JP2005047720A - Method and apparatus for cooling rough form of bottle-making machine - Google Patents

Method and apparatus for cooling rough form of bottle-making machine Download PDF

Info

Publication number
JP2005047720A
JP2005047720A JP2003202930A JP2003202930A JP2005047720A JP 2005047720 A JP2005047720 A JP 2005047720A JP 2003202930 A JP2003202930 A JP 2003202930A JP 2003202930 A JP2003202930 A JP 2003202930A JP 2005047720 A JP2005047720 A JP 2005047720A
Authority
JP
Japan
Prior art keywords
rough
cooling
ventilation
mold
bottle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003202930A
Other languages
Japanese (ja)
Other versions
JP4109163B2 (en
Inventor
Kazuhiro Yoshizawa
一恕 吉澤
Akira Sakuma
朗 佐久間
Masanori Okamoto
正則 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Yamamura Glass Co Ltd
Original Assignee
Nihon Yamamura Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Yamamura Glass Co Ltd filed Critical Nihon Yamamura Glass Co Ltd
Priority to JP2003202930A priority Critical patent/JP4109163B2/en
Publication of JP2005047720A publication Critical patent/JP2005047720A/en
Application granted granted Critical
Publication of JP4109163B2 publication Critical patent/JP4109163B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B9/00Blowing glass; Production of hollow glass articles
    • C03B9/30Details of blowing glass; Use of materials for the moulds
    • C03B9/38Means for cooling, heating, or insulating glass-blowing machines or for cooling the glass moulded by the machine
    • C03B9/3866Details thereof relating to bottom moulds, e.g. baffles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B9/00Blowing glass; Production of hollow glass articles
    • C03B9/30Details of blowing glass; Use of materials for the moulds
    • C03B9/38Means for cooling, heating, or insulating glass-blowing machines or for cooling the glass moulded by the machine
    • C03B9/3875Details thereof relating to the side-wall, body or main part of the moulds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent forming defects by optionally controlling the temperature distribution in the peripheral direction of a rough form. <P>SOLUTION: In order to cool a rough form 1 in its forming by vertically ventilating at a plurality of points along the peripheral direction, the rough form is thermally divided into a plurality of regions along the peripheral direction by heat insulation parts 22 and each of the divided regions 231, 232, 233, ... is independently cooled. Thus, the above purpose is achieved. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、製びん機の粗型冷却方法とその装置に関し、詳しくは、成形中の粗型につき、その周方向複数箇所で縦向きの通風を図って冷却する製びん機の粗型冷却方法とその装置に関するものである。
【0002】
【従来の技術】
本発明の実施例を示す図1を参照して、粗型1はその上端の投入口1aを通じ、軟化した高温なガラス塊である図に破線で示すようなゴブ2の投入を受ける。投入されたゴブ2は投入口1aをバッフル4にて閉じた後プランジャ3による口型を通じたプレスか、粗型1のポケット5に抱き込まれる口型を通じたブローかによって図に仮想線で示すような所定の側周形状を持ったパリソン6に成形する。成形した倒立状態のパリソン6はバッフル4の離脱、退避と、粗型1の開放後に、口型の図に矢印Aで示す方向への180°の反転によって図示しない仕上げ型側にインバートして正立状態とし、仕上げ型の閉じ、口型の離脱、退避後、ブローして仕上げ成形する。
【0003】
粗型1で連続して成形されるパリソン6は、常に仕上げ型側で必要な成形性、つまり柔軟性を持ちながらも、前記インバートに耐える保形性が得られる程度に成形されている必要がある。そのため、高温なガラス塊であるゴブ2の投入を連続して受けて昇温する粗型1を冷却し、所定の温度に保つ必要がある。
【0004】
そこで、本発明の実施例を示す図2を参照して、粗型1におけるパリソン6の側周面を成形する姿面1bの外まわり複数箇所に設けた孔や縦向きのフィンなどによる通風路7を通じ、図1に矢印Bで示すような縦向きの通風を図って粗型1を冷却し、パリソン6が所定の冷却を外まわりから冷却することが古くから行われている。
【0005】
しかし、粗型1の外まわりへの放熱環境は周方向に一定しない。例えば、粗型1が図2に示すように隣接し合う側ではそうでない側よりも放熱しにくい。また、粗型1の形状や肉厚の違い、冷却空気の排気流による雰囲気状態の違いなどが影響する。このような粗型1の温度むらはパリソン6の温度むらとなり、仕上げ成形時の延びむらや偏肉などによる形状や肉厚の異常となって品質を損なう。
【0006】
これに対応するのに、図2に示すように周方向に均等な大きさおよび配列で形成した通風路7のうちの、粗型1が隣接しない側の通風路7に対して通風規制管8を挿入する対策が考えられる。この通風規制管8は、図1、図2に示すプレナムチャンバ9から供給する冷却空気の各通風路7への図1に矢印Bで示す通風を、粗型1の降温しやすい側で規制し制限する。これにより、粗型1の周方向の温度むらおよびそれによる成形異常が軽減され、成形びんの歩留まりが向上した。
【0007】
一方、プレナムチャンバ9から各通風路7に供給する冷却空気の風量および風圧を、図2に示す複数の通風経路9aごとに図示しない個別のダンパーにて個別に調整し対応することも知られている(例えば、特許文献1参照。)。
【0008】
【特許文献1】
特開平3−228833号公報
【0009】
【発明が解決しようとする課題】
しかし、上記従来のような対応では成形不良に十分対応し切れていないのが現状である。図4(a)に示す仕上げ成形後のびん11のような極端な偏肉がときとして生じる。また、このような偏肉のあるびん11では図4(b)に示すバッフルマーク11aのように、パリソン6を成形したときにはそれに同心な真円であったはずのものが仕上げ成形したびん11では変形し、また偏心していることが多々ある。これは、パリソン6からびん11への仕上げ成形時に偏肉することを示しているし、図4(a)のように偏肉がびん11の下半部に生じていることも含め、場合によっては粗型1から仕上げ型へのインバート時の遠心力でパリソン6の底部側が口型に対してスイング径の外側に向け偏心する影響も認められる。
【0010】
これにつき、本発明者が種々に実験をし、研究を重ねたところ、前記従来方式による周方向での個別な冷却調整は粗型1に思うように反映せず、粗型1の周方向での温度むらを現状以上に改善するには限界があった。これは、粗型1の内部での熱移動を制御し切れていないのが原因していると思われ、粗型1の成形特性やパリソン6、びん11の被成形特性に対応した的確な温度分布を設定し、管理することは到底困難である。
【0011】
本発明の目的は、このような新たな知見に基づき、粗型の周方向の温度分布を的確に管理して成形不良を防止できる製びん機の粗型冷却方法とその装置を提供することにある。
【0012】
【課題を解決するための手段】
上記のような目的を達成するために、本発明の製びん機の粗型冷却方法は、成形中の粗型につき、その周方向複数箇所で縦向きの通風を図って冷却する製びん機の粗型冷却方法において、粗型を断熱部により周方向複数に熱的に分断し、各分断域ごとに独立した冷却を行うことを1つの特徴としている。
【0013】
このような構成では、成形中の粗型につき、その周方向複数箇所で縦向きの通風を図って冷却するのに、粗型を断熱部により周方向複数に熱的に分断することで、粗型の周方向での各分断域間の熱移動を制限し、この互いの熱移動を制限した粗型の各分断域ごとに前記縦向きの通風により独立して冷却することで、粗型の周方向での温度分布を各分断域単位にて設定、管理し、周方向の温度むらを所望な程度に抑えたり、あるいは逆に、粗型の成形特性、パリソンやびんの被成形特性に合わせて部分的な延びの促進や、抑制を図るための温度差を所望な程度に与えたりすることが的確にでき、種々な成形不良に十分に対応することができる。
【0014】
このような方法を達成する製びん機の粗型冷却装置としては、粗型の周方向複数箇所に縦向きの通風を図って冷却する通風路を設けた製びん機の粗型冷却装置において、粗型を周方向複数の分断域に熱的に分断する断熱部と、各分断域ごとに独立した冷却を行う通風手段と、を備えたことを1つの特徴とするもので足りる。
【0015】
この通風手段が、各分断域単位の通風路ごとに独立した通風経路を有している、さらなる構成では、
各分断域単位の通風路ごとに、独立した通風経路をもって通風を図ることにより、各分断域単位の冷却を独立して行うことができる。
【0016】
本発明の製びん機の粗型冷却方法は、また、成形中の粗型につき、その周方向複数箇所で縦向きの通風を図って冷却する製びん機の粗型冷却方法において、粗型を断熱部により周方向複数に熱的に分断し、各分断域ごとに所定の条件での冷却を行うことを他の特徴としている。
【0017】
このような構成では、成形中の粗型につき、その周方向複数箇所で縦向きの通風を図って冷却するのに、粗型を断熱部により周方向複数に熱的に分断することで、粗型の周方向での各分断域間の熱移動を制限し、この互いの熱移動を制限した粗型の各分断域ごとに前記縦向きの通風による所定の条件、つまり、個々に異なった、あるいは、ある分断域どうしでは異なり、ある分断域どうしでは同じな冷却を行うといったことで、粗型の周方向での温度分布を各分断域単位にて設定、管理し、周方向の温度むらを所望な程度に抑えたり、あるいは逆に、粗型の成形特性、パリソンやびんの被成形特性に合わせて部分的な延びの促進や、抑制を図るための温度差を所望な程度に与えたりすることが随意にでき、種々な成形不良に十分に対応することができる。
【0018】
このような方法を達成する製びん機の粗型冷却装置としては、粗型の周方向複数箇所に縦向きの通風を図って冷却する冷却孔を設けた製びん機の粗型冷却装置において、粗型を周方向複数の分断域に熱的に分断する断熱部と、各分断域ごとに所定の条件での冷却を行う通風手段と、を備えたことを他の特徴とするもので足りる。
【0019】
この通風手段が、通風路の通路断面積、配列ピッチ、配列数の少なくとも1つを、分断域ごとの通風路の少なくとも1つにつき異ならせる、さらなる構成では、
分断域ごとの通風路の少なくとも1つにつき、通風路の通路断面積、配列ピッチ、配列数の少なくとも1つを異ならせるだけで、各分断域における通風条件につき、個々に異なった、あるいは、ある分断域どうしでは異なり、ある分断域どうしでは同じにするといった通風条件の異同による所定の冷却が行える。
【0020】
断熱部が粗型の側周から内側に切り込んだスリットである、さらなる構成では、
スリットは粗型の側周から内側に切り込むだけで、粗型の金属部分が連続した熱伝導を断つばかりでなく、空気を抱き込んで断熱作用を発揮させるので、粗型を周方向に熱的に分断する断熱部として十分に機能する。
【0021】
スリットには縦向きの通風を遮断する通風遮断部を有している、さらなる構成では、
スリットでの縦向きの通風を通風遮断部によって遮断すると、スリットに抱き込む空気が、冷却空気の排気などによる雰囲気の流れに押し動かされて、対流による熱伝導作用を営むようなことを防止し、スリットによる熱的分断を安定させられる。
【0022】
スリットが円盤カッタによる切込みものである、さらなる構成では、
スリットが円盤カッタの切込みによるものであることにより、粗型の縦方向の限られた途中部分にスリットを設けやすい。また、切込み方向への直径線上に切込みの最深部を持ち、その上下両側に徐々に浅くなる部分を持った底部形状が、カッタの単純な一直線の切込みによって得られ、粗型のバッフル側およびバッフルによる微妙な冷却、温度調節、口型側および口型による微妙な冷却、温度調節に、スリットによる熱的分断作用が影響するのを必要に応じて軽減し、また防止することが、簡単に実現する。
【0023】
スリットの最深部が成形物の底部寄りに位置している、さらなる構成では、
既述したようなびんの底部側での偏肉に優先的に対応しやすいし、細口びんの成形における首部側の冷却を抑えて仕上げ成形時に必要な大きな径や形状の変化に対応させやすくなる。
【0024】
本発明のそれ以上の目的および特徴は、以下の詳細な説明および図面によって明らかになる。本発明の各特徴は、それ単独で、あるいは可能な限りにおいて種々な組合せで複合して採用することができる。
【0025】
【実施例】
以下、本発明に係る製びん機の粗型冷却方法とその装置の実施例について図1〜図3を参照しながら説明し、本発明の理解に供する。なお、以下の説明および図示は、本発明の具体例であって、特許請求の範囲における記載の内容を限定するものではない。
【0026】
本実施例の粗型冷却方法は、図1〜図3に示し、既述した粗型1に対して冷却を行うものであり、製びん機の粗型1、プランジャ3、バッフル4、および粗型1のポケット5に抱き込まれる口型からなる粗型装置21において、成形中の粗型1につき、その周方向複数箇所で図1に矢印Bで示すような冷却空気による縦向きの通風を図って冷却する。この冷却に際し、粗型1を図1、図2に示すような断熱部22により周方向複数に熱的に分断し、各分断域231、232、233・・ごとに独立した、または、所定の冷却を行う。
【0027】
このように成形中の粗型1につき、その周方向複数箇所で縦向きの通風を図って冷却するのに、粗型1を断熱部22により周方向複数に熱的に分断することで、粗型1の周方向での各分断域231、232、233・・間の熱移動を制限することができる。このように互いの熱移動を制限した粗型1の各分断域231、232、233・・ごとに、前記縦向きの通風により独立して冷却することで、あるいは、前記縦向きの通風による所定の条件、つまり、個々に異なった、あるいは、ある分断域どうしでは異なり、ある分断域どうしでは同じな冷却を行うといったことで、粗型1の周方向での温度分布を各分断域単位にて設定、管理することができる。この結果、周方向の温度むらを所望な程度に抑えたり、あるいは逆に、粗型1の成形特性、パリソン6やびん11の被成形特性に合わせて部分的な延びや変形の促進、あるいは抑制を図るための温度差を所望な程度に与えたりすることが随意に、的確にでき、種々な成形不良に十分に対応し、成形不良を防止することができる。
【0028】
ところで、粗型1の温度分布とびん11の成形不良との相関性は捉えにくく、不明なこともある。そこで、実際の条件設定は多くの場合、粗型1、びん11のサイズや種類の違いに応じて試験的な成形を繰り返しながら条件設定をしていくことになる。しかし、粗型1の周方向に熱的に分断した各分断域231、232、233・・ごとに独立した冷却、あるいは所定の冷却を行うことで、冷却操作の違いがびん11の成形に明瞭に反映するので、従来の試行錯誤に比べ容易かつ短時間で的確に対応することができる。従って、条件設定後の歩留まりは格段に向上する。
【0029】
ここで、断熱部22は粗型1を周方向に熱的に分断するもので、図1に粗型1との境界ラインを示し、図2に平面的に示しているように、粗型1の軸線24まわりに放射状に設ければよく、また、縦向きに真っ直ぐに設ければよいので、粗型1の側周から内側に切り込んだスリット22aやそれを埋める断熱材などとして簡単に設けられる。
【0030】
スリット22aは粗型1の側周から内側に切り込むだけで、粗型1の金属による連続した熱伝導を断つばかりでなく、空気を抱き込んで断熱作用を発揮させるので、粗型1を周方向に熱的に分断する断熱部22として十分に機能する。このようなスリット22aなどによる断熱部22は、粗型1を個別に熱管理したい単位に分断するように設ければよく、図示する場合、2つ割となっている一対の粗型1、1の双方につき、それらの合わせ面25を境にして対称となり、各粗型1において合わせ面25に直交する中心線26を境に対称となる、図2に示すような2箇所ずつに設け、各粗型1を3つずつの分断域231、232、233に分断している。しかし、これに限られることはなく、2つに分断したり、あるいは4つ以上に分断したり、一対の粗型1、1によって分断数や分断位置が異なったり、1つの粗型において分断位置が対称でなかったり、幅、深さ、粗型1との境界形状などに違いがあったりしてもよい。断熱材を用いる場合はさらに材質を異ならせることもできる。
【0031】
図1、図2に示すスリット22aには縦向きの通風を遮断する通風遮断部22bを設けてある。具体的には、スリット22aの粗型1上面への開放部を金属板、あるいは断熱材で閉じ、スリット22aでの縦向きの通風を通風遮断部22bによって遮断するようにしている。これにより、スリット22aに抱き込む空気が、冷却空気の排気などによる雰囲気の流れに押し動かされて、対流による熱伝導作用を営むようなことを防止することができ、スリット22aによる熱的分断性を安定させられる。しかし、通風遮断部22bはスリット22aの途中などどの部分にあってもよいし、複数設けることもできる。
【0032】
以上のような方法を達成する製びん機の粗型冷却装置31は、図1、図2に示し、既述したように、製びん機の粗型装置21における、粗型1の周方向複数箇所に縦向きの通風を図って冷却する通風路7を利用する。具体的には、粗型1を周方向複数の分断域231、232、233・・に熱的に分断する既述したような断熱部22に加え、各分断域231、232、233・・ごとに、それらの通風路7を用いながらも、独立した冷却を行う通風手段32a、あるいは前記縦向きの通風による所定の条件、つまり、個々に異なった、あるいは、ある分断域どうしでは異なり、ある分断域どうしでは同じ条件での冷却を行う通風手段32bを備えたものとする。
【0033】
ここで、通風手段32aは、図1、図2に示すように既述のプレナムチャンバ9による独立した冷却空気の通風構造を利用するなどして、分断域231の通風路7、分断域232の通風路7、分断域233の通風路7ごとに独立した通風経路9aを利用することにより、各分断域231、232、233・・の単位の通風路7ごとに独立した通風を図って、各分断域231、232、233・・単位の冷却を独立して行うことができる。つまり、独立した通風経路9aでの風量、風圧を特許文献1に記載されているように独立して調整し、粗型1の周方向での温度分布を各分断域231、232、233・・単位にて設定、管理することができる。
【0034】
また、通風手段32bは、図1、図2に示す既述の通風路7群を利用して、通風路7の通路断面積、配列ピッチ、配列数の少なくとも1つを、分断域231、232、233・・ごとの通風路7の少なくとも1つにつき異ならせることにより、各分断域231、232、233・・ごとの通風条件につき、個々に異なった、あるいは、ある分断域どうしでは異なり、ある分断域どうしでは同じにするといった設定をして、プレナムチャンバ9を通じた共通した冷却空気の供給によっても通風条件の異同に応じた所定の冷却が行える。つまり、粗型1の周方向での温度分布を各分断域231、232、233単位にて設定、管理することができる。
【0035】
これら通風手段32a、32bの双方を併用すると、よりきめ細かな冷却の調整ができるが、現実にはいずれか一方で十分である。図2に示す例では、通風路7は各分断域231、232、233につき同じ形状、大きさの孔を同じピッチで同じ数ずつ設け、他の粗型1と隣接しない側の分断域231の通風路7にだけ、それらの通路断面積を狭める通風規制管8を挿入してあり、歩留まりが向上した。
【0036】
図示する例では、スリット22aの切込みは仮想線で示す円盤カッタ30によるものとしてある。このように、スリット22aが円盤カッタ30の切込みによるものであることにより、図1に矢印Cで示す切込み方向への直径線32上に、切込みの最深部22cを持ち、その上下両側に徐々に浅くなる部分23dを持っている。このような底部形状は円盤カッタ30の矢印Cで示す単純な一直線の切込みによって得られ、粗型1の縦方向の限られた途中部分にスリット22aを設けやすいし、粗型1のバッフル4側およびバッフル4による微妙な冷却、温度調節、粗型1の口型側および口型による微妙な冷却、温度調節に、スリット22aによる熱的分断作用が影響するのを必要に応じて軽減し、また防止することが、簡単に実現する。
【0037】
本例では、特に、スリット22aの最深部22cが成形物であるパリソン6の底部寄りに位置している。これにより、既述したようなびん11の底部側での偏肉に優先的に対応しやすいし、細口びんの成形における首部側の冷却を抑えて仕上げ成形時に必要な大きな径や形状の変化に対応させやすくなる。
【0038】
【発明の効果】
本発明の1つの特徴の製びん機の粗型冷却方法と、その装置によれば、成形中の粗型につき、その周方向複数箇所で縦向きの通風を図って冷却するのに、粗型を断熱部により周方向複数に熱的に分断することで、粗型の周方向での各分断域間の熱移動を制限し、この互いの熱移動を制限した粗型の各分断域ごとに前記縦向きの通風により独立して冷却することで、粗型の周方向での温度分布を各分断域単位にて設定、管理し、周方向の温度むらを所望な程度に抑えたり、あるいは逆に、粗型の成形特性、パリソンやびんの被成形特性に合わせて部分的な延びの促進や、抑制を図るための温度差を所望な程度に与えたりすることが随意にでき、種々な成形不良を十分に防止することができる。
【0039】
本発明の他の特徴の製びん機の粗型冷却方法と、その装置によれば、成形中の粗型につき、その周方向複数箇所で縦向きの通風を図って冷却するのに、粗型を断熱部により周方向複数に熱的に分断することで、粗型の周方向での各分断域間の熱移動を制限し、この互いの熱移動を制限した粗型の各分断域ごとに前記縦向きの通風による所定の条件、つまり、個々に異なった、あるいは、ある分断域どうしでは異なり、ある分断域どうしでは同じな冷却を行うといったことで、粗型の周方向での温度分布を各分断域単位にて設定、管理し、周方向の温度むらを所望な程度に抑えたり、あるいは逆に、粗型の成形特性、パリソンやびんの被成形特性に合わせて部分的な延びの促進や、抑制を図るための温度差を所望な程度に与えたりすることが随意にでき、種々な成形不良を十分に防止することができる。
【図面の簡単な説明】
【図1】本発明に係る1つの実施例の製びん機の粗型冷却方法とその装置を示す粗型装置まわりの断面図である。
【図2】図1の粗型装置の一部平面図である。
【図3】図2に示す粗型装置の一部底面図である。
【図4】成形不良びんを示し、その(a)は断面図、その(b)は底面図である。
【符号の説明】
1 粗型
7 通風路
9 プレナムチャンバ
9a 通風経路
21 粗型装置
22 断熱部
22a スリット
22b 通風遮断部
30 円盤カッタ
31 粗型冷却装置
32a、32b 通風手段
[0001]
BACKGROUND OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rough cooling method and apparatus for a bottle making machine, and more particularly, to a rough cooling method for a bottle making machine that cools a rough die during molding by aiming longitudinal ventilation at a plurality of locations in the circumferential direction. And the device.
[0002]
[Prior art]
Referring to FIG. 1 showing an embodiment of the present invention, a rough mold 1 receives a gob 2 as shown by a broken line in a figure which is a softened high-temperature glass lump through a charging port 1a at its upper end. The inserted gob 2 is shown by phantom lines in the figure depending on whether the inlet 1a is closed by the baffle 4 and then pressed through the mouth mold by the plunger 3 or blown through the mouth mold held in the pocket 5 of the rough mold 1. The parison 6 having a predetermined peripheral shape is formed. The formed inverted parison 6 is inverted to the finish mold side (not shown) by reversing 180 ° in the direction indicated by the arrow A in the drawing of the mouth mold after the baffle 4 is detached and retracted and the rough mold 1 is opened. After standing up, closing the finish mold, detaching the mouth mold and retracting, blow and finish molding.
[0003]
The parison 6 that is continuously formed in the rough mold 1 must always be formed to such a degree as to obtain the shape retaining property that can withstand the invert while having the necessary formability on the finishing die side, that is, flexibility. is there. Therefore, it is necessary to cool the rough mold 1 that continuously receives the gob 2 that is a high-temperature glass lump and raise the temperature, and keep it at a predetermined temperature.
[0004]
Therefore, referring to FIG. 2 showing an embodiment of the present invention, the ventilation path 7 is formed by holes, vertical fins, and the like provided at a plurality of locations around the outer surface 1b of the rough mold 1 forming the side circumferential surface of the parison 6. Through this, it has been practiced for a long time that the rough mold 1 is cooled by the vertical ventilation as shown by the arrow B in FIG. 1 and the parison 6 cools the predetermined cooling from the outside.
[0005]
However, the heat radiation environment to the outside of the rough mold 1 is not constant in the circumferential direction. For example, as shown in FIG. 2, the rough mold 1 is less likely to dissipate heat on the adjacent side than on the other side. In addition, a difference in the shape and thickness of the rough mold 1, a difference in atmospheric state due to the exhaust air flow of cooling air, and the like are affected. The temperature unevenness of the rough mold 1 becomes the temperature unevenness of the parison 6, and the shape and thickness become abnormal due to unevenness of unevenness or uneven thickness at the time of finish molding, thereby impairing the quality.
[0006]
To cope with this, as shown in FIG. 2, the ventilation restriction pipe 8 with respect to the ventilation path 7 on the side where the rough mold 1 is not adjacent, out of the ventilation paths 7 formed in a uniform size and arrangement in the circumferential direction. Measures to insert can be considered. This ventilation restriction pipe 8 regulates the ventilation indicated by the arrow B in FIG. 1 to each ventilation path 7 of the cooling air supplied from the plenum chamber 9 shown in FIGS. Restrict. As a result, the temperature unevenness in the circumferential direction of the rough mold 1 and the molding abnormality caused thereby were reduced, and the yield of the molding bottles was improved.
[0007]
On the other hand, it is also known that the amount and pressure of the cooling air supplied from the plenum chamber 9 to each ventilation path 7 are individually adjusted by individual dampers (not shown) for each of the plurality of ventilation paths 9a shown in FIG. (For example, refer to Patent Document 1).
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 3-228833
[Problems to be solved by the invention]
However, the current situation is that the conventional countermeasures do not sufficiently cope with molding defects. Extremely uneven thickness such as the bottle 11 after finish molding shown in FIG. Further, in the bottle 11 with such uneven thickness, the baffle mark 11a shown in FIG. Often they are deformed and eccentric. This indicates that uneven thickness is generated during the finish molding from the parison 6 to the bottle 11, and the uneven thickness is generated in the lower half of the bottle 11 as shown in FIG. It is also recognized that the bottom side of the parison 6 is decentered toward the outside of the swing diameter with respect to the mouth mold due to the centrifugal force during the inversion from the rough mold 1 to the finish mold.
[0010]
In this regard, the present inventor conducted various experiments and repeated research. As a result, the individual cooling adjustment in the circumferential direction according to the conventional method is not reflected as expected in the rough mold 1, but in the circumferential direction of the rough mold 1. There was a limit to improving the temperature unevenness over the current level. This seems to be due to the fact that the heat transfer inside the rough mold 1 is not completely controlled, and an accurate temperature corresponding to the molding characteristics of the rough mold 1 and the molding characteristics of the parison 6 and the bottle 11. Setting and managing the distribution is extremely difficult.
[0011]
An object of the present invention is to provide a rough cooling method for a bottle maker and an apparatus therefor that can accurately control the temperature distribution in the circumferential direction of the rough mold and prevent molding defects based on such new knowledge. is there.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the rough cooling method of the bottle making machine according to the present invention is a method of cooling a bottle making use of a bottle making machine that cools the rough mold by forming a vertical draft at a plurality of locations in the circumferential direction. One feature of the coarse cooling method is that the coarse mold is thermally divided into a plurality of circumferential directions by the heat insulating portion, and independent cooling is performed for each divided region.
[0013]
In such a configuration, in order to cool the rough mold being formed by vertical ventilation at a plurality of locations in the circumferential direction, the rough mold is thermally divided into a plurality of circumferential directions by the heat insulating portion. By restricting the heat transfer between each divided area in the circumferential direction of the mold, and by cooling each vertical divided air independently for each divided area of the rough mold that restricts the mutual heat transfer, The temperature distribution in the circumferential direction is set and managed for each divided area, and the temperature unevenness in the circumferential direction is suppressed to the desired level, or conversely, according to the molding characteristics of the rough mold and the molding characteristics of the parison and bottle. Therefore, it is possible to accurately promote the partial extension and to provide a desired temperature difference for suppressing the elongation, and sufficiently cope with various molding defects.
[0014]
As a rough cooling device for a bottle making machine that achieves such a method, in the rough cooling device for a bottle making machine provided with ventilation passages for cooling by cooling in the longitudinal direction at a plurality of locations in the circumferential direction of the rough die, One feature suffices to be provided with a heat insulating part that thermally divides the rough mold into a plurality of divided regions in the circumferential direction and a ventilation means that performs independent cooling for each divided region.
[0015]
In the further structure in which this ventilation means has the independent ventilation path for every ventilation area of each division area unit,
For each ventilation area unit, each division area unit can be cooled independently by ventilating with an independent ventilation path.
[0016]
The rough cooling method of the bottle making machine of the present invention is also a rough cooling method of the bottle making machine in which the rough mold being molded is cooled by drafting in the vertical direction at a plurality of locations in the circumferential direction. Another feature is that it is thermally divided into a plurality of circumferential directions by the heat insulating portion, and cooling is performed under predetermined conditions for each divided region.
[0017]
In such a configuration, in order to cool the rough mold being formed by vertical ventilation at a plurality of locations in the circumferential direction, the rough mold is thermally divided into a plurality of circumferential directions by the heat insulating portion. The heat transfer between each divided area in the circumferential direction of the mold is limited, and the predetermined conditions due to the longitudinal ventilation for each divided area of the rough mold that restricts the mutual heat transfer, that is, individually different, Alternatively, the temperature distribution in the circumferential direction of the rough mold is set and managed in units of each divided area, which is different in certain divided areas and the same cooling is performed in certain divided areas. Suppressing to a desired level, or conversely, promoting a partial extension according to the molding characteristics of the rough mold and the molding characteristics of the parison or bottle, or giving a desired temperature difference for suppression. Can respond to various molding defects sufficiently. Can.
[0018]
As a rough cooling device of a bottle making machine that achieves such a method, in the rough cooling device of the bottle making machine provided with cooling holes for cooling by vertical ventilation at a plurality of locations in the circumferential direction of the rough die, It is sufficient to have other features that include a heat insulating portion that thermally divides the rough mold into a plurality of divided regions in the circumferential direction, and ventilation means that performs cooling under predetermined conditions for each divided region.
[0019]
In the further configuration in which the ventilation means makes at least one of the passage cross-sectional area, the arrangement pitch, and the arrangement number of the ventilation paths different for at least one of the ventilation paths for each divided area,
Only at least one of the cross-sectional area of the ventilation path, the arrangement pitch, and the number of arrangements is different for at least one of the ventilation paths in each divided area. Predetermined cooling can be performed due to differences in ventilation conditions, such as different between divided areas and the same between certain divided areas.
[0020]
In a further configuration, where the heat insulating part is a slit cut inward from the side periphery of the rough mold,
The slit is not only cut from the side of the rough mold inward, but the metal part of the rough mold not only cuts off the continuous heat conduction, but also embracs air and exerts a heat insulating effect, so the rough mold is thermally activated in the circumferential direction. It sufficiently functions as a heat insulating part that is divided into two parts.
[0021]
In the further configuration, the slit has a ventilation blocker that blocks vertical ventilation.
When the vertical ventilation in the slit is blocked by the ventilation block, the air hugging the slit is pushed by the flow of the atmosphere due to the exhaust of cooling air, etc., preventing the heat conduction effect due to convection. , The thermal separation by the slit can be stabilized.
[0022]
In a further configuration, where the slit is a cut by a disk cutter,
Since the slit is formed by the cutting of the disk cutter, it is easy to provide the slit in the middle part of the rough mold in the limited vertical direction. In addition, the bottom shape with the deepest part of the cut on the diameter line in the cut direction and the part that gradually becomes shallower on both the upper and lower sides is obtained by a simple straight cut of the cutter. It is easy to reduce and prevent the thermal separation effect of the slit from affecting the subtle cooling, temperature adjustment by the mouth, and the subtle cooling and temperature adjustment by the mouth mold side and mouth mold as necessary. To do.
[0023]
In the further configuration where the deepest part of the slit is located closer to the bottom of the molding,
It is easy to preferentially cope with uneven thickness on the bottom side of the bottle as described above, and it is easy to cope with changes in large diameter and shape necessary for finish molding by suppressing cooling of the neck side in molding of narrow mouth bottles. .
[0024]
Further objects and features of the present invention will become apparent from the following detailed description and drawings. Each feature of the present invention can be used alone or in combination in various combinations as much as possible.
[0025]
【Example】
Hereinafter, a rough cooling method of a bottle making machine according to the present invention and an embodiment of the apparatus will be described with reference to FIGS. 1 to 3 for understanding of the present invention. The following description and illustrations are specific examples of the present invention and do not limit the contents described in the claims.
[0026]
The rough mold cooling method of this embodiment is shown in FIGS. 1 to 3 and is for cooling the rough mold 1 described above. The rough mold 1, the plunger 3, the baffle 4 and the rough mold 1 of the bottle making machine are used. In the rough mold apparatus 21 composed of a mouth mold held in the pocket 5 of the mold 1, vertical ventilation by cooling air as shown by arrows B in FIG. Plan and cool. In this cooling, the rough mold 1 is thermally divided into a plurality of circumferential directions by a heat insulating portion 22 as shown in FIGS. 1 and 2, and each of the divided regions 231, 232, 233. Cool down.
[0027]
In this way, for the rough mold 1 being formed, the rough mold 1 is thermally divided into a plurality of circumferential directions by the heat insulating portion 22 in order to cool the rough mold 1 in a plurality of positions in the circumferential direction by cooling vertically. The heat transfer between the divided areas 231, 232, 233... In the circumferential direction of the mold 1 can be restricted. In this way, each of the divided areas 231, 232, 233... Of the rough mold 1 in which mutual heat transfer is limited is independently cooled by the vertical ventilation or predetermined by the vertical ventilation. In other words, the temperature distribution in the circumferential direction of the rough mold 1 is divided by the unit of each divided region, which is different for each divided region or different for each divided region, and the same cooling is performed for each divided region. Can be set and managed. As a result, the temperature unevenness in the circumferential direction is suppressed to a desired level, or conversely, partial extension and deformation are promoted or suppressed in accordance with the molding characteristics of the rough mold 1 and the molding characteristics of the parison 6 and the bottle 11. It is possible to appropriately give a temperature difference for achieving a desired level at will, and it is possible to sufficiently cope with various molding defects and prevent molding defects.
[0028]
By the way, the correlation between the temperature distribution of the rough mold 1 and the molding failure of the bottle 11 is difficult to grasp and sometimes unknown. Therefore, in many cases, the actual condition setting is performed while repeating trial molding according to the size and type of the rough mold 1 and the bottle 11. However, by performing independent cooling or predetermined cooling for each of the divided regions 231, 232, 233... Thermally divided in the circumferential direction of the rough mold 1, the difference in the cooling operation is clear in the molding of the bottle 11. Therefore, it is possible to cope with the problem more easily and in a shorter time than conventional trial and error. Therefore, the yield after setting the conditions is significantly improved.
[0029]
Here, the heat insulating portion 22 thermally divides the rough mold 1 in the circumferential direction. FIG. 1 shows a boundary line with the rough mold 1 and FIG. May be provided in a radial pattern around the axis 24, and may be provided straight in the vertical direction. Therefore, the slit 22a cut inward from the side periphery of the rough mold 1 or a heat insulating material for filling the slit 22a can be easily provided. .
[0030]
The slit 22a only cuts inward from the side periphery of the rough mold 1 and not only cuts off the continuous heat conduction by the metal of the rough mold 1 but also embracs air and exerts a heat insulating action. It sufficiently functions as a heat insulating portion 22 that is thermally divided into two. The heat insulating part 22 by such slits 22a and the like may be provided so as to divide the rough mold 1 into units for which heat management is to be performed individually. 2 is provided symmetrically with respect to the mating surface 25 as a boundary, and symmetrical with respect to the center line 26 orthogonal to the mating surface 25 in each rough mold 1 as shown in FIG. The rough mold 1 is divided into three divided regions 231, 232 and 233. However, the present invention is not limited to this, it is divided into two parts, or divided into four or more parts, the number of divisions and the division positions differ depending on the pair of rough molds 1, 1, or the division position in one rough mold. May not be symmetrical, or there may be a difference in width, depth, boundary shape with the rough mold 1, and the like. When using a heat insulating material, the material can be further varied.
[0031]
A slit 22a shown in FIGS. 1 and 2 is provided with a ventilation blocking portion 22b that blocks vertical ventilation. Specifically, the opening portion of the slit 22a to the upper surface of the rough mold 1 is closed with a metal plate or a heat insulating material, and the vertical ventilation through the slit 22a is blocked by the ventilation blocking portion 22b. As a result, it is possible to prevent the air held in the slit 22a from being pushed by the flow of the atmosphere due to the exhaust of the cooling air and the like, and conducting a heat conduction effect due to the convection. Can be stabilized. However, the ventilation blocking part 22b may be in any part such as in the middle of the slit 22a, and a plurality of ventilation blocking parts 22b may be provided.
[0032]
As shown in FIGS. 1 and 2, the coarse cooling device 31 of the bottle making machine 31 that achieves the above-described method has a plurality of circumferential directions of the rough die 1 in the coarse shaping device 21 of the bottle making machine as described above. A ventilation path 7 is used for cooling by vertical ventilation at the location. Specifically, in addition to the heat insulating portion 22 as described above for thermally dividing the rough mold 1 into a plurality of divided areas 231, 232, 233... In the circumferential direction, each divided area 231, 232, 233. In addition, while using these ventilation paths 7, the ventilation means 32a for performing independent cooling, or the predetermined conditions by the vertical ventilation, that is, individually different or different in a certain divided area, a certain divided It is assumed that a ventilation means 32b for cooling under the same conditions is provided between the areas.
[0033]
Here, as shown in FIGS. 1 and 2, the ventilation means 32 a uses the independent cooling air ventilation structure by the plenum chamber 9 as described above, for example, the ventilation path 7 of the divided area 231, and the divided area 232. By using an independent ventilation path 9a for each ventilation path 7 of the ventilation path 7 and the divided area 233, an independent ventilation is achieved for each ventilation path 7 of each divided area 231, 232, 233,. The divided areas 231, 232, 233... Can be cooled independently. That is, the air volume and the wind pressure in the independent ventilation path 9a are adjusted independently as described in Patent Document 1, and the temperature distribution in the circumferential direction of the rough mold 1 is divided into the divided regions 231, 232, 233,. Can be set and managed in units.
[0034]
Further, the ventilation means 32b uses the previously described ventilation path 7 group shown in FIGS. 1 and 2 to divide at least one of the passage cross-sectional area, the arrangement pitch, and the number of arrangement of the ventilation paths 7 into the divided areas 231, 232. .. 233... Different by each at least one of the ventilation paths 7, each ventilation area 231, 232, 233... The predetermined cooling according to the difference in the ventilation conditions can be performed by setting the same in the divided regions and supplying the common cooling air through the plenum chamber 9. That is, the temperature distribution in the circumferential direction of the rough mold 1 can be set and managed in units of the divided regions 231, 232, and 233.
[0035]
If both of these ventilation means 32a and 32b are used in combination, finer adjustment of cooling can be performed, but either one is sufficient in reality. In the example shown in FIG. 2, the ventilation path 7 is provided with the same number of holes having the same shape and size in each divided area 231, 232, and 233 at the same pitch, and the divided area 231 on the side not adjacent to the other rough mold 1. Only the ventilation path 7 is inserted with a ventilation restriction pipe 8 that narrows the cross-sectional area of these passages, and the yield is improved.
[0036]
In the illustrated example, the slit 22a is cut by a disk cutter 30 indicated by a virtual line. As described above, since the slit 22a is formed by the cutting of the disc cutter 30, the deepest portion 22c of the cutting is provided on the diameter line 32 in the cutting direction indicated by the arrow C in FIG. Has a shallow portion 23d. Such a bottom part shape is obtained by a simple straight cut as indicated by an arrow C of the disk cutter 30, and it is easy to provide a slit 22 a in a limited middle part of the rough mold 1 in the vertical direction. And subtle cooling by the baffle 4, temperature adjustment, subtle cooling by the mouth side of the rough mold 1 and the mouth mold, and temperature adjustment are reduced if necessary by the thermal cutting action by the slit 22a, and It is easy to prevent.
[0037]
In this example, in particular, the deepest portion 22c of the slit 22a is located closer to the bottom of the parison 6 that is a molded product. As a result, it is easy to preferentially deal with the uneven thickness on the bottom side of the bottle 11 as described above, and it is possible to suppress the cooling on the neck side in the molding of the narrow mouth bottle and to change the large diameter and shape necessary for finish molding. It becomes easy to correspond.
[0038]
【The invention's effect】
According to one aspect of the present invention, a rough cooling method for a bottle maker and an apparatus therefor are used to cool a rough mold being molded by cooling it at a plurality of locations in the circumferential direction with longitudinal ventilation. The heat transfer between the divided regions in the circumferential direction of the rough mold is restricted by the heat insulation part in the circumferential direction, and for each divided area of the rough mold that restricts the mutual heat transfer. By cooling independently by the vertical ventilation, the temperature distribution in the circumferential direction of the rough mold is set and managed in each divided region unit, and the temperature unevenness in the circumferential direction is suppressed to a desired level, or vice versa. In addition, it is possible to optionally provide a desired degree of temperature difference for promoting or suppressing partial elongation in accordance with the molding characteristics of the rough mold and the molding characteristics of the parison or bottle. Defects can be sufficiently prevented.
[0039]
According to another aspect of the present invention, a rough cooling method for a bottle maker and an apparatus thereof are used to cool a rough mold during molding by cooling in a longitudinal direction at a plurality of locations in the circumferential direction. The heat transfer between the divided regions in the circumferential direction of the rough mold is restricted by the heat insulation part in the circumferential direction, and for each divided area of the rough mold that restricts the mutual heat transfer. The temperature distribution in the circumferential direction of the rough mold is determined by the predetermined conditions due to the vertical ventilation, that is, different from each other or different from each other in a certain divided region, and the same cooling is performed in a certain divided region. Set and manage in each segmented area unit to suppress the temperature unevenness in the circumferential direction to the desired level, or conversely, promote partial elongation according to the molding characteristics of the rough mold and the molding characteristics of the parison and bottle Or giving a desired temperature difference for suppression. To be, it is possible to sufficiently prevent various molding defects.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view around a rough mold apparatus showing a rough mold cooling method and apparatus for a bottle maker according to one embodiment of the present invention.
FIG. 2 is a partial plan view of the rough mold apparatus of FIG. 1;
FIG. 3 is a partial bottom view of the rough mold apparatus shown in FIG. 2;
4A and 4B show a defective molding bottle, in which FIG. 4A is a cross-sectional view and FIG. 4B is a bottom view.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Coarse type 7 Ventilation path 9 Plenum chamber 9a Ventilation path 21 Coarse type apparatus 22 Heat insulation part 22a Slit 22b Ventilation blocker 30 Disc cutter 31 Coarse type cooling apparatus 32a, 32b Ventilation means

Claims (10)

成形中の粗型につき、その周方向複数箇所で縦向きの通風を図って冷却する製びん機の粗型冷却方法において、
粗型を断熱部により周方向複数に熱的に分断し、各分断域ごとに独立した冷却を行うことを特徴とする製びん機の粗型冷却方法。
In the rough mold cooling method for a bottle making machine, which cools the rough mold during molding by aiming at vertical ventilation at multiple locations in the circumferential direction,
A crude mold cooling method for a bottle maker, wherein the crude mold is thermally divided into a plurality of circumferential directions by a heat insulating portion, and independent cooling is performed for each divided area.
成形中の粗型につき、その周方向複数箇所で縦向きの通風を図って冷却する製びん機の粗型冷却方法において、
粗型を断熱部により周方向複数に熱的に分断し、各分断域ごとに所定の条件での冷却を行うことを特徴とする製びん機の粗型冷却方法。
In the rough mold cooling method for a bottle making machine, which cools the rough mold during molding by aiming at vertical ventilation at multiple locations in the circumferential direction,
A rough cooling method for a bottle maker, wherein the rough mold is thermally divided into a plurality of circumferential directions by a heat insulating portion, and cooling is performed under a predetermined condition for each divided region.
粗型の周方向複数箇所に縦向きの通風を図って冷却する通風路を設けた製びん機の粗型冷却装置において、
粗型を周方向複数の分断域に熱的に分断する断熱部と、各分断域ごとに独立した冷却を行う通風手段と、を備えたことを特徴とする製びん機の粗型冷却装置。
In the rough cooling device of the bottle making machine provided with the ventilation path for cooling by aiming at the vertical ventilation at a plurality of locations in the circumferential direction of the rough mold,
A coarse cooling device for a bottle making machine, comprising: a heat insulating portion that thermally divides the rough mold into a plurality of divided areas in the circumferential direction; and ventilation means that performs independent cooling for each divided area.
通風手段は、各分断域単位の通風路ごとに独立した通風経路を有している請求項3に記載の製びん機の粗型冷却装置。The rough cooling device for a bottle maker according to claim 3, wherein the ventilation means has an independent ventilation path for each ventilation path of each divided area unit. 粗型の周方向複数箇所に縦向きの通風を図って冷却する冷却孔を設けた製びん機の粗型冷却装置において、
粗型を周方向複数の分断域に熱的に分断する断熱部と、各分断域ごとに所定の条件での冷却を行う通風手段と、を備えたことを特徴とする製びん機の粗型冷却装置。
In the rough cooling device of the bottle making machine provided with cooling holes for cooling by aiming at vertical ventilation at a plurality of positions in the circumferential direction of the rough mold,
A rough shape of a bottle making machine comprising: a heat insulating portion that thermally divides the rough mold into a plurality of divided areas in the circumferential direction; and a ventilation means that performs cooling under a predetermined condition for each divided area. Cooling system.
通風手段は、通風路の通路断面積、配列ピッチ、配列数の少なくとも1つを、分断域ごとの通風路の少なくとも1つにつき異ならせる請求項5に記載の製びん機の粗型冷却装置。6. The rough cooling device for a bottle maker according to claim 5, wherein the ventilation means varies at least one of the passage cross-sectional area, the arrangement pitch, and the number of arrangement of the ventilation paths for at least one of the ventilation paths for each divided area. 断熱部は粗型の側周から内側に切り込んだスリットである請求項3〜6のいずれか1項に記載の製びん機の粗型冷却装置。The coarse cooling device for a bottle making machine according to any one of claims 3 to 6, wherein the heat insulating portion is a slit cut inwardly from the side periphery of the coarse die. スリットには縦向きの通風を遮断する通風遮断部を有している請求項7に記載の製びん機の粗型冷却装置。The rough cooling device for a bottle making machine according to claim 7, wherein the slit has a ventilation blocker for blocking vertical ventilation. スリットは円盤カッタの切込みによるものである請求項7、8のいずれか1項に記載の製びん機の粗型冷却装置。9. The rough cooling device for a bottle making machine according to claim 7, wherein the slit is formed by cutting a disk cutter. スリットの最深部は成形物の底部寄りに位置している請求項9に記載の製びん機の粗型冷却装置。10. The rough cooling device for a bottle making machine according to claim 9, wherein the deepest part of the slit is located near the bottom of the molded product.
JP2003202930A 2003-07-29 2003-07-29 Coarse cooling method and apparatus for bottle making machine Expired - Lifetime JP4109163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003202930A JP4109163B2 (en) 2003-07-29 2003-07-29 Coarse cooling method and apparatus for bottle making machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003202930A JP4109163B2 (en) 2003-07-29 2003-07-29 Coarse cooling method and apparatus for bottle making machine

Publications (2)

Publication Number Publication Date
JP2005047720A true JP2005047720A (en) 2005-02-24
JP4109163B2 JP4109163B2 (en) 2008-07-02

Family

ID=34262461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003202930A Expired - Lifetime JP4109163B2 (en) 2003-07-29 2003-07-29 Coarse cooling method and apparatus for bottle making machine

Country Status (1)

Country Link
JP (1) JP4109163B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014084271A (en) * 2012-10-19 2014-05-12 Emhart Glass Sa Two-axial cooling system and method
RU2790913C1 (en) * 2022-04-15 2023-02-28 Общество с ограниченной ответственностью Производственная компания "ЭЛЬГЛАСС" (ООО ПК "ЭЛЬГЛАСС") Method of forming of glass containers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014084271A (en) * 2012-10-19 2014-05-12 Emhart Glass Sa Two-axial cooling system and method
RU2790913C1 (en) * 2022-04-15 2023-02-28 Общество с ограниченной ответственностью Производственная компания "ЭЛЬГЛАСС" (ООО ПК "ЭЛЬГЛАСС") Method of forming of glass containers

Also Published As

Publication number Publication date
JP4109163B2 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
JP4536055B2 (en) Liquid cooling of glass product molds
US8127573B2 (en) Mold cooling system for I.S. machine
JPH08325020A (en) Directly cooled side surface ignition forehearth
WO2021212622A1 (en) Heating device for blowing bottle preform having handle
JPS6040366B2 (en) Sprue cutting method and device for bottomed parison
KR20210109613A (en) Manufacturing apparatus and manufacturing method of resin container
EP0152993B1 (en) Mould arrangement for use in a cyclicly operating glassware forming machine
JPS61186229A (en) Mold device for glass vessel former
JP4109163B2 (en) Coarse cooling method and apparatus for bottle making machine
US20160201156A1 (en) Nozzle for cooling vacuum heat treatment furnace
CN108237181B (en) Forming device
AU2013223355B2 (en) Blow molding method, blow mold, and blow-molded container
CN108790135B (en) Three-lip cooling air ring for film blowing machine
US10093055B2 (en) Component of a molding system for cooling a molded article
JP4388197B2 (en) BOTTOM MACHINE BOTTOM TYPE, BOTTLE MACHINE AND METHOD FOR PRODUCING BOTTLE USING THE SAME
CN109320054B (en) Glass blowing mould capable of being cooled uniformly
CN205803301U (en) A kind of body mould
CN206870354U (en) Cooling device in blow mold
CN114302800A (en) Mold unit, blow molding device, and blow molding method
JP2011136853A (en) Glass product molding apparatus and method for cooling mold
CA2629693C (en) Apparatus for finish cooling for a container glass machine
JP2002226223A (en) Cooling apparatus for glass product mold
CN115231806B (en) Glass cooling shaping die block and glass former
EP4215339A1 (en) Heat treatment device for pet bottle preform having handle
KR20160121352A (en) Mold for forming with resin injection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4109163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250