JP2005047241A - Jacket for sheet offset press transfer cylinder - Google Patents

Jacket for sheet offset press transfer cylinder Download PDF

Info

Publication number
JP2005047241A
JP2005047241A JP2003285783A JP2003285783A JP2005047241A JP 2005047241 A JP2005047241 A JP 2005047241A JP 2003285783 A JP2003285783 A JP 2003285783A JP 2003285783 A JP2003285783 A JP 2003285783A JP 2005047241 A JP2005047241 A JP 2005047241A
Authority
JP
Japan
Prior art keywords
jacket
max
transfer cylinder
sprayed
surface roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003285783A
Other languages
Japanese (ja)
Inventor
Kazuhiro Yokoyama
和弘 横山
Yoshiyuki Suzuki
義之 鈴木
Tomonori Murakami
知則 村上
Yoshihisa Tanaka
善久 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshikawa Kogyo Co Ltd
Tokyo Printing and Equipment Trading Co Ltd
Original Assignee
Yoshikawa Kogyo Co Ltd
Tokyo Printing and Equipment Trading Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshikawa Kogyo Co Ltd, Tokyo Printing and Equipment Trading Co Ltd filed Critical Yoshikawa Kogyo Co Ltd
Priority to JP2003285783A priority Critical patent/JP2005047241A/en
Publication of JP2005047241A publication Critical patent/JP2005047241A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rotary Presses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a jacket for a sheet offset press transfer cylinder (a middle cylinder) which is little in an attached stain of ink, easy to be washed, high in durability, difficult to generate a scratch flaw to printed matter and difficult to generate electrification. <P>SOLUTION: For the jacket, porous electric conductive metal is sprayed onto a metal made plate, heights of crests of a projected part are made uniform by lightly polishing protrusions of a sprayed film, and further a releasing agent (a low surface energy resin) is filmed on the surface so that a projected part of the sprayed film is thin, the depressed part is thick and an irregularity of the sprayed film is remained to provide a composite covered film. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、枚葉オフセット印刷機渡し胴(中間胴)用ジャケットのインキ汚れ防止の改良に関するものである。   The present invention relates to an improvement in preventing ink stains on a jacket for a sheet-fed offset printing machine transfer cylinder (intermediate cylinder).

枚葉オフセット多色印刷機において、墨、藍、紅および黄色の各印刷ユニットと他の印刷ユニットの間に紙を受け渡しするための渡し胴(中間胴ともいう。)があるのが一般的である。   In a sheet-fed offset multicolor printing machine, it is common to have a transfer cylinder (also referred to as an intermediate cylinder) for transferring paper between the black, indigo, red and yellow printing units and other printing units. is there.

一例を挙げると、例えば図6に示す枚葉オフセット多色両面印刷機100において、紙フィーダー101より被印刷紙102はフィードローラー103を経て圧胴104aに供給される。一方、印刷インキは、版胴105aおよびブランケット胴106aを経て、圧胴104aとブランケット胴106aとの間に介在する被印刷紙102の表面に供給されて表面印刷に供される。さらに裏面印刷用のインキは、他の版胴105bおよびブランケット胴106bを経て、他の圧胴104bとブランケット胴106bとの間に介在している被印刷紙102の裏面に供給されて裏面印刷に供される。このようにして両面を一色ずつ印刷された被印刷紙102は、渡し胴(中間胴)107へ送られる。   As an example, in the sheet-fed offset multicolor duplex printing machine 100 shown in FIG. 6, for example, the printing paper 102 is supplied from the paper feeder 101 to the impression cylinder 104 a through the feed roller 103. On the other hand, the printing ink is supplied to the surface of the printing paper 102 interposed between the impression cylinder 104a and the blanket cylinder 106a through the plate cylinder 105a and the blanket cylinder 106a and used for surface printing. Further, the ink for printing on the back side is supplied to the back side of the printing paper 102 interposed between the other impression cylinder 104b and the blanket cylinder 106b through the other plate cylinder 105b and the blanket cylinder 106b for backside printing. Provided. The printing paper 102 on which both colors are printed in this way is sent to a transfer cylinder (intermediate cylinder) 107.

ついで、同様な圧胴、ブランケット胴等に送られて表面および裏面にそれぞれ第2色目の印刷が施される。なお、図6は、煩雑さを避けるために2色の分しか図示されていないが、印刷すべき色の種類に応じて、その数だけ圧胴、ブランケット胴等よりなる印刷ユニットが設けられている。必要な印刷を終了した被印刷紙102は、中間シリンダ108に送られ、ついでホルダー109において回収される。   Subsequently, it is sent to the same impression cylinder, blanket cylinder, etc., and printing of the second color is performed on the front surface and the back surface, respectively. In FIG. 6, only two colors are shown in order to avoid complication, but depending on the type of color to be printed, as many printing units as the number of impression cylinders and blanket cylinders are provided. Yes. The printing paper 102 for which necessary printing has been completed is sent to the intermediate cylinder 108 and then collected in the holder 109.

しかしながら、ブランケット胴106a,106bと圧胴104a,104bとの間でそれぞれ印刷された紙が圧胴104a,104bから渡し胴107へ送られた段階では、印刷された紙面のインキが乾かないうちに、渡し胴107面に接触するため、インキが渡し胴107に付着し、それが被印刷紙102に逆転写して印刷面を汚すという品質トラブルがあった。   However, when the paper printed between the blanket cylinders 106a and 106b and the impression cylinders 104a and 104b is sent from the impression cylinders 104a and 104b to the transfer cylinder 107, the ink on the printed paper is not dried. In addition, since the ink contacts the transfer cylinder 107, the ink adheres to the transfer cylinder 107, which causes reverse transfer onto the printing paper 102 and contaminates the printing surface.

このような問題点を改善する手段として、金属製基板上にセラミックスを溶射して多孔質のセラミックス層を形成し、その上にシリコーン系樹脂等の低表面エネルギー樹脂を被覆し、表面粗度をRmax20〜40μmの滑らかな凹凸を有する中間胴が提案されている(例えば、特許文献1参照。)。 As a means to remedy such problems, ceramics are sprayed on a metal substrate to form a porous ceramic layer, and a low surface energy resin such as a silicone-based resin is coated thereon to reduce the surface roughness. An intermediate cylinder having smooth irregularities of R max 20 to 40 μm has been proposed (see, for example, Patent Document 1).

しかしながら、このような技術は、金属製板上にセラミックスを溶射して多孔質層を形成させ、その表面にシリコーン系樹脂等の低表面エネルギー樹脂を被覆し、表面粗度をRmax20〜40μmの滑らかな凹凸を有する被覆体を圧胴または中間胴に装着することによって、紙面の印刷直後のインキが被覆体に付着しないようにしたもの、または合成樹脂フィルム上にガラスビーズを付着させ、その上にシリコーン系樹脂をコーティングして表面粗度Rmax20〜150μmの滑らかな凹凸を有する被覆体を中間胴に装着することによって、紙面の印刷直後のインキが被覆体に付着しないようにしたものである。 However, in such a technique, ceramic is sprayed on a metal plate to form a porous layer, and the surface is coated with a low surface energy resin such as a silicone resin, and the surface roughness is R max 20 to 40 μm. By attaching a coated body having smooth irregularities to the impression cylinder or intermediate cylinder, the ink immediately after printing on the paper is prevented from adhering to the coated body, or glass beads are adhered on the synthetic resin film, By coating a silicone resin on top and mounting a cover with smooth irregularities with a surface roughness R max of 20 to 150 μm on the intermediate cylinder so that the ink immediately after printing on the paper does not adhere to the cover It is.

上記公知技術のうち、金属製板上にセラミックスを溶射して多孔質層を形成し、その上にシリコーン系樹脂等の低表面エネルギー樹脂を被覆し、表面粗度Rmaxを20〜40μmの滑らかな凹凸を有する被覆体(表面粗度プロフィールの模式図を図4に示す。)を圧胴または中間胴に装着したものは、圧胴に利用する場合は、ジャケットの汚れ防止、印刷物のベタ印刷部の白抜けトラブル防止、印刷面のインキ着肉性等で非常に優れた効果が発揮されるが、これを渡し胴に用いる場合には、表面粗度Rmax20〜40μmでは点接触効果としての効果が小さくて長時間使用した場合、ジャケット面にインキが堆積してきて、1回/日くらいの洗浄が必要となる。 Among the known techniques, by spraying a ceramic on a metal plate to form a porous layer, the low surface energy resin such as a silicone resin coated thereon, smooth the surface roughness R max of 20~40μm If a cover with a rough surface (a schematic diagram of the surface roughness profile is shown in FIG. 4) is mounted on the impression cylinder or intermediate cylinder, when it is used as an impression cylinder, it prevents contamination of the jacket and makes solid printing of printed matter. This is very effective in preventing white spot troubles and inking properties on the printing surface. However, when this is used for a transfer cylinder, the surface roughness R max is 20 to 40 μm. When the effect is small and the ink is used for a long time, the ink is deposited on the jacket surface, and it is necessary to perform cleaning once / day.

ジャケット汚れを少なくするために、セラミックス溶射の粗度を大きくすると、溶射層の凹凸は、RmaxとRとの差がますます大きくなり、山のピークが不揃いとなって、Rmaxの最も高い小数の山のみで紙面を受けることになり、ベタ印刷のスクラッチ傷が出やすくなり、大きな印刷品質欠陥となる。 In order to reduce the jacket dirt, increasing the roughness of the ceramics sprayed, unevenness of the sprayed layer, the difference between R max and R z are increasingly large and the peak of the mountain becomes irregular, the R max most Only a small number of high peaks will receive the paper surface, making it easier for solid print scratches to occur, resulting in large print quality defects.

さらに、このような渡し胴の最大の欠点は、表面に電気絶縁体であるセラミックス層が被覆されているので、供給される印刷紙との摩擦で帯電しやすく、これが枚葉紙印刷の場合にはデリバリー部での紙積みの不揃いを起しやすいという問題があった。   Furthermore, the biggest drawback of such transfer cylinders is that the surface is covered with a ceramic layer, which is an electrical insulator, so that it is easily charged by friction with the supplied printing paper. Has a problem that it is easy to cause unevenness of paper stacking in the delivery section.

また、上記公知技術のうち、合成樹脂フィルム上にガラスビーズを付着させ、その上にシリコーン系樹脂を被覆して、表面粗度Rmax20〜150μmの滑らかな凹凸を有する被覆体(表面粗度プロフィールの模式図を図5に示す。)を渡し胴に装着する場合は、表面粗度Rmaxを50〜150μmに大きくしても、ガラスビーズの粒度を非常に狭い粒度幅に整粒したものを一層付着させたものを用いることにより、凹凸の山の高さが揃っており、かつ山の凸部の形状が球面であるため、印刷面のスクラッチ傷が出にくい。しかも表面粗度を大きくできるので、被覆体の汚れも非常に少なく、長時間洗浄する必要もない。 Moreover, among the above-mentioned known techniques, glass beads are attached on a synthetic resin film, and a silicone resin is coated thereon, and a coated body having a smooth unevenness with a surface roughness R max of 20 to 150 μm (surface roughness A schematic diagram of the profile is shown in Fig. 5.) When mounting to the transfer cylinder, the particle size of the glass beads is adjusted to a very narrow particle size width even if the surface roughness R max is increased to 50 to 150 µm. By using a material to which a layer is further adhered, the heights of the ridges and depressions are uniform, and the shape of the projections of the ridges is a spherical surface, so that scratches on the printing surface are difficult to occur. Moreover, since the surface roughness can be increased, there is very little dirt on the covering, and there is no need for long-term cleaning.

しかしながら、この方式の場合、基材が合成樹脂フィルムであり、絶縁体であるため、紙との擦れで帯電しやすく、デリバリー部での紙積みの不揃いを起しやすいとう問題があった。また、ガラスビーズをフィルムに接着させるとき、ビーズの凹凸を十分残すために、接着剤を薄めにすると、長時間にわたる使用中にガラスビーズが脱落しやすいという問題があった。   However, in this method, since the base material is a synthetic resin film and is an insulator, there is a problem that it is easy to be charged by rubbing with paper, and uneven paper stacking is likely to occur in the delivery section. Further, when the glass beads are adhered to the film, there is a problem that if the adhesive is made thin in order to leave the unevenness of the beads sufficiently, the glass beads are likely to fall off during use for a long time.

これらの問題があるとはいえ、前者に比べて非常に安価でかつさまざまなサイズの渡し胴のインキ汚れ防止材として広く採用されている。
特開平08−012151号公報
Despite these problems, it is widely used as an ink stain prevention material for transfer cylinders of various sizes, which is much cheaper than the former.
Japanese Patent Laid-Open No. 08-012151

したがって、本発明の目的は、改良された枚葉オフセット印刷機渡し胴用ジャケットを提供することにある。   Accordingly, it is an object of the present invention to provide an improved sheet-fed offset printing machine transfer cylinder jacket.

本発明の他の目的は、表面汚れが少なく、かつ印刷紙との擦れによる帯電のない枚葉オフセット印刷機渡し胴用ジャケットを提供することにある。   Another object of the present invention is to provide a sheet-fed offset printing press transfer cylinder jacket that has less surface contamination and is not charged by rubbing against printing paper.

上記諸目的は、下記(1)〜(4)により達成される。   The above objects are achieved by the following (1) to (4).

(1) 金属製板上に導電性メタルを溶射し、溶射後の表面粗度Rmaxが40〜100μmである多孔質被覆を形成したのち、該溶射皮膜の凹凸部の山の高さを揃えて表面粗度Rを35〜85μmとし、さらにその表面に低表面エネルギー性樹脂を該溶射皮膜の凸部には薄く、また凹部には厚く、かつ該溶射皮膜の凹凸が残るように被覆して表面粗度Rが30〜80μmで、滑らかな凹凸からなる複合被覆皮膜を有してなる枚葉オフセット印刷機渡し胴用ジャケット。 (1) After thermally spraying a conductive metal on a metal plate to form a porous coating having a surface roughness R max of 40 to 100 μm after spraying, the heights of the uneven portions of the sprayed coating are aligned. The surface roughness Rz is 35 to 85 μm, and the surface is coated with a low surface energy resin so that the convex portion of the sprayed coating is thin, the concave portion is thick, and the unevenness of the sprayed coating remains. A sheet-fed offset printing machine transfer cylinder jacket having a composite coating film having a smooth surface roughness Rz of 30 to 80 μm.

(2) 該凹凸の凸部のRmaxから10μm深さの平均ピークピッチが、0.5〜5.0mm程度の割合で存在してなる前記(1)に記載の渡し胴用ジャケット。 (2) The jacket for transfer cylinders according to (1), wherein an average peak pitch having a depth of 10 μm from R max of the protrusions of the unevenness is present at a ratio of about 0.5 to 5.0 mm.

(3) 該低表面エネルギー性樹脂がシリコーン系樹脂である前記(1)または(2)に記載の渡し胴用ジャケット。   (3) The jacket for transfer cylinders according to (1) or (2), wherein the low surface energy resin is a silicone resin.

(4) 前記(1)〜(3)のいずれか一つに記載のジャケットを渡し胴に巻装してなる枚葉オフセット印刷装置。   (4) A sheet-fed offset printing apparatus formed by winding the jacket according to any one of (1) to (3) around a transfer cylinder.

オフセット印刷機の圧胴、渡し胴(中間胴)のインキ付着汚れ防止の技術として発明された前記従来技術は、圧胴用被覆体としては、ジャケットのインキ汚れも少なく、また、印刷品質の面からも非常に優れたものであった。   The prior art, which was invented as a technique for preventing ink adhesion stains on the impression cylinders and transfer cylinders (intermediate cylinders) of offset printing machines, has less ink stains on the jacket as an impression cylinder cover, and also has a high print quality. It was also very good.

しかしながら、この技術の特許請求の範囲に記載の表面粗度Rmax20〜40μmは、圧胴用ジャケットとしては、最適なものであるが、渡し胴(中間胴)用としては、必ずしも最適範囲ではなかった。すなわち、Rmaxを20〜40μmの小さいレベルに設定しているため、ジャケット汚れの面からは、十分な点接触効果が発揮されず、1回/1〜数日のジャケット洗浄が必要であった。これに対して本発明は、導電性メタルを溶射し、溶射後の表面粗度Rmaxを40〜100μmの皮膜を形成した後、軽く研磨して溶射皮膜の凹凸の凸部の山の高さを揃えて表面粗度Rを35〜85μmとし、更にその表面に離型剤(シリコーン系樹脂)を溶射皮膜の凸部は薄く、凹部は厚く、かつ溶射皮膜の凹凸が残るようにコーティングして表面粗度Rzが30〜80μmで滑らかな凹凸からなる複合被覆皮膜を有するジャケットにしたことにより、従来技術のジャケットにくらべて、ジャケットのインキ汚れは格段に少なく、洗浄頻度も1回/月程度に減少した。 However, the surface roughness R max 20 to 40 μm described in the claims of this technology is optimal for an impression cylinder jacket, but is not necessarily in an optimal range for a transfer cylinder (intermediate cylinder). There wasn't. That is, since R max is set to a small level of 20 to 40 μm, a sufficient point contact effect is not exhibited from the surface of the jacket dirt, and it is necessary to clean the jacket once to several days. . On the other hand, the present invention sprays a conductive metal, forms a film having a surface roughness R max after spraying of 40 to 100 μm, and then lightly polishes and raises the height of the uneven portion of the sprayed film. The surface roughness Rz is 35 to 85 μm, and a release agent (silicone resin) is further coated on the surface so that the projections of the thermal spray coating are thin, the concaves are thick, and the projections and depressions of the thermal spray coating remain. The surface roughness Rz is 30 to 80 μm and the jacket has a composite coating film consisting of smooth irregularities, so that the ink stain on the jacket is much less than that of the prior art jacket and the cleaning frequency is once a month. Decreased to a degree.

また、従来技術で、単に溶射粗度を大きくすると、ジャケット汚れは少なくなるが、RmaxとRの差が大きくなることによりベタ印刷部のスクラッチ傷が目立ち、コート紙等への高級印刷は出来なかったが、本発明は溶射後の軽い研磨で、凸部の山の高さを揃えることにより、紙面を多くの点で均等に受けることにより、粗度Rは大きくなったにもかかわらず、目だったスクラッチ傷もなく、コート紙への印刷品質の問題も発生しない。 In addition, when the thermal spray roughness is simply increased in the conventional technology, the jacket stain is reduced, but the difference between R max and R z is increased, so that scratches in the solid print portion are conspicuous, and high-quality printing on coated paper is not possible. Although this was not possible, the present invention is a light polishing after thermal spraying, and even though the roughness R z is increased by evenly receiving the paper surface in many points by aligning the heights of the peaks of the convex portions. In addition, there are no noticeable scratches and print quality problems on coated paper do not occur.

更に、従来技術に比べて、Rmaxより10μm深さの平均ピークピッチを0.5mmないし5.0mmに1個程度と大幅に大きくしたことにより、ベタ印刷部のスクラッチ傷(目視では目立たないが、25倍ルーペでは判る)が大幅に減少する。 Furthermore, compared with the prior art, the average peak pitch 10 μm deeper than R max is greatly increased to about 1 piece from 0.5 mm to 5.0 mm, so that scratches in the solid print portion (not noticeable visually) , You can see with a 25X magnifier).

また、前記従来技術は、合成樹脂フィルムに、ガラスビーズを接着させて凹凸構造を形成し、その上にシリコーン系樹脂を被覆し、表面粗度Rmax20〜150μmの滑らかな凹凸を有する被覆体を中間胴に装着することによるインキ付着汚れ防止の技術であるが、この方式は、紙との擦れで帯電しやすいことによる紙のデリバリー部での紙の不揃いの問題、またはガラスビーズ接着強度不足により長期間使用でビーズが脱落しやすいことで交換寿命が短い(1年ぐらい)という問題点があった。 In the above prior art, a glass bead is bonded to a synthetic resin film to form a concavo-convex structure, and a silicone resin is coated on the concavo-convex structure, and the surface has a smooth concavo-convex surface roughness R max of 20 to 150 μm. This is a technology to prevent ink adhesion stains by attaching to the intermediate cylinder, but this method is a problem of unevenness of paper in the paper delivery part due to friction with the paper, or insufficient adhesion strength of the glass beads Therefore, there is a problem that the replacement life is short (about 1 year) because the beads are likely to fall off after long-term use.

それに対して、本発明は、基材および溶射材は、すべて導電性の金属を使用しており、静電気トラブルは全くない。また、凹凸の形成方式を溶射法により、かつ、0.25mmという非常に薄いSUS板に歪を発生させずに密着強度の高い皮膜を形成できる最適表面粗度領域を見つけ出したことで、寿命は大幅に長くなる(推定;5〜10年)効果がある。ガラスビーズ被覆体にくらべて、イニシャルコストは大幅にアップするが、洗浄頻度の大幅減と寿命の大幅延長を考えると総合的に大幅な改善効果がある。   On the other hand, in the present invention, the base material and the thermal spray material are all made of conductive metal, and there is no electrostatic trouble. In addition, by finding the optimum surface roughness region that can form a film with high adhesion strength without generating distortion on a very thin SUS plate of 0.25 mm by using the spraying method as the method of forming irregularities, the service life is There is an effect that it becomes much longer (estimated; 5 to 10 years). Compared with the glass bead coating, the initial cost is significantly increased, but there is a comprehensive improvement effect considering the drastic reduction in cleaning frequency and the prolongation of service life.

このように本発明による枚葉オフセット印刷機渡し胴ジャケットは、脱脂、ブラスト処理等を施された金属製板材などからなる基板上に導電性のメタルを溶射し、溶射皮膜の表面粗度がRmax40〜100μm、好ましくは50〜80μmの皮膜を形成した後、軽く研磨して溶射皮膜の凹凸の凸部の山の高さを揃えて表面粗度がR35〜85μm、好ましくは40〜70μmとし、さらにその表面に離型剤(低表面エネルギー樹脂)を溶射皮膜の凸部は薄く、凹部は厚く、かつ溶射皮膜の凹凸が残るように被覆して表面粗度R30〜80μm、好ましくは35〜65μmで、滑らかな凹凸からなる複合被覆皮膜を有する金属製ジャケットである。図1は、このような本発明に係る渡し胴ジャケットの導電性メタル溶射後の断面構造を模式的に示す図、図2は本発明に係る渡し胴ジャケットの溶射皮膜を軽く研磨して凹凸の山の高さを揃え、さらにその表面に離型剤を被覆したあとの断面構造を模式的に示す図、また図3は本発明に係る渡し胴ジャケットの断面構造で溶射皮膜の表面粗度の凸部の山のピークピッチを大きくしたもので、溶射皮膜を軽く研磨後離型剤をコーティングしたものを模式的に示した図である。 As described above, the sheet-fed offset printing machine transfer cylinder jacket according to the present invention sprays conductive metal on a substrate made of a metal plate material subjected to degreasing, blasting, etc., and the surface roughness of the sprayed coating is R. After forming a film having a maximum of 40 to 100 μm, preferably 50 to 80 μm, the surface roughness is R z of 35 to 85 μm, preferably 40 to 40 by lightly polishing and aligning the heights of the uneven portions of the thermal spray coating. Further, the surface roughness R z is 30 to 80 μm by covering the surface with a release agent (low surface energy resin) so that the convex part of the thermal spray coating is thin, the concave part is thick, and the thermal spray coating remains uneven. Preferably, it is a metal jacket having a composite coating film of 35 to 65 μm and comprising smooth unevenness. FIG. 1 is a diagram schematically showing a cross-sectional structure after conductive metal spraying of such a transfer drum jacket according to the present invention, and FIG. FIG. 3 schematically shows a cross-sectional structure after the heights of the peaks are aligned and the surface is coated with a release agent, and FIG. 3 is a cross-sectional structure of the transfer drum jacket according to the present invention showing the surface roughness of the thermal spray coating. It is the figure which showed what increased the peak pitch of the peak of a convex part, and coat | covered the mold release agent after lightly grinding | polishing the sprayed coating.

なお、これらの図において縦横の縮尺比は誇張して描かれている。   In these drawings, the vertical and horizontal scale ratios are exaggerated.

本発明の渡し胴ジャケットを得るには、まず図1に示すように脱脂およびブラスト処理して粗面とした金属製基板1の表面上に導電性メタル2を溶射するが、溶射粗度を大きくすると表面粗度のRmaxとRの差がどんどん大きくなる。このまま離型剤3を被覆して渡し胴ジャケットとして用いるとRmaxの山のピークが不揃いとなって、Rmaxの最も高い少数の山のみで紙面を受けることになり、ベタ印刷部のスクラッチ傷が出やすくなり、大きな印刷品質欠陥となる。そこで、溶射後に軽く研磨して特に高い山のみを削り、山のピークの高さを揃え、その後離型剤を被覆した拡大断面模式図が図2である。このように同じ高さの丸みを帯びた凸部で均等に紙面を受けるため、表面粗度を大きくしてもベタ印刷部のスクラッチ傷が出にくい。 In order to obtain the transfer drum jacket of the present invention, first, as shown in FIG. 1, the conductive metal 2 is sprayed on the surface of the metal substrate 1 which has been roughened by degreasing and blasting. Then, the difference between the surface roughness R max and R z becomes larger. If the release agent 3 is coated as it is and used as a transfer drum jacket, the peaks of the R max peaks will be uneven, and only the few peaks with the highest R max will receive the paper surface. Is likely to occur, resulting in a large print quality defect. Therefore, FIG. 2 is an enlarged cross-sectional schematic view in which only a particularly high mountain is shaved by spraying lightly after thermal spraying, the peak height of the mountain is made uniform, and then a release agent is coated. As described above, since the rounded convex portions having the same height receive the paper surface evenly, even if the surface roughness is increased, scratches on the solid printed portion are hardly generated.

また、溶射皮膜の表面は、図1に示すように短周期的な凹凸(ピッチ波状凹凸)と、さらにより長周期的な凹凸(うねり状凹凸)とが複合して形成した粗度プロフィールとなるが、溶射材料の粒度構成をコントロールすることにより、うねり状凹凸の山のピークピッチを図2、または図3のように最適ピークピッチに作りこむ。   Further, as shown in FIG. 1, the surface of the thermal spray coating has a roughness profile formed by combining short-period irregularities (pitch-wave irregularities) and even longer-period irregularities (swelled irregularities). However, by controlling the particle size composition of the thermal spray material, the peak pitch of the undulation-like irregularities is made to the optimum peak pitch as shown in FIG. 2 or FIG.

前記従来技術のセラミックス溶射ジャケットは、特に圧胴用を意識して開発された技術であり、ブランケット胴と圧胴でプレスして紙に印刷する場所であるため、ジャケットの表面粗度が大きいと印刷物白抜けの問題があるため、図4に示すようにRmax20〜40μmの小さめの粗度の範囲に最適粗度が限定されていたが、本発明では、渡し胴ジャケットでの最適粗度は、Rが30〜80μmの範囲であることが明らかとなった。すなわち、R30μm未満では、点接触効果が小さく、長時間印刷を続けるとジャケットにインキが付着堆積し、1日〜数日に1回ぐらいの頻度でジャケット洗浄が必要になる。また、Rが80μmを越える粗度にするには、溶射材料粒度の粗いものを使用する必要があるが、0.2〜0.35mm厚みぐらいの薄い金属板に最大粒径100μm以上の溶射材料を溶射することは、金属材料の歪が大きく実用的に作業が非常に困難である。また、それ以上に表面粗度を粗くしても、ジャケット汚れ防止効果はあまり向上しない。逆に粗度が粗くなることにより、印刷物のスクラッチ傷が大きくなるという問題も新たに発生する。 The ceramic spray jacket of the above prior art is a technology developed especially for the impression cylinder, and is a place where the blanket cylinder and the impression cylinder are pressed and printed on paper. Since there is a problem of white spots on the printed matter, the optimum roughness is limited to a smaller roughness range of R max 20 to 40 μm as shown in FIG. It has revealed that R z is in the range 30 to 80 [mu] m of. That is, if the R z is less than 30 μm, the point contact effect is small, and if printing is continued for a long time, the ink adheres to and accumulates on the jacket, and the jacket needs to be cleaned once every few days. In addition, in order to obtain a roughness with Rz exceeding 80 μm, it is necessary to use a material with a coarse particle size of the sprayed material. However, a thin metal plate having a thickness of about 0.2 to 0.35 mm is sprayed with a maximum particle size of 100 μm or more. Spraying the material is very difficult to work practically because of the large distortion of the metal material. Further, even if the surface roughness is made rougher than that, the effect of preventing the jacket stain is not improved so much. On the contrary, a problem that the scratches of the printed matter increase due to the coarseness is newly generated.

一方、従来技術のセラミックス溶射ジャケットは、特に圧胴用として使用する場合、ブランケット胴と圧胴の間で紙をプレスして印刷するため、耐磨耗性を考慮してセラミックスを溶射しているが、渡し胴の場合、紙をガイドするだけで、圧胴ほど大きな負荷がかからないため、耐摩耗性の面からはメタル溶射で十分であり、それよりも導電性のメタル溶射で表面凹凸構造を形成させることを特徴としている。   On the other hand, the ceramic spray jacket of the prior art is sprayed with ceramics in consideration of wear resistance because printing is performed by pressing paper between the blanket cylinder and the impression cylinder, especially when used for an impression cylinder. However, in the case of a transfer cylinder, only the paper is guided and the load is not as great as that of the impression cylinder. Therefore, metal spraying is sufficient from the aspect of wear resistance, and the surface uneven structure is formed by conductive metal spraying. It is characterized by being formed.

また、前記従来技術のガラスビーズフィルム被覆体は、図5に示すようなガラスビーズ7の滑からな球面に離型剤3をコーティングするため、ガラスビーズ面の離型剤3は磨耗脱落しやすい。離型剤の磨耗をできるだけ防止するため、ガラスビーズ7とフィルム5の接着剤6を薄くガラスビーズ7間の凹凸を深くし、凹部に離型剤4を深く埋めることによる楔効果で、離型剤3の耐久性を保つようにしたものとなっているが、それでも耐久性は、1年ぐらいである。   Further, since the glass bead film covering of the prior art coats the release agent 3 on the spherical surface of the glass bead 7 as shown in FIG. 5, the release agent 3 on the glass bead surface is easily worn out. . In order to prevent the release agent from being worn as much as possible, the adhesive 6 between the glass beads 7 and the film 5 is thinned, the unevenness between the glass beads 7 is deepened, and the release effect 4 is buried deeply in the recesses, thereby releasing the mold. The durability of the agent 3 is maintained, but the durability is still about one year.

これに対して、本発明におけるメタル溶射皮膜は、微細気孔と微細なピッチ波状凹凸を有するため、離型剤とメタル溶射皮膜との密着性は、アンカー効果が働き、非常に強いのである。また、フィルム5とガラスビーズ7の接着強度に比べて、本発明における金属製板材1へのメタル溶射の密着強度ははるかに強いため、溶射皮膜の凹凸構造が短い期間で損なわれる問題もない。したがって、ガラスビーズフィルムに比べて耐久性が格段に向上する。   On the other hand, since the metal sprayed coating in the present invention has fine pores and fine pitch wave-like irregularities, the adhesion between the mold release agent and the metal sprayed coating has an anchor effect and is very strong. In addition, since the adhesion strength of metal spraying to the metal plate 1 in the present invention is much stronger than the adhesive strength between the film 5 and the glass beads 7, there is no problem that the uneven structure of the sprayed coating is damaged in a short period of time. Therefore, the durability is remarkably improved as compared with the glass bead film.

セラミック溶射ジャケットまたはガラスビーズフィルムを印刷機の圧胴および中間胴に用いる技術は、前に従来技術に詳細に述べられているとおりであるが、渡し胴用ジャケットに特定した場合、従来技術の知見では、さまざまな問題が発生し、満足な機能を発揮し得ないものであった。   Techniques for using ceramic spray jackets or glass bead films for impression cylinders and intermediate cylinders of printing presses are as previously described in detail in the prior art, but when identified as transfer cylinder jackets, prior art findings However, various problems occurred and the satisfactory function could not be exhibited.

これに対して、本発明は渡し胴に的を絞った最適表面粗度プロフィールとそれを実現するための製造技術を追求することにより、従来技術にない新たな渡し胴ジャケットとして、インキの付着汚染が少なく、洗浄が容易で、耐久性が非常に高く、印刷物へのスクラッチ傷が出にくく、かつ、紙への帯電を起こしにくい枚葉オフセット印刷機渡し胴用のジャケットを実現させたものである。   On the other hand, the present invention pursues an optimum surface roughness profile focused on the transfer cylinder and a manufacturing technique for realizing it, and as a new transfer cylinder jacket that does not exist in the prior art, ink adhesion contamination. This is a jacket for a sheet-fed offset printing press transfer cylinder that is less likely to be washed, is very durable, has little scratches on printed matter, and does not easily charge paper. .

本発明において使用される金属製板としては、金属製であればいずれも使用できるが、一例を挙げると、ステンレス鋼(SUS304)等、銅,ニッケル,アルミニウム合金等があり、その厚さは、0.1〜0.5mm、好ましくは0.2〜0.4mmである。   As the metal plate used in the present invention, any metal plate can be used. For example, stainless steel (SUS304), copper, nickel, aluminum alloy, etc. It is 0.1 to 0.5 mm, preferably 0.2 to 0.4 mm.

また、溶射に使用されるメタルとしては、ニッケルクロム混合物(Ni 80質量%、Cr 20質量%)、ニッケル−アルミニウム混合物(Ni 95質量%、アルミニウム
5質量%)、アルミニウム、アルミニウム−亜鉛混合物(Al 13質量%、Zn 87量%)、亜鉛等があり、またメタルとセラミックスの混合物にして導電性をもたせた溶射材料を使用してもよい。その粒径は、通常5〜150μm、好ましくは10〜100μmである。これらは、メタルの粉末プラズマ溶射に限らず、メタル線材を用いたアーク溶射を使用することも可能である。
Moreover, as a metal used for thermal spraying, nickel chromium mixture (Ni 80 mass%, Cr 20 mass%), nickel-aluminum mixture (Ni 95 mass%, aluminum 5 mass%), aluminum, aluminum-zinc mixture (Al 13 mass%, Zn 87 mass%), zinc and the like, and a thermal spray material made of a mixture of metal and ceramics and having conductivity may be used. The particle size is usually 5 to 150 μm, preferably 10 to 100 μm. These are not limited to metal powder plasma spraying, and arc spraying using a metal wire can also be used.

その溶射平均膜厚は、通常40〜100μm、好ましくは50〜80μmであり、溶射量は、通常400〜1,000g/m、好ましくは500〜800g/mである。なお、メタル溶射膜の気孔率は、通常5〜25%、好ましくは10〜20%である。 The sprayed average film thickness is usually 40 to 100 μm, preferably 50 to 80 μm, and the sprayed amount is usually 400 to 1,000 g / m 2 , preferably 500 to 800 g / m 2 . In addition, the porosity of a metal sprayed film is 5-25% normally, Preferably it is 10-20%.

ここで、このメタル溶射皮膜2の上部から、例えばシリコーン系樹脂等の低表面エネルギー性樹脂3を被覆して乾燥固化させると、図2および3に示すように、メタル溶射層2の表面上および孔部内に低表面エネルギー性樹脂層3が形成される。低表面エネルギー性樹脂3は、前記したようにメタル溶射層2がピッチ波状凹凸を有することおよび多孔質であることから、これらの部位に入り込むことによるアンカー効果によってメタル溶射層2との密着性がよく複合皮膜化し、メタル溶射層2と低表面エネルギー性樹脂層3とで複合被覆皮膜を構成する。   Here, when a low surface energy resin 3 such as a silicone resin is coated and dried from above the metal spray coating 2, as shown in FIGS. 2 and 3, the surface of the metal spray layer 2 and A low surface energy resin layer 3 is formed in the hole. Since the low thermal energy resin 3 has the pitch-wave-like irregularities and is porous as described above, the low thermal energy resin 3 has an adhesive effect with the metal thermal spray layer 2 due to the anchor effect by entering these parts. The composite coating is well formed and the metal sprayed layer 2 and the low surface energy resin layer 3 form a composite coating.

さらに低表面エネルギー性樹脂3は、メタル溶射層2の表面を実質的に全面的に覆うが、そのうねり波状凹部には厚く、一方うねり波状凸部には薄く付着する。このため、メタル溶射層2のみを形成した状態と比較すると滑らかな表面性状となるが、メタル溶射層2に起因する凹凸が完全に埋没してしまうものではなく、前記うねり状凹凸は概ね維持され、滑らかな凹凸を有する粗面が形成できるものである。   Further, the low surface energy resin 3 substantially covers the entire surface of the metal sprayed layer 2, but is thick on the undulating undulations and thinly attached to the undulating undulations. For this reason, the surface property is smoother than the state in which only the metal sprayed layer 2 is formed, but the unevenness caused by the metal sprayed layer 2 is not completely buried, and the undulating unevenness is generally maintained. A rough surface having smooth irregularities can be formed.

このため、本発明に係る渡し胴が、被印刷体と接触する際には、ローラ表面全体で接触することなく前記したような滑らかな突起においてのみ接触し、かつその表面には低表面エネルギー性樹脂が存在するために、被印刷体からのインキ移行は起りにくく、かつ移行したインキも、表面が低表面エネルギー性樹脂によるものであることと滑らかな凹凸のプロフィールを有することが相俟って、白灯油等の溶剤を含浸させた布材等で軽く拭きとるだけで容易に除去できるものである。   For this reason, when the transfer cylinder according to the present invention comes into contact with the printing medium, it does not come into contact with the entire roller surface, but comes into contact only with the smooth protrusions as described above, and the surface has low surface energy properties. Due to the presence of the resin, ink transfer from the substrate is unlikely to occur, and the transferred ink also has a smooth uneven profile due to the surface being made of low surface energy resin. It can be easily removed by lightly wiping with a cloth impregnated with a solvent such as white kerosene.

また、前記したように低表面エネルギー性樹脂層3はメタル溶射層2と複合化されて表面に付与されているために、極めて長時間使用されたとしても全体的に磨耗剥離してしまうといったことは生じず、前記うねり状凹凸の凸部という極めて小さな部位で磨耗が生じるのみである。このため長時間にわたってロール表面の低表面エネルギーが維持され、特性の劣化が生じにくいものである。なお、このうねり状凹凸は、より微細なピッチの凹凸との比較のために「うねり」と表現したが、目視的には全くわからない程度のものであり、従ってその凸部の表面の樹脂層3が磨耗してメタル溶射層2が露出し、この部位でインキの付着、逆転移が生じたとしても、印刷品質上全く問題とならないものである。   In addition, as described above, the low surface energy resin layer 3 is combined with the metal sprayed layer 2 and applied to the surface, so that even if it is used for a very long time, the entire surface is worn away. It does not occur, and only wear occurs at a very small portion, that is, the convex portion of the undulating unevenness. For this reason, the low surface energy of the roll surface is maintained over a long period of time, and the characteristics are hardly deteriorated. The undulations are expressed as “swells” for comparison with the concavo-convexs of finer pitches. However, the undulations are not visible at all, and therefore the resin layer 3 on the surface of the projections is not visible. Even when the metal sprayed layer 2 is exposed and the ink adheres and reversely shifts at this portion, there is no problem in print quality.

このようにしてメタル溶射層が形成されたら、その上部から低表面エネルギー性樹脂を例えば、スプレー、ディッピング、ハケ塗り、ローラ塗布等の方法で含浸、コーティングし、所定の温度で乾燥固化させ、メタル溶射層の表面上および孔部内に低表面エネルギー性樹脂層を形成する。低表面エネルギー性樹脂としては、使用されるインキに対する濡れ性が低くかつインキ組成中等に使用される薬剤に対し安定な皮膜、望ましくは高硬度皮膜を形成できるものであれば特に限定されるものではないが、通常、シリコーン系樹脂およびフッ素原子含有樹脂が望ましく、さらにその硬度、施工性、化学的安定性等の面からシリコーン系樹脂が望ましい。   When the metal sprayed layer is formed in this way, the low surface energy resin is impregnated and coated from the upper part by a method such as spraying, dipping, brushing, roller coating, etc., and dried and solidified at a predetermined temperature, and then the metal is sprayed. A low surface energy resin layer is formed on the surface of the thermal spray layer and in the pores. The low surface energy resin is not particularly limited as long as it has a low wettability with respect to the ink used and can form a film that is stable against a chemical used in the ink composition, preferably a high hardness film. However, usually, a silicone resin and a fluorine atom-containing resin are desirable, and a silicone resin is more desirable in terms of its hardness, workability, chemical stability, and the like.

シリコーン系樹脂としては、施工後に、高分子化、三次元化してSi−O−Si結合と有機基、望ましくはメチル基および/またはフェニル基、より望ましくはメチル基を主体とする骨格構造を有し、安定な硬化皮膜を形成できるものであればよい。側鎖としてのメチル基が多くなるほど、インキに対する濡れ性は低いものとなるが、その硬度の向上面からはフェニル基、あるいはビニル基などの官能基に起因する架橋構造の含有割合を高めることが望まれる。   Silicone resins have a skeletal structure mainly composed of Si-O-Si bonds and organic groups, preferably methyl groups and / or phenyl groups, and more preferably methyl groups, after polymerizing and three-dimensionally after construction. And what is necessary is just to be able to form a stable cured film. The more methyl groups as the side chain, the lower the wettability with respect to the ink. However, from the viewpoint of improving the hardness, it is possible to increase the content of the cross-linked structure due to functional groups such as phenyl groups or vinyl groups. desired.

なお施工時の形態は特に限定されるものではなく、例えば、オリゴマー、モノマー等の液状のもの、あるいは樹脂状のものを適当な溶媒に溶解した溶液状のものなど、例えば、シリコーンワニス、シリコーンゴム等に分類され市販される公知の各種の組成のものを適宜選択して使用することができるが、例えば、ワニス系シリコーン離型剤として市販されている組成物、ないしこれに類似する組成物が、施工性および得られる皮膜特性の面から好ましいものが多い。シリコーン離型剤としては、例えば、一般式(I)で示されるような構造を有するシリコーンポリマーないしコポリマーを主成分とするものが市販品として入手できる。   In addition, the form at the time of construction is not particularly limited, for example, liquids such as oligomers and monomers, or solutions in which a resinous material is dissolved in an appropriate solvent, such as silicone varnish and silicone rubber Various known compositions that are classified and marketed can be appropriately selected and used. For example, a composition marketed as a varnish-type silicone release agent, or a composition similar thereto is available. Many are preferable from the viewpoints of workability and obtained film properties. As the silicone release agent, for example, a silicone mold or copolymer having a structure represented by the general formula (I) as a main component can be obtained as a commercial product.

Figure 2005047241
Figure 2005047241

(但し、式中、Rはそれぞれ独立に水酸基、アルキル、アリール、アルケニル、ハロゲン置換アルキル、ハロゲン置換アリール、ハロゲン置換アルケニル、好ましくはメチル基を表し、nは1〜30000である。)
しかしながら、もちろん使用されるシリコーン系樹脂組成物としては、このようなシリコーン離型剤に何ら限定されるものではない。
(In the formula, each R independently represents a hydroxyl group, alkyl, aryl, alkenyl, halogen-substituted alkyl, halogen-substituted aryl, halogen-substituted alkenyl, preferably a methyl group, and n is 1 to 30000.)
However, as a matter of course, the silicone resin composition to be used is not limited to such a silicone release agent.

またこのようなシリコーン系樹脂組成物中には、必要に応じて、皮膜硬度を高めるためのシリカ微粒子等の充填剤を配合することも可能であるが、メタル溶射層の空孔部および凹部に十分侵入し得る程度の粒径のものである必要がある。   Further, in such a silicone-based resin composition, if necessary, a filler such as silica fine particles for increasing the film hardness can be blended. It is necessary to have a particle size that can penetrate sufficiently.

またフッ素原子含有樹脂としては、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、ポリフッ化ビニル等といった熱可塑性フッ素原子含有樹脂を用い、適当な溶剤に縣濁ないし膨潤させて塗布し、溶融温度以上に加熱して成膜するといったディスパージョン加工法を用いることも可能であるが、メタル溶射層の表面上および孔部内により確実に皮膜を形成するためには、分子鎖内に少量の水酸基、カルボン酸基等の官能基を有し、液状にて塗布可能でかつ常温または加熱して架橋硬化する熱硬化性フッ素原子含有樹脂の方が望ましく、例えば、フルオロエチレンとアクリル酸、メタアクリル酸との共重合体などが例示される。   Also, as the fluorine atom-containing resin, a thermoplastic fluorine atom-containing resin such as polychlorotrifluoroethylene, polyvinylidene fluoride, polyvinyl fluoride or the like is used, and it is applied after being suspended or swollen in an appropriate solvent, and heated to a melting temperature or higher. It is possible to use a dispersion processing method such as forming a film, but in order to form a film more reliably on the surface of the metal sprayed layer and in the pores, a small amount of hydroxyl groups and carboxylic acid groups are formed in the molecular chain. Thermosetting fluorine atom-containing resins that have functional groups such as, can be applied in liquid form, and are cured at room temperature or by crosslinking are desirable. For example, co-polymerization of fluoroethylene with acrylic acid and methacrylic acid Examples include coalescence.

形成される低表面エネルギー性樹脂層のメタル溶射層表面上における厚さは、前記したようにメタル溶射層のうねり波状凹部には厚く、一方うねり波状凸部には薄く付着するため、平均膜厚として規定することは困難である。しかしながら、溶射層の表面を実質的に全面的に覆い、かつメタル溶射層のうねり状凹凸を維持したものとなるように、全体を通じて0.5〜20μm程度の厚さにおいて付着することが望ましい。   As described above, the thickness of the low surface energy resin layer to be formed on the surface of the metal spray layer is thick on the undulating undulations of the metal spray layer, while thinly attached to the undulating undulations of the metal spraying layer. It is difficult to specify as However, it is desirable that the entire surface of the thermal spray layer be deposited at a thickness of about 0.5 to 20 μm so as to cover the entire surface substantially and maintain the undulations of the metal thermal spray layer.

このようにして得られる本発明の枚葉オフセット印刷機渡し胴用のジャケットは、最終的な表面性状が滑らかな凹凸を有するものとなり、表面粗度Rが30〜80μm程度であることが望ましく、また最終的な表面における滑らかな凹凸の凸部は、Rmaxから10μm深さの平均ピークピッチが例えば0.5mm〜5.0mm程度、より好ましくは0.7mm〜3.5mm程度の割合で均一に分散して存在することが望ましい。そしてその全表面は、複合被覆皮膜として前記メタル溶射層に保持された緻密な低表面エネルギー性樹脂層によって形成されており、使用されるインキに対する濡れ性の低いものである。 Thus jacket for sheet offset printing press transfer cylinder of the present invention obtained, the final surface properties is to have a smooth unevenness, it is desirable surface roughness R z is about 30~80μm In addition, the smooth uneven projections on the final surface have an average peak pitch from R max to a depth of 10 μm, for example, at a ratio of about 0.5 mm to 5.0 mm, more preferably about 0.7 mm to 3.5 mm. It is desirable to exist uniformly dispersed. The entire surface is formed by a dense low surface energy resin layer held as a composite coating film on the metal sprayed layer, and has low wettability to the ink used.

なお、ここにピークピッチとは、例えば図7に示す表面粗度を有するメタル溶射膜の分布曲線において、粗度の測定長さ(L)12.5mmとしたとき、最も高い山(P)から10μm深さのところに線(A)を引き、この線と交叉する山の数(P,P・・・P)を数える。前記測定長さ(L)を山の数(P)で除した値をピークピッチという。 Here, the peak pitch is, for example, the highest peak (P 7 ) when the roughness measurement length (L) is 12.5 mm in the distribution curve of the metal sprayed film having the surface roughness shown in FIG. Then, a line (A) is drawn at a depth of 10 μm and the number of peaks (P 1 , P 2 ... P n ) crossing this line is counted. A value obtained by dividing the measured length (L) by the number of peaks (P n ) is called a peak pitch.

例えば、図7の山の数が14の場合は、つぎのとおりである。   For example, when the number of peaks in FIG. 7 is 14, it is as follows.

ピークピッチ=L/P=12.5mm/14=0.89mm
本発明のジャケットをローラ本体に取付ける方法としては、捩子止め、接着によるもの、あるいはローラ本体にクランプ装置、巻軸を有する巻締め装置を設けたものなどが採用され得る。
Peak pitch = L / P n = 12.5 mm / 14 = 0.89 mm
As a method of attaching the jacket of the present invention to the roller main body, a method by screwing or bonding, or a method in which the roller main body is provided with a clamping device or a winding device having a winding shaft can be employed.

以下、本発明を実施例によりさらに具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.

実施例1
0.25mm厚のSUS板に膜厚70μmの平均粒径40μmのNi−Crを700g/mの坪量で溶射した。そのときの表面粗度はRmaxが、63.6μm、Rzが51.2μmであった。これをサンドペーパーで軽く研磨し、特に高く飛び出た山を削った後の表面粗度は、Rmaxが、55.1μm、Rが45.3μmであった。その上からシリコーン系離型剤を(信越化学工業株式会社製KS776L)100質量部、トルエン300質量部および硬化触媒(信越化学工業株式会社製CAT−PL8)1部)13.8g/m被覆して、製品の表面粗度Rmaxが49.4μm、Rが41.8μm、Rmaxから10μm深さの凸部のピークピッチ;1.875mm、製品厚み;0.31mmの渡し胴ジャケットを製造した。表面粗度プロフィール模式図を図1および図2に示す。また、比較用として、上記と全く同じ条件でNi−Crを溶射後、研磨なしで離型剤を被覆したジャケットを製造した。この場合の製品の表面粗度はRmaxが58.5μm、Rが47.5μmであった。
Example 1
A 0.25 mm-thick SUS plate was sprayed with Ni—Cr having a thickness of 70 μm and an average particle size of 40 μm at a basis weight of 700 g / m 2 . At that time, the surface roughness was R max of 63.6 μm and Rz of 51.2 μm. The surface roughness after this was lightly polished with sandpaper and the peaks that protruded particularly high were shaved. The R max was 55.1 μm and the R z was 45.3 μm. From there, 100 parts by mass of silicone-based mold release agent (KS776L manufactured by Shin-Etsu Chemical Co., Ltd.), 300 parts by mass of toluene and 1 part of a curing catalyst (CAT-PL8 manufactured by Shin-Etsu Chemical Co., Ltd.) 13.8 g / m 2 coating And a product surface roughness R max of 49.4 μm, R z of 41.8 μm, the peak pitch of the convex portion having a depth of 10 μm from R max ; 1.875 mm, product thickness: 0.31 mm Manufactured. A schematic diagram of the surface roughness profile is shown in FIGS. For comparison, a jacket in which Ni-Cr was sprayed under exactly the same conditions as above and coated with a release agent without polishing was produced. In this case, the surface roughness of the product was R max of 58.5 μm and R z of 47.5 μm.

なお、上記表面粗度測定は、JISで一般的に用いられる測定長さ;4.0mmより長い12.5mmにて測定した。(測定長さ;4.0mmで測定したものより、Rは約5μm大きい値を示す)。 The surface roughness was measured at a measurement length generally used in JIS; 12.5 mm longer than 4.0 mm. (Measurement length: Rz is about 5 μm larger than that measured at 4.0 mm).

この渡し胴ジャケットを枚葉オフセット両面印刷機(ハイデルベルグ社製、SM102;4色/4色両面機)の5〜8色目の第1中間胴に装着した。この機械を用いて、コート紙にプロセスインキ5胴目(墨)で全面ベタ(ベタ濃度;2.2)の印刷(6〜8胴目は胴入れのみ)を行なった。   This transfer cylinder jacket was mounted on the first intermediate cylinder of the fifth to eighth colors of a sheet-fed offset double-sided printing machine (manufactured by Heidelberg, SM102; 4-color / 4-color duplex machine). Using this machine, solid printing (solid density: 2.2) was printed on the coated paper with the process ink of the 5th cylinder (black) (the 6th to 8th cylinders were only cylinder-filled).

この印刷が中間胴ジャケットによるスクラッチ傷が最も目立ちやすいテストケースであるが、目視で判別できるようなスクラッチ傷は発生しなかった。また、この機械でコート紙に表4色、裏4色のカタログ高級印刷60,000枚を行ったが、ベタ印刷部の目視判定可能なスクラッチ傷はなく、ジャケットのインキ汚れもほとんどなく、1日全く渡し胴ジャケットの洗浄の必要もなく、非常に優れたものであった。さらに静電気の発生もなかったので、紙揃えは十分であった。   Although this printing is the test case in which scratches due to the intermediate cylinder jacket are most noticeable, scratches that can be visually discerned did not occur. In addition, this machine performed 60,000 high-quality catalog prints on the coated paper with 4 colors on the front and 4 colors on the coated paper, but there were no scratches that could be visually judged in the solid print section, and there was almost no ink stain on the jacket. There was no need to clean the transfer trunk jacket every day, and it was excellent. Furthermore, there was no generation of static electricity, so the paper alignment was sufficient.

一方、同じ印刷条件で、比較用として製造した研磨なしの中間胴ジャケットを装着テストした場合は目視でも判別できるようなスクラッチ傷が多く見られ実用的に問題のあるものであった。   On the other hand, when a non-polished intermediate shell jacket manufactured for comparison was tested under the same printing conditions, there were many scratches that could be visually discerned, and there were practical problems.

実施例2
実施例1と同じく0.25mm厚のSUS板に膜厚50μmのNi−Crを溶射した。そのときの表面粗度はRmaxが43.4μm、Rが36.9μmであった。その上から実施例1と同様なシリコーン系離型剤を被覆して、製品の表面粗度Rmaxが38.7μm、Rが33.5μm、10μm深さのピークピッチが0.522mm、製品厚みが0.30mmの渡し胴ジャケットを製造した。この仕様の粗度範囲は、従来技術(特開平8−12151、請求項12)記載の圧胴、中間胴用の被覆体と同じものである。表面粗度プロフィール模式図を図4に示す。
Example 2
As in Example 1, Ni—Cr having a thickness of 50 μm was sprayed onto a 0.25 mm-thick SUS plate. The surface roughness at that time was R max of 43.4 μm and R z of 36.9 μm. Further, the same silicone release agent as in Example 1 was coated, and the product surface roughness R max was 38.7 μm, R z was 33.5 μm, the peak pitch of 10 μm depth was 0.522 mm, the product A transfer drum jacket having a thickness of 0.30 mm was manufactured. The roughness range of this specification is the same as that of the cover for the impression cylinder and the intermediate cylinder described in the prior art (Japanese Patent Laid-Open No. 8-12151, claim 12). A schematic diagram of the surface roughness profile is shown in FIG.

この渡し胴ジャケット使い、実施例1と全く同じ印刷テストを行った。この場合、セラミックス溶射後の研磨なしでも、製品の表面粗度が、Rmaxが38.7μmと小さいため、実施例1の研磨なし(比較例Rmaxが58.5μm)のようなスクラッチ傷は発生せず、コート紙への高級多色印刷でも十分印刷に使えるものであったが、渡し胴ジャケットのインキ汚れの面では、10000枚の印刷でかなりのジャケットインキ汚れが見られた。 Using this transfer cylinder jacket, the same printing test as in Example 1 was performed. In this case, even without polishing after ceramics sprayed, the surface roughness of the product, because R max is small and 38.7Myuemu, scratches, such as no grinding of Example 1 (Comparative Example R max is 58.5Myuemu) is Although it did not occur and could be used for high-quality multicolor printing on coated paper, it could be used for printing. However, in terms of ink stains on the transfer drum jacket, considerable jacket ink stains were seen after printing 10,000 sheets.

この表面粗度Rmax38.7μmは、従来技術(特開平8−12151、請求項12)記載の圧胴、中間胴用の被覆体の最適粗度範囲Rmax20μm〜40μmの上限値に近いものであるが、これより粗度をさらに小さくしていくと、ジャケットのインキ汚れはだんだん多くなり、ジャケット洗浄頻度が増えて好ましいものでなかった。 This surface roughness R max 38.7 μm is close to the upper limit value of the optimum roughness range R max 20 μm to 40 μm of the cover for the impression cylinder and intermediate cylinder described in the prior art (JP-A-8-12151, claim 12). However, when the roughness was further reduced, the ink stain on the jacket gradually increased, and the jacket washing frequency increased, which was not preferable.

渡し胴としてのジャケット洗浄頻度の大幅減少を目的とした場合の最小表面粗度はRが30μm、好ましくは、Rが40μmである。 The minimum surface roughness for the purpose of greatly reducing the frequency of cleaning the jacket as a transfer cylinder is 30 μm for R z , and preferably 40 μm for R z .

実施例3
実施例1と同じく0.25mm厚のSUS板に膜厚100μmのNi−Crを溶射した。この場合、表面粗度Rmaxと10μm深さのピークピッチを実施例1よりさらに大きくした皮膜を形成し、Rmaxが96.5μm、Rが70.6μmものであった。これをサンドペーパーで軽く研磨し、特に高く飛び出た山を削ったあとの表面粗度は、Rmaxが81.6μm、Rzが60.4μmでった。その上から実施例1と同様のシリコーン離型剤を被覆して、製品の表面粗度Rmax76.6μm、Rz56.4μm、10μm深さのピークピッチ3.5mm、製品厚み;0.33mmの渡し胴を製造した。表面粗度プロフィール模式図を図3に示す。
Example 3
As in Example 1, Ni—Cr having a thickness of 100 μm was sprayed on a SUS plate having a thickness of 0.25 mm. In this case, a film having a surface roughness R max and a peak pitch of 10 μm depth larger than that of Example 1 was formed, and R max was 96.5 μm and R z was 70.6 μm. This was lightly polished with sandpaper, the surface roughness of after cutting the particularly high protruding mountain, R max is 81.6μm, Rz was De' 60.4μm. Then, the same silicone release agent as in Example 1 was coated, and the product surface roughness R max 76.6 μm, Rz 56.4 μm, 10 μm depth peak pitch 3.5 mm, product thickness; 0.33 mm A transfer drum was manufactured. A schematic diagram of the surface roughness profile is shown in FIG.

この渡し胴ジャケットを実施例1と同じ方法で、印刷テストを行った。   A printing test was performed on this transfer drum jacket in the same manner as in Example 1.

上記実施例1〜3で判るように、溶射粗度を大きくするに従い、RmaxとRの差は、どんどん大きくなり、実施例1または、実施例3のように、Rmaxの大きい領域では、研磨なしでシリコーン系離型剤をコーティングした渡し胴ジャケットは、ベタ印刷部のスクラッチ傷が目立ちすぎ実用的に使えるものでなかった。 As can be seen from Examples 1 to 3, the difference between R max and R z increases as the thermal spray roughness increases, and in the region where R max is large as in Example 1 or Example 3, The transfer cylinder jacket coated with the silicone-based release agent without polishing was not practically usable because the scratches on the solid printing part were too conspicuous.

しかしながら、実施例3の溶射後、軽く研磨して離型剤コーティングした製品粗度Rmax76.6μm、R56.4μmのジャケットは、ベタ印刷部のスクラッチ傷の問題もほとんどなく、10μm深さのピークピッチを更に大きくしたことにより、25倍ルーペで観察した場合のスクラッチ傷も単位面積当りの数が大幅に少なくなり、良好な結果が得られた。 However, after the thermal spraying of Example 3, the jacket having a product roughness R max of 76.6 μm and R z of 56.4 μm, which was lightly polished and coated with a release agent, had almost no problem of scratches on the solid printing portion and had a depth of 10 μm. By further increasing the peak pitch, the number of scratches per unit area when observed with a 25-fold magnifier was greatly reduced, and good results were obtained.

実施例4
溶射後の粗度を更に大きくするため、0.25mmの厚みのSUS板に溶射材最大粒径120μm以上の溶射を行ったところ、粗粒子のSUS板への衝突エネルギーが大きいため0.25mm厚みのSUSプレートでは、板の歪が大きくなり、問題が生じた。衝突エネルギーを抑えるため、溶射距離を離すと、溶射皮膜のSUS板との密着力が低下し、これも実用的に問題のあるものであった。
Example 4
In order to further increase the roughness after thermal spraying, a 0.25 mm thick SUS plate was sprayed with a maximum spray particle size of 120 μm or more. Since the impact energy of the coarse particles on the SUS plate was large, the thickness was 0.25 mm. In the SUS plate, the distortion of the plate increased, causing a problem. When the spraying distance is increased in order to suppress the collision energy, the adhesion of the sprayed coating to the SUS plate is lowered, which is also problematic in practice.

このように、0.25mm厚み程度のSUS板に溶射技術で、Rmax100μm以上の表面粗度をつけるのは、技術的にも多くの困難性が伴うことがわかった。また、渡し胴ジャケットのインキ汚れの面からは、溶射後の粗度Rmax100μm、研磨後のR85μm、離型材コーティング後の粗度R80μmまでで、汚れ防止には十分であることが判った。すなわち、渡し胴としての最適粗度の上限は、溶射後のRmax100μm、研磨後のR85μm、離型剤コーティング後のR80μmである。 As described above, it has been found that it is technically difficult to apply a surface roughness of R max of 100 μm or more to a SUS plate having a thickness of about 0.25 mm by a thermal spraying technique. In addition, from the ink stain surface of the transfer drum jacket, the roughness R max after spraying is 100 μm, the roughness R z is 85 μm after polishing, and the roughness R z is 80 μm after coating the release material, which is sufficient for preventing stains. I understood. That is, the upper limit of the optimum roughness as the transfer cylinder is R max 100 μm after thermal spraying, R z 85 μm after polishing, and R z 80 μm after release agent coating.

10μm深さのピークピッチについては、大きくするほど、ピークピッチのばらつきも大きくなり、溶射法では、コントロールが難しくなる。10μm深さの平均ピークピッチ5.0mmに1個程度のものでは、ピークの幅が広いところでは、紙面のインキが凹凸の凹部に付着しやすくなり、かえってジャケット汚れの原因となる。ゆえに、10μm深さの平均ピークピッチ上限は、5.0mmに1個程度、好ましくは、3.5mmに1個程度にするのがよいことが明らかとなった。   As the peak pitch with a depth of 10 μm is increased, the variation of the peak pitch increases, and control becomes difficult with the thermal spraying method. In the case where the average peak pitch is about 1 per 5.0 mm with a depth of 10 μm, the ink on the paper surface tends to adhere to the concave and convex portions where the peak width is wide, which causes jacket stains. Therefore, it has become clear that the upper limit of the average peak pitch at a depth of 10 μm should be about 1 per 5.0 mm, preferably about 1 per 3.5 mm.

本発明による渡し胴ジャケットの製造工程における金属製板上にメタル溶射皮膜を形成した状態を示す断面図。Sectional drawing which shows the state which formed the metal spray coating on the metal plate in the manufacturing process of the transfer drum jacket by this invention. 本発明による渡し胴ジャケットであって、研磨して山の高さを揃えたのち、離型剤を被覆したものの一例を示す断面図。Sectional drawing which shows an example of the transfer cylinder jacket by this invention, after grind | polishing and aligning the height of a peak, and having coat | covered the mold release agent. 本発明による渡し胴ジャケットであって、メタル溶射後の凹凸の山のピークピッチを広くしたものの一例を示す断面図。Sectional drawing which is an example of the transfer cylinder jacket by this invention, Comprising: The peak pitch of the uneven | corrugated peak after metal spraying was widened. 従来のセラミックス溶射による渡し胴ジャケットの一例を示す断面図。Sectional drawing which shows an example of the transfer cylinder jacket by the conventional ceramic spraying. 従来のガラスビーズフィルによる渡し胴ジャケットの一例を示す断面図。Sectional drawing which shows an example of the transfer trunk | drum jacket by the conventional glass bead fill. 枚葉オフセット両面印刷機の構造を示す概略断面図。1 is a schematic cross-sectional view showing the structure of a sheet-fed offset double-sided printing machine. ピークピッチ測定のための分布曲線の一例を示すグラフ。The graph which shows an example of the distribution curve for peak pitch measurement.

符号の説明Explanation of symbols

1 金属製板、
2 メタル溶射皮膜、
3 離型剤層。
1 metal plate,
2 Metal spray coating,
3 Release agent layer.

Claims (4)

金属製板上に導電性メタルを溶射し、溶射後の表面粗度Rmaxが40〜100μmである多孔質被覆を形成したのち、該溶射皮膜の凹凸部の山の高さを揃えて表面粗度Rを35〜85μmとし、さらにその表面に低表面エネルギー性樹脂を該溶射皮膜の凸部には薄く、また凹部には厚く、かつ該溶射皮膜の凹凸が残るように被覆して表面粗度Rが30〜80μmで、滑らかな凹凸からなる複合皮膜を有してなる枚葉オフセット印刷機渡し胴用ジャケット。 Thermal spraying of conductive metal on a metal plate, then the surface roughness R max after thermal spraying to form a porous coating is 40 to 100 [mu] m, surface roughness align the heights of the mountains of the uneven portion of the solution morphism film The degree of Rz is 35 to 85 μm, and the surface is coated with a low surface energy resin so that the convex portion of the thermal spray coating is thin and the concave portion is thick and the irregularity of the thermal spray coating remains. A sheet-fed offset printing machine transfer cylinder jacket having a degree Rz of 30 to 80 μm and a composite film composed of smooth irregularities. 該凹凸の凸部のRmaxから10μm深さの平均ピークピッチが、0.5mm〜5.0mm程度の割合で存在してなる請求項1に記載の渡し胴用ジャケット。 The jacket for transfer cylinders according to claim 1, wherein an average peak pitch having a depth of 10 μm from R max of the convex portions of the unevenness is present at a ratio of about 0.5 mm to 5.0 mm. 該低表面エネルギー性樹脂がシリコーン系樹脂である請求項1または2に記載の渡し胴用ジャケット。 The jacket for a transfer cylinder according to claim 1 or 2, wherein the low surface energy resin is a silicone resin. 請求項1〜3のいずれか一つに記載のジャケットを渡し胴に巻装してなる枚葉オフセット印刷装置。   The sheet | seat offset printing apparatus formed by winding the jacket as described in any one of Claims 1-3 to a transfer cylinder.
JP2003285783A 2003-07-17 2003-08-04 Jacket for sheet offset press transfer cylinder Pending JP2005047241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003285783A JP2005047241A (en) 2003-07-17 2003-08-04 Jacket for sheet offset press transfer cylinder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003276327 2003-07-17
JP2003285783A JP2005047241A (en) 2003-07-17 2003-08-04 Jacket for sheet offset press transfer cylinder

Publications (1)

Publication Number Publication Date
JP2005047241A true JP2005047241A (en) 2005-02-24

Family

ID=34277592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003285783A Pending JP2005047241A (en) 2003-07-17 2003-08-04 Jacket for sheet offset press transfer cylinder

Country Status (1)

Country Link
JP (1) JP2005047241A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008006608A (en) * 2006-06-27 2008-01-17 Heidelberger Druckmas Ag Surface for guiding material to be printed equipped with microoverhang part
JP2009121603A (en) * 2007-11-15 2009-06-04 Nippon Steel Corp High strength bolt frictional joining structure and forming method of metal thermal spraying layer in high strength bolt frictional joining structure
JP2011056710A (en) * 2009-09-08 2011-03-24 Shinoda Shoji Kk Jacket for impression cylinder and method for manufacturing the same
JP2011121194A (en) * 2009-12-08 2011-06-23 Tokyo Printing & Equipment Trading Co Ltd Jacket for printing machine, and method for manufacturing the same
JP2011178110A (en) * 2010-03-03 2011-09-15 Tokyo Printing & Equipment Trading Co Ltd Impression-cylinder/transfer-cylinder jacket for offset sheet-fed printer
JP2012006401A (en) * 2011-08-09 2012-01-12 Tokyo Printing & Equipment Trading Co Ltd Impression cylinder and transfer cylinder jackets for offset sheet-fed printer
KR101123267B1 (en) 2009-06-29 2012-03-20 조규행 Manufacturing method of cylinder jacket for offset perfect printing presses

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008006608A (en) * 2006-06-27 2008-01-17 Heidelberger Druckmas Ag Surface for guiding material to be printed equipped with microoverhang part
JP2009121603A (en) * 2007-11-15 2009-06-04 Nippon Steel Corp High strength bolt frictional joining structure and forming method of metal thermal spraying layer in high strength bolt frictional joining structure
KR101123267B1 (en) 2009-06-29 2012-03-20 조규행 Manufacturing method of cylinder jacket for offset perfect printing presses
JP2011056710A (en) * 2009-09-08 2011-03-24 Shinoda Shoji Kk Jacket for impression cylinder and method for manufacturing the same
JP2011121194A (en) * 2009-12-08 2011-06-23 Tokyo Printing & Equipment Trading Co Ltd Jacket for printing machine, and method for manufacturing the same
JP2011178110A (en) * 2010-03-03 2011-09-15 Tokyo Printing & Equipment Trading Co Ltd Impression-cylinder/transfer-cylinder jacket for offset sheet-fed printer
JP2012006401A (en) * 2011-08-09 2012-01-12 Tokyo Printing & Equipment Trading Co Ltd Impression cylinder and transfer cylinder jackets for offset sheet-fed printer

Similar Documents

Publication Publication Date Title
JP2952224B2 (en) Roller for pressing and transporting printing media
JP3439569B2 (en) Impression cylinder or intermediate cylinder
US10583455B2 (en) Coating apparatus
CN112428691B (en) Digital printing method and system
JP4920237B2 (en) Cover of the impression cylinder or transport cylinder of a printing press
US7717037B2 (en) Humid media transfer device and/or printing media transfer device of printing machines
US20210001622A1 (en) Digital printing process and method
JP4375652B2 (en) Doctor blade
US6766738B2 (en) Cylinder jacket profile, method of producing an easy-clean layer on a cylinder jacket profile and printing press
CN100506554C (en) Metal-backed printing blanket
CN114148098A (en) Digital printing method
JPH05193094A (en) Coated paper feeding roller for rotary press
JP2005047241A (en) Jacket for sheet offset press transfer cylinder
KR20010005959A (en) Electrostatic receptors having release layers with texture and means for providing such receptors
JP2011056710A (en) Jacket for impression cylinder and method for manufacturing the same
JP3811464B2 (en) Impression cylinder, intermediate cylinder or covering for guide roller, printing apparatus using the same, and cleaning apparatus in printing apparatus
JP3676870B2 (en) Roller for crimping / transferring printed material
KR101682566B1 (en) Surface treatment method of metal plate for offset printing unit cylinder jacket
JPH11165399A (en) Material-to-be-printed pressing and transferring roller
JP4639157B2 (en) Guide roller or intermediate cylinder covering in printing apparatus, and printing apparatus using the same
JP7211831B2 (en) nonwoven fabric coating machine
US6290633B1 (en) Damping roller for printing presses and method for the production thereof
JPH08132586A (en) Stain-proofing method for roller surface
JP5261362B2 (en) Jacket for printing press and method for manufacturing the same
KR101123267B1 (en) Manufacturing method of cylinder jacket for offset perfect printing presses

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080507