JP2005049389A - Connector type optical module - Google Patents

Connector type optical module Download PDF

Info

Publication number
JP2005049389A
JP2005049389A JP2003202978A JP2003202978A JP2005049389A JP 2005049389 A JP2005049389 A JP 2005049389A JP 2003202978 A JP2003202978 A JP 2003202978A JP 2003202978 A JP2003202978 A JP 2003202978A JP 2005049389 A JP2005049389 A JP 2005049389A
Authority
JP
Japan
Prior art keywords
optical
semiconductor element
connector
optical fiber
optical semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003202978A
Other languages
Japanese (ja)
Other versions
JP3772163B2 (en
Inventor
Hideto Furuyama
英人 古山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003202978A priority Critical patent/JP3772163B2/en
Publication of JP2005049389A publication Critical patent/JP2005049389A/en
Application granted granted Critical
Publication of JP3772163B2 publication Critical patent/JP3772163B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a thin profile as well as enhancing reliability by improving an optical module which is of a type to bring an optical semiconductor element into direct contact with an optical connector. <P>SOLUTION: The connector type optical module is equipped with a substrate 11 which is mounted with an optical semiconductor element 13 composed of a surface-emitting laser diode, a transparent contact resin 14 which is selectively installed on the active region of the optical semiconductor element 13, and an optical connector 15 which is, positioning and holding an optical fiber 16, installed by being mechanically positioned on the mounted substrate 11. The mounted substrate 11 and the optical connector 15 are positioned vertically to the optical axis direction with a guide pin 17 and a guide hole 12 so that the tip end of the optical fiber 16 is matched in position with the active region of the optical semiconductor element 13, and are also positioned relative to the optical axis direction with a stopper part so that the tip end of the optical fiber 16 is situated between the surface of the optical semiconductor element 13 and the top of the transparent contact resin 14. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光配線等に用いるコネクタ型光モジュールに係わり、特に薄型化を図ったコネクタ型光モジュールに関する。
【0002】
【従来の技術】
近年、LSIの飛躍的な動作速度向上に伴い、LSI間を光で接続する光配線装置が幾つか提案されている。光配線は、直流から100GHz以上の周波数領域で損失等の周波数依存性が殆どなく、配線路の電磁障害や接地電位変動雑音も無いため、数十Gbpsの配線が容易に実現できる。また、光配線は電気配線と異なり、配線の表皮効果が無いことから配線(光ファイバなど)を数十Gbpsでも特に太くする必要が無い。従って、10Gbps以上の高速領域においては省スペースという点でも電気配線に対して有利となる。
【0003】
この省スペース特性の端的な例として、非特許文献1に記載されているようなコネクタ(所謂MTコネクタ)があり、最大12芯の光ファイバが一つの光コネクタに収容可能である。また、MTコネクタの拡張規格では、60芯の光ファイバを1つのMTコネクタに収容可能である。このとき、光ファイバ1本当たりに10Gbpsの信号を通すと、非特許文献1に示されている断面積(3mm×7mm)で600Gbpsもの信号配線が可能になる。
【0004】
これを、10Gbps伝送が可能な高周波同軸ケーブル(一般的に5mmφ程度)で実現する場合、フラットケーブルで5mm×300mm、三角格子配置ケーブルでも約1400mmといった配線断面積が必要となる。従って、上記した光配線は電気配線の1/60といった省スペース化が達成されることになる。
【0005】
このような光配線に用いるための光モジュール構成として、特許文献1〜3に記されているような構成が知られている。
【0006】
特許文献1は、アレイ化光素子を前述のMTコネクタ(非特許文献1)に結合する機構として、ガイド穴付きファイバアレイを光コネクタの結合部分に備えている。このガイド穴付きファイバアレイは、MTコネクタの先端部を切り出したものと同等の構成であり、言わば光半導体素子と光ファイバをつなぐ中継光ファイバである。中継光ファイバは光モジュールに固定され、MTコネクタを突き合わせる際の機械的衝撃や応力から光半導体素子を保護する機能を持っている。
【0007】
特許文献2は、光ファイバ先端を光半導体素子に直接接して光結合を行う例であり、ある程度の余長の光ファイバが常に光モジュールに固定され、固定された光ファイバの先端に光コネクタを有する形態のものである。特許文献3は、光半導体素子と光コネクタを直接結合させる例であり、光半導体素子と光コネクタ間の空隙による光干渉等を抑制するためのポリマーシートの導入が示されている。
【0008】
【特許文献1】
特開2002−202440号公報
【0009】
【特許文献2】
特開平6−237016号公報
【0010】
【特許文献3】
特許第2970543号公報
【0011】
【非特許文献1】
日本工業規格(JIS) C5981
【0012】
【発明が解決しようとする課題】
しかしながら、この種の光配線用光モジュールにおいては、以下に示すような問題があった。
【0013】
即ち、光配線の導入形態として、ボード間配線を光化するような場合、電気の同軸ケーブルやバックプレーン配線を光ファイバに置き換えることがサイズ的な面から比較的容易である。しかし、LSI間配線を光化する場合、LSIパッケージ端子相当のスペースに光モジュールを組み込む必要があり、特許文献1で示したような光モジュールを単純に寄せ集めたような形態では実現が困難となる。
【0014】
例えば、光インターフェースを要するようなLSIは一般に高速動作を目的としており、その発熱量は非常に大きなものであることが多い。このため、LSIチップのローカルヒートシンク(又はヒートスプレッダ)が必要となることが多く、LSIチップ下部は実装ボード、LSIチップ上部はヒートシンクが配置される構成となる。このため、光配線用光モジュールは実装ボードとヒートシンクに挟まれた僅かな隙間に入るような薄型のモジュールであることが望ましい。薄型化の理想はLSIチップの厚さ相当、例えば200〜600μm厚である。これは、最小値では光ファイバ素線(例えば125μmφ)と光半導体素子(例えば100μm厚)を単純積み上げしただけの厚さに相当し、現実的ではない。
【0015】
次に、特許文献2のような所謂ピグテール型の場合、光モジュールの薄型化は比較的容易であるが、LSIパッケージから光ファイバ及び光コネクタがぶら下がる形態となり、LSIのボード実装時に光ファイバの余長部が邪魔になりやすく、光ファイバや光コネクタの破損も起こしやすい。また、光半導体素子と光ファイバが堅固に固定されており、熱膨張係数の差による応力や光ファイバへの張力等により光半導体素子の劣化や破壊を起こしやすいという問題もある。さらに、半田リフロー等の一括高温工程が適用できないなど、量産性や実用性に乏しい問題もある。
【0016】
次に、特許文献3のような光半導体素子と光コネクタの直接接触型の場合、構成部材として光半導体素子とその支持体、及びポリマーシートのみで構成でき、極薄型化が可能である。ところが、光半導体素子がポリマーシートを挟んで光コネクタにより直接押されるため、光コネクタの押し込み力を適正に制御しなければ光半導体素子を破壊してしまう問題がある。
【0017】
また、適当なスペーサを用いて間隙制御する場合、ポリマーシート厚と間隙の調整を的確に行わないと、光半導体素子を破損したり、ポリマーシート接触不良(空隙発生)による光干渉を生じたりする問題がある。さらに、一般にポリマーの熱膨張は大きく、適正な間隙に設定しても、高温若しくは低温でポリマーシートの接触圧過剰(光素子破損)や接触不良(光導通不良)を生じやすい。
【0018】
本発明は、上記事情を考慮して成されたもので、その目的とするところは、光半導体素子と光コネクタを直接接触させる形式の光モジュールに改良を加え、薄型化と共に信頼性の向上をはかり得るコネクタ型光モジュールを提供することにある。
【0019】
【課題を解決するための手段】
(構成)
本発明の骨子は、光半導体素子と光コネクタ(光ファイバ)接触部に透明コンタクト樹脂を部分的に形成し、樹脂の周囲に自由空間を残すことで光コネクタ押圧に対する樹脂の変形を3次元的に行わせる。そして、樹脂の変形可能量を大きくすることで樹脂のクッション効果を高めるものである。
【0020】
即ち本発明は、コネクタ型光モジュールにおいて、発光又は受光機能を有する光半導体素子の能動領域上に選択的に設けられた透明コンタクト樹脂と、光ファイバの先端が前記光半導体素子の表面と前記透明コンタクト樹脂の頂部との間に位置するように該ファイバの先端を位置決めする手段と、前記光ファイバの先端が前記光半導体素子の能動領域と位置整合するように該ファイバの先端を位置決めする手段と、を具備してなることを特徴とする。
【0021】
また本発明は、発光又は受光機能を有する光半導体素子が実装された実装基板と、前記光半導体素子の能動領域上に選択的に設けられた透明コンタクト樹脂と、光ファイバを位置決め保持し、前記実装基板に機械的に位置決めして取り付けられる光コネクタとを具備してなるコネクタ型光モジュールにおいて、前記光ファイバの先端が前記光半導体素子の能動領域に位置整合するように、前記実装基板と光コネクタを光軸に垂直な方向に対して位置決めするガイド機構と、前記光ファイバの先端が前記光半導体素子の表面と前記透明コンタクト樹脂の頂部との間に位置するように、前記実装基板と光コネクタを光軸方向に対して位置決めする突き当て部とを設けたことを特徴とする。
【0022】
ここで、本発明の望ましい実施態様としては次のものがあげられる。
【0023】
(1) 透明コンタクト樹脂の形状が半球ドームであり、該半球ドームの頂部が光ファイバの先端との接触部となること。
【0024】
(2) 光半導体素子の表面には酸化膜又は窒化膜による保護膜が形成されており、透明コンタクト樹脂としてシリコーン樹脂を用いたこと。
【0025】
(3) 光ファイバの先端と光半導体素子の能動領域との位置整合(光軸と垂直方向の位置合わせ)のためのガイド機構として、光コネクタ側にガイドピンを設け、実装基板側にピン穴を設けたこと。
【0026】
(4) 実装基板の上面側に凹部が設けられ、光半導体素子はこの凹部の底面に搭載され、半導体素子の上面は実装基板の上面よりも低く、透明コンタクト樹脂の頂部は実装基板の上面よりも高いこと。
【0027】
(5) 光コネクタの下面は光ファイバの先端と面一であり、実装基板の上面と光コネクタの下面とが突き当てられること。
【0028】
(作用)
本発明によれば、光半導体素子と光コネクタとの間にポリマーシート等を挟むのではなく、光半導体素子上に選択的に設けた透明コンタクト樹脂によって光半導体素子と光コネクタが部分的に接触しているのみであり、光コネクタの押し込み力は透明コンタクト樹脂の変形によって吸収される。従って、ポリマーシートを用いた場合のように光コネクタの押し込み力により光半導体素子を破壊するおそれが無くなり、薄型で信頼性の高いコネクタ型光モジュールを歩留まり良く実現することが可能となる。
【0029】
【発明の実施の形態】
以下、本発明の詳細を図示の実施形態によって説明する。
【0030】
(第1の実施形態)
図1は、本発明の第1の実施形態の原理構成を示す概略断面図であり、11は実装基板、12はガイド穴、13は光半導体素子、14は透明コンタクト樹脂、15は光コネクタフェルール(MTコネクタフェルール)、16は光ファイバ、16aは光ファイバコア、17はガイドピンである。
【0031】
光半導体素子13は、ここでは例として面発光レーザ(VCSEL: Vertical Cavity Surface Emitting Laser−diodes)の4素子アレイを表しているが、これは単素子でもよく、また受光素子(又はそのアレイ素子)であっても構わない。
【0032】
実装基板11は例えば樹脂基板であり、この基板11の上面側には、光半導体素子搭載のための凹部が設けられている。ここで、凹部の深さは、光半導体素子13を凹部の底面に搭載した際、光半導体素子13の上面が実装基板11の上面より僅かに引っ込むように設定しておく。これにより、光コネクタフェルール15を実装基板11の上面に突き当てても光コネクタフェルール15や光ファイバ16が、直接光半導体素子13に当ることがなくなる。
【0033】
また、透明コンタクト樹脂14は、光半導体素子13の表面全体に設けるのではなく、光半導体素子能動部(面発光レーザ発光部、受光素子受光部)上に選択的に設け、その頂部が実装基板11の上面より僅かに飛び出すように形成する。これにより、光コネクタフェルール15を実装基板11の上面に突き当てた際には、光ファイバ16が透明コンタクト樹脂14と接触することになる。
【0034】
図2に、実装基板11の上面図と、断面図(A−A’及びB−B’)を示す。図中、13aは素子電極、13bは素子能動部、18は駆動IC(ドライバ,レシーバ)、19はボンディングワイヤである。透明コンタクト樹脂14は、シリコーン樹脂,アクリル樹脂,エポキシ樹脂,又はポリイミド樹脂等の樹脂(透明)をディスペンサ等で選択塗布すれば、図に示すような半球ドーム型形状が得られ、光コネクタフェルール15との接触が容易になる。これを、図3によって説明する。
【0035】
図3は、透明コンタクト樹脂14と光ファイバ16との接触状況を示したものであり、(a)は接触前、(b)は接触後の状態を表している。光半導体素子13は、例えばAlGaAs/GaAs系VCSEL(発振波長約0.85μm)とし、13bのレーザ発振部(能動領域)を中心として透明コンタクト樹脂14を設ける。透明コンタクト樹脂14は、加圧による弾性変形量を大きくとり易いシリコーン樹脂が適しており、シリコーンゴムなどでは比較的容易に100%程度の伸び率が得られる。但し、シリコーン樹脂は透湿性が高く、ガスバリア性が低いのが一般的であり、素子の信頼性保持のため、光半導体素子13の表面には酸化膜又は窒化膜による保護膜を設けておくことが望ましい。
【0036】
透明コンタクト樹脂14の大きさとして、例えば光ファイバ16のコア径が50μm、開口数NAが0.21の場合、半球ドーム下面の直径を120μm、半球ドーム頂部の高さを60μmとなるように形成する。そして、光ファイバ接触後の高さが40μmとなるように実装基板11の段差及び光半導体素子13の厚さを設定しておく。このとき、透明コンタクト樹脂14の形状が半球ドーム型であるため、光ファイバ16との接触面積は光ファイバ押し込み量に対して急激に増える。これは、半球面の断面積が増えるだけでなく、光ファイバ16の押し込みにより外周方向に押し出すように変形された樹脂が反発して光ファイバ16を押し返そうとし、益々光ファイバ16に接触してくる効果が含まれるためである(図3(b))。
【0037】
従って、本実施形態のコネクタ型光モジュールでは、比較的小さな加圧により十分な接触面積が得られ、光半導体素子13と光コネクタフェルール15とを直接対向させる形式にも拘わらず、光半導体素子13に過剰な外力を加えずに直接接触を実現できる。また、透明コンタクト樹脂14の位置精度は、光半導体素子13と光ファイバ16との相対位置が精度良く合わせてあれば、数μm程度でも十分である。即ち、透明コンタクト樹脂14の位置が数μmずれても光ファイバ16と透明コンタクト樹脂14との接触面積に大きな変化はなく、また、必要な光路(50μmφ)に比して接触部が十分大きく取れる(例えば90μmφ)ため、数μmの位置誤差は問題にならない。
【0038】
(第2の実施形態)
以上では、MTコネクタのような標準コネクタに適用する例で原理的な構成を示してきた。しかしながら、本発明の本領は、非常に厚さの薄い光モジュールが実現できる処にあり、その具体例を図4に示す。図4(a)は、本発明の第2の実施形態に係わるコネクタ型光モジュールの構成を示した断面図であり、図中の21〜29は図1及び図2中の11〜19に対応している。
【0039】
本実施形態は、光ファイバ26を透明光コネクタフェルール25に固定し、端部を45°研磨加工した光路直角変換型光モジュールの例である。光コネクタフェルール25に対し光ファイバ26は横方向から挿入されている。光コネクタフェルール26の一部は切欠されており、これにより光ファイバ26の先端部の下面が露出している。そして、この下面の露出部分が実装基板21及び透明コンタクト樹脂24に当接するようになっている。
【0040】
なお、ここでは、実装基板21と光コネクタフェルール25の位置関係を規定するガイドピンを省略してあるが、図の縦方向にガイドピンを通して位置決めする、或いは実装基板21と光コネクタフェルール25に作り付けた噛合せ機構により位置決めされるものとする。
【0041】
図4(b)は、図4(a)に示した本実施形態のコネクタ型光モジュールを結合状態としたときの断面構成図である。このとき、駆動IC28の基板厚を300μm、実装基板21の凹部厚さを180μm、光半導体素子23の基板厚を100μm、透明コンタクト樹脂24の高さを60μm、実装基板21の凸部厚さを320μmとすれば、前記した図1の実施形態と同様な光学的位置関係となる。但し、光ファイバ26のクラッド厚さ分だけ光結合距離が長くなるため、その考慮は必要である。そして、光ファイバ26(外径125μm)と光コネクタフェルール25(例えば光ファイバ上部厚50μm)の厚さを合計し、約500μm厚の光モジュールが実現する。
【0042】
前述したように、このような薄型光モジュールであれば、LSI裏面のヒートシンクとインターポーザ基板の間に光インターフェースを実装することが可能となり、電気端子の代わりに光端子を設けるというような感覚で光配線パッケージを構築することができる。また、放熱のためLSIチップを250μm程度に薄く加工した場合でも、インターポーザ基板に僅かなキャビティ(掘り込み)加工(例えば300μm)を施すだけで、ヒートシンクとインターポーザ基板の間に光インターフェースを実装することが可能となる。
【0043】
(第3の実施形態)
図5は、上記した各実施形態の改良に関するものであり、光半導体素子の基板厚の誤差などによらず、光半導体素子の表面と光ファイバ端面の距離を常に一定に保つように工夫した実施形態である。
【0044】
図5において、31〜39は前記図2中の11〜19に対応している。また、図中の40はTAB(Tape Automated Bonding)テープ、41はTABテープの金属配線によるバンプリード、42は埋め込みモールド樹脂(エポキシ樹脂等)であり、TABテープ40の光半導体素子33上に設ける透明コンタクト樹脂34の形成部分は予め穴が開けてある。さらに、実装基板31の光半導体素子搭載部分にも予め穴が開けてある。
【0045】
この実施形態では、まずTABテープ40に光半導体素子33の能動領域側を接触させて搭載した後、光半導体素子能動部上に透明コンタクト樹脂44を形成する。次に、TABテープ40を実装基板31に光半導体素子33の位置を合わせて搭載した後、光半導体素子33が位置する部分にモールド樹脂42を埋め込み、光半導体素子33をモールド固定する。最後に、バンプリード41を駆動IC38のパッドにボンディング(熱圧着、超音波ボンディング等)固定する。
【0046】
ここで、透明コンタクト樹脂34の高さを60μm、TABテープ40の厚さを40μmというように設定すれば、光半導体素子33の基板厚が数10μmずれる場合でも、前述の実施形態と同様な光コンタクト関係が実現できる。また、この実施形態では、テープキャリアプロセスにより大量生産が可能という利点も持っている。
【0047】
(変形例)
なお、本発明は上述した各実施形態に限定されるものではない。例えば、実装基板の材料としては、セラミック,金属,樹脂材料等の材料を、電気特性,熱特性,機械特性などを考慮して決定すればよいものである。また、光半導体素子は受光素子であっても同様に実施可能なことは既に述べたが、上記した実施形態とは異なる材料系の光半導体素子を用いても構わないのは勿論のことである。
【0048】
実施形態では、光ファイバの先端が光半導体素子の表面と透明コンタクト樹脂の頂部との間に位置するように、実装基板に素子搭載のための凹部を設けたが、この代わりに光コネクタと当接する凸部を実装基板に設けるようにしてもよい。凸部の高さが光半導体素子の基板厚よりも僅かに高いものであれば、凹部を設けた場合と同様の効果が得られる。また実施形態では、光ファイバの先端が光半導体素子の能動領域と位置整合するようにガイドピン及びガイド穴を設けたが、これらに限られず、光軸方向と垂直方向に対して位置決めできるガイド機構であればよい。
【0049】
その他、本発明の要旨を逸脱しない範囲で、各種の変形実施が可能なものである。
【0050】
【発明の効果】
以上詳述したように本発明によれば、非常に薄型で単純構成のコネクタ型光モジュールが実現可能となり、LSIチップ間配線のように省スペース実装が必須となるような実装にも光技術の導入を可能とし、それによる各種情報通信機器の大幅な性能向上を促進するという効果を奏する。
【図面の簡単な説明】
【図1】第1の実施形態に係わるコネクタ型光モジュールの概略構成を示す断面図。
【図2】第1の実施形態に係わるコネクタ型光モジュールの概略構成を示す平面図と断面図。
【図3】第1の実施形態におけるコネクタ型光モジュールの動作原理を説明するための模式図。
【図4】第2の実施形態に係わるコネクタ型光モジュールの概略構成を示す断面図。
【図5】第3の実施形態に係わるコネクタ型光モジュールの概略構成を示す断面図。
【符号の説明】
11,21,31…光素子実装基板
12,32…ガイド穴
13.23.33…光半導体素子
14,24,34…透明コンタクト樹脂
15,25,35…光コネクタフェルール
16,26,36…光ファイバ
17,37…ガイドピン
18,28,38…駆動IC
19,29,39…ボンディングワイヤ
40…TABテープ
41…バンプリード
42…モールド樹脂
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a connector-type optical module used for optical wiring and the like, and more particularly to a connector-type optical module that is reduced in thickness.
[0002]
[Prior art]
2. Description of the Related Art In recent years, several optical wiring devices that connect LSIs with light have been proposed with the dramatic improvement in operation speed of LSIs. The optical wiring has almost no frequency dependency such as loss in the frequency range from DC to 100 GHz or more, and there is no electromagnetic interference in the wiring path or ground potential fluctuation noise. Therefore, wiring of several tens of Gbps can be easily realized. In addition, unlike the electrical wiring, the optical wiring has no skin effect of the wiring, so it is not necessary to make the wiring (such as an optical fiber) thick even at several tens of Gbps. Therefore, in a high speed region of 10 Gbps or more, it is advantageous for electric wiring in terms of space saving.
[0003]
As a simple example of this space saving characteristic, there is a connector (so-called MT connector) as described in Non-Patent Document 1, and a maximum of 12-core optical fibers can be accommodated in one optical connector. Further, according to the extended standard for MT connectors, a 60-core optical fiber can be accommodated in one MT connector. At this time, if a signal of 10 Gbps is passed per optical fiber, a signal wiring of 600 Gbps is possible with the cross-sectional area (3 mm × 7 mm) shown in Non-Patent Document 1.
[0004]
When this is realized by a high-frequency coaxial cable (generally about 5 mmφ) capable of 10 Gbps transmission, a wiring cross-sectional area of 5 mm × 300 mm for a flat cable and about 1400 mm 2 for a triangular grid arrangement cable is required. Therefore, the above-described optical wiring achieves space saving of 1/60 of the electrical wiring.
[0005]
As an optical module configuration for use in such an optical wiring, configurations described in Patent Documents 1 to 3 are known.
[0006]
Patent Document 1 includes a fiber array with guide holes at a coupling portion of an optical connector as a mechanism for coupling an arrayed optical element to the MT connector (Non-Patent Document 1). This fiber array with guide holes has a configuration equivalent to that obtained by cutting out the tip portion of the MT connector, that is, a relay optical fiber that connects the optical semiconductor element and the optical fiber. The repeater optical fiber is fixed to the optical module and has a function of protecting the optical semiconductor element from mechanical shock and stress when the MT connector is abutted.
[0007]
Patent Document 2 is an example in which the optical fiber tip is in direct contact with the optical semiconductor element to perform optical coupling. An optical fiber having a certain length is always fixed to the optical module, and an optical connector is attached to the tip of the fixed optical fiber. It is a form of having. Patent Document 3 is an example in which an optical semiconductor element and an optical connector are directly coupled, and introduction of a polymer sheet for suppressing optical interference due to a gap between the optical semiconductor element and the optical connector is shown.
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-202440
[Patent Document 2]
JP-A-6-237016 [0010]
[Patent Document 3]
Japanese Patent No. 2970543
[Non-Patent Document 1]
Japanese Industrial Standard (JIS) C5981
[0012]
[Problems to be solved by the invention]
However, this type of optical module for optical wiring has the following problems.
[0013]
That is, as an introduction form of the optical wiring, when the inter-board wiring is opticalized, it is relatively easy in terms of size to replace the electrical coaxial cable or the backplane wiring with an optical fiber. However, when the wiring between LSIs is made optical, it is necessary to incorporate an optical module in a space corresponding to an LSI package terminal, and it is difficult to realize in a form in which optical modules as shown in Patent Document 1 are simply gathered together. Become.
[0014]
For example, an LSI that requires an optical interface is generally intended for high-speed operation, and its calorific value is often very large. For this reason, a local heat sink (or heat spreader) of the LSI chip is often required, and a configuration is such that a mounting board is disposed at the lower part of the LSI chip and a heat sink is disposed at the upper part of the LSI chip. For this reason, it is desirable that the optical module for optical wiring is a thin module that fits in a slight gap between the mounting board and the heat sink. The ideal thickness reduction is equivalent to the thickness of the LSI chip, for example, 200 to 600 μm. This corresponds to a thickness obtained by simply stacking an optical fiber (for example, 125 μmφ) and an optical semiconductor element (for example, 100 μm thick) at the minimum value, which is not realistic.
[0015]
Next, in the case of the so-called pigtail type as in Patent Document 2, it is relatively easy to reduce the thickness of the optical module, but the optical fiber and the optical connector hang from the LSI package. The long part tends to get in the way, and the optical fiber and the optical connector are easily damaged. In addition, since the optical semiconductor element and the optical fiber are firmly fixed, there is also a problem that the optical semiconductor element is liable to be deteriorated or broken due to stress due to a difference in thermal expansion coefficient, tension on the optical fiber, or the like. In addition, there is a problem that mass productivity and practicality are poor, such as a batch high temperature process such as solder reflow is not applicable.
[0016]
Next, in the case of the direct contact type of an optical semiconductor element and an optical connector as in Patent Document 3, it can be configured only by the optical semiconductor element, its support, and a polymer sheet as constituent members, and can be made extremely thin. However, since the optical semiconductor element is directly pushed by the optical connector with the polymer sheet sandwiched therebetween, there is a problem that the optical semiconductor element is destroyed unless the pushing force of the optical connector is properly controlled.
[0017]
In addition, when the gap is controlled using an appropriate spacer, if the thickness of the polymer sheet and the gap are not adjusted properly, the optical semiconductor element may be damaged, or optical interference may occur due to poor polymer sheet contact (gap generation). There's a problem. Furthermore, in general, the polymer has a large thermal expansion, and even if it is set to an appropriate gap, an excessive contact pressure of the polymer sheet (damage of the optical element) and poor contact (poor photoconductivity) are likely to occur at high or low temperatures.
[0018]
The present invention has been made in consideration of the above circumstances, and the object of the present invention is to improve the optical module of the type in which the optical semiconductor element and the optical connector are in direct contact with each other, and to improve the reliability while reducing the thickness. An object of the present invention is to provide a connector-type optical module that can be measured.
[0019]
[Means for Solving the Problems]
(Constitution)
The essence of the present invention is that a transparent contact resin is partially formed at the contact portion between the optical semiconductor element and the optical connector (optical fiber), and a free space is left around the resin, so that the deformation of the resin against the optical connector pressing is three-dimensional. To do. The cushioning effect of the resin is enhanced by increasing the deformable amount of the resin.
[0020]
That is, the present invention provides a connector-type optical module, wherein a transparent contact resin selectively provided on an active region of an optical semiconductor element having a light emitting or receiving function, and an optical fiber tip is connected to the surface of the optical semiconductor element and the transparent Means for positioning the tip of the fiber so as to be positioned between the top of the contact resin, and means for positioning the tip of the fiber so that the tip of the optical fiber is aligned with the active region of the optical semiconductor element; It is characterized by comprising.
[0021]
The present invention also includes a mounting substrate on which an optical semiconductor element having a light emitting or receiving function is mounted, a transparent contact resin selectively provided on an active region of the optical semiconductor element, and an optical fiber for positioning and holding, In a connector-type optical module comprising an optical connector that is mechanically positioned and attached to a mounting board, the mounting board and the optical fiber are aligned so that the tip of the optical fiber is aligned with the active region of the optical semiconductor element. A guide mechanism for positioning the connector with respect to a direction perpendicular to the optical axis, and the mounting substrate and the light so that the tip of the optical fiber is located between the surface of the optical semiconductor element and the top of the transparent contact resin. An abutting portion for positioning the connector with respect to the optical axis direction is provided.
[0022]
Here, preferred embodiments of the present invention include the following.
[0023]
(1) The shape of the transparent contact resin is a hemispherical dome, and the top of the hemispherical dome is a contact portion with the tip of the optical fiber.
[0024]
(2) A protective film made of an oxide film or a nitride film is formed on the surface of the optical semiconductor element, and a silicone resin is used as the transparent contact resin.
[0025]
(3) As a guide mechanism for aligning the tip of the optical fiber and the active region of the optical semiconductor element (alignment in the direction perpendicular to the optical axis), a guide pin is provided on the optical connector side, and a pin hole is provided on the mounting substrate side. Was established.
[0026]
(4) A recess is provided on the upper surface side of the mounting substrate, the optical semiconductor element is mounted on the bottom surface of the recess, the upper surface of the semiconductor element is lower than the upper surface of the mounting substrate, and the top of the transparent contact resin is higher than the upper surface of the mounting substrate. Is also expensive.
[0027]
(5) The bottom surface of the optical connector is flush with the tip of the optical fiber, and the top surface of the mounting substrate and the bottom surface of the optical connector are abutted.
[0028]
(Function)
According to the present invention, rather than sandwiching a polymer sheet or the like between the optical semiconductor element and the optical connector, the optical semiconductor element and the optical connector are partially in contact by the transparent contact resin selectively provided on the optical semiconductor element. However, the pushing force of the optical connector is absorbed by the deformation of the transparent contact resin. Therefore, there is no possibility of destroying the optical semiconductor element due to the pushing force of the optical connector as in the case of using the polymer sheet, and a thin and highly reliable connector type optical module can be realized with a high yield.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
The details of the present invention will be described below with reference to the illustrated embodiments.
[0030]
(First embodiment)
FIG. 1 is a schematic cross-sectional view showing the principle configuration of the first embodiment of the present invention, in which 11 is a mounting substrate, 12 is a guide hole, 13 is an optical semiconductor element, 14 is a transparent contact resin, and 15 is an optical connector ferrule. (MT connector ferrule), 16 is an optical fiber, 16a is an optical fiber core, and 17 is a guide pin.
[0031]
Here, as an example, the optical semiconductor element 13 represents a four-element array of a surface emitting laser (VCSEL: Vertical Cavity Surface Emitting Laser-diodes), but this may be a single element or a light receiving element (or an array element thereof). It does not matter.
[0032]
The mounting substrate 11 is, for example, a resin substrate, and a concave portion for mounting an optical semiconductor element is provided on the upper surface side of the substrate 11. Here, the depth of the recess is set so that the upper surface of the optical semiconductor element 13 is slightly retracted from the upper surface of the mounting substrate 11 when the optical semiconductor element 13 is mounted on the bottom surface of the recess. Thereby, even if the optical connector ferrule 15 is abutted against the upper surface of the mounting substrate 11, the optical connector ferrule 15 and the optical fiber 16 do not directly hit the optical semiconductor element 13.
[0033]
Further, the transparent contact resin 14 is not provided on the entire surface of the optical semiconductor element 13, but is selectively provided on the active part of the optical semiconductor element (surface emitting laser light emitting part, light receiving element light receiving part), and the top thereof is the mounting substrate. 11 is formed so as to protrude slightly from the top surface. Thereby, when the optical connector ferrule 15 is abutted against the upper surface of the mounting substrate 11, the optical fiber 16 comes into contact with the transparent contact resin 14.
[0034]
FIG. 2 shows a top view and cross-sectional views (AA ′ and BB ′) of the mounting substrate 11. In the figure, 13a is an element electrode, 13b is an element active part, 18 is a driving IC (driver, receiver), and 19 is a bonding wire. If the transparent contact resin 14 is selectively coated with a resin (transparent) such as a silicone resin, an acrylic resin, an epoxy resin, or a polyimide resin with a dispenser or the like, a hemispherical dome shape as shown in the figure is obtained, and the optical connector ferrule 15 is obtained. The contact with becomes easy. This will be described with reference to FIG.
[0035]
FIG. 3 shows a contact state between the transparent contact resin 14 and the optical fiber 16, where (a) shows a state before contact, and (b) shows a state after contact. The optical semiconductor element 13 is, for example, an AlGaAs / GaAs VCSEL (oscillation wavelength of about 0.85 μm), and a transparent contact resin 14 is provided around the laser oscillation part (active region) 13b. As the transparent contact resin 14, a silicone resin that easily takes a large amount of elastic deformation by pressurization is suitable. With silicone rubber or the like, an elongation rate of about 100% can be obtained relatively easily. However, silicone resin generally has high moisture permeability and low gas barrier properties. In order to maintain device reliability, a protective film made of an oxide film or nitride film is provided on the surface of the optical semiconductor element 13. Is desirable.
[0036]
As the size of the transparent contact resin 14, for example, when the core diameter of the optical fiber 16 is 50 μm and the numerical aperture NA is 0.21, the diameter of the lower surface of the hemispheric dome is 120 μm, and the height of the top of the hemispheric dome is 60 μm. To do. And the level | step difference of the mounting substrate 11 and the thickness of the optical semiconductor element 13 are set so that the height after an optical fiber contact may be set to 40 micrometers. At this time, since the shape of the transparent contact resin 14 is a hemispherical dome shape, the contact area with the optical fiber 16 increases rapidly with respect to the pushing amount of the optical fiber. This not only increases the cross-sectional area of the hemispherical surface, but also the resin deformed to be pushed out in the outer peripheral direction by the pushing of the optical fiber 16 repels and pushes back the optical fiber 16, and comes in contact with the optical fiber 16 more and more. It is because the effect which comes is included (FIG.3 (b)).
[0037]
Therefore, in the connector type optical module of the present embodiment, a sufficient contact area can be obtained by a relatively small pressure, and the optical semiconductor element 13 is formed regardless of the type in which the optical semiconductor element 13 and the optical connector ferrule 15 are directly opposed to each other. Direct contact can be realized without applying excessive external force. Further, the positional accuracy of the transparent contact resin 14 may be about several μm as long as the relative positions of the optical semiconductor element 13 and the optical fiber 16 are accurately matched. That is, even if the position of the transparent contact resin 14 is shifted by several μm, the contact area between the optical fiber 16 and the transparent contact resin 14 does not change greatly, and the contact portion can be made sufficiently larger than the required optical path (50 μmφ). (For example, 90 μmφ), a positional error of several μm is not a problem.
[0038]
(Second Embodiment)
In the above, the principle configuration has been shown in an example applied to a standard connector such as an MT connector. However, the main point of the present invention is that a very thin optical module can be realized, and a specific example is shown in FIG. FIG. 4A is a cross-sectional view showing the configuration of the connector type optical module according to the second embodiment of the present invention, in which 21 to 29 correspond to 11 to 19 in FIGS. 1 and 2. is doing.
[0039]
The present embodiment is an example of an optical path right angle conversion type optical module in which the optical fiber 26 is fixed to the transparent optical connector ferrule 25 and the end portion is polished by 45 °. The optical fiber 26 is inserted into the optical connector ferrule 25 from the lateral direction. A part of the optical connector ferrule 26 is cut away, so that the lower surface of the tip of the optical fiber 26 is exposed. The exposed portion of the lower surface is in contact with the mounting substrate 21 and the transparent contact resin 24.
[0040]
Here, the guide pins that define the positional relationship between the mounting board 21 and the optical connector ferrule 25 are omitted, but positioning is performed through the guide pins in the vertical direction in the figure, or the mounting board 21 and the optical connector ferrule 25 are built in. It shall be positioned by the meshing mechanism.
[0041]
FIG. 4B is a cross-sectional configuration diagram when the connector type optical module of the present embodiment shown in FIG. At this time, the substrate thickness of the drive IC 28 is 300 μm, the recess thickness of the mounting substrate 21 is 180 μm, the substrate thickness of the optical semiconductor element 23 is 100 μm, the height of the transparent contact resin 24 is 60 μm, and the projection thickness of the mounting substrate 21 is If it is 320 micrometers, it will become the same optical positional relationship as above-mentioned embodiment of FIG. However, since the optical coupling distance becomes longer by the thickness of the clad of the optical fiber 26, it is necessary to consider this. The total thickness of the optical fiber 26 (outer diameter 125 μm) and the optical connector ferrule 25 (for example, optical fiber upper part thickness 50 μm) is totaled to realize an optical module having a thickness of about 500 μm.
[0042]
As described above, with such a thin optical module, it is possible to mount an optical interface between the heat sink on the backside of the LSI and the interposer substrate, and light can be sensed as if an optical terminal was provided instead of an electrical terminal. A wiring package can be constructed. Even if the LSI chip is thinned to about 250 μm for heat dissipation, an optical interface can be mounted between the heat sink and the interposer substrate by applying a slight cavity (digging) process (for example, 300 μm) to the interposer substrate. Is possible.
[0043]
(Third embodiment)
FIG. 5 relates to the improvement of each of the embodiments described above, and is an implementation in which the distance between the surface of the optical semiconductor element and the end face of the optical fiber is always kept constant regardless of the error in the substrate thickness of the optical semiconductor element. It is a form.
[0044]
In FIG. 5, 31 to 39 correspond to 11 to 19 in FIG. Further, in the figure, 40 is a TAB (Tape Automated Bonding) tape, 41 is a bump lead by a metal wiring of the TAB tape, and 42 is an embedded mold resin (epoxy resin or the like), which is provided on the optical semiconductor element 33 of the TAB tape 40. A portion where the transparent contact resin 34 is formed is previously perforated. Further, a hole is also made in advance in the portion of the mounting substrate 31 where the optical semiconductor element is mounted.
[0045]
In this embodiment, first, the active region side of the optical semiconductor element 33 is mounted on the TAB tape 40 and then the transparent contact resin 44 is formed on the optical semiconductor element active portion. Next, after the TAB tape 40 is mounted on the mounting substrate 31 so that the position of the optical semiconductor element 33 is aligned, a mold resin 42 is embedded in the portion where the optical semiconductor element 33 is located, and the optical semiconductor element 33 is fixed by molding. Finally, the bump lead 41 is fixed to the pad of the driving IC 38 by bonding (thermocompression bonding, ultrasonic bonding, etc.).
[0046]
Here, if the height of the transparent contact resin 34 is set to 60 μm and the thickness of the TAB tape 40 is set to 40 μm, even if the substrate thickness of the optical semiconductor element 33 is shifted by several tens of μm, the same light as in the above-described embodiment is used. Contact relationship can be realized. In addition, this embodiment has an advantage that mass production is possible by a tape carrier process.
[0047]
(Modification)
The present invention is not limited to the above-described embodiments. For example, as a material for the mounting substrate, a material such as ceramic, metal, or resin material may be determined in consideration of electrical characteristics, thermal characteristics, mechanical characteristics, and the like. Further, although it has already been described that the optical semiconductor element can be implemented in the same manner even if it is a light receiving element, it is needless to say that an optical semiconductor element of a material system different from the above-described embodiment may be used. .
[0048]
In the embodiment, the mounting substrate is provided with a recess for mounting the element so that the tip of the optical fiber is positioned between the surface of the optical semiconductor element and the top of the transparent contact resin. You may make it provide the convex part which touches in a mounting board | substrate. If the height of the convex portion is slightly higher than the substrate thickness of the optical semiconductor element, the same effect as that obtained when the concave portion is provided can be obtained. In the embodiment, the guide pin and the guide hole are provided so that the tip of the optical fiber is aligned with the active region of the optical semiconductor element. However, the guide mechanism is not limited thereto, and can be positioned with respect to the optical axis direction and the vertical direction. If it is.
[0049]
In addition, various modifications can be made without departing from the scope of the present invention.
[0050]
【The invention's effect】
As described above in detail, according to the present invention, a connector type optical module having a very thin and simple configuration can be realized, and the optical technology can be used for mounting that requires space-saving mounting such as wiring between LSI chips. This makes it possible to introduce the system, thereby promoting the significant performance improvement of various information communication devices.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a schematic configuration of a connector type optical module according to a first embodiment.
2A and 2B are a plan view and a cross-sectional view showing a schematic configuration of the connector type optical module according to the first embodiment.
FIG. 3 is a schematic diagram for explaining an operation principle of the connector-type optical module according to the first embodiment.
FIG. 4 is a cross-sectional view showing a schematic configuration of a connector type optical module according to a second embodiment.
FIG. 5 is a cross-sectional view showing a schematic configuration of a connector type optical module according to a third embodiment.
[Explanation of symbols]
11, 21, 31... Optical element mounting substrate 12, 32... Guide hole 13.23.33 .. optical semiconductor element 14, 24, 34... Transparent contact resin 15, 25, 35 ... optical connector ferrule 16, 26, 36. Fibers 17, 37 ... guide pins 18, 28, 38 ... drive ICs
19, 29, 39 ... bonding wire 40 ... TAB tape 41 ... bump lead 42 ... mold resin

Claims (4)

発光又は受光機能を有する光半導体素子の能動領域上に選択的に設けられた透明コンタクト樹脂と、
光ファイバの先端が前記光半導体素子の表面と前記透明コンタクト樹脂の頂部との間に位置するように該ファイバの先端を位置決めする手段と、
前記光ファイバの先端が前記光半導体素子の能動領域と位置整合するように該ファイバの先端を位置決めする手段と、
を具備してなることを特徴とするコネクタ型光モジュール。
A transparent contact resin selectively provided on the active region of the optical semiconductor element having a light emitting or receiving function;
Means for positioning the tip of the optical fiber so that the tip of the optical fiber is located between the surface of the optical semiconductor element and the top of the transparent contact resin;
Means for positioning the tip of the optical fiber such that the tip of the optical fiber is aligned with the active region of the optical semiconductor element;
A connector-type optical module comprising:
発光又は受光機能を有する光半導体素子が実装された実装基板と、
前記光半導体素子の能動領域上に選択的に設けられた透明コンタクト樹脂と、光ファイバを位置決め保持し、前記実装基板に機械的に位置決めして取り付けられる光コネクタとを具備してなり、
前記実装基板と光コネクタは、前記光ファイバの先端が前記光半導体素子の能動領域に位置整合するように、ガイド機構により光軸方向と垂直方向に対して位置決めされ、且つ前記光ファイバの先端が前記光半導体素子の表面と前記透明コンタクト樹脂の頂部との間に位置するように、突き当て部により光軸方向に対して位置決めされることを特徴とするコネクタ型光モジュール。
A mounting substrate on which an optical semiconductor element having a light emitting or receiving function is mounted;
Comprising a transparent contact resin selectively provided on an active region of the optical semiconductor element, an optical connector for positioning and holding an optical fiber, and mechanically positioned and attached to the mounting substrate,
The mounting substrate and the optical connector are positioned with respect to the optical axis direction and the vertical direction by a guide mechanism so that the tip of the optical fiber is aligned with the active region of the optical semiconductor element, and the tip of the optical fiber is A connector-type optical module characterized by being positioned with respect to an optical axis direction by an abutting portion so as to be positioned between a surface of the optical semiconductor element and a top portion of the transparent contact resin.
前記透明コンタクト樹脂の形状が半球ドームであり、該半球ドームの頂部が前記光ファイバの先端との接触部となることを特徴とする請求項1又は2記載のコネクタ型光モジュール。3. The connector type optical module according to claim 1, wherein the shape of the transparent contact resin is a hemispherical dome, and a top portion of the hemispherical dome is a contact portion with a tip of the optical fiber. 前記光半導体素子の表面には酸化膜又は窒化膜による保護膜が形成されており、前記透明コンタクト樹脂としてシリコーン樹脂を用いたことを特徴とする請求項1又は2記載のコネクタ型光モジュール。3. The connector type optical module according to claim 1, wherein a protective film made of an oxide film or a nitride film is formed on the surface of the optical semiconductor element, and a silicone resin is used as the transparent contact resin.
JP2003202978A 2003-07-29 2003-07-29 Connector type optical module Expired - Fee Related JP3772163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003202978A JP3772163B2 (en) 2003-07-29 2003-07-29 Connector type optical module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003202978A JP3772163B2 (en) 2003-07-29 2003-07-29 Connector type optical module

Publications (2)

Publication Number Publication Date
JP2005049389A true JP2005049389A (en) 2005-02-24
JP3772163B2 JP3772163B2 (en) 2006-05-10

Family

ID=34262501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003202978A Expired - Fee Related JP3772163B2 (en) 2003-07-29 2003-07-29 Connector type optical module

Country Status (1)

Country Link
JP (1) JP3772163B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008090138A (en) * 2006-10-04 2008-04-17 Nippon Telegr & Teleph Corp <Ntt> Optical multiplexer/demultiplexer
JP2009058848A (en) * 2007-09-03 2009-03-19 Fujikura Ltd Optical connector
JP2009058847A (en) * 2007-09-03 2009-03-19 Fujikura Ltd Optical connector
JP2009139896A (en) * 2007-12-11 2009-06-25 Sumitomo Electric Ind Ltd Optical module and method of manufacturing optical module
KR100908241B1 (en) 2007-03-16 2009-07-20 한국전자통신연구원 Opto-bus module and its manufacturing method
JP2009543368A (en) * 2006-07-11 2009-12-03 ファイアカムズ・リミテッド Surface emitting device implementation
JP2010008619A (en) * 2008-06-26 2010-01-14 Molex Japan Co Ltd Socket for optical module, and optical connector
US8408816B2 (en) 2010-03-18 2013-04-02 Fujikura Ltd. Optical connector
JP2013140211A (en) * 2011-12-28 2013-07-18 Sumitomo Electric Ind Ltd Optical module
JP2016194658A (en) * 2015-04-01 2016-11-17 住友電気工業株式会社 Optical device, optical processing device, and method of producing optical device
US20220107478A1 (en) * 2020-10-01 2022-04-07 International Business Machines Corporation Optical connector device with lid

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5269613B2 (en) 2007-01-26 2013-08-21 日本航空電子工業株式会社 Photoelectric conversion connection device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58163914U (en) * 1982-04-26 1983-11-01 オムロン株式会社 fiber optic connector
JPH03252603A (en) * 1990-03-02 1991-11-11 Ricoh Co Ltd Production of microcondenser element
JPH0990159A (en) * 1995-09-28 1997-04-04 Furukawa Electric Co Ltd:The Optical module and its assembly method
JPH10501350A (en) * 1994-06-14 1998-02-03 テレフオンアクチーボラゲツト エル エム エリクソン Optical mini capsule
JP2001044308A (en) * 1999-07-29 2001-02-16 Kyocera Corp Substrate for mounting optical device, manufacture thereof, and optical module
JP2001074983A (en) * 1999-09-01 2001-03-23 Kyocera Corp Optical part mounting substrate and optical module using it
JP2001305394A (en) * 2000-04-20 2001-10-31 Yasuhiro Koike Light receiving device and light-emitting device for optical fiber

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58163914U (en) * 1982-04-26 1983-11-01 オムロン株式会社 fiber optic connector
JPH03252603A (en) * 1990-03-02 1991-11-11 Ricoh Co Ltd Production of microcondenser element
JPH10501350A (en) * 1994-06-14 1998-02-03 テレフオンアクチーボラゲツト エル エム エリクソン Optical mini capsule
JPH0990159A (en) * 1995-09-28 1997-04-04 Furukawa Electric Co Ltd:The Optical module and its assembly method
JP2001044308A (en) * 1999-07-29 2001-02-16 Kyocera Corp Substrate for mounting optical device, manufacture thereof, and optical module
JP2001074983A (en) * 1999-09-01 2001-03-23 Kyocera Corp Optical part mounting substrate and optical module using it
JP2001305394A (en) * 2000-04-20 2001-10-31 Yasuhiro Koike Light receiving device and light-emitting device for optical fiber

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009543368A (en) * 2006-07-11 2009-12-03 ファイアカムズ・リミテッド Surface emitting device implementation
JP2008090138A (en) * 2006-10-04 2008-04-17 Nippon Telegr & Teleph Corp <Ntt> Optical multiplexer/demultiplexer
KR100908241B1 (en) 2007-03-16 2009-07-20 한국전자통신연구원 Opto-bus module and its manufacturing method
JP2009058848A (en) * 2007-09-03 2009-03-19 Fujikura Ltd Optical connector
JP2009058847A (en) * 2007-09-03 2009-03-19 Fujikura Ltd Optical connector
JP2009139896A (en) * 2007-12-11 2009-06-25 Sumitomo Electric Ind Ltd Optical module and method of manufacturing optical module
JP2010008619A (en) * 2008-06-26 2010-01-14 Molex Japan Co Ltd Socket for optical module, and optical connector
US8408816B2 (en) 2010-03-18 2013-04-02 Fujikura Ltd. Optical connector
JP2013140211A (en) * 2011-12-28 2013-07-18 Sumitomo Electric Ind Ltd Optical module
JP2016194658A (en) * 2015-04-01 2016-11-17 住友電気工業株式会社 Optical device, optical processing device, and method of producing optical device
US20220107478A1 (en) * 2020-10-01 2022-04-07 International Business Machines Corporation Optical connector device with lid
US11914204B2 (en) * 2020-10-01 2024-02-27 International Business Machines Corporation Optical connector device with lid

Also Published As

Publication number Publication date
JP3772163B2 (en) 2006-05-10

Similar Documents

Publication Publication Date Title
US7118294B2 (en) Optical semiconductor module and its manufacturing method
USRE41742E1 (en) Optoelectronic conversion header, LSI package with interface module, method of manufacturing optoelectronic conversion header, and optical interconnection system
TW569051B (en) Package article for removably accepting a fiber optic cable and method for using same
TW392078B (en) Stubless optoelectronic device receptacle
US11631960B2 (en) Optical module
TWI228354B (en) An optical module and a method of fabricating the same
US7192199B2 (en) Optical semiconductor module and method of manufacturing the same
US20100151614A1 (en) Wafer level method of forming side fiber insertion optoelectronic packages
JP3772163B2 (en) Connector type optical module
JPH08254634A (en) Optical fiber assembly
JP2019515501A (en) Bonding tip on glass assembly
JP4351965B2 (en) Photoelectric conversion header and optical wiring system
JP2007101571A (en) Optical cable and transceiver subassembly
US8888381B2 (en) Optical module base and optical module
EP1564573A1 (en) Optical module and method for manufacturing same
JP2008109048A (en) Optical semiconductor device and optical transmitter
JP3920264B2 (en) Manufacturing method of optical semiconductor module
US20130129276A1 (en) Optical engine assembly and optoelectronic package
US7004642B2 (en) Opto-electrical module packaging
JP4654807B2 (en) Optical information processing equipment
JP2009053278A (en) Optical module
JP5223047B2 (en) Optical module
JP4659082B2 (en) Opto-electric composite wiring component and electronic device using the same
JP2013218119A (en) Optical connection member and optical module
JPH11258465A (en) Optical semiconductor module and its manufacture

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060213

R151 Written notification of patent or utility model registration

Ref document number: 3772163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees