JP2005047803A - Method for producing (3r,5s)-7-substituted-3,5-dihydroxyhept-6-enoic acid - Google Patents
Method for producing (3r,5s)-7-substituted-3,5-dihydroxyhept-6-enoic acid Download PDFInfo
- Publication number
- JP2005047803A JP2005047803A JP2001145358A JP2001145358A JP2005047803A JP 2005047803 A JP2005047803 A JP 2005047803A JP 2001145358 A JP2001145358 A JP 2001145358A JP 2001145358 A JP2001145358 A JP 2001145358A JP 2005047803 A JP2005047803 A JP 2005047803A
- Authority
- JP
- Japan
- Prior art keywords
- dihydroxyhept
- enoic acid
- substituted
- cyclopropyl
- quinolin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D215/00—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
- C07D215/02—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
- C07D215/12—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
- C07D215/14—Radicals substituted by oxygen atoms
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Quinoline Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、コレステロール低下剤(HMG−CoA還元酵素阻害薬)の合成中間体として有用な、(3R,5S)−7−置換−3,5−ジヒドロキシヘプト−6−エン酸の製法に関し、特に、(3R,5S)−7−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}−3,5−ジヒドロキシヘプト−6−エン酸の製法に関する。
【0002】
【従来の技術】
従来、7−置換−3,5−ジヒドロキシヘプト−6−エン酸の光学異性体混合物から、(3R,5S)−7−置換−3,5−ジヒドロキシヘプト−6−エン酸を選択的に製造する方法としては、キラルなアミン(例えば、(R)−(+)−α−メチルベンジルアミン)を使用する方法が知られている(Bioorg.Med.Chem.Lett.,9,2977(1999))。しかしながら、この方法では、高価なキラルなアミンを化学量論量用いなければならず、又、目的とする(3R,5S)−7−置換−3,5−ジヒドロキシヘプト−6−エン酸の収率が30%程度と低い等、工業的に好適な方法ではなかった。
【0003】
【発明が解決しようとする課題】
本発明の課題は、上記の問題点を解決し、工業的に好適な(3R,5S)−7−置換−3,5−ジヒドロキシヘプト−6−エン酸の製法を提供するものである。
【0004】
【課題を解決するための手段】
本発明の課題は、
(A)式(1)
【0005】
【化7】
【0006】
で示される7−置換−3,5−ジヒドロキシヘプト−6−エン酸(光学異性体混合物)に、一般式(2)
【0007】
【化8】
【0008】
(式中、R1、R2及びR3は、水素原子又は炭化水素基を示す。)
で示されるアキラルなアミンを反応させて、一般式(3)
【0009】
【化9】
【0010】
(式中、R1、R2及びR3は、前記と同義である。)
で示される7−置換−3,5−ジヒドロキシヘプト−6−エン酸のアキラルなアミン塩(光学異性体混合物)を生成させる第一工程、
(B)次いで、7−置換−3,5−ジヒドロキシヘプト−6−エン酸のアキラルなアミン塩(光学異性体混合物)を溶媒中で晶析させて、一般式(4)
【0011】
【化10】
【0012】
(式中、R1、R2及びR3は、前記と同義である。)
で示される(3R,5S)−7−置換−3,5−ジヒドロキシヘプト−6−エン酸のアキラルなアミン塩を選択的に得る第二工程、
(C)更に、(3R,5S)−7−置換−3,5−ジヒドロキシヘプト−6−エン酸のアキラルなアミン塩を酸性化して、式(5)
【0013】
【化11】
【0014】
で示される(3R,5S)−7−置換−3,5−ジヒドロキシヘプト−6−エン酸を得る第三工程、を含んでなることを特徴とする、(3R,5S)−7−置換−3,5−ジヒドロキシヘプト−6−エン酸の製法によって解決される。
【0015】
【発明の実施の形態】
本発明は、
(A)式(1)で示される7−置換−3,5−ジヒドロキシヘプト−6−エン酸(光学異性体混合物)に、一般式(2)で示されるアキラルなアミンを反応させて、一般式(3)で示される7−置換−3,5−ジヒドロキシヘプト−6−エン酸のアキラルなアミン塩(光学異性体混合物)を生成させる第一工程、
(B)次いで、7−置換−3,5−ジヒドロキシヘプト−6−エン酸のアキラルなアミン塩(光学異性体混合物)を溶媒中で晶析させて、一般式(4)で示される(3R,5S)−7−置換−3,5−ジヒドロキシヘプト−6−エン酸のアキラルなアミンを選択的に得る第二工程、
(C)更に、(3R,5S)−7−置換−3,5−ジヒドロキシヘプト−6−エン酸のアキラルなアミン塩を酸性化して、式(5)で示される(3R,5S)−7−置換−3,5−ジヒドロキシヘプト−6−エン酸を得る第三工程、
を含んでなる三工程によって、(3R,5S)−7−置換−3,5−ジヒドロキシヘプト−6−エン酸を製造するものである。
【0016】
引き続き、前記の三つの工程を順次説明する。
(A)第一工程
本発明の第一工程は、式(1)で示される7−置換−3,5−ジヒドロキシヘプト−6−エン酸(光学異性体混合物)に、一般式(2)で示されるアキラルなアミンを反応させて、一般式(3)で示される7−置換−3,5−ジヒドロキシヘプト−6−エン酸のアキラルなアミン塩(光学異性体混合物)を生成させる工程である。
【0017】
本発明の第一工程で使用される7−置換−3,5−ジヒドロキシヘプト−6−エン酸(光学異性体混合物)は、前記の式(1)で示されるが、具体的には、式(6)
【0018】
【化12】
【0019】
で示される4種の光学異性体の混合物であり、特に、(3R,5S)−7−置換−3,5−ジヒドロキシヘプト−6−エン酸を主成分として含む光学異性体の混合物を示す。
【0020】
前記の7−置換−3,5−ジヒドロキシヘプト−6−エン酸(光学異性体混合物)は、例えば、特開平8−92217号公報に記載の方法によって合成される7−置換−3,5−ジヒドロキシヘプト−6−エン酸エステル(光学異性体混合物)を加水分解することによって容易に得ることが出来る(参考例1〜3に記載)。
【0021】
本発明の第一工程で使用されるアキラルなアミンとは、具体的には、不斉炭素原子を有しないアミンのことを示す。アキラルなアミンは、前記の一般式(2)で示されるが、その一般式(2)において、R1、R2及びR3は、水素原子又は炭化水素基であり、例えば、水素原子;メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等の炭素数1〜10のアルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基等の炭素数3〜10のシクロアルキル基;ベンジル基、フェニルエチル基、フェニルプロピル基等の炭素数7〜12のアラルキル基が挙げられる。なお、前記のR1、R2及びR3の好ましい態様としては、R1及びR2が水素原子でR3がアラルキル基、R1が水素原子でR2及びR3がシクロアルキル基である。
【0022】
前記アキラルなアミンの使用量は、7−置換−3,5−ジヒドロキシヘプト−6−エン酸(光学異性体混合物)1molに対して、好ましくは0.5〜2.0mol、更に好ましくは0.8〜1.2molである。
【0023】
本発明の第一工程は、溶媒の存在下で行うのが好ましく、使用される溶媒としては、反応を阻害しないものならば特に限定されないが、例えば、水;メタノール、エタノール、イソプロピルアルコール、t−ブチルアルコール等のアルコール類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン等のエーテル類;酢酸メチル、酢酸エチル等のカルボン酸エステル類;塩化メチレン、クロロホルム、ジクロロエタン等のハロゲン化脂肪族炭化水素類が挙げられるが、好ましくはカルボン酸エステル類、更に好ましくは酢酸エチルが使用される。これらの溶媒は、単独又は二種以上を混合して使用しても良い。
【0024】
前記溶媒の使用量は、反応液の均一性や攪拌性によって適宜調節するが、7−置換−3,5−ジヒドロキシヘプト−6−エン酸(光学異性体混合物)1gに対して、好ましくは5〜100g、更に好ましくは10〜50gである。
【0025】
本発明の第一工程は、例えば、7−置換−3,5−ジヒドロキシヘプト−6−エン酸(光学異性体混合物)、アキラルなアミン及び溶媒を混合して、攪拌する等の方法によって行われる。その際の反応温度は、好ましくは−20〜100℃、更に好ましくは0〜50℃であり、反応圧力は特に制限されない。
【0026】
本発明の第一工程によって得られる7−置換−3,5−ジヒドロキシヘプト−6−エン酸のアキラルなアミン塩(光学異性体混合物)は、例えば、反応終了後、反応液を冷却することで結晶として取得することが出来る。
【0027】
(B)第二工程
本発明の第二工程は、第一工程において得られた、一般式(3)で示される7−置換−3,5−ジヒドロキシヘプト−6−エン酸のアキラルなアミン塩(光学異性体混合物)を溶媒中で晶析させて、一般式(4)で示される(3R,5S)−7−置換−3,5−ジヒドロキシヘプト−6−エン酸のアキラルなアミン塩を選択的に得る工程である。
【0028】
本発明の第二工程において使用される溶媒としては、例えば、水;メタノール、エタノール、イソプロピルアルコール、t−ブチルアルコール等のアルコール類;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン等のエーテル類;塩化メチレン、クロロホルム等のハロゲン化炭化水素類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;酢酸メチル、酢酸エチル等のカルボン酸エステル類;アセトニトリル、プロピオニトリル等のニトリル類;アセトン、メチルイソブチルケトン等のケトン類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド類が挙げられるが、好ましくはエーテル類、ケトン類、アミド類、更に好ましくはエーテル類、ケトン類、特に好ましくはテトラヒドロフラン、メチルイソブチルケトンが使用される。これらの溶媒は、単独又は二種以上を混合して使用しても良い。
【0029】
前記溶媒の使用量は、7−置換−3,5−ジヒドロキシヘプト−6−エン酸のアキラルなアミン塩(光学異性体混合物)1gに対して、好ましくは1〜100g、更に好ましくは5〜50g、特に好ましくは10〜30gである。
【0030】
本発明の第二工程は、例えば、第一工程において得られた7−置換−3,5−ジヒドロキシヘプト−6−エン酸のアキラルなアミン塩(光学異性体混合物)を溶媒に溶解して均一溶液とした後(必要ならば、加熱して溶解させても良い)、冷却して結晶を析出させる(晶析させる)等の方法によって行われる。その際の冷却温度は、好ましくは−50〜80℃、更に好ましくは−20〜40℃、特に好ましくは−10〜20℃である。なお、必要ならば、この操作を繰り返し行っても良い。
【0031】
本発明の第二工程によって選択的に得られる(3R,5S)−7−置換−3,5−ジヒドロキシヘプト−6−エン酸のアキラルなアミン塩は、例えば、晶析終了後、濾過することで遊離の結晶として取得することが出来る。
【0032】
(C)第三工程
本発明の第三工程は、第二工程において得られた、一般式(4)で示される(3R,5S)−7−置換−3,5−ジヒドロキシヘプト−6−エン酸のアキラルなアミン塩を酸性化して、式(5)で示される(3R,5S)−7−置換−3,5−ジヒドロキシヘプト−6−エン酸を得る工程である。
【0033】
本発明の第三工程における酸性化とは、カルボン酸塩を酸性化して遊離のカルボン酸を得る一般的な方法ならば特に限定されないが、酸の存在下、溶媒中で行われるのが望ましい。
【0034】
本発明の第三工程において使用する酸としては、例えば、塩酸、硫酸、硝酸、リン酸等の鉱酸類;メタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、p−トルエンスルホン酸等のスルホン酸類が挙げられるが、好ましくは鉱酸、更に好ましくは塩酸、硫酸が使用される。これらの酸は、単独又は二種以上を混合して使用しても良い。
【0035】
前記酸の使用量は、(3R,5S)−7−置換−3,5−ジヒドロキシヘプト−6−エン酸のアキラルなアミン塩を酸性化して、遊離のカルボン酸((3R,5S)−7−置換−3,5−ジヒドロキシヘプト−6−エン酸)とし得る量ならば特に制限はされないが、(3R,5S)−7−置換−3,5−ジヒドロキシヘプト−6−エン酸のアキラルなアミン塩1molに対して、好ましくは1.0〜1.1molである。
【0036】
本発明の第三工程において使用する溶媒としては、反応を阻害しないものならば特に限定されないが、例えば、水;メタノール、エタノール、イソプロピルアルコール、t−ブチルアルコール等のアルコール類;アセトニトリル、プロピオニトリル等のニトリル類が挙げられるが、好ましくはアルコール類、更に好ましくはメタノール、エタノールが使用される。これらの溶媒は、単独又は二種以上を混合して使用しても良い。
【0037】
前記溶媒の使用量は、反応液の均一性や攪拌性によって適宜調節するが、(3R,5S)−7−置換−3,5−ジヒドロキシヘプト−6−エン酸のアキラルなアミン塩1gに対して、好ましくは1〜50g、更に好ましくは10〜30gである。
【0038】
本発明の第三工程は、例えば、第二工程において得られた(3R,5S)−7−置換−3,5−ジヒドロキシヘプト−6−エン酸のアキラルなアミン塩、酸及び溶媒を混合して攪拌する等の方法によって行われる。その際の温度は、好ましくは−20〜100℃、更に好ましくは0〜50℃であり、圧力は特に制限されない。
【0039】
本発明の第三工程によって得られる(3R,5S)−7−置換−3,5−ジヒドロキシヘプト−6−エン酸は、例えば、加水分解終了後、抽出、濃縮、再結晶等による一般的な方法によって分離・精製される。
【0040】
【実施例】
次に、実施例を挙げて本発明を具体的に説明するが、本発明の範囲はこれらに限定されるものではない。
なお、実施例における光学純度(エナンチオマー過剰率(%ee)及びジアステレオマー過剰率(%de))は、以下の分析条件により高速液体クロマトグラフィーを用いて行った。なお、(3R,5S)−7−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}−3,5−ジヒドロヘプト−6−エン酸の光学純度は、該化合物を芳香族炭化水素溶媒中で加熱して、対応するラクトン((4R,6S)−6−[2−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}エテニル]−4−ヒドロキシテトラヒドロピラン−2−オン)に誘導した後に測定した(後の参考例4及び5に記載)。
【0041】
高速液体クロマトグラフィーの分析条件:
(エナンチオマー過剰率)
【0042】
(ジアステレオマー過剰率)
【0043】
参考例1(7−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}5−ヒドロキシヘプト−6−エン酸イソプロピル(光学異性体混合物)の合成)
攪拌装置、温度計及び滴下漏斗を備えた内容積100mlのフラスコに、チタンテトライソプロポキシド6.58g(22.0mmol)、(S)−2−{N−(3,5−ジ−tert−ブチルサリチリデン)アミノ}−3−メチル−1−ブタノール6.70g(21.0mmol)及び塩化メチレン40mlを加え、室温で1時間攪拌させた。次いで、反応液を−30℃まで冷却し、3−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}プロプ−2−エナール6.36g(20.0mmol)を塩化メチレン6mlに溶解したものを加えて30分間攪拌させた。更に、ジケテン2.52g(30.0mmol)を加えて−20℃まで昇温しながら6時間反応させた。
反応終了後、得られた反応液を取り出し、5.0質量%シュウ酸水溶液105.29g(42.0mmol)及び1,2−ジクロロエタン50mlの混合液に加え、室温で1時間激しく攪拌させた。その後、有機層を取り出し、5.0質量%シュウ酸水溶液50ml、水50ml、飽和炭酸水素ナトリウム水溶液30mlの順で洗浄し、無水硫酸マグネシウムで乾燥させた。セライトで濾過後、濾液を減圧下で濃縮し、濃縮物にn−ヘキサン50mlを加えて、1時間激しく攪拌させたところ固体が析出した。これを濾過して乾燥させ、黄色粉末として7−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}−5−ヒドロキシ−3−オキソヘプト−6−エン酸イソプロピル(光学異性体混合物)7.84gを得た(単離収率:85.0%)。
【0044】
参考例2(7−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}−3,5−ジヒドロキシヘプト−6−エン酸イソプロピル(光学異性体混合物)の合成)
攪拌装置、温度計及び滴下漏斗を備えた内容積300mlのフラスコに、参考例1で合成した7−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}−5−ヒドロキシ−3−オキソヘプト−6−エン酸イソプロピル(光学異性体混合物)6.91g(15.0mmol)、テトラヒドロフラン120ml及びメタノール30mlを加えて−75℃に冷却し、1mol/lジエチルメトキシホウ素テトラヒドロフラン溶液16.5mlを加えて30分間攪拌した。次いで、水素化ホウ素ナトリウム684mg(18.0mmol)を加え、同温度で5時間反応させた。反応終了後、酢酸11ml及び酢酸エチル100mlを加え、室温で20分間攪拌させた。得られた反応液を飽和炭酸水素ナトリウムで100mlで2回、飽和食塩水50mlで1回の順で洗浄し、無水硫酸マグネシウムで乾燥させた。濾過後、濾液を減圧下で濃縮した。得られた濃縮物に、メタノール100mlを加え、常圧加熱下で濃縮した。この操作を3回繰り返し、黄色油状物として7−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}−3,5−ジヒドロキシヘプト−6−エン酸イソプロピル(光学異性体混合物)6.60gを得た(単離収率:95.3%)。
なお、本化合物を高速液体クロマトグラフィーにより分析したところ、(3R,5S)−7−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}−3,5−ジヒドロキシヘプト−6−エン酸イソプロピルの光学純度は73%ee及び97%deであった。
【0045】
参考例3(7−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}−3,5−ジヒドロキシヘプト−6−エン酸(光学異性体混合物)の合成)
攪拌装置、温度計及び滴下漏斗を備えた内容積50mlのフラスコに、参考例2で合成した7−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}−3,5−ジヒドロキシヘプト−6−エン酸イソプロピル(光学異性体混合物)4.63g(10.0mmol)、メタノール10ml及び1mol/l水酸化ナトリウム水溶液12ml(12.0mmol)を加え、室温で1時間反応させた。反応終了後、1mol/l塩酸を加えて反応液のpHを3.5に調整した。次いで、酢酸エチル10mlで2回抽出した後、有機層を分液し、無水硫酸マグネシウムで乾燥させた。濾過後、濾液を減圧下で濃縮し、淡黄色油状物として7−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}−3,5−ジヒドロキシヘプト−6−エン酸(光学異性体混合物)4.21gを得た(単離収率:100%)。
【0046】
実施例1(第一工程:7−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}−3,5−ジヒドロキシヘプト−6−エン酸ベンジルアミン塩(光学異性体混合物)の合成)
攪拌装置及び温度計を備えた内容積50mlのフラスコに、参考例3で得られた7−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}−3,5−ジヒドロキシヘプト−6−エン酸(光学異性体混合物)4.21g(10.0mmol)、ベンジルアミン1.07g(10.ommol)及び酢酸エチル30mlを加え、攪拌しながら0℃まで冷却すると結晶が析出して来た。結晶を濾過し、0℃に冷却した酢酸エチル15mlで洗浄した後に減圧下で乾燥させ、無色結晶として7−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}−3,5−ジヒドロキシヘプト−6−エン酸ベンジルアミン塩(光学異性体混合物)5.01gを得た(単離収率:94.9%)。
【0047】
実施例2(第二工程:(3R,5S)−7−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}−3,5−ジヒドロキシヘプト−6−エン酸ベンジルアミン塩の合成)
攪拌装置及び温度計を備えた内容積100mlのフラスコに、実施例1で得られた7−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}−3,5−ジヒドロキシヘプト−6−エン酸ベンジルアミン塩(光学異性体混合物)4.22g(8.00mmol)及びテトラヒドロフラン84mlを加え、攪拌しながら50℃まで昇温して均一溶液とした。次いで、反応液を0℃まで冷却すると結晶が析出して来たので、結晶を濾過し、0℃に冷却したテトラヒドロフラン42mlで洗浄した。この晶析操作を2回繰り返した。得られた結晶を減圧下で乾燥させ、無色結晶として(3R,5S)−7−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}−3,5−ジヒドロキシヘプト−6−エン酸ベンジルアミン塩2.52gを得た(単離収率:60.0%)。
なお、(3R,5S)−7−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}−3,5−ジヒドロキシヘプト−6−エン酸ベンジルアミン塩は、以下の物性値で示される新規な化合物である。
【0048】
融点;118〜120℃
1H−NMR(CD3OD,δ(ppm));1.04〜1.07(2H,m)、1.25〜1.28(2H,m)、1.28〜1.33(1H,m)、1.51〜1.56(1H,m)、2.23〜2.29(2H,m)、2.51〜2.55(1H,m)、3.76〜3.80(1H,m)、4.25〜4.29(1H,m)、5.66(1H,dd,J=6.3,15.9Hz)、6.62(1H,dd,J=1.2,15.9Hz)、7.24〜7.40(4H,m)、7.40〜7.44(2H,m)、7.44〜7.49(5H,m)、7.58〜7.61(1H,m)、7.91(1H,d,J=8.1Hz)
【0049】
実施例3(第三工程:(3R,5S)−7−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}−3,5−ジヒドロキシヘプト−6−エン酸の合成)
攪拌装置を備えた内容積50mlのフラスコに、実施例2で得られた(3R,5S)−7−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}−3,5−ジヒドロキシヘプト−6−エン酸ベンジルアミン塩2.11g(4.00mmol)及びメタノール10mlを加えた。その後、1mol/l塩酸を加えて反応液のpHを3.5に調整した。次いで、酢酸エチル10mlで2回抽出した後、有機層を分液し、無水硫酸マグネシウムで乾燥させた。濾過後、濾液を減圧下で濃縮し、無色油状物として(3R,5S)−7−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}−3,5−ジヒドロキシヘプト−6−エン酸1.66gを得た(単離収率:99.0%)。
【0050】
参考例4((4R,6S)−6−[2−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}エテニル]−4−ヒドロキシテトラヒドロピラン−2−オンの合成)
攪拌装置、温度計、還流冷却器及びDean−Stark装置を備えた内容積20mlのフラスコに、実施例3で得られた(3R,5S)−7−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}−3,5−ジヒドロキシヘプト−6−エン酸1.26g(3.00mmol)及びトルエン5mlを加え、生成する水を除去しながら、90〜110℃で2時間反応させた。反応終了後、室温まで冷却し、減圧下で濃縮して得られた固体を乾燥させ、無色結晶として(4R,6S)−6−[2−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}エテニル]−4−ヒドロキシテトラヒドロピラン−2−オン1.21gを得た(単離収率:100%)。
なお、本化合物を高速液体クロマトグラフィーにより分析したところ、(4R,6S)−6−[2−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}エテニル]−4−ヒドロキシテトラヒドロピラン−2−オンの光学純度は99%ee以上及び99%de以上であった。
【0051】
実施例4(第一工程:7−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}−3,5−ジヒドロキシヘプト−6−エン酸ジシクロヘキシルアミン塩(光学異性体混合物)の合成)
攪拌装置及び温度計を備えた内容積50mlのフラスコに、参考例3と同様の方法で得られた7−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}−3,5−ジヒドロキシヘプト−6−エン酸(光学異性体混合物)4.21g(10.0mmol)、ジシクロヘキシルアミン1.81g(10.0mmol)及び酢酸エチル30mlを加え、攪拌しながら0℃まで冷却すると結晶が析出して来た。結晶を濾過し、0℃に冷却した酢酸エチル15mlで洗浄した後に減圧下で乾燥させ、無色結晶として7−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}−3,5−ジヒドロキシヘプト−6−エン酸ジシクロヘキシルアミン塩(光学異性体混合物)5.66gを得た(単離収率:94.0%)。
【0052】
実施例5(第二工程:(3R,5S)−7−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}−3,5−ジヒドロキシヘプト−6−エン酸ジシクロヘキシルアミン塩の合成)
攪拌装置及び温度計を備えた内容積100mlのフラスコに、実施例4で得られた7−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}−3,5−ジヒドロキシヘプト−6−エン酸ジシクロヘキシルアミン塩(光学異性体混合物)4.81g(8.00mmol)及びテトラヒドロフラン72mlを加え、攪拌しながら50℃まで昇温して均一溶液とした。次いで、反応液を0℃まで冷却すると結晶が析出して来たので、結晶を濾過し、0℃に冷却したテトラヒドロフラン36mlで洗浄した。この晶析操作を3回繰り返した。得られた結晶を減圧下で乾燥させ、無色結晶として(3R,5S)−7−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}−3,5−ジヒドロキシヘプト−6−エン酸ジシクロヘキシルアミン塩2.50gを得た(単離収率:51.9%)。
なお、(3R,5S)−7−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}−3,5−ジヒドロキシヘプト−6−エン酸ジシクロヘキシルアミン塩は、以下の物性値で示される新規な化合物である。
【0053】
融点;154〜156℃
1H−NMR(CD3OD,δ(ppm));1.04〜1.07(2H,m)、1.07〜1.48(6H,m)、1.51〜1.61(2H,m)、1.61〜1.75(2H,m)、1.75〜1.93(4H,m)、1.93〜2.20(4H,m)、2.20〜2.30(2H,m)、2.49〜2.52(1H,m)、3.12〜3.20(2H,m)、3.68〜3.82(1H,m)、4.20〜4.31(1H,m)、5.66(1H,dd,J=6.3,15.6Hz)、6.62(1H,dd,J=1.2,15.6Hz)、7.30〜7.34(4H,m)、7.34〜7.39(2H,m)、7.55〜7.68(1H,m)、7.91(1H,d,J=8.4Hz)
【0054】
実施例6(第三工程:(3R,5S)−7−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}−3,5−ジヒドロキシヘプト−6−エン酸の合成)
攪拌装置を備えた内容積50mlのフラスコに、実施例5で得られた(3R,5S)−7−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}−3,5−ジヒドロキシヘプト−6−エン酸ベンジルアミン塩2.41g(4.00mmol)及びメタノール10mlを加えた。その後、1mol/l塩酸を加えて反応液のpHを3.5に調整した。次いで、酢酸エチル10mlで2回抽出した後、有機層を分液し、無水硫酸マグネシウムで乾燥させた。濾過後、濾液を減圧下で濃縮し、無色油状物として(3R,5S)−7−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}−3,5−ジヒドロキシヘプト−6−エン酸1.64gを得た(単離収率:97.5%)。
【0055】
参考例5((4R,6S)−6−[2−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}エテニル]−4−ヒドロキシテトラヒドロピラン−2−オンの合成)
攪拌装置、温度計、還流冷却器及びDean−Stark装置を備えた内容積20mlのフラスコに、実施例6で得られた(3R,5S)−7−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}−3,5−ジヒドロキシヘプト−6−エン酸1.26g(3.00mmol)及びトルエン5mlを加え、生成する水を除去しながら、90〜110℃で2時間反応させた。反応終了後、室温まで冷却し、減圧下で濃縮して得られた固体を乾燥させ、無色結晶として(4R,6S)−6−[2−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}エテニル]−4−ヒドロキシテトラヒドロピラン−2−オン1.20gを得た(単離収率:99.3%)。
なお、本化合物を高速液体クロマトグラフィーにより分析したところ、(4R,6S)−6−[2−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}エテニル]−4−ヒドロキシテトラヒドロピラン−2−オンの光学純度は99%ee以上及び99%de以上であった。
【0056】
【発明の効果】
本発明により、工業的に好適な(3R,5S)−7−置換−3,5−ジヒドロキシヘプト−6−エン酸、特に、(3R,5S)−7−{2−シクロプロピル−4−(4−フルオロフェニル)キノリン−3−イル}−3,5−ジヒドロキシヘプト−6−エン酸の製法を提供することが出来る。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing (3R, 5S) -7-substituted-3,5-dihydroxyhept-6-enoic acid, which is useful as a synthesis intermediate of a cholesterol-lowering agent (HMG-CoA reductase inhibitor). In particular, it relates to a process for producing (3R, 5S) -7- {2-cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl} -3,5-dihydroxyhept-6-enoic acid.
[0002]
[Prior art]
Conventionally, (3R, 5S) -7-substituted-3,5-dihydroxyhept-6-enoic acid is selectively selected from a mixture of optical isomers of 7-substituted-3,5-dihydroxyhept-6-enoic acid. As a method for producing the compound, a method using a chiral amine (for example, (R)-(+)-α-methylbenzylamine) is known (Bioorg. Med. Chem. Lett., 9 , 2977 (1999)). However, this method requires the use of a stoichiometric amount of an expensive chiral amine, and the desired (3R, 5S) -7-substituted-3,5-dihydroxyhept-6-enoic acid. It was not an industrially suitable method because the yield was as low as about 30%.
[0003]
[Problems to be solved by the invention]
The object of the present invention is to solve the above problems and provide an industrially suitable process for producing (3R, 5S) -7-substituted-3,5-dihydroxyhept-6-enoic acid.
[0004]
[Means for Solving the Problems]
The subject of the present invention is
(A) Formula (1)
[0005]
[Chemical 7]
[0006]
7-substituted-3,5-dihydroxyhept-6-enoic acid (a mixture of optical isomers) represented by the general formula (2)
[0007]
[Chemical 8]
[0008]
(Wherein R 1 , R 2 And R 3 Represents a hydrogen atom or a hydrocarbon group. )
Is reacted with an achiral amine represented by the general formula (3)
[0009]
[Chemical 9]
[0010]
(Wherein R 1 , R 2 And R 3 Is as defined above. )
A first step of producing an achiral amine salt (a mixture of optical isomers) of 7-substituted-3,5-dihydroxyhept-6-enoic acid represented by
(B) Then, an achiral amine salt (optical isomer mixture) of 7-substituted-3,5-dihydroxyhept-6-enoic acid is crystallized in a solvent to obtain a compound represented by the general formula (4)
[0011]
Embedded image
[0012]
(Wherein R 1 , R 2 And R 3 Is as defined above. )
A second step of selectively obtaining an achiral amine salt of (3R, 5S) -7-substituted-3,5-dihydroxyhept-6-enoic acid represented by
(C) Further, the achiral amine salt of (3R, 5S) -7-substituted-3,5-dihydroxyhept-6-enoic acid is acidified to give a compound of formula (5)
[0013]
Embedded image
[0014]
And (3R, 5S) -7-substituted-3,5-dihydroxyhept-6-enoic acid represented by the third step It is solved by the process of -3,5-dihydroxyhept-6-enoic acid.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The present invention
(A) A 7-substituted-3,5-dihydroxyhept-6-enoic acid (mixture of optical isomers) represented by the formula (1) is reacted with an achiral amine represented by the general formula (2), A first step of generating an achiral amine salt (a mixture of optical isomers) of 7-substituted-3,5-dihydroxyhept-6-enoic acid represented by the general formula (3);
(B) Then, an achiral amine salt (optical isomer mixture) of 7-substituted-3,5-dihydroxyhept-6-enoic acid was crystallized in a solvent and represented by the general formula (4) ( A second step for selectively obtaining an achiral amine of 3R, 5S) -7-substituted-3,5-dihydroxyhept-6-enoic acid;
(C) Furthermore, the achiral amine salt of (3R, 5S) -7-substituted-3,5-dihydroxyhept-6-enoic acid is acidified to give (3R, 5S)-represented by formula (5) A third step to obtain 7-substituted-3,5-dihydroxyhept-6-enoic acid;
(3R, 5S) -7-substituted-3,5-dihydroxyhept-6-enoic acid is produced by three steps comprising:
[0016]
Subsequently, the above three steps will be described sequentially.
(A) First step
In the first step of the present invention, a 7-substituted-3,5-dihydroxyhept-6-enoic acid (optical isomer mixture) represented by the formula (1) is converted to an achiral amine represented by the general formula (2). Is a step of producing an achiral amine salt (optical isomer mixture) of 7-substituted-3,5-dihydroxyhept-6-enoic acid represented by the general formula (3).
[0017]
The 7-substituted-3,5-dihydroxyhept-6-enoic acid (optical isomer mixture) used in the first step of the present invention is represented by the above formula (1). Specifically, Formula (6)
[0018]
Embedded image
[0019]
In particular, a mixture of optical isomers comprising (3R, 5S) -7-substituted-3,5-dihydroxyhept-6-enoic acid as a main component. .
[0020]
The 7-substituted-3,5-dihydroxyhept-6-enoic acid (a mixture of optical isomers) is synthesized by, for example, a method described in JP-A-8-92217. -Dihydroxyhept-6-enoic acid ester (optical isomer mixture) can be easily obtained by hydrolysis (described in Reference Examples 1 to 3).
[0021]
The achiral amine used in the first step of the present invention specifically indicates an amine having no asymmetric carbon atom. The achiral amine is represented by the general formula (2), and in the general formula (2), R 1 , R 2 And R 3 Is a hydrogen atom or a hydrocarbon group, for example, hydrogen atom; carbon number 1 such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, etc. A cycloalkyl group having 3 to 10 carbon atoms such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group, and a cyclodecyl group; a benzyl group and a phenyl group Examples thereof include aralkyl groups having 7 to 12 carbon atoms such as ethyl group and phenylpropyl group. The above R 1 , R 2 And R 3 In a preferred embodiment of R, R 1 And R 2 Is a hydrogen atom and R 3 Is an aralkyl group, R 1 Is a hydrogen atom and R 2 And R 3 Is a cycloalkyl group.
[0022]
The amount of the achiral amine to be used is preferably 0.5 to 2.0 mol, more preferably 0, per 1 mol of 7-substituted-3,5-dihydroxyhept-6-enoic acid (optical isomer mixture). .8 to 1.2 mol.
[0023]
The first step of the present invention is preferably performed in the presence of a solvent, and the solvent used is not particularly limited as long as it does not inhibit the reaction. For example, water; methanol, ethanol, isopropyl alcohol, t- Alcohols such as butyl alcohol; aromatic hydrocarbons such as benzene, toluene and xylene; ethers such as diethyl ether, diisopropyl ether and tetrahydrofuran; carboxylic acid esters such as methyl acetate and ethyl acetate; methylene chloride, chloroform and dichloroethane And halogenated aliphatic hydrocarbons such as carboxylic acid esters, more preferably ethyl acetate. These solvents may be used alone or in combination of two or more.
[0024]
The amount of the solvent used is appropriately adjusted depending on the homogeneity and stirrability of the reaction solution, but is preferably 1 g of 7-substituted-3,5-dihydroxyhept-6-enoic acid (optical isomer mixture). 5 to 100 g, more preferably 10 to 50 g.
[0025]
The first step of the present invention is performed, for example, by a method such as mixing 7-substituted-3,5-dihydroxyhept-6-enoic acid (optical isomer mixture), achiral amine and solvent and stirring. Is called. The reaction temperature at that time is preferably -20 to 100 ° C, more preferably 0 to 50 ° C, and the reaction pressure is not particularly limited.
[0026]
The achiral amine salt (optical isomer mixture) of 7-substituted-3,5-dihydroxyhept-6-enoic acid obtained by the first step of the present invention can be cooled, for example, after completion of the reaction. Can be obtained as crystals.
[0027]
(B) Second step
The second step of the present invention is an achiral amine salt of 7-substituted-3,5-dihydroxyhept-6-enoic acid represented by the general formula (3) obtained in the first step (mixture of optical isomers). ) In a solvent to selectively obtain an achiral amine salt of (3R, 5S) -7-substituted-3,5-dihydroxyhept-6-enoic acid represented by the general formula (4). It is a process.
[0028]
Examples of the solvent used in the second step of the present invention include water; alcohols such as methanol, ethanol, isopropyl alcohol and t-butyl alcohol; ethers such as diethyl ether, diisopropyl ether and tetrahydrofuran; methylene chloride and chloroform. Halogenated hydrocarbons such as benzene, toluene, xylene, etc .; Carboxylic acid esters such as methyl acetate and ethyl acetate; Nitriles such as acetonitrile and propionitrile; Acetone, methyl isobutyl ketone, etc. Ketones; amides such as N, N-dimethylformamide, N, N-dimethylacetamide, and the like, preferably ethers, ketones, amides, more preferably ethers, ketones, particularly preferably tetrahydrofuran, Me Louis Soviet-butyl ketone is used. These solvents may be used alone or in combination of two or more.
[0029]
The amount of the solvent to be used is preferably 1 to 100 g, more preferably 5 to 1 g of achiral amine salt (optical isomer mixture) of 7-substituted-3,5-dihydroxyhept-6-enoic acid. 50 g, particularly preferably 10 to 30 g.
[0030]
In the second step of the present invention, for example, the achiral amine salt (optical isomer mixture) of 7-substituted-3,5-dihydroxyhept-6-enoic acid obtained in the first step is dissolved in a solvent. After making it into a uniform solution (if necessary, it may be dissolved by heating), followed by cooling to precipitate crystals (crystallization). The cooling temperature in that case becomes like this. Preferably it is -50-80 degreeC, More preferably, it is -20-40 degreeC, Most preferably, it is -10-20 degreeC. If necessary, this operation may be repeated.
[0031]
The achiral amine salt of (3R, 5S) -7-substituted-3,5-dihydroxyhept-6-enoic acid obtained selectively by the second step of the present invention is filtered, for example, after crystallization is completed. Can be obtained as free crystals.
[0032]
(C) Third step
The third step of the present invention is an achiral amine of (3R, 5S) -7-substituted-3,5-dihydroxyhept-6-enoic acid represented by the general formula (4) obtained in the second step. In this step, the salt is acidified to obtain (3R, 5S) -7-substituted-3,5-dihydroxyhept-6-enoic acid represented by formula (5).
[0033]
The acidification in the third step of the present invention is not particularly limited as long as it is a general method for acidifying a carboxylate to obtain a free carboxylic acid, but it is preferably performed in a solvent in the presence of an acid.
[0034]
Examples of the acid used in the third step of the present invention include mineral acids such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid; and sulfonic acids such as methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, and p-toluenesulfonic acid. Preferably, a mineral acid, more preferably hydrochloric acid or sulfuric acid is used. These acids may be used alone or in combination of two or more.
[0035]
The amount of the acid used is determined by acidifying the achiral amine salt of (3R, 5S) -7-substituted-3,5-dihydroxyhept-6-enoic acid to form a free carboxylic acid ((3R, 5S)- 7-substituted-3,5-dihydroxyhept-6-enoic acid) is not particularly limited, but (3R, 5S) -7-substituted-3,5-dihydroxyhept-6-enoic acid The amount is preferably 1.0 to 1.1 mol with respect to 1 mol of the achiral amine salt.
[0036]
The solvent used in the third step of the present invention is not particularly limited as long as it does not inhibit the reaction. For example, water; alcohols such as methanol, ethanol, isopropyl alcohol, t-butyl alcohol; acetonitrile, propionitrile And nitriles such as alcohol, preferably alcohols, more preferably methanol and ethanol. These solvents may be used alone or in combination of two or more.
[0037]
The amount of the solvent used is appropriately adjusted depending on the homogeneity and stirrability of the reaction solution. On the other hand, it is preferably 1 to 50 g, more preferably 10 to 30 g.
[0038]
In the third step of the present invention, for example, the achiral amine salt of (3R, 5S) -7-substituted-3,5-dihydroxyhept-6-enoic acid obtained in the second step, an acid and a solvent are mixed. And stirring. The temperature at that time is preferably -20 to 100 ° C, more preferably 0 to 50 ° C, and the pressure is not particularly limited.
[0039]
(3R, 5S) -7-substituted-3,5-dihydroxyhept-6-enoic acid obtained by the third step of the present invention is generally obtained by, for example, extraction, concentration, recrystallization and the like after completion of hydrolysis. Separated and purified by various methods.
[0040]
【Example】
Next, the present invention will be specifically described with reference to examples, but the scope of the present invention is not limited thereto.
In addition, the optical purity (enantiomeric excess (% ee) and diastereomeric excess (% de)) in the examples was performed using high performance liquid chromatography under the following analysis conditions. The optical purity of (3R, 5S) -7- {2-cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl} -3,5-dihydrohept-6-enoic acid is determined by By heating in a group hydrocarbon solvent to give the corresponding lactone ((4R, 6S) -6- [2- {2-cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl} ethenyl] -4- It was measured after derivatization to hydroxytetrahydropyran-2-one (described in Reference Examples 4 and 5 later).
[0041]
Analysis conditions for high performance liquid chromatography:
(Enantiomeric excess)
[0042]
(Diastereomer excess)
[0043]
Reference Example 1 (Synthesis of 7- {2-cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl} 5-hydroxyhept-6-enoic acid isopropyl (optical isomer mixture))
Into a 100-ml flask equipped with a stirrer, thermometer and dropping funnel, titanium tetraisopropoxide 6.58 g (22.0 mmol), (S) -2- {N- (3,5-di-tert- 6.70 g (21.0 mmol) of butylsalicylidene) amino} -3-methyl-1-butanol and 40 ml of methylene chloride were added and stirred at room temperature for 1 hour. Subsequently, the reaction solution was cooled to −30 ° C., and 6.36 g (20.0 mmol) of 3- {2-cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl} prop-2-enal was added to methylene chloride. What was dissolved in 6 ml was added and stirred for 30 minutes. Furthermore, 2.52 g (30.0 mmol) of diketene was added and reacted for 6 hours while raising the temperature to −20 ° C.
After completion of the reaction, the obtained reaction solution was taken out, added to a mixed solution of 105.29 g (42.0 mmol) of 5.0 mass% oxalic acid aqueous solution and 50 ml of 1,2-dichloroethane, and vigorously stirred at room temperature for 1 hour. Thereafter, the organic layer was taken out, washed in the order of 50 ml of a 5.0% by mass oxalic acid aqueous solution, 50 ml of water and 30 ml of a saturated aqueous sodium hydrogen carbonate solution, and dried over anhydrous magnesium sulfate. After filtration through celite, the filtrate was concentrated under reduced pressure, 50 ml of n-hexane was added to the concentrate, and the mixture was vigorously stirred for 1 hour to precipitate a solid. This was filtered and dried and isopropyl 7- {2-cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl} -5-hydroxy-3-oxohept-6-enoate (optical isomerism) as a yellow powder. Body mixture) 7.84 g was obtained (isolation yield: 85.0%).
[0044]
Reference Example 2 (Synthesis of 7- {2-cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl} -3,5-dihydroxyhept-6-enoic acid isopropyl (optical isomer mixture))
7- {2-Cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl} -5-hydroxy synthesized in Reference Example 1 was added to a 300-ml flask equipped with a stirrer, a thermometer and a dropping funnel. Add 6.91 g (15.0 mmol) of isopropyl-3-oxohept-6-enoate (optical isomer mixture), 120 ml of tetrahydrofuran and 30 ml of methanol, cool to −75 ° C., and 1 mol / l diethylmethoxyboron tetrahydrofuran solution 16. 5 ml was added and stirred for 30 minutes. Next, 684 mg (18.0 mmol) of sodium borohydride was added and reacted at the same temperature for 5 hours. After completion of the reaction, 11 ml of acetic acid and 100 ml of ethyl acetate were added and stirred at room temperature for 20 minutes. The obtained reaction solution was washed with 100 ml of saturated sodium hydrogen carbonate twice and once with 50 ml of saturated brine and dried over anhydrous magnesium sulfate. After filtration, the filtrate was concentrated under reduced pressure. To the obtained concentrate, 100 ml of methanol was added and concentrated under normal pressure heating. This operation was repeated 3 times, and isopropyl 7- {2-cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl} -3,5-dihydroxyhept-6-enoate (optical isomerism) was obtained as a yellow oily substance. Body mixture) 6.60 g was obtained (isolation yield: 95.3%).
In addition, when this compound was analyzed by high performance liquid chromatography, (3R, 5S) -7- {2-cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl} -3,5-dihydroxyhept The optical purity of isopropyl-6-enoate was 73% ee and 97% de.
[0045]
Reference Example 3 (Synthesis of 7- {2-cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl} -3,5-dihydroxyhept-6-enoic acid (mixture of optical isomers))
7- {2-Cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl} -3,5 synthesized in Reference Example 2 was added to a 50 ml internal flask equipped with a stirrer, a thermometer and a dropping funnel. -Addition of 4.63 g (10.0 mmol) of isopropyl dihydroxyhept-6-enoate (optical isomer mixture), 10 ml of methanol and 12 ml (12.0 mmol) of 1 mol / l aqueous sodium hydroxide solution, and reaction at room temperature for 1 hour It was. After completion of the reaction, 1 mol / l hydrochloric acid was added to adjust the pH of the reaction solution to 3.5. Subsequently, after extracting twice with 10 ml of ethyl acetate, the organic layer was separated and dried over anhydrous magnesium sulfate. After filtration, the filtrate was concentrated under reduced pressure and 7- {2-cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl} -3,5-dihydroxyhept-6-ene as a pale yellow oil. 4.21 g of acid (optical isomer mixture) was obtained (isolation yield: 100%).
[0046]
Example 1 (first step: 7- {2-cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl} -3,5-dihydroxyhept-6-enoic acid benzylamine salt (optical isomer) Synthesis of mixture)
7- {2-Cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl} -3,5-dihydroxy obtained in Reference Example 3 was added to a 50-ml flask equipped with a stirrer and a thermometer. When 4.21 g (10.0 mmol) of hept-6-enoic acid (a mixture of optical isomers), 1.07 g (10.ommol) of benzylamine and 30 ml of ethyl acetate are added and cooled to 0 ° C. with stirring, crystals are precipitated. I came. The crystals were filtered, washed with 15 ml of ethyl acetate cooled to 0 ° C. and then dried under reduced pressure to give 7- {2-cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl} -3 as colorless crystals. , 5-dihydroxyhept-6-enoic acid benzylamine salt (optical isomer mixture) 5.01 g was obtained (isolation yield: 94.9%).
[0047]
Example 2 (second step: benzyl (3R, 5S) -7- {2-cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl} -3,5-dihydroxyhept-6-enoate Synthesis of amine salt)
7- {2-Cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl} -3,5-dihydroxy obtained in Example 1 was placed in a 100-ml flask equipped with a stirrer and a thermometer. 4.22 g (8.00 mmol) of hept-6-enoic acid benzylamine salt (optical isomer mixture) and 84 ml of tetrahydrofuran were added, and the mixture was heated to 50 ° C. with stirring to obtain a homogeneous solution. Next, when the reaction solution was cooled to 0 ° C., crystals were precipitated, and the crystals were filtered and washed with 42 ml of tetrahydrofuran cooled to 0 ° C. This crystallization operation was repeated twice. The obtained crystals were dried under reduced pressure to give (3R, 5S) -7- {2-cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl} -3,5-dihydroxyhept as colorless crystals. 2.52 g of -6-enoic acid benzylamine salt was obtained (isolation yield: 60.0%).
In addition, (3R, 5S) -7- {2-cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl} -3,5-dihydroxyhept-6-enoic acid benzylamine salt is It is a novel compound represented by physical property values.
[0048]
Melting point: 118-120 ° C
1 H-NMR (CD 3 OD, δ (ppm)); 1.04 to 1.07 (2H, m), 1.25 to 1.28 (2H, m), 1.28 to 1.33 (1H, m), 1.51 ˜1.56 (1H, m), 2.23 to 2.29 (2H, m), 2.51 to 2.55 (1H, m), 3.76 to 3.80 (1H, m), 4 .25 to 4.29 (1H, m), 5.66 (1H, dd, J = 6.3, 15.9 Hz), 6.62 (1H, dd, J = 1.2, 15.9 Hz), 7.24-7.40 (4H, m), 7.40-7.44 (2H, m), 7.44-7.49 (5H, m), 7.58-7.61 (1H, m) ), 7.91 (1H, d, J = 8.1 Hz)
[0049]
Example 3 (third step: (3R, 5S) -7- {2-cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl} -3,5-dihydroxyhept-6-enoic acid Synthesis)
(3R, 5S) -7- {2-cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl} -3, obtained in Example 2, was added to a flask with an internal volume of 50 ml equipped with a stirrer. 2.11 g (4.00 mmol) of 5-dihydroxyhept-6-enoic acid benzylamine salt and 10 ml of methanol were added. Thereafter, 1 mol / l hydrochloric acid was added to adjust the pH of the reaction solution to 3.5. Subsequently, after extracting twice with 10 ml of ethyl acetate, the organic layer was separated and dried over anhydrous magnesium sulfate. After filtration, the filtrate was concentrated under reduced pressure to give (3R, 5S) -7- {2-cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl} -3,5-dihydroxyhe as a colorless oil. 1.66 g of pt-6-enoic acid was obtained (isolation yield: 99.0%).
[0050]
Reference Example 4 (Synthesis of (4R, 6S) -6- [2- {2-cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl} ethenyl] -4-hydroxytetrahydropyran-2-one)
(3R, 5S) -7- {2-cyclopropyl-4- (4-) obtained in Example 3 was placed in a 20-ml flask equipped with a stirrer, thermometer, reflux condenser and Dean-Stark apparatus. Fluorophenyl) quinolin-3-yl} -3,5-dihydroxyhept-6-enoic acid (1.26 g, 3.00 mmol) and toluene (5 ml) were added, and the water formed was removed at 90 to 110 ° C. while removing 2 Reacted for hours. After completion of the reaction, the reaction mixture was cooled to room temperature and concentrated under reduced pressure to dry the solid, and (4R, 6S) -6- [2- {2-cyclopropyl-4- (4-fluorophenyl) was obtained as colorless crystals. ) Quinolin-3-yl} ethenyl] -4-hydroxytetrahydropyran-2-one was obtained (isolated yield: 100%).
In addition, when this compound was analyzed by high performance liquid chromatography, (4R, 6S) -6- [2- {2-cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl} ethenyl] -4- The optical purity of hydroxytetrahydropyran-2-one was 99% ee or more and 99% de or more.
[0051]
Example 4 (first step: 7- {2-cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl} -3,5-dihydroxyhept-6-enoic acid dicyclohexylamine salt (optical isomer) Synthesis of mixture)
7- {2-Cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl} -3 obtained in the same manner as in Reference Example 3 in a 50-ml flask equipped with a stirrer and a thermometer , 5-dihydroxyhept-6-enoic acid (optical isomer mixture) 4.21 g (10.0 mmol), dicyclohexylamine 1.81 g (10.0 mmol) and ethyl acetate 30 ml were added, and the mixture was cooled to 0 ° C. with stirring. Then crystals began to precipitate. The crystals were filtered, washed with 15 ml of ethyl acetate cooled to 0 ° C. and then dried under reduced pressure to give 7- {2-cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl} -3 as colorless crystals. , 5-dihydroxyhept-6-enoic acid dicyclohexylamine salt (optical isomer mixture) 5.66 g was obtained (isolation yield: 94.0%).
[0052]
Example 5 (second step: (3R, 5S) -7- {2-cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl} -3,5-dihydroxyhept-6-enoic acid dicyclohexyl Synthesis of amine salt)
7- {2-Cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl} -3,5-dihydroxy obtained in Example 4 was placed in a 100-ml flask equipped with a stirrer and a thermometer. 4.81 g (8.00 mmol) of hept-6-enoic acid dicyclohexylamine salt (optical isomer mixture) and 72 ml of tetrahydrofuran were added, and the mixture was heated to 50 ° C. with stirring to obtain a homogeneous solution. Next, when the reaction solution was cooled to 0 ° C., crystals began to precipitate, and the crystals were filtered and washed with 36 ml of tetrahydrofuran cooled to 0 ° C. This crystallization operation was repeated three times. The obtained crystals were dried under reduced pressure to give (3R, 5S) -7- {2-cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl} -3,5-dihydroxyhept as colorless crystals. 2.50 g of 6-enoic acid dicyclohexylamine salt was obtained (isolation yield: 51.9%).
In addition, (3R, 5S) -7- {2-cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl} -3,5-dihydroxyhept-6-enoic acid dicyclohexylamine salt is: It is a novel compound represented by physical property values.
[0053]
Melting point: 154-156 ° C
1 H-NMR (CD 3 OD, δ (ppm)); 1.04 to 1.07 (2H, m), 1.07 to 1.48 (6H, m), 1.51 to 1.61 (2H, m), 1.61 ˜1.75 (2H, m), 1.75 to 1.93 (4H, m), 1.93 to 2.20 (4H, m), 2.20 to 2.30 (2H, m), 2 .49 to 2.52 (1H, m), 3.12 to 3.20 (2H, m), 3.68 to 3.82 (1H, m), 4.20 to 4.31 (1H, m) 5.66 (1H, dd, J = 6.3, 15.6 Hz), 6.62 (1H, dd, J = 1.2, 15.6 Hz), 7.30-7.34 (4H, m ), 7.34 to 7.39 (2H, m), 7.55 to 7.68 (1H, m), 7.91 (1H, d, J = 8.4 Hz)
[0054]
Example 6 (third step: (3R, 5S) -7- {2-cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl} -3,5-dihydroxyhept-6-enoic acid Synthesis)
(3R, 5S) -7- {2-cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl} -3, obtained in Example 5, was added to a 50-ml flask equipped with a stirrer. 2.41 g (4.00 mmol) of 5-dihydroxyhept-6-enoic acid benzylamine salt and 10 ml of methanol were added. Thereafter, 1 mol / l hydrochloric acid was added to adjust the pH of the reaction solution to 3.5. Subsequently, after extracting twice with 10 ml of ethyl acetate, the organic layer was separated and dried over anhydrous magnesium sulfate. After filtration, the filtrate was concentrated under reduced pressure to give (3R, 5S) -7- {2-cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl} -3,5-dihydroxyhe as a colorless oil. 1.64 g of pt-6-enoic acid was obtained (isolation yield: 97.5%).
[0055]
Reference Example 5 (Synthesis of (4R, 6S) -6- [2- {2-cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl} ethenyl] -4-hydroxytetrahydropyran-2-one)
(3R, 5S) -7- {2-cyclopropyl-4- (4-) obtained in Example 6 was placed in a 20-ml flask equipped with a stirrer, thermometer, reflux condenser and Dean-Stark apparatus. Fluorophenyl) quinolin-3-yl} -3,5-dihydroxyhept-6-enoic acid (1.26 g, 3.00 mmol) and toluene (5 ml) were added, and the water formed was removed at 90 to 110 ° C. while removing 2 Reacted for hours. After completion of the reaction, the reaction mixture was cooled to room temperature and concentrated under reduced pressure to dry the solid, and (4R, 6S) -6- [2- {2-cyclopropyl-4- (4-fluorophenyl) was obtained as colorless crystals. ) Quinolin-3-yl} ethenyl] -4-hydroxytetrahydropyran-2-one 1.20 g (isolation yield: 99.3%).
In addition, when this compound was analyzed by high performance liquid chromatography, (4R, 6S) -6- [2- {2-cyclopropyl-4- (4-fluorophenyl) quinolin-3-yl} ethenyl] -4- The optical purity of hydroxytetrahydropyran-2-one was 99% ee or more and 99% de or more.
[0056]
【The invention's effect】
According to the present invention, industrially suitable (3R, 5S) -7-substituted-3,5-dihydroxyhept-6-enoic acid, in particular (3R, 5S) -7- {2-cyclopropyl-4- A method for producing (4-fluorophenyl) quinolin-3-yl} -3,5-dihydroxyhept-6-enoic acid can be provided.
Claims (2)
で示されるアキラルなアミンを反応させて、一般式(3)
で示される7−置換−3,5−ジヒドロキシヘプト−6−エン酸のアキラルなアミン塩(光学異性体混合物)を生成させる第一工程、
(B)次いで、7−置換−3,5−ジヒドロキシヘプト−6−エン酸のアキラルなアミン塩(光学異性体混合物)を溶媒中で晶析させて、一般式(4)
で示される(3R,5S)−7−置換−3,5−ジヒドロキシヘプト−6−エン酸のアキラルなアミン塩を選択的に得る第二工程、
(C)更に、(3R,5S)−7−置換−3,5−ジヒドロキシヘプト−6−エン酸のアキラルなアミン塩を酸性化して、式(5)
Is reacted with an achiral amine represented by the general formula (3)
A first step of producing an achiral amine salt (a mixture of optical isomers) of 7-substituted-3,5-dihydroxyhept-6-enoic acid represented by
(B) Then, an achiral amine salt (optical isomer mixture) of 7-substituted-3,5-dihydroxyhept-6-enoic acid is crystallized in a solvent to obtain a compound represented by the general formula (4)
A second step of selectively obtaining an achiral amine salt of (3R, 5S) -7-substituted-3,5-dihydroxyhept-6-enoic acid represented by
(C) Further, the achiral amine salt of (3R, 5S) -7-substituted-3,5-dihydroxyhept-6-enoic acid is acidified to give a compound of formula (5)
で示される(3R,5S)−7−置換−3,5−ジヒドロキシヘプト−6−エン酸のアキラルなアミン塩。General formula (4)
An achiral amine salt of (3R, 5S) -7-substituted-3,5-dihydroxyhept-6-enoic acid represented by
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001145358A JP4783998B2 (en) | 2001-05-15 | 2001-05-15 | Preparation of (3R, 5S) -7-substituted-3,5-dihydroxyhept-6-enoic acid |
PCT/JP2002/004710 WO2002092570A1 (en) | 2001-05-15 | 2002-05-15 | Process for producing (3r,5s)-7-substituted-3,5-dihydroxyhept-6-enoic acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001145358A JP4783998B2 (en) | 2001-05-15 | 2001-05-15 | Preparation of (3R, 5S) -7-substituted-3,5-dihydroxyhept-6-enoic acid |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011100693A Division JP2011173912A (en) | 2011-04-28 | 2011-04-28 | Method for producing (3r, 5s)-7-substituted-3,5-dihydroxyhept-6-enoic acid |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005047803A true JP2005047803A (en) | 2005-02-24 |
JP4783998B2 JP4783998B2 (en) | 2011-09-28 |
Family
ID=18991184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001145358A Expired - Lifetime JP4783998B2 (en) | 2001-05-15 | 2001-05-15 | Preparation of (3R, 5S) -7-substituted-3,5-dihydroxyhept-6-enoic acid |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4783998B2 (en) |
WO (1) | WO2002092570A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007132482A2 (en) * | 2006-05-17 | 2007-11-22 | Manne Satyanarayana Reddy | Novel process for the preparation of pitavastatin and its pharmaceutically acceptable salts |
JP5533654B2 (en) * | 2008-09-05 | 2014-06-25 | 日産化学工業株式会社 | Method for producing 3,5-dihydroxy-6-heptenoic acid amine salt |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8455640B2 (en) | 2006-05-03 | 2013-06-04 | Msn Laboratories Limited | Process for statins and its pharmaceutically acceptable salts thereof |
EP2086945B1 (en) | 2006-10-09 | 2016-01-06 | MSN Laboratories Private Limited | Novel process for the preparation of statins and their pharmaceutically acceptable salts thereof |
WO2010089770A2 (en) * | 2009-01-19 | 2010-08-12 | Msn Laboratories Limited | Improved process for the preparation of highly pure (3r,5s)-7-[2-cyclopropyl-4-(4-fluorophenyl) quinolin-3-yl]-3,5-dihydroxy-6(e)-heptenoic acid and pharmaceutically acceptable salts thereof |
WO2011086584A2 (en) | 2010-01-18 | 2011-07-21 | Msn Laboratories Limited | Improved process for the preparation of amide intermediates and their use thereof |
CN102477032B (en) * | 2010-11-26 | 2015-04-01 | 上海医药工业研究院 | 2-cyclopropyl-4-substituted-phenoxy-quinoline derivatives, and its preparation method, intermediate and application |
CN102816114B (en) * | 2011-06-09 | 2014-01-29 | 上海京新生物医药有限公司 | Preparation method of HMG-CoA reductase inhibitor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS593470B2 (en) * | 1975-11-08 | 1984-01-24 | ノヒラ ヒロユキ | N-benzoyl-cis-2-aminocyclohexanecarbonanno |
JPH01175956A (en) * | 1988-01-04 | 1989-07-12 | Muraki Buhin Kk | Purification of optically pure 3-hydroxy acids |
JPH05148237A (en) * | 1991-06-24 | 1993-06-15 | Nissan Chem Ind Ltd | Diastereomer salt of optically active quinoline mevalonic acid |
-
2001
- 2001-05-15 JP JP2001145358A patent/JP4783998B2/en not_active Expired - Lifetime
-
2002
- 2002-05-15 WO PCT/JP2002/004710 patent/WO2002092570A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS593470B2 (en) * | 1975-11-08 | 1984-01-24 | ノヒラ ヒロユキ | N-benzoyl-cis-2-aminocyclohexanecarbonanno |
JPH01175956A (en) * | 1988-01-04 | 1989-07-12 | Muraki Buhin Kk | Purification of optically pure 3-hydroxy acids |
JPH05148237A (en) * | 1991-06-24 | 1993-06-15 | Nissan Chem Ind Ltd | Diastereomer salt of optically active quinoline mevalonic acid |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007132482A2 (en) * | 2006-05-17 | 2007-11-22 | Manne Satyanarayana Reddy | Novel process for the preparation of pitavastatin and its pharmaceutically acceptable salts |
WO2007132482A3 (en) * | 2006-05-17 | 2008-04-10 | Reddy Manne Satyanarayana | Novel process for the preparation of pitavastatin and its pharmaceutically acceptable salts |
JP5533654B2 (en) * | 2008-09-05 | 2014-06-25 | 日産化学工業株式会社 | Method for producing 3,5-dihydroxy-6-heptenoic acid amine salt |
Also Published As
Publication number | Publication date |
---|---|
WO2002092570A1 (en) | 2002-11-21 |
JP4783998B2 (en) | 2011-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EA023266B1 (en) | Synthesis routes to 2(s),4(s),5(s),7(s)-2,7-dialkyl-4-hydroxy-5-amino-8-aryl-octanoyl amides | |
JP2005047803A (en) | Method for producing (3r,5s)-7-substituted-3,5-dihydroxyhept-6-enoic acid | |
JP2011178787A (en) | Process for producing 4-substituted or unsubstituted tetrahydropyran-4-carboxylic acid compound or ester compound thereof | |
JP5644917B2 (en) | Process for producing 3- (4-tetrahydropyranyl) -3-oxopropanoic acid alkyl compound and 4-acyltetrahydropyran | |
KR101063146B1 (en) | Method for preparing pitavastatin intermediate and method for preparing pitavastatin hemicalcium salt | |
EP1375487B1 (en) | Process for producing quinoline-3-carboxylic acid compounds | |
JP4496586B2 (en) | Process for producing quinolylacrylonitrile and its intermediate | |
JP4318031B2 (en) | Process for producing quinoline carbaldehyde | |
JPWO2014051077A1 (en) | Method for producing high purity nitrogen-containing heterocyclic compound | |
JP4734974B2 (en) | 2- (4-Cyanotetrahydropyran-4-yl) -2-oxoacetic acid ester and process for producing the same | |
JP6231262B2 (en) | Method for producing a precursor of pitavastatin calcium | |
JP2011173912A (en) | Method for producing (3r, 5s)-7-substituted-3,5-dihydroxyhept-6-enoic acid | |
KR102060318B1 (en) | Novel intermediate, processes for preparing the same, and processes for preparing rosuvastatin calcium salt using the same | |
JP5205971B2 (en) | Method for producing tetrahydropyran compound | |
JP3529425B2 (en) | Method for producing (S) -3-lower alkyl-2-piperazinone | |
RU2412154C1 (en) | Method for synthesis of ethyl ethers of 2-alkyl-4-aryl-3-oxobutanoic acids | |
JP4399996B2 (en) | Method for producing 3-oxonitriles | |
JP4561635B2 (en) | Process for producing 4-alkoxycarbonyltetrahydropyran or tetrahydropyranyl-4-carboxylic acid | |
JP5034277B2 (en) | Of 3- (N-acylamino) -3- (4-tetrahydropyranyl) -2-oxopropanoic acid ester and 3- (N-acylamino) -3- (4-tetrahydropyranyl) -2-oxopropanohydrazide Production method | |
JP4513517B2 (en) | 3- (N-acylamino) -2-acyloxy-3- (4-tetrahydropyranyl) -2-propenoic acid ester and process for producing the same | |
JP2005255523A (en) | Method for producing (3r,5s)-7-substituted-3,5-dihydroxyhept-6-enoic acid ester | |
JP2006137693A (en) | Carboxylate of 2-acyloxy-3-(4-tetrahydropyranyl)-3-amino-2-propenoate and its production method | |
JP2005255522A (en) | Method for producing (3r,5s)-7-substituted-3,5-dihydroxyhept-6-enoic acid ester | |
WO2003027073A1 (en) | Process for producing optically active 7-{2-cyclopropyl-4-(4-fluorophenyl)quinolin-3-yl}-3,5-dihydroxyhept-6-enoic acid ester | |
JP2004026652A (en) | beta-ALKOXYACRYLONITRILE DERIVATIVE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100427 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100601 |
|
RD13 | Notification of appointment of power of sub attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7433 Effective date: 20100601 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20100601 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100625 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110201 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110428 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20110524 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110614 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110627 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4783998 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140722 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140722 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20210722 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |