JP2005047864A - New method for synthesizing aromatic olefin - Google Patents

New method for synthesizing aromatic olefin Download PDF

Info

Publication number
JP2005047864A
JP2005047864A JP2003282432A JP2003282432A JP2005047864A JP 2005047864 A JP2005047864 A JP 2005047864A JP 2003282432 A JP2003282432 A JP 2003282432A JP 2003282432 A JP2003282432 A JP 2003282432A JP 2005047864 A JP2005047864 A JP 2005047864A
Authority
JP
Japan
Prior art keywords
group
catalyst
palladium
butyl
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003282432A
Other languages
Japanese (ja)
Inventor
Shiro Ikegami
池上四郎
Yoichi Yamada
山田陽一
Hideyori Takahashi
高橋秀依
Koji Takeda
竹田孝司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Chemical Industries Co Ltd
Original Assignee
Tokyo Kasei Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Kasei Kogyo Co Ltd filed Critical Tokyo Kasei Kogyo Co Ltd
Priority to JP2003282432A priority Critical patent/JP2005047864A/en
Publication of JP2005047864A publication Critical patent/JP2005047864A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To apply a recoverable and reusable catalyst having high activities to a Heck reaction to form an aromatic olefin. <P>SOLUTION: The method for synthesizing the aromatic olefin utilizes the transition metal complex catalyst which is a network-shaped supermolecule obtained by associating a polyacrylamide derivative having a diphenylphosphino group at a proper interval, with a transition metal in an aqueous solution. The recovery and the reuse of the catalyst are made possible by using the transition metal complex catalyst for the Heck reaction, and a high number of turnovers are achieved. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はポリマー担持遷移金属触媒を用いるHeck反応に関するもので,有機合成等の属する分野および他の分野において要求されている芳香族オレフィンの合成に供するものである。   The present invention relates to the Heck reaction using a polymer-supported transition metal catalyst, and is used for the synthesis of aromatic olefins required in the fields to which organic synthesis belongs and other fields.

芳香族オレフィンは化学産業界において極めて重要な化合物で,例えば,けい皮酸,スチレン,スチルベン誘導体などはポリマーの出発材料,紫外線吸収剤,あるいは生物活性物質の前駆体として幅広く利用されている。そして,この芳香族オレフィンが極めて重要な化合物であるため,その合成法が盛んに研究されてきた。   Aromatic olefins are extremely important compounds in the chemical industry. For example, cinnamic acid, styrene, and stilbene derivatives are widely used as starting materials for polymers, ultraviolet absorbers, and precursors for bioactive substances. And since this aromatic olefin is a very important compound, its synthesis method has been actively studied.

1979年,R. F. Heckはパラジウム触媒と塩基の存在下,芳香族ハライドとオレフィンから高収率で芳香族オレフィンを合成する画期的な方法を報告している[R. F. Heck, Acc. Chem. Res., 12, 146(1979)]。この方法は,温和な条件下,高い選択性と高い収率で芳香族オレフィンが得られ,しかも官能基による制約が少ない。そのため,多方面で利用され,開発者の名を冠してHeck反応と呼ばれている。   In 1979, RF Heck reported an innovative method for synthesizing aromatic olefins in high yield from aromatic halides and olefins in the presence of palladium catalyst and base [RF Heck, Acc. Chem. Res. , 12, 146 (1979)]. In this method, aromatic olefins can be obtained with high selectivity and high yield under mild conditions, and there are few restrictions due to functional groups. For this reason, it is used in many fields and is called the Heck reaction in the name of the developer.

一般にHeck反応をスムーズに進行させるためには均一系パラジウム触媒が有利であり,種々の均一系パラジウム触媒が報告されている。しかしながら,この均一系パラジウム触媒の存在が目的物の精製の妨げとなる場合がある。ことに,医薬品,化粧品,食品などの属する分野では,厳密にパラジウム触媒を除かなくてはならない。また,近年“環境にやさしい化学合成”が求められており,この観点からもパラジウム触媒を完全に除去することができる反応系の開発が活発に行われている。   In general, a homogeneous palladium catalyst is advantageous in order to make the Heck reaction proceed smoothly, and various homogeneous palladium catalysts have been reported. However, the presence of this homogeneous palladium catalyst may interfere with the purification of the target product. In particular, in the fields to which pharmaceuticals, cosmetics, foods, etc. belong, the palladium catalyst must be strictly removed. In recent years, “environmentally friendly chemical synthesis” has been demanded, and from this viewpoint, a reaction system capable of completely removing the palladium catalyst has been actively developed.

パラジウム触媒の除去に関する解決策として,種々の試みが行なわれている。例えば,ポリマー担持パラジウム触媒の利用としてP.W.Wangらの方法が挙げられる。二座配子1,2-ビス(ジイソプロピルホスフィノ)ベンゼンをポリスチレンに化学結合させ,これにパラジウムを配位させポリスチレン担持パラジウム触媒を合成し,これをアクリル酸メチルとヨードベンゼンのHeck反応に触媒として用いている。ポリスチレン担持パラジウム触媒を用いることで,触媒の回収が容易で,触媒効率を損なうことなく繰り返し使用できる旨,報告している [J. Org. Chem., 59, 5358(1994)]。また,デンドリマーを利用したものとしてM.T.Reetzらの方法が挙げられる。M.T.Reetzらは1,4-ジアミンを構成要素とするデンドリマーの表層アミノ基にジフェニルホスフィノメチル基を導入し,これにパラジウムを配位させたデンドリマー担持パラジウム触媒を合成している。これをスチレンとブロモベンゼンのHeck反応に触媒として用いている。反応はDMF中で進行し,反応完結後,エーテルを加え,デンドリマー担持パラジウム触媒を沈殿させ,回収している。回収したデンドリマー担持パラジウム触媒は触媒効率を損なうことなく再利用することができる[Angew. Chem. Int. Ed. Engl., 36, 1526(1997)]。また,近年,イオン性液体をHeck反応に利用し,パラジウム触媒の回収,再利用が研究されている。A.J.Carmichaelらは数種類のイオン性液体を用いてHeck反応を行なっている。例えば,1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスフェートに酢酸パラジウムとトリフェニルホスフィンを加え,パラジウム触媒のイオン性液体溶液を調製し,これにアクリル酸エチルとヨードベンゼンを加え,Heck反応を行なっている。反応完結後,反応混合物から生成物をヘキサンで抽出している。パラジウム触媒のイオン性液体溶液は繰り返し使用可能である旨報告している[Org. Lett., 1, 997(1999)]。   Various attempts have been made to solve the palladium catalyst removal. For example, P.P. W. The method of Wang et al. A bidentate 1,2-bis (diisopropylphosphino) benzene was chemically bonded to polystyrene, and palladium was coordinated to synthesize a polystyrene-supported palladium catalyst, which was used as a catalyst for the Heck reaction of methyl acrylate and iodobenzene. Used. It has been reported that the use of a polystyrene-supported palladium catalyst makes it easy to recover the catalyst and can be used repeatedly without impairing the catalyst efficiency [J. Org. Chem., 59, 5358 (1994)]. In addition, M. as a use of dendrimer. T. The method of Reetz et al. M. T. Reetz et al. Synthesized a dendrimer-supported palladium catalyst in which a diphenylphosphinomethyl group was introduced into the surface amino group of a dendrimer composed of 1,4-diamine and palladium was coordinated therewith. This is used as a catalyst for the Heck reaction of styrene and bromobenzene. The reaction proceeds in DMF, and after completion of the reaction, ether is added to precipitate and recover the dendrimer-supported palladium catalyst. The recovered dendrimer-supported palladium catalyst can be reused without impairing the catalyst efficiency [Angew. Chem. Int. Ed. Engl., 36, 1526 (1997)]. In recent years, the recovery and reuse of palladium catalysts have been studied using ionic liquids for the Heck reaction. A. J. Carmichael et al. Conduct the Heck reaction using several ionic liquids. For example, palladium acetate and triphenylphosphine are added to 1-butyl-3-methylimidazolium hexafluorophosphate to prepare an ionic liquid solution of palladium catalyst, and ethyl acrylate and iodobenzene are added to this to perform the Heck reaction. ing. After completion of the reaction, the product is extracted from the reaction mixture with hexane. It has been reported that an ionic liquid solution of palladium catalyst can be used repeatedly [Org. Lett., 1, 997 (1999)].

以上のようにHeck反応の改良法が多数報告されている。取り分けここ数年はその数が増加している。P.W.Wangらの報告したパラジウムをポリスチレン樹脂に担持させる方法はパラジウム触媒の回収,再利用が可能で,極めて有用な方法である。しかしながら,P.W.Wangらの方法は触媒のターンオーバー数780と低く,到底満足できるものではない。M.T.Reetzらの報告したパラジウムをデンドリマーに担持させる方法はDMFなどの極性溶媒中で反応させなければならない。また,デンドリマー担持パラジウム触媒の使用量は2mol%と多く,満足できるものでない。A.J.Carmichaelらの報告したイオン性液体を用いる方法はパラジウム触媒の調製が簡便で,その回収,再利用が可能で,極めて有用な方法である。しかしながら,イオン性液体が比較的高価であることや20mol%程度のパラジウム触媒を必要とするなど到底満足できるものでない。目的物の分離が容易で,高い触媒活性を示し,しかも再利用が可能な触媒を用いるHeck反応が強く求められている。   As described above, many methods for improving the Heck reaction have been reported. The number has increased in recent years. P. W. The method of supporting palladium on polystyrene resin reported by Wang et al. Is a very useful method because it can recover and reuse the palladium catalyst. However, P.I. W. The method of Wang et al. Has a low catalyst turnover number of 780, which is not satisfactory. M. T. The method of loading palladium on dendrimers reported by Reetz et al. Requires reaction in a polar solvent such as DMF. In addition, the amount of the dendrimer-supported palladium catalyst is 2 mol%, which is not satisfactory. A. J. The method using an ionic liquid reported by Carmichael et al. Is a very useful method because the preparation of a palladium catalyst is simple and can be recovered and reused. However, the ionic liquid is relatively unsatisfactory because it is relatively expensive and requires about 20 mol% of palladium catalyst. There is a strong demand for a Heck reaction that uses a catalyst that can be easily separated, shows high catalytic activity, and can be reused.

そこで,発明者らは鋭意研究を重ね,本発明を完成するに至った。すなわち,本発明は下記構造式   Thus, the inventors have conducted extensive research and have completed the present invention. That is, the present invention has the following structural formula:

Figure 2005047864
Figure 2005047864

(式中,k,L,nはそれぞれ独立に1以上の整数,mは0以上の整数で,Mはパラジウム,ニッケル,ルテニウム,ロジウム,インジリウム,白金を始めとする遷移金属から選択され,R,Rはそれぞれ独立に水素,メチル基,エチル基,プロピル基,イソプロピル基,ブチル基,イソブチル基,t-ブチル基,ヘキシル基,シクロヘキシル基,フェニル基,ベンジル基から選択され,Xは塩素,アセテート,一酸化炭素,アセトニトリル,ベンゾニトリル,アセチルアセトン,トリフェニルホスフィンから選択され,Ar,Arはそれぞれ独立にメチル基,エチル基,プロピル基,イソプロピル基,ブチル基,イソブチル基,t-ブチル基を有していてもよいフェニル基あるいはナフチル基である)で示される遷移金属触媒をHeck反応に用いて芳香族オレフィンを合成する方法に関するものである。上記触媒は発明者らが開発したもので,既にSuzuki-Miyaura反応への応用を報告している[Org. Lett., 4, 3371(2002)]。 (Wherein k, L and n are each independently an integer of 1 or more, m is an integer of 0 or more, M is selected from transition metals such as palladium, nickel, ruthenium, rhodium, indyllium and platinum, R 1 and R 2 are each independently selected from hydrogen, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, hexyl group, cyclohexyl group, phenyl group, and benzyl group; Selected from chlorine, acetate, carbon monoxide, acetonitrile, benzonitrile, acetylacetone, triphenylphosphine, Ar 1 and Ar 2 are each independently methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t A transition metal catalyst represented by -phenyl group or naphthyl group which may have a butyl group) The present invention relates to a method for synthesizing an aromatic olefin. The above catalyst was developed by the inventors, and has already been reported for application to the Suzuki-Miyaura reaction [Org. Lett., 4, 3371 (2002)].

この触媒は上記文献に従って極めて容易に合成することができる。この触媒の代表例であるパラジウム触媒は,N-置換アミド-4-スチリル(ジフェニル)ホスフィンの鎖状コポリマーとパラジウムを反応せしめたネットワーク状の超分子パラジウム錯体である。この超分子パラジウム錯体は両親媒性であるため,親水性や疎水性の基質,試剤をパラジウムの近傍に取り込み,基質と試剤の反応の触媒として機能する。そして,ネットワーク状の超分子であるため,水,有機溶媒に不溶で,反応系からの回収が容易である。また,パラジウムはコポリマーのホスフィノ基に強く担持されている。そのため,反応に際してパラジウムの溶出が無く,繰り返し使用可能である。以下に参考例として本発明に用いる下記構造式で示されるパラジウム触媒の合成法を示す。   This catalyst can be synthesized very easily according to the above document. A typical example of this catalyst is a palladium supramolecular palladium complex obtained by reacting a chain copolymer of N-substituted amido-4-styryl (diphenyl) phosphine with palladium. Since this supramolecular palladium complex is amphiphilic, it incorporates a hydrophilic or hydrophobic substrate or reagent in the vicinity of palladium and functions as a catalyst for the reaction between the substrate and the reagent. And since it is a network-like supramolecule, it is insoluble in water and organic solvents and can be easily recovered from the reaction system. Palladium is strongly supported on the phosphino group of the copolymer. Therefore, there is no elution of palladium during the reaction, and it can be used repeatedly. The synthesis method of the palladium catalyst shown by the following structural formula used for this invention as a reference example below is shown.

Figure 2005047864
Figure 2005047864

参考例1 パラジウム触媒の合成
4-スチリル(ジフェニル)ホスフィン1mol,N-イソプロピルアクリルアミド6molをt-ブタノールに溶解させ,この溶液にアゾイソブチロニトリル0.0215molを加え,75℃で41時間攪拌し,塩化メチレン-ジエチルエーテル沈降により精製,乾燥し,収率85%で鎖状コポリマーを得た。この鎖状コポリマーの2562mgをTHF588mlに溶解させ,次いでアンモニアテトラクロロパラジウム284mgを水236mlに溶解させた水溶液を加え,室温で62時間攪拌し,さらに水235mlを加え,80℃で4時間還流した。沈殿物を濾取,洗浄,乾燥した後,THFを加え還流洗浄を繰返した。沈殿物を濾取,洗浄,乾燥し,ネットワーク状超分子錯体であるパラジウム触媒2789mgを定量的に得た。
Reference Example 1 Synthesis of palladium catalyst
Dissolve 1 mol of 4-styryl (diphenyl) phosphine and 6 mol of N-isopropylacrylamide in t-butanol. Add 0.0215 mol of azoisobutyronitrile to this solution, stir at 75 ° C for 41 hours, and precipitate by methylene chloride-diethyl ether precipitation. Purification and drying yielded a chain copolymer in 85% yield. An aqueous solution in which 2562 mg of this linear copolymer was dissolved in 588 ml of THF and then 284 mg of ammonia tetrachloropalladium was dissolved in 236 ml of water was added, stirred at room temperature for 62 hours, further added with 235 ml of water, and refluxed at 80 ° C. for 4 hours. The precipitate was collected by filtration, washed and dried, and THF was added and reflux washing was repeated. The precipitate was collected by filtration, washed, and dried to quantitatively obtain 2789 mg of palladium catalyst as a network supramolecular complex.

得られたパラジウム触媒のIR吸収を示す。
IR:3285,3061,2971,2973,2874,1651,1460,1387,1366,1175,1119,1096,694,523(cm−1
IR absorption of the obtained palladium catalyst is shown.
IR: 3285, 3061, 2971, 2973, 2874, 1651, 1460, 1387, 1366, 1175, 1119, 1096, 694, 523 (cm −1 )

この触媒は極めて容易に回収することができる。しかも,下記実施例8で示すように再利用が可能で,少なくとも5回連続して繰り返し使用しても,その触媒活性は低下することがない。また,下記実施例1から7に示すように生成物の収率は90%以上と高く,しかも触媒のターンオーバー数は極めて高い。このように本発明に係る方法は反応溶媒に不溶なネットワーク状の超分子である触媒を使用しているため,反応完結後,触媒を完全に回収することができ,再利用することができる。また,高い触媒活性を有し,極少量の触媒量で高い収率を実現することから,極めて有用なHeck反応用触媒と言える。   This catalyst can be recovered very easily. Moreover, as shown in Example 8 below, it can be reused, and even if it is repeatedly used at least 5 times continuously, its catalytic activity does not decrease. In addition, as shown in Examples 1 to 7 below, the yield of the product is as high as 90% or more, and the turnover number of the catalyst is extremely high. Thus, since the method according to the present invention uses a catalyst that is a network-like supramolecule that is insoluble in the reaction solvent, the catalyst can be completely recovered after the reaction is completed and can be reused. In addition, it has a high catalytic activity and realizes a high yield with a very small amount of catalyst, so it can be said to be an extremely useful catalyst for Heck reaction.

以下に本発明の好ましい実施例を記載するが,これは例示であり,本発明を制限するものではない。本発明の範囲内では変形が可能なことは当業者には明らかであろう。   Hereinafter, preferred embodiments of the present invention will be described, but these are exemplifications and do not limit the present invention. It will be apparent to those skilled in the art that variations are possible within the scope of the invention.

実施例1 けい皮酸t-ブチルの合成
ヨードベンゼン36.5mmol,アクリル酸t-ブチル54.7mmol,トリエチルアミン54.7mmol,参考例で合成したパラジウム触媒1.82μmolをトルエンに加え,100℃で15時間還流した。反応混合物にメタノールを加え,ろ過し,パラジウム触媒を回収した。ろ液からけいひ酸t-ブチルを回収,精製し,けい皮酸t-ブチルの油状生成物6859mgを得た。収率は92%であった。
Example 1 Synthesis of t-butyl cinnamate 36.5 mmol of iodobenzene, 54.7 mmol of t-butyl acrylate, 54.7 mmol of triethylamine, and 1.82 μmol of the palladium catalyst synthesized in Reference Example were added to toluene and refluxed at 100 ° C. for 15 hours. Methanol was added to the reaction mixture and filtered to recover the palladium catalyst. From the filtrate, t-butyl cinnamate was recovered and purified to obtain 6859 mg of an oily product of t-butyl cinnamate. The yield was 92%.

実施例2 3-エトキシカルボニルけい皮酸エチルの合成
実施例1のヨードベンゼンに代えて3-ヨード安息香酸エチルを,アクリル酸t-ブチルに代えてアクリル酸エチルを用いて実施例1と同様の操作を行ない,3-エトキシカルボニルけい皮酸エチルの結晶8130mgを得た。収率は95%であった。
Example 2 Synthesis of ethyl 3-ethoxycarbonylcinnamate Similar to Example 1 except that ethyl 3-iodobenzoate was used instead of iodobenzene of Example 1 and ethyl acrylate was used instead of t-butyl acrylate. The operation was performed to obtain 8130 mg of crystals of ethyl 3-ethoxycarbonylcinnamate. The yield was 95%.

実施例3 4-アセトキシけい皮酸メチルの合成
実施例1のヨードベンゼンに代えて4-アセトキシヨードベンゼンを,アクリル酸t-ブチルに代えてアクリル酸メチルを用いて実施例1と同様の操作を行ない,4-アセトキシけい皮酸メチルの結晶7395mgを得た。収率は95%であった。
Example 3 Synthesis of methyl 4-acetoxycinnamate Using 4-acetoxyiodobenzene in place of iodobenzene in Example 1 and methyl acrylate in place of t-butyl acrylate, the same procedure as in Example 1 was performed. Then, 7395 mg of methyl 4-acetoxycinnamate was obtained. The yield was 95%.

実施例4 4-クロロけい皮酸メチルの合成
実施例1のヨードベンゼンに代えて4-クロロヨードベンゼンを,アクリル酸t-ブチルに代えてアクリル酸メチルを用いて実施例1と同様の操作を行ない,4-クロロけい皮酸メチルの結晶6818mgを得た。収率は95%であった。
Example 4 Synthesis of methyl 4-chlorocinnamate The same procedure as in Example 1 was carried out using 4-chloroiodobenzene in place of iodobenzene in Example 1 and methyl acrylate in place of t-butyl acrylate. Then, 6818 mg of crystals of methyl 4-chlorocinnamate were obtained. The yield was 95%.

実施例5 4-メトキシけい皮酸メチルの合成
実施例1のヨードベンゼンに代えて4-メトキシヨードベンゼンを,アクリル酸t-ブチルに代えてアクリル酸メチルを用いて実施例1と同様の操作を行ない,4-メトキシけい皮酸メチルの結晶6454mgを得た。収率は92%であった。
Example 5 Synthesis of methyl 4-methoxycinnamate Using 4-methoxyiodobenzene in place of iodobenzene in Example 1 and methyl acrylate in place of t-butyl acrylate, the same procedure as in Example 1 was performed. As a result, 6454 mg of methyl 4-methoxycinnamate was obtained. The yield was 92%.

実施例6 スチルベンの合成
実施例1のアクリル酸t-ブチルに代えてスチレンを用いて実施例1と同様の操作を行ない,スチルベンの結晶5921mgを得た。収率は90%であった。
Example 6 Synthesis of stilbene The same procedure as in Example 1 was carried out using styrene instead of t-butyl acrylate in Example 1 to obtain 5921 mg of stilbene crystals. The yield was 90%.

実施例7 レスベラトロールの合成
実施例1のヨードベンゼンに代えて4-ベンゾイルオキシヨードベンゼンを,アクリル酸t-ブチルに代えて3,5-ジベンゾイルオキシスチレンを用いて実施例1と同様の操作を行ない,(E)-3,5,4'-トリベンゾイルオキシスチレン18350mgを得た。この収率は93%であった。
(E)-3,5,4'-トリベンゾイルオキシスチレン1mmol,ナトリウムメトキシド1.5mmolをテトラヒドロフラン−メタノール混合溶媒に加え,50℃で5時間加熱した。粗生成物を分離,精製し,(E)-3,5,4'-ヒドロキシスチレン(レスベラトロール)の結晶224mgを得た。
Example 7 Synthesis of resveratrol Similar to Example 1 except that 4-benzoyloxyiodobenzene was used in place of iodobenzene and 3,5-dibenzoyloxystyrene was used in place of t-butyl acrylate. The operation was performed to obtain 18350 mg of (E) -3,5,4′-tribenzoyloxystyrene. This yield was 93%.
(E) -3 mmol of 5,5,4′-tribenzoyloxystyrene and 1.5 mmol of sodium methoxide were added to a tetrahydrofuran-methanol mixed solvent and heated at 50 ° C. for 5 hours. The crude product was separated and purified to obtain 224 mg of crystals of (E) -3,5,4′-hydroxystyrene (resveratrol).

実施例8 触媒の再利用
実施例1で回収したパラジウム触媒を再利用して実施例1の操作を繰り返し行なった。繰り返しの回数とその時のけい皮酸t-ブチルの収率を示す。
2回目:93%
3回目:95%
4回目:94%
5回目:95%
Example 8 Reuse of Catalyst The operation of Example 1 was repeated by reusing the palladium catalyst recovered in Example 1. The number of repetitions and the yield of t-butyl cinnamate at that time are shown.
Second time: 93%
Third time: 95%
Fourth time: 94%
5th: 95%

Claims (2)

下記構造式
Figure 2005047864
(式中,k,L,nはそれぞれ独立に1以上の整数,mは0以上の整数で,Mはパラジウム,ニッケル,ルテニウム,ロジウム,インジリウム,白金を始めとする遷移金属から選択され,R,Rはそれぞれ独立に水素,メチル基,エチル基,プロピル基,イソプロピル基,ブチル基,イソブチル基,t-ブチル基,ヘキシル基,シクロヘキシル基,フェニル基,ベンジル基から選択され,Xは塩素,アセテート,一酸化炭素,アセトニトリル,ベンゾニトリル,アセチルアセトン,トリフェニルホスフィンから選択され,Ar,Arはそれぞれ独立にメチル基,エチル基,プロピル基,イソプロピル基,ブチル基,イソブチル基,t-ブチル基を有していてもよいフェニル基あるいはナフチル基である)で示される遷移金属触媒の存在下,芳香族ハライドとオレフィンを反応せしめることを特徴とする芳香族オレフィンの合成法。
The following structural formula
Figure 2005047864
(Wherein k, L and n are each independently an integer of 1 or more, m is an integer of 0 or more, M is selected from transition metals such as palladium, nickel, ruthenium, rhodium, indyllium and platinum, R 1 and R 2 are each independently selected from hydrogen, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, hexyl group, cyclohexyl group, phenyl group, and benzyl group; Selected from chlorine, acetate, carbon monoxide, acetonitrile, benzonitrile, acetylacetone, triphenylphosphine, Ar 1 and Ar 2 are each independently methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t In the presence of a transition metal catalyst represented by -phenyl group or naphthyl group optionally having butyl group) Synthesis of aromatic olefins, characterized in that reacting the ride and olefins.
nが10,Lが2,mが2,Mがパラジウム,Xが塩素,R1がイソプロピル,R2が水素,Ar,Arがフェニル基である請求項1記載の芳香族オレフィンの合成法。 The aromatic olefin synthesis according to claim 1 , wherein n is 10, L is 2, m is 2, M is palladium, X is chlorine, R 1 is isopropyl, R 2 is hydrogen, and Ar 1 and Ar 2 are phenyl groups. Law.
JP2003282432A 2003-07-30 2003-07-30 New method for synthesizing aromatic olefin Withdrawn JP2005047864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003282432A JP2005047864A (en) 2003-07-30 2003-07-30 New method for synthesizing aromatic olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003282432A JP2005047864A (en) 2003-07-30 2003-07-30 New method for synthesizing aromatic olefin

Publications (1)

Publication Number Publication Date
JP2005047864A true JP2005047864A (en) 2005-02-24

Family

ID=34267644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003282432A Withdrawn JP2005047864A (en) 2003-07-30 2003-07-30 New method for synthesizing aromatic olefin

Country Status (1)

Country Link
JP (1) JP2005047864A (en)

Similar Documents

Publication Publication Date Title
JP5284269B2 (en) Ruthenium-based catalyst complexes and use of said complexes for olefin metathesis
Remmele et al. Recyclable catalyst with cationic phase tags for the Sonogashira coupling of aryl bromides and aryl chlorides
Ding et al. Ten years of research on NOBIN chemistry
Lu et al. Hydroformylation reactions with recyclable rhodium-complexed dendrimers on a resin
EP0938488B1 (en) Phosphine ligands
Ma et al. Palladium-catalyzed amidation of aryl halides using 2-dialkylphosphino-2′-alkoxyl-1, 1′-binaphthyl as ligands
Deng et al. Dendronized Poly (Ru‐BINAP) Complexes: Highly Effective and Easily Recyclable Catalysts For Asymmetric Hydrogenation
FR2857360A1 (en) USE OF FUNCTIONALIZED ONIUM SALTS AS A SOLUBLE CARRIER FOR ORGANIC SYNTHESIS
US7485744B2 (en) Iron-catalyzed allylic alkylation
JP4643567B2 (en) Amide carbonylation reaction method
Fleckenstein et al. The role of bidentate fluorenylphosphines in palladium-catalyzed cross-coupling reactions
JP2005047864A (en) New method for synthesizing aromatic olefin
JP2012082155A (en) Triazolium salt and method for producing the same, and method for producing alkylated oxindol using azide alcohol and asymmetric reaction
US6162951A (en) Phosphine ligands
Saluzzo et al. Synthesis and studies of 6, 6′-BINAP derivatives for the heterogeneous asymmetric hydrogenation of methyl acetoacetate
US6255532B1 (en) Method for producing phosphabenzene compounds
JP6980269B2 (en) Method for producing chiral rhodium complex and optically active β-substituted carbonyl compound
JP3630002B2 (en) Process for producing optically active 1,2-diols
JP2001261736A (en) Homogeneously soluble weight-enlarged ligand for hydrigenation catalyst, method for preparing the same, use of the same and weight-enlarged catalyst
JP4070444B2 (en) Process for producing unsaturated amines
JP2003236388A (en) New transition metal complex catalyst, and method for synthesizing biaryl compound by using the same
Abd El-Lateef et al. Cobalt (III)–porphyrin Complex as an Efficient and Recyclable Homogeneous Catalyst for the Synthesis of Tetrahydro-2-oxa-4-thia-diazapentalen-5-one Derivatives in Aqueous Medium
US6787676B2 (en) Process for the preparation of non-chiral and optically active organic compounds containing hydroxyl groups
Sayyahi Preparation and application of 1, 1’-bis-methyl-3, 3’-methylene-bisimidazolium dicyanide as a task-specific ionic liquid: an efficient catalyst in benzoin condensations
JP3958101B2 (en) Immobilized reagent for oxidation reaction

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061003