形態でも、交流電源Pを用いて電圧を液晶層13に印加することにより、透過ピーク波長を変化できる。
[Second Embodiment]
FIG. 4 is a side sectional view showing a configuration example of a liquid crystal etalon type wavelength tunable filter which is the liquid crystal element 20 of the second embodiment of the present invention. In FIG. 4, the same functions as those in FIG. 1 are denoted by the same reference numerals.
In the liquid crystal etalon type wavelength tunable filter which is the liquid crystal element 20 of the second embodiment, reflection mirrors 21A and 21B are formed on the liquid crystal layer 13 side of the first transparent substrate 11A and the second transparent substrate 11B. Except for this, it is the same as the first embodiment shown in FIG. Also in this embodiment, the transmission peak wavelength can be changed by applying a voltage to the liquid crystal layer 13 using the AC power supply P.

ここで、反射ミラー21A、21Bとは、使用波長帯域である例えば1470〜1630nmからなる入射光に対して80%以上の反射率を有し、一部の光が透過するようゼロでない透過率を有するものである。この反射ミラー21Aおよび21Bとしては、例えば金属の薄膜や、高屈折率誘電体膜と低屈折率誘電体膜を交互に波長レベルの光学膜厚程度で積層した誘電体多層膜などが使用できる。
特に、この誘電体多層膜は、膜構成により分光反射率を制御でき、また、光吸収が少ないため、反射ミラー21A、21Bとして用いるのに好ましい。この誘電体多層膜を構成する高屈折率誘電体としては、Ta、TiO、Nb、Siなどが用いられ、低屈折率誘電体多層膜としてはSiO、MgF、Alなどが用いられる。
Here, the reflection mirrors 21A and 21B have a reflectance of 80% or more with respect to incident light consisting of, for example, 1470 to 1630 nm which is a used wavelength band, and a non-zero transmittance so that a part of the light is transmitted. It is what you have. As the reflecting mirrors 21A and 21B, for example, a metal thin film or a dielectric multilayer film in which a high-refractive index dielectric film and a low-refractive index dielectric film are alternately stacked with an optical film thickness of a wavelength level can be used.
In particular, the dielectric multilayer film is preferable for use as the reflection mirrors 21A and 21B because the spectral reflectance can be controlled by the film configuration and the light absorption is small. Ta 2 O 5 , TiO 2 , Nb 2 O 5 , Si and the like are used as the high refractive index dielectric constituting the dielectric multilayer film, and SiO 2 , MgF 2 , and the like are used as the low refractive index dielectric multilayer film. Al 2 O 3 or the like is used.

なお、反射ミラー21A、21Bとして、例えばSiとSiOを交互に積層した誘電体多層膜の場合、不純物元素をドープしてSi膜層に導電性を付与することにより、透明電極としても機能させることができる。また、AuやAgなどの金属を薄膜化して用いることにより、光吸収は大きいが反射ミラーと電極の両方に機能を発現することもできる。この場合には、第1の透明電極12Aおよび第2の透明電極12Bを形成しなくてもよくなる。 In the case of a dielectric multilayer film in which, for example, Si and SiO 2 are alternately laminated as the reflection mirrors 21A and 21B, it functions as a transparent electrode by doping an impurity element to impart conductivity to the Si film layer. be able to. Further, by using a metal such as Au or Ag in a thin film, light absorption is large, but functions can be exhibited in both the reflection mirror and the electrode. In this case, the first transparent electrode 12A and the second transparent electrode 12B need not be formed.

従って、本実施形態のように構成することにより、図1の構成例と同様の効果により、液晶層13内の液晶の熱膨張が有効エリア外にある空気層16Aに吸収されるため、反射ミラー21A、21B間の距離の変動が抑制される。その結果、液晶層13内の液晶の熱膨張に起因する透過ピーク波長の変動を確実に抑えることができるようになる。   Accordingly, by configuring as in the present embodiment, the thermal expansion of the liquid crystal in the liquid crystal layer 13 is absorbed by the air layer 16A outside the effective area due to the same effect as the configuration example of FIG. Variation in the distance between 21A and 21B is suppressed. As a result, it is possible to reliably suppress fluctuations in the transmission peak wavelength due to the thermal expansion of the liquid crystal in the liquid crystal layer 13.

[第3の実施形態]
図5は本発明の第3の実施形態である液晶素子30の構成例を示す側断面図である。なお、図5において、図1、図4と同一機能のものには同一符号を付している。
本発明の第3の実施形態に係る液晶素子30では、第2の実施形態のように反射ミラー21A、21Bを配設した構成の場合には、(第2の実施形態の)透明層16の固体透明層16Bのように、有効エリア内に(透明層17の)固体透明層17Bを配設するのではなく、図5に示すように、固体透明層17Bの間の有効エリア内に空気などの体積弾性変形を起こしやすい空気層17Aを配設する構成としてもよい。
[Third Embodiment]
FIG. 5 is a side sectional view showing a configuration example of the liquid crystal element 30 according to the third embodiment of the present invention. In FIG. 5, the same functions as those in FIGS. 1 and 4 are denoted by the same reference numerals.
In the liquid crystal element 30 according to the third embodiment of the present invention, when the reflection mirrors 21A and 21B are arranged as in the second embodiment, the transparent layer 16 (of the second embodiment) Instead of disposing the solid transparent layer 17B (of the transparent layer 17) in the effective area as in the solid transparent layer 16B, as shown in FIG. 5, air or the like is present in the effective area between the solid transparent layers 17B. Alternatively, an air layer 17A that easily undergoes bulk elastic deformation may be provided.

従って、本実施形態のように構成することにより、液晶層13における有効エリア内の液晶の厚さは変動するが、空気層17Aにより、液晶の熱膨張が吸収されるため、反射ミラー21A、21B間の距離の変動は抑制され、反射ミラー21A、21B間の距離の変動に伴う、透過ピーク波長の変動を抑えることができるようになる。   Therefore, by configuring as in the present embodiment, the thickness of the liquid crystal in the effective area in the liquid crystal layer 13 varies, but the thermal expansion of the liquid crystal is absorbed by the air layer 17A, and thus the reflection mirrors 21A and 21B. The variation in the distance between them is suppressed, and the variation in the transmission peak wavelength accompanying the variation in the distance between the reflecting mirrors 21A and 21B can be suppressed.

[第1実施例]
本発明の第1実施例の液晶エタロン型の波長可変フィルタ(第2の実施形態に係る液晶素子20で構成のもの)について、その構造を模式的に示した図4の側断面図を用いて説明する。初めに、第1実施例の液晶エタロン型の波長可変フィルタの製造方法について説明する。
[First embodiment]
FIG. 4 is a side sectional view schematically showing the structure of a liquid crystal etalon type wavelength tunable filter (configured by the liquid crystal element 20 according to the second embodiment) of the first embodiment of the present invention. explain. First, a manufacturing method of the liquid crystal etalon type tunable filter of the first embodiment will be described.

(1)裏面にARコート(図示せず)をあらかじめ形成した第1および第2の透明基板11Aおよび11Bである石英ガラス基板上に、第1の反射ミラー21Aおよび第2の反射ミラー21Bとして波長1500nmから1600nmの範囲で反射率95%および透過率約5%の誘電体多層膜を形成した基板2Aおよび基板2Bを作成した。   (1) On the quartz glass substrate, which is the first and second transparent substrates 11A and 11B, in which an AR coat (not shown) is formed in advance on the back surface, the wavelength as the first reflecting mirror 21A and the second reflecting mirror 21B A substrate 2A and a substrate 2B were formed on which a dielectric multilayer film having a reflectance of 95% and a transmittance of about 5% was formed in the range of 1500 nm to 1600 nm.

(2)次に、基板2Bの反射ミラー21B面に、液晶ディスプレイ用の直径4μmのスペーサ(図示せず)をシール材(図示せず)と混ぜ合わせた接着剤で、シールパターン層を形成し、厚さ40μmの石英ガラス基板を固体透明層15として貼り合わせ、空気層16Aを形成した。   (2) Next, a seal pattern layer is formed on the surface of the reflecting mirror 21B of the substrate 2B with an adhesive obtained by mixing a spacer (not shown) having a diameter of 4 μm for a liquid crystal display with a sealing material (not shown). Then, a quartz glass substrate having a thickness of 40 μm was bonded as the solid transparent layer 15 to form an air layer 16A.

(3)次に、シールパターン層の有効エリア部に石英ガラスと屈折率がほぼ等しい紫外線硬化型の接着剤を充填し、この接着剤充填後、紫外線照射により接着剤を硬化し、固体透明層16Bを形成し、基板2を作成した。   (3) Next, the effective area of the seal pattern layer is filled with an ultraviolet curable adhesive having a refractive index substantially equal to that of quartz glass, and after the adhesive is filled, the adhesive is cured by ultraviolet irradiation to obtain a solid transparent layer. 16B was formed and the board | substrate 2 was created.

(4)その後、基板2Aの反射ミラー21A面上および基板2の石英ガラス基板(固体透明層15)面上に、膜厚が7nmであるITOの第1の透明電極12Aおよび第2の透明電極12Bを形成し、さらに、この第1の透明電極12Aおよび第2の透明電極12B上に、液晶用配向膜(図示せず)を厚さ50nm形成し、それぞれ、対向する面内の液晶分子の配向方向が平行となるよう配向処理を施した。   (4) Thereafter, on the reflecting mirror 21A surface of the substrate 2A and on the quartz glass substrate (solid transparent layer 15) surface of the substrate 2, the first transparent electrode 12A and the second transparent electrode of ITO having a film thickness of 7 nm 12B is formed, and a liquid crystal alignment film (not shown) is formed to a thickness of 50 nm on the first transparent electrode 12A and the second transparent electrode 12B. An alignment treatment was performed so that the alignment directions were parallel.

(5)次に、基板2の石英ガラス基板(固体透明層15)上に、液晶ディスプレイ用の直径7.5μmのスペーサ(図示せず)をシール材14Aおよび14Bと混ぜ合わせた接着剤で、シールパターン層を形成し、ここに、液晶用配向膜(図示せず)およびITO膜の第1の透明電極12Aが設けられた基板2Aを貼り合わせた。   (5) Next, on the quartz glass substrate (solid transparent layer 15) of the substrate 2, an adhesive in which a spacer (not shown) having a diameter of 7.5 μm for a liquid crystal display is mixed with the sealing materials 14A and 14B. A seal pattern layer was formed, and a substrate 2A provided with a liquid crystal alignment film (not shown) and an ITO film first transparent electrode 12A was bonded thereto.

(6)その後、配向膜(図示せず)間にネマチック液晶を充填して液晶層13を形成した。   (6) Thereafter, a nematic liquid crystal was filled between alignment films (not shown) to form a liquid crystal layer 13.

次に、このようにして作成した図4に示す本発明の波長可変フィルタ(第2の実施形態の液晶素子20)と、空気層16Aを含む透明層16が形成されていない従来の液晶エタロン型の波長可変フィルタとの双方に対して、以下に説明する比較実験を行った。
すなわち、1550nm波長帯域で広い発光スペクトルを持つ広帯域光源からの光を、液晶分子の配向方向と同じ偏光方向で入射させ、その出射光を光スペクトルアナライザーで観測した。このとき、波長可変フィルタの液晶層13には、電源Pを用いて矩形波状の交流電圧を第1の透明電極12Aと第2の透明電極12Bを介して0Vから10Vまで印加し、さらに、波長可変フィルタの温度を35℃から45℃まで変化させた。
Next, the tunable filter of the present invention (the liquid crystal element 20 of the second embodiment) of the present invention shown in FIG. 4 and the conventional liquid crystal etalon type in which the transparent layer 16 including the air layer 16A is not formed. Comparative experiments described below were performed for both of these tunable filters.
That is, light from a broadband light source having a broad emission spectrum in the 1550 nm wavelength band was incident in the same polarization direction as the alignment direction of the liquid crystal molecules, and the emitted light was observed with an optical spectrum analyzer. At this time, a rectangular wave AC voltage is applied to the liquid crystal layer 13 of the wavelength tunable filter from 0 V to 10 V via the first transparent electrode 12A and the second transparent electrode 12B using the power source P, and further, the wavelength The temperature of the variable filter was changed from 35 ° C to 45 ° C.

この比較実験の結果、図4において、空気層16Aを含む透明層16が形成されていない従来の液晶エタロン型の波長可変フィルタにあっては、透過ピーク波長の温度変化に対する変動量(Z)は250pm/℃程度であった。
因みに、液晶層13の厚さの変動に起因する透過ピーク波長の変動量(X)は350pm/℃であり、液晶の屈折率変化に起因する透過ピーク波長の変動量(Y)は−100pm/℃であった。
As a result of this comparative experiment, in FIG. 4, in the conventional liquid crystal etalon type tunable filter in which the transparent layer 16 including the air layer 16A is not formed, the variation amount (Z) with respect to the temperature change of the transmission peak wavelength is It was about 250 pm / ° C.
Incidentally, the variation amount (X) of the transmission peak wavelength due to the variation in the thickness of the liquid crystal layer 13 is 350 pm / ° C., and the variation amount (Y) of the transmission peak wavelength due to the change in the refractive index of the liquid crystal is −100 pm / ° C.

これにより、この透過ピーク波長の変動(Z)は、反射ミラー21Aと21B間の光路長の変動すなわち液晶層13の厚さ(これに起因する変動量がX)と、この液晶層13内の液晶の屈折率に依存する温度変動(これに起因する変動量がY;固有の定数)とに起因する、換言すれば透過ピーク波長の変動(Z)は、双方の変動値を合算したものに相当する、つまり、次式
Z=X+Y ・・・(1)
の関係を満たすものとの知見も得られた。
Thereby, the fluctuation (Z) of the transmission peak wavelength is caused by the fluctuation of the optical path length between the reflecting mirrors 21A and 21B, that is, the thickness of the liquid crystal layer 13 (the fluctuation amount resulting therefrom is X), The fluctuation of the transmission peak wavelength (Z) caused by the temperature fluctuation depending on the refractive index of the liquid crystal (the fluctuation quantity resulting from this is Y; a specific constant), in other words, the fluctuation (Z) of the transmission peak wavelength is the sum of both fluctuation values. Equivalent, that is,
Z = X + Y (1)
The knowledge that it satisfies the relationship was also obtained.

一方、図4に示す反射ミラー21Aおよび21Bが設けられていない、予察評価用セルの評価結果から、本発明の図4に示す構成の波長可変フィルタ(液晶素子20)にあっては、透過ピーク波長の温度変化に対する変動量(Z)は−100pm/℃程度となることが確認された。
なお、ここで、上記したように、液晶の屈折率変化に起因する透過ピーク波長の変動量(Y)が固有の定数、つまり前述した−100pm/℃であるので、(1)式から、液晶の熱膨張の寄与による液晶層13の厚さ変動量(X)は、
X=Z−Y
=−100−(−100)
=0(pm/℃)
となり、ゼロとなることが判明した。
On the other hand, from the evaluation result of the preliminary evaluation cell in which the reflection mirrors 21A and 21B shown in FIG. 4 are not provided, the transmission peak is obtained in the wavelength tunable filter (liquid crystal element 20) having the configuration shown in FIG. It was confirmed that the fluctuation amount (Z) with respect to the temperature change of the wavelength was about −100 pm / ° C.
Here, as described above, since the fluctuation amount (Y) of the transmission peak wavelength caused by the change in the refractive index of the liquid crystal is an inherent constant, that is, the above-described −100 pm / ° C., from the equation (1), The variation in thickness (X) of the liquid crystal layer 13 due to the thermal expansion of
X = Z-Y
= -100 (-100)
= 0 (pm / ° C)
And it turned out to be zero.

従って、前述の比較実験および理論的な計算式からも裏付けられるように、本実施例の波長可変フィルタ(図4に示す液晶素子20)によれば、液晶の熱膨張による反射ミラー21Aおよび21B間の距離の変動に起因した波長変動が抑制され、良好で安定した光学特性が得られることが確認された。   Therefore, as supported by the above-described comparative experiment and theoretical calculation formula, according to the wavelength tunable filter of this embodiment (the liquid crystal element 20 shown in FIG. 4), the distance between the reflection mirrors 21A and 21B due to the thermal expansion of the liquid crystal. It was confirmed that the wavelength variation caused by the variation in the distance was suppressed, and good and stable optical characteristics could be obtained.

[第2実施例]
図5は本発明の第2実施例である液晶エタロン型の波長可変フィルタ(第3の実施形態に係る液晶素子30で構成のもの)の構造を模式的に示した側面図である。
この第2実施例の液晶エタロン型の波長可変フィルタは、透明層17内の空気層17Aが有効エリア内に形成されていることを除き、図4に示す第1実施例と同じ構造となっており、同様の方法で形成している。
[Second Embodiment]
FIG. 5 is a side view schematically showing the structure of a liquid crystal etalon-type wavelength tunable filter (configured by the liquid crystal element 30 according to the third embodiment) according to the second embodiment of the present invention.
The liquid crystal etalon type wavelength tunable filter of the second embodiment has the same structure as the first embodiment shown in FIG. 4 except that the air layer 17A in the transparent layer 17 is formed in the effective area. It is formed by the same method.

図5に示す第2実施例の液晶エタロン型の波長可変フィルタ(液晶素子30)に対して、実施例1と同様の実験を行った。その結果、本発明の第2実施例の波長可変フィルタ(液晶素子30)では、透過ピーク波長の温度変化に対する変動量(Z)が80pm/℃程度であることが確認された。   An experiment similar to that of Example 1 was performed on the liquid crystal etalon type wavelength tunable filter (liquid crystal element 30) of the second example shown in FIG. As a result, in the wavelength tunable filter (liquid crystal element 30) of the second example of the present invention, it was confirmed that the fluctuation amount (Z) with respect to the temperature change of the transmission peak wavelength was about 80 pm / ° C.

ところで、この第2実施例での透過ピーク波長の変動(Z)は、第1実施例での構成要素のほかに、さらに空気層17Aにも依存するので、次式
Z=X+Y+α ・・・(2)
ただし、ここでα:空気層収縮による変動量
の関係を満たすものとの知見も得られた。
Incidentally, the fluctuation (Z) of the transmission peak wavelength in the second embodiment depends on the air layer 17A in addition to the components in the first embodiment.
Z = X + Y + α (2)
However, knowledge that the relationship of α: variation due to air layer contraction is satisfied was also obtained.

因みに、第1実施例において従来の液晶エタロン型の波長可変フィルタで説明したように、液晶層13の厚さの変動に起因する変動量(X)および液晶の屈折率変化による変動量(Y)は、それぞれ、350pm/℃および−100pm/℃であるから、空気層17Aの収縮により発生する透過ピーク波長の変動量(α)は、(2)式より、
α=Z−(X+Y)
=80−(350−100)
=−170(pm/℃)
であるものとされる。
Incidentally, as described in the conventional liquid crystal etalon type wavelength tunable filter in the first embodiment, the variation amount (X) due to the variation of the thickness of the liquid crystal layer 13 and the variation amount (Y) due to the change in the refractive index of the liquid crystal. Are 350 pm / ° C. and −100 pm / ° C., respectively, and therefore the fluctuation amount (α) of the transmission peak wavelength generated by the contraction of the air layer 17A is expressed by the following equation (2):
α = Z− (X + Y)
= 80- (350-100)
= -170 (pm / ° C)
It is supposed to be.

従って、空気層17Aを有する第2実施例の波長可変フィルタ(図5の液晶素子30)でも、液晶層13内部の液晶の熱膨張により反射ミラー21Aおよび21B間の距離の変動に起因した波長変動が抑制され、良好で安定した光学特性が得られることが確認された。   Therefore, even in the wavelength tunable filter (liquid crystal element 30 in FIG. 5) of the second embodiment having the air layer 17A, the wavelength variation caused by the variation in the distance between the reflecting mirrors 21A and 21B due to the thermal expansion of the liquid crystal inside the liquid crystal layer 13 It was confirmed that good and stable optical characteristics were obtained.

本発明の液晶素子は、液晶の熱膨張を吸収する空気層を有効エリア外に設けるため、有効エリア内の液晶層の厚さ変動を抑えることができるとともに、空気層が固体透明層により液晶層と分離した位置に固定されるため、有効エリア内に侵入し光学特性の劣化を回避できる効果を有し、印加電圧の大きさに応じて入射光に対する液晶の実質的屈折率またはリタデーション値を変化させ出射光を制御する液晶素子、および温度変化に対して安定した光学特性が必要とされる光通信または光ヘッド装置等に有用である。   Since the liquid crystal element of the present invention is provided with an air layer that absorbs the thermal expansion of the liquid crystal outside the effective area, the thickness variation of the liquid crystal layer in the effective area can be suppressed, and the air layer is a liquid crystal layer by a solid transparent layer. Since it is fixed at a separate position, it has the effect of entering the effective area and avoiding deterioration of the optical characteristics, and the substantial refractive index or retardation value of the liquid crystal with respect to the incident light changes depending on the magnitude of the applied voltage It is useful for a liquid crystal element that controls emitted light and optical communication or an optical head device that requires stable optical characteristics against temperature changes.

本発明の液晶素子の第1の実施形態の構成例を示す側断面図。1 is a side sectional view showing a configuration example of a first embodiment of a liquid crystal element of the present invention. 本発明の第1の実施形態の液晶素子が温度変化により液晶層が膨張した例を示す側断面図。FIG. 3 is a side sectional view showing an example in which the liquid crystal layer of the liquid crystal element according to the first embodiment of the present invention expands due to a temperature change. 本発明の第1の実施形態の液晶素子が温度変化により液晶層が収縮した例を示す側断面図。FIG. 3 is a side sectional view showing an example in which the liquid crystal layer contracts due to a temperature change in the liquid crystal element according to the first embodiment of the present invention. 本発明の液晶素子の第2の実施形態および第1実施例の構成例を示す側断面図。FIG. 3 is a side sectional view showing a configuration example of a second embodiment and a first example of the liquid crystal element of the present invention. 本発明の液晶素子の第3の実施形態および第2実施例の構成例を示す側断面図。The sectional side view which shows the structural example of 3rd Embodiment and 2nd Example of the liquid crystal element of this invention. 従来の液晶素子の構成例を示す側断面図。FIG. 10 is a side cross-sectional view illustrating a configuration example of a conventional liquid crystal element. 従来の液晶素子が温度変化により液晶層が膨張した例を示す側断面図。FIG. 6 is a side cross-sectional view illustrating an example in which a liquid crystal layer expands due to a temperature change in a conventional liquid crystal element. 従来の液晶素子が温度変化により液晶層が収縮した例を示す側断面図。FIG. 6 is a side sectional view showing an example in which a liquid crystal layer contracts due to a temperature change in a conventional liquid crystal element.

符号の説明Explanation of symbols

10、20、30:液晶素子
11A、11B:透明基板
12A、12B:透明電極
13:液晶層
14A、14B:シール材
15:固体透明層
16、17:透明層
16A、17A:空気層
16B、17B:固体透明層
2:基板
2A、2B:基板
21A、21B:反射ミラー
L:光束
P:矩形波交流電源
10, 20, 30: Liquid crystal element 11A, 11B: Transparent substrate 12A, 12B: Transparent electrode 13: Liquid crystal layer 14A, 14B: Sealing material 15: Solid transparent layer 16, 17: Transparent layer 16A, 17A: Air layer 16B, 17B : Solid transparent layer 2: Substrate 2A, 2B: Substrate 21A, 21B: Reflection mirror L: Light flux P: Rectangular wave AC power supply

Claims (4)

第1の透明基板と、第1の透明電極と、液晶層と、第2の透明電極と、第2の透明基板とがこの順序に配設された液晶素子であって、
前記第1の透明基板と第1の透明電極との間および/または前記第2の透明基板と第2の透明電極との間に、前記液晶層側から固体透明層および透明層が形成され、
前記透明層は有効エリア外に空気層を含む固体層であることを特徴とする液晶素子。
A liquid crystal element in which a first transparent substrate, a first transparent electrode, a liquid crystal layer, a second transparent electrode, and a second transparent substrate are arranged in this order,
A solid transparent layer and a transparent layer are formed from the liquid crystal layer side between the first transparent substrate and the first transparent electrode and / or between the second transparent substrate and the second transparent electrode,
The liquid crystal device, wherein the transparent layer is a solid layer including an air layer outside an effective area.
表面を含む前記第1の透明基板と前記液晶層との間の平面、および表面を含む前記第2の透明基板と前記液晶層との間の平面に、反射ミラーが形成されている請求項1記載の液晶素子。   2. A reflection mirror is formed on a plane between the first transparent substrate including the surface and the liquid crystal layer, and on a plane between the second transparent substrate including the surface and the liquid crystal layer. The liquid crystal element as described. 第1の透明基板と、第1の反射ミラーと、第1の透明電極と、液晶層と、第2の透明電極と、第2の反射ミラーと、第2の透明基板とがこの順序に配設された液晶素子であって、
前記第1の反射ミラーと前記第1の透明電極との間および/または前記第2の反射ミラーと前記第2の透明電極との間に、前記液晶層側から固体透明層および透明層が形成され、
前記透明層は少なくとも有効エリア内が空気層であることを特徴とする液晶素子。
The first transparent substrate, the first reflection mirror, the first transparent electrode, the liquid crystal layer, the second transparent electrode, the second reflection mirror, and the second transparent substrate are arranged in this order. A liquid crystal element provided,
A solid transparent layer and a transparent layer are formed from the liquid crystal layer side between the first reflecting mirror and the first transparent electrode and / or between the second reflecting mirror and the second transparent electrode. And
The liquid crystal device according to claim 1, wherein at least the inside of the transparent layer is an air layer.
光源と、この光源からの出射光を光記録媒体上に集光するための対物レンズと、前記光記録媒体へ集光されるとともに前記光記録媒体により反射された出射光を検出する光検出部とを備える光ヘッド装置において、
請求項1から3のいずれか1項に記載の液晶素子が前記光源と前記対物レンズとの間の光路中に配置されていることを特徴とする光ヘッド装置。
A light source, an objective lens for condensing the light emitted from the light source on the optical recording medium, and a light detection unit for detecting the emitted light that is condensed on the optical recording medium and reflected by the optical recording medium In an optical head device comprising:
4. An optical head device, wherein the liquid crystal element according to claim 1 is disposed in an optical path between the light source and the objective lens.
JP2003281853A 2003-07-29 2003-07-29 Liquid crystal element and optical head device Expired - Fee Related JP4269836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003281853A JP4269836B2 (en) 2003-07-29 2003-07-29 Liquid crystal element and optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003281853A JP4269836B2 (en) 2003-07-29 2003-07-29 Liquid crystal element and optical head device

Publications (2)

Publication Number Publication Date
JP2005049633A true JP2005049633A (en) 2005-02-24
JP4269836B2 JP4269836B2 (en) 2009-05-27

Family

ID=34267242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003281853A Expired - Fee Related JP4269836B2 (en) 2003-07-29 2003-07-29 Liquid crystal element and optical head device

Country Status (1)

Country Link
JP (1) JP4269836B2 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62166317A (en) * 1986-01-20 1987-07-22 Fujitsu Ltd Manufacture of liquid crystal display panel
JPS62192725A (en) * 1986-02-20 1987-08-24 Asahi Glass Co Ltd Liquid crystal display element
JPS62146122U (en) * 1986-03-11 1987-09-16
JPS6364021A (en) * 1986-09-05 1988-03-22 Seiko Epson Corp Liquid crystal display device
JPS6375729A (en) * 1986-09-19 1988-04-06 Hitachi Ltd Liquid crystal display element
JPH01262524A (en) * 1988-04-13 1989-10-19 Semiconductor Energy Lab Co Ltd Liquid crystal display element
JPH01304426A (en) * 1988-06-01 1989-12-08 Semiconductor Energy Lab Co Ltd Liquid crystal display element
JPH07225385A (en) * 1994-02-10 1995-08-22 Rohm Co Ltd Liquid crystal display element
JP2000122039A (en) * 1998-10-21 2000-04-28 Toshiba Corp Liquid crystal display device
JP2000193953A (en) * 1998-12-25 2000-07-14 Ricoh Co Ltd Liquid crystal device
JP2000227601A (en) * 1998-11-30 2000-08-15 Ricoh Co Ltd Liquid crystal device
JP2000298270A (en) * 1999-04-15 2000-10-24 Yazaki Corp Wavelength selective filter and production therefor
JP2002365601A (en) * 2001-04-30 2002-12-18 Agilent Technol Inc Tunable optical filter

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62166317A (en) * 1986-01-20 1987-07-22 Fujitsu Ltd Manufacture of liquid crystal display panel
JPS62192725A (en) * 1986-02-20 1987-08-24 Asahi Glass Co Ltd Liquid crystal display element
JPS62146122U (en) * 1986-03-11 1987-09-16
JPS6364021A (en) * 1986-09-05 1988-03-22 Seiko Epson Corp Liquid crystal display device
JPS6375729A (en) * 1986-09-19 1988-04-06 Hitachi Ltd Liquid crystal display element
JPH01262524A (en) * 1988-04-13 1989-10-19 Semiconductor Energy Lab Co Ltd Liquid crystal display element
JPH01304426A (en) * 1988-06-01 1989-12-08 Semiconductor Energy Lab Co Ltd Liquid crystal display element
JPH07225385A (en) * 1994-02-10 1995-08-22 Rohm Co Ltd Liquid crystal display element
JP2000122039A (en) * 1998-10-21 2000-04-28 Toshiba Corp Liquid crystal display device
JP2000227601A (en) * 1998-11-30 2000-08-15 Ricoh Co Ltd Liquid crystal device
JP2000193953A (en) * 1998-12-25 2000-07-14 Ricoh Co Ltd Liquid crystal device
JP2000298270A (en) * 1999-04-15 2000-10-24 Yazaki Corp Wavelength selective filter and production therefor
JP2002365601A (en) * 2001-04-30 2002-12-18 Agilent Technol Inc Tunable optical filter

Also Published As

Publication number Publication date
JP4269836B2 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
JP4075781B2 (en) Tunable filter
US20070121210A1 (en) Polarized diffractive filter and layered polarized diffractive filter
EP0895612A1 (en) A tuneable filter
US20110043742A1 (en) Contamination prevention in liquid crystal cells
JP2007272247A (en) Interference type modulator and display device
WO2018173813A1 (en) Liquid-crystal phase panel, and optical switch and optical shutter using same
JP2002365601A (en) Tunable optical filter
JP4269836B2 (en) Liquid crystal element and optical head device
JP5067434B2 (en) Liquid crystal device and projector
JP2010175785A (en) Wavelength variable filter
JP2003045065A (en) Liquid crystal end-sealing element and optical head device
JP2003045065A5 (en)
JP4513258B2 (en) Tunable filter
JP7356899B2 (en) Liquid crystal light deflection element and method for manufacturing the liquid crystal light deflection element
JP5150992B2 (en) Liquid crystal device and optical attenuator
JP2010231247A (en) Liquid crystal device
JP5538834B2 (en) Liquid crystal optical modulator
JP2009152040A (en) Light emitting device
JP4639663B2 (en) Tunable mirror and tunable laser
JP2012138554A (en) Light source device
JP2005077664A (en) Liquid crystal element and its manufacturing method
CN107835957B (en) Space phase modulator and preparation method thereof
WO2022019012A1 (en) Optical device
JPH04140714A (en) Variable wavelength filter module
JP7359307B2 (en) wavelength tunable device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060619

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees